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Abstract— The total capacity per chip constrained to a given
chip pulse waveform of asynchronous code division multiple
access (CDMA) channels with random spreading and subject to
frequency- at fading is investigated in the large system limit. The
analysis in terms of signal to interference and noise ratio (SINR)
is extended to CDMA systems with linear minimum mean square
error (MMSE) detectors. The system behaviour is completely
described by a positive function η(f) that can be interpreted
as the spectrum of the multiuser ef ciency. Both total capacity
per chip and SINR of linear MMSE detectors can be expressed
in terms of the spectrum of the multiuser ef ciency. A simple
relation between the total capacities per chip of asynchronous
CDMA systems with modulation based on sinc pulse waveforms
and of synchronous CDMA systems is derived.

I. INTRODUCTION

The fundamental limits of synchronous CDMA systems
have been thoroughly studied by modelling the spreading
sequences by random sequences in [1], [2], [3]. However, this
analysis is focused on synchronous CDMA systems while the
assumption of synchronism is not realistic for the uplink of
a CDMA system. Therefore, it is of theoretical and practical
interest to extend the analysis of CDMA systems with random
spreading to the asynchronous case.

The analysis of asynchronous CDMA systems limited to
symbol asynchronous but chip synchronous signals, i.e. signals
whose time delays are multiple of the chip interval, is in
[4], [5]. In [4] the performance of a linear MMSE detector
with in nite observation window is proven to be equivalent
to the performance of a synchronous CDMA system. The
performance degradation of linear detectors with nite obser-
vation windows has been analyzed in [5]. In [6] linear MMSE
detectors for asynchronous CDMA systems with modulation
based on an ideal Nyquist sinc function (bandwidth equal
to half of the chip rate or Nyquist rate RNyq) are shown
to be equivalent in terms of performance to linear MMSE
detectors for synchronous CDMA systems. The effects of
chip asynchronism on the performance of linear multistage
detectors have been object of study in [7], [8]. Asynchronous
CDMA systems with multistage detectors at the receiver and
modulation based on chip pulse waveforms with bandwidth
not greater than the Nyquist rate have the same asymptotic
performance as the correspondent synchronous systems. Fur-
thermore, the performance is independent of the time delay
distribution. Increasing the bandwidth of the chip waveform
beyond the Nyquist rate, the system performance changes
substantially. It depends on the time delay distribution and the
equivalence between synchronous and asynchronous systems
does not hold [7]. The impact of pulse shaping and the

performance loss of linear multistage detectors due to the use
of suboptimal statistics in asynchronous CDMA systems is
in [8]. The optimum design criterion for synchronous CDMA
systems based on the principle of interchip interference free
pulses (Nyquist criterion) does not hold for asynchronous
systems. Then, for asynchronous CDMA systems the analysis
of general waveforms becomes fundamental.

From a technical point of view, the large system perfor-
mance analysis in [7], [8] is based on recursive expressions of
the limit eigenvalue moments of the system covariance matrix
HHH (here H is the transfer matrix of the system) while to
derive the total capacity per chip of a large CDMA system
or its SINR at the output of a linear MMSE detector the
knowledge of the limit eigenvalue distribution is required (see
[1], [2], [3]). Thus, the results in [7], [8] do not enable a large
system analysis of the effects of asynchronism on these two
relevant performance measures. In this work we investigate the
fundamental limits of asynchronous CDMA systems in terms
of both total capacity per chip constrained to a chip pulse
waveform and the limit SINR of linear MMSE detectors.

Due to space restriction in this work we consider (i) CDMA
systems with modulation based on chip pulse waveforms with
bandwidth not greater than the Nyquist rate and any set of
time delays or (ii) CDMA systems using chip pulse waveforms
with bandwidth greater than the Nyquist rate and uniform time
delay distribution. The pulse waveform is completely general
and it is not required to satisfy the Nyquist criterion. For the
general case of CDMA with any time delay distribution the
interested reader can refer to [9]. In both case (i) and case
(ii) the behaviour of large CDMA systems with linear MMSE
detectors is completely described by a positive scalar function
η(N0, f) of the power spectral noise N0 and the frequency
f . This function can be interpreted as the spectrum of the
multiuser ef ciency of the linear MMSE detector at a given
level of power noise N0.

In [2] it was shown that the limiting interference effects
under linear MMSE detection can be decoupled in large syn-
chronous CDMA systems using random spreading sequences.
The level of interference that can be ascribed to an interferer k
is referred to as effective interference. Beside the decoupling
effects on interferers as in synchronous CDMA systems the
large system analysis of asynchronous systems shows an
additional decoupling effect in frequency such that the concept
of spectrum of the effective interference can be introduced.
The effective interference at frequency f of a user k on the
user of interest is the level of interference that can be attributed
to the component of the signal of user k at frequency f in the
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detection of the user of interest.
Furthermore, we consider asynchronous CDMA systems

with number of transmitted symbols per chip β and modulation
based on a sinc function with bandwidth proportional to the
Nyquist rate by a positive real factor γ, i.e. B = γRNyq.
We show that a linear MMSE detector performs as well as in
a synchronous system with modulation based on square root
Nyquist pulses and system load β′ = β

γ . This property implies
the possibility to trade degrees of freedom in the frequency
domain provided by the bandwidth of the chip pulse waveform
against the degrees of freedom in the time domain provided
by the spreading factor N .

For CDMA systems (i) and (ii) also the total capacity
per chip can be expressed as a function of the spectrum
of the multiuser ef ciency. An explicit expression for the
constrained total capacity is provided for modulation based on
a sinc function with bandwidth B = γRNyq. The constrained
total capacity per chip of a system with load β is related to
the capacity of synchronous systems. More speci cally, the
capacity is γ times the total capacity per chip of a synchronous
system with system load β′ = β

γ . In synchronous CDMA
systems the maximum total capacity per chip constrained to a
given bandwidth γRNyq is achieved by modulation based on
square root Nyquist functions and it is constant for any γ ∈
[1,+∞]. In contrast, the capacity constrained to a sinc pulse
increases with the bandwidth in asynchronous CDMA systems
and asynchronous systems outperform the synchronous ones.
The gap between the spectral ef ciency of a (synchronous or
asynchronous) CDMA system with ideal Nyquist sinc pulse
(γ = 1) and the spectral ef ciency of an asynchronous system
using a sinc pulse with any γ > 1 vanishes asymptotically as
the system load tends to in nity, i.e. as β →∞ at a constant
level of the energy per bit per noise level Eb

N0
.

Due to space restriction the proofs of the theorems are
omitted in this article. The interested reader can refer to [9].

II. SYSTEM MODEL

Let us consider an asynchronous CDMA system with K
users and spreading factor N in an uplink fading channel
impaired by additive white Gaussian noise (AWGN). Then,
β = K

N is the system load and the signal received at the base
station, in complex base-band notation, is given by

y(t) =
K∑

k=1

akksk(t− τk) + n(t) t ∈ [−∞,+∞].

Here, akk is the received signal amplitude of user k; τk is
the time delay of user k; n(t) is a zero mean white, complex
Gaussian process with two-sided power spectral density N0;
and sk(t) is the spread signal of user k. We have

sk(t) =
+∞∑

m=−∞
bk[m]c(m)

k (t),

where bk[m] is the mth transmitted symbol of user k and

c
(m)
k (t) =

N−1∑
u=0

sk,m[u]φ(t−mTs − uTc)

is its spreading waveform at time m. Here, sk,m, is the
spreading sequence of user k in the mth symbol interval with

elements sk,m[u], u = 0, . . . , N − 1; Ts and Tc = Ts

N are the
symbol and chip periods, respectively.

The users’ symbols bk[m] are uncorrelated and identi-
cally distributed random variables with E{|bk[m]|2} = 1
and E{bk[m]} = 0. The elements of the spreading se-
quences sk,m[u] are assumed to be i.i.d. random variables with
E{|sk,m[u]|2} = 1

N and E{sk,m[u]} = 0.
The chip waveform φ(t) is bandlimited with bandwidth

B, unit energy, and Fourier transform Φ(f). Thanks to the
statistical properties of the spreading sequences, the average
energy of the signature waveform is also unit.

At the front-end the base band signal is processed by a
lowpass lter with lowpass band BFE = r

2Tc
and r ≥ 2BTc.

Then, the chip pulse waveform at the output of the low pass
lter is still Φ(f). The lter output is sampled at rate r

Tc

such that the conditions of the sampling theorem are satis ed.
With this choice of the front-end the sampled signal provides
suf cient statistics and the discrete-time noise is still white
with zero mean and variance σ2 = N0r

Tc
.

The discrete-time signal at the front-end output is given by

y[p] =

K�
k=1

ak

+∞�
m=−∞

bk[m]

N−1�
u=0

sk,m[u]φ
�p

r
Tc−τk−(u+mN)Tc

�
+n[p]

(1)
with p ∈ Z and n[p] the discrete-time, complex-valued noise.

Throughout this work we assume that the ltered chip pulse
waveform φ(t) is much shorter than the symbol waveform,
i.e. φ(t) becomes negligible for |t| > t0 and t0 � Ts.
This is usually veri ed in the systems with large spreading
factor, which we are considering. Thus, we can neglect the
intersymbol interference. Then, given the time delay τk the
virtual spreading sequence of user k for the transmitted symbol
m spans the symbol intervals m and m + 1 and it is a 2Nr-
dimensional vector given by

vkm = Φkskm

where skm = (skm[0] . . . skm[N−1])T and Φk is a 2Nr×N
matrix taking into account the effects of the pulse shape and
the time delay of user k. The matrix Φk is of the form

Φk =
[

0T
k,0 CT

φ,r

(
τk − � τk

Tc
�Tc

)
0T

k,1

]T

(2)

where 0k,0 and 0k,1 are matrices of dimensions � rτk

Tc
�×N and(

N − � rτk

Tc
�
)
×N , respectively, with zero elements; Cφ,r(τk)

is an r-block-wise circulant matrix1 of order N de ned by

Cφ,r(τ)
�
= C

�
φ(x, τ), φ

�
x, τ − Tc

r

�
, . . . , φ

�
x, τ − (r − 1)Tc

r

��
,

(3)with

φ(x, τ)
�
=

1
Tc

+∞∑
s=−∞

ej2π τ
Tc

(x+s)Φ∗
(

j2π

Tc
(x + s)

)
. (4)

The zero matrices take into account the fact that we neglect
the the useful signal outside the interval [mTs + τk, (m +
1)Ts + τk]. For K and N nite, the circulant matrix Cφ,r(τ)
as de ned in (3) approximates the matrix directly derivable
from (1), which is Toeplitz. Furthermore, the two matrices are

1An r-blockwise circulant matrix of order N is an rN ×N matrix of N
block rows of dimensions r×N such that each block is obtained by circularly
right shifting of the previous block. It is completely characterized by the r
Fourier transforms of each of the rows.
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asymptotically equivalent in terms of spectral distribution (see
e.g. [10]).

Let S[m] be the 2rN × K matrix of virtual spreading,
i.e. S[m] = (Φ1s1m,Φ2s2m, . . .ΦKsKm), A the K × K
diagonal matrix of received amplitudes, H[m] = S[m]A,
and b[m] and y[m] the vectors of transmitted and received
signals, respectively. Furthermore, we decompose the matrix
H[m] into two matrices of size rN ×K, Hu[m] and Hd[m]
such that H[m] = [HT

u [m],HT
d [m]]T . Then, the baseband

discrete-time asynchronous system in matrix notation is given
by

Y = HB + N (5)

where Y = [. . . ,yT [m−1],yT [m],yT [m+1] . . .]T and B =
[. . . , bT [m− 1], bT [m], bT [m+1] . . .]T are the in nite-length
vectors of received and transmitted symbols respectively; N
is an in nite-length noise vector; and H is a bi-diagonal block
matrix with in nite block rows and block columns given by

H =

�
������

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0 Hd[m−1] Hu[m] 0 . . . . . .
. . . . . . 0 Hd[m] Hu[m+1] 0 . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

�
������

. (6)

Additionally, hk,m denotes the column of the matrix H
containing the kth column of the matrix H[m].

III. LINEAR MMSE DETECTION

The linear MMSE detector Ck,m generates a soft decision
b̂k[m] = CH

k,mY of the transmitted symbol bk[m] based on the
observation Y . It is given by

Ck,m = (HHH + σ2I)−1hk,m. (7)

The SINRk,m at its output of the linear MMSE detector is
given by

SINRk,m = hH
k,m(Hk,mHH

k,m + σ2I)−1hk,m (8)
where, Hk,m is the matrix obtained from H suppressing the
column hk,m.

Deeper insight on the linear MMSE behaviour is obtained
by analyzing the performance, as K,N → ∞ with constant
ratio β. In order to determine the asymptotic SINR at the
output of a linear MMSE detector we focus on CDMA
systems such that the time delays of the received signals τk,
k = 1, . . . , K are not greater than the chip delay Tc, i.e.
τk ≤ Tc, k = 1, . . . , K. We refer to them as symbol quasi-
synchronous but chip asynchronous CDMA systems. Then,
Φk =

[
CT

φ,r(τk) 0T
N

]T
, being 0N an N×N zero matrix.

The matrix H in (6) reduce to a block diagonal matrix with
blocks of dimensions rN × K and we can focus on the
transmission in a single symbol interval. The virtual spreading
matrix in the mth symbol interval is given by

S[m] = [Cφ,r(τ1)s1m,Cφ,r(τ2)s2m . . . Cφ,r(τK)sKm]

Let H[m] = S[m]A be the transfer matrix of the system
at time instant mth. Without ambiguity we can drop the index
m in the following and denote it by R = H

H
H .

The following theorem provides the limit SINR at the output
of a linear MMSE detector for user k and the multiuser
ef ciency de ned as

ηk =
N0

|akk|2 SINRk. (9)

Theorem 1 Let A ∈ CK×K be a diagonal matrix with
kth diagonal element akk and Tc a positive real. Given a
function Φ(j2πf) : R → C, let φ(x, τ) be as in (4). Given
{τ̃1, τ̃2 . . . τ̃K} a set of reals in [0, Tc] and an integer positive
r, Cφ,r(τ̃k), k = 1, . . . , K, are K r-block-wise circulant
matrices of order N de ned in (3). Let H = SA with
S = (Cφ,r(τ̃1)s1,Cφ,r(τ̃2)s2, . . . ,Cφ,r(τ̃K)sK) and sk N -
dimensional column vectors.

We assume that the function Φ(j2πf) is bounded in ab-
solute value, bandlimited with bandwidth B and r ≥ 2BTc.
The vectors sk are independent with i.i.d. circulant symmetric
Gaussian elements snk ∈ C. The elements akk of the matrix
A are uniformly bounded for any K. Furthermore, one of the
following sets of conditions is satis ed.

Set of conditions A: The sequence of the empirical joint
distributions F

(K)
|A|2,T (λ, τ) = 1

K

∑K
k=1 1(λ−|akk|2)1(τ − τ̃k)

converges almost surely, as K → ∞, to a non-random
distribution function F|A|2,T (λ, τ) with λ and τ statistically
independent and τ uniformly distributed in [0, Tc].

Set of conditions B: The bandwidth B satis es the
constraint B ≤ 1

2Tc
and the sequence of the empirical

distributions F|A|2(λ) = 1
K

∑K
k=1 1(λ− |akk|2) converges in

law almost surely to a deterministic distribution function.
Then, given the power spectral density of the white noise

N0 the spectral ef ciency of the linear MMSE detector for a
CDMA system with transfer matrix H converges in probability
as K,N → ∞ with K

N → β and r xed to the deterministic
value

lim
K=βN→∞

ηk = η (N0) =

BTc∫
−BTc

η (x,N0) dx (10)

where the multiuser ef ciency spectrum η (x,N0) is the unique
solution to the xed point equation

1
η (x,N0)

=
Tc

|Φ
(
j2π x

Tc

)
|2

+β

∫
λdF|A|2(λ)

N0+λ
BTc∫
−BTc

η (x,N0)dx

(11)

which is positive for |x| ≤ BTc.
Given |akk|2, the received power of user k, the SINR of

user k at the output of a linear MMSE detector converges in
probability to

lim
K=βN→∞

SINRk =
|akk|2

N0
η(N0) =

� BTc

−BTc

SINRk(x, N0)dx (12)

where SINRk (x,N0) = |akk|2
N0

η (x,N0) is the spectrum of
the SINR of user k.

Interestingly, (10), (11), and (12) admit the following in-

terpretation. Let P (x, λ) = λ r
T 2

c

∣∣∣Φ(
j2π x

Tc

)∣∣∣2 be the power
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density spectrum of the sampled received signal for a user
having received power λ. Then, the limit SINR in Theorem 1
can be expressed as

SINRk(x) =
P (x, |akk|2)

σ2 + βE|A|2{I(P (x, |akk|2), P (x, λ),SINRk)}
with the effective interference density spectrum

I(P (x, |akk|2), P (x, λ), αk) =
P (x, |akk|2)P (x, λ)

P (x, |akk|2) + P (x, λ)SINRk
.

Heuristically, this means that for large systems the SINR
spectrum is deterministic and given by

SINRk(x)≈ P (x, |akk|2)

σ2+ 1
N

K∑
j=1
j �=k

I(P (x, |akk|2), P (x, |ajj |2),SINRk)

.

Then, the interference at the frequency x can be decoupled into
a sum of the background noise and an interference term from
each of the users at the same frequency x. The total interfer-
ence at frequency x depends only on the received power of the
user of interest at the frequency x, the received power of the
interfering user at the same frequency, and the attained SINR
αk. Therefore, in asynchronous systems we have a decoupling
of the effects of interferers as in synchronous systems [2] and
an additional decoupling in frequency.

From the set of conditions B, since no assumption is made
on the time delay distribution, the large system performance
is independent of the set of time delays for B ≤ 1

2Tc
and

synchronous and asynchronous systems have the same perfor-
mance. For B > 1

2Tc
the equivalence between synchronous

and asynchronous systems does not hold and the large system
performance does depend on the time delay distribution. A
general expression that holds for any time delay distribution
with support [0, Tc] is omitted here due to space restriction
and can be found in [9]. For general time delays τk ∈ [0, Ts]
we conjecture the equivalence in performance between the
asynchronous systems and a chip asynchronous but symbol
quasi synchronous system with time delays τ̃k = τk−

⌊
τk

Tc

⌋
Tc.

The rationale behind this conjecture is in [9].
The sinc functions with bandwidth B = γ

2Tc
have a

particular theoretical interest. In the following we specialize
Theorem 1 to this case.

Given a positive real γ,

Φ(j2πf) =

{√
Tc

γ for |f | ≤ γ
2Tc

,

0 otherwise
(13)

corresponds to a sinc waveform with bandwidth B = γ
2Tc

and unit energy. For large systems, the multiuser ef ciency
ηsinc(N0) of a linear MMSE detector is the unique positive
solution to the xed point equation

1
η(sinc) (N0)

= 1 +
β

γ

∫
λdF|A|2(λ)

N0 + λη(sinc) (N0)
. (14)

We recall that the multiuser ef ciency of a linear MMSE
detector for a synchronous CDMA system satis es [2]

1
η(syn)(N0)

= 1 + β

∫
λdF|A|2(λ)

N0 + λη(syn)(N0)
. (15)

This result holds for synchronous CDMA systems using any
chip pulse waveform with bandwidth B ≥ 1

2Tc
and satisfying

the Nyquist criterion.
This result holds for synchronous CDMA systems using any

chip pulse waveform with bandwidth B ≥ 1
2Tc

and satisfying
the Nyquist criterion. Then, the comparison of (14) with (15)
shows the interesting effect that an asynchronous CDMA
system using a sinc function with bandwidth B = γ

2Tc
as chip

pulse waveform performs as well as a synchronous CDMA
system with system load β′ = β

γ . This implies the possibility
to trade the bandwidth of the chip pulse waveform against the
spreading factor. In other words, we can trade the degrees of
freedom in the frequency domain provided by the bandwidth
of the chip pulse waveform against the degrees of freedom
in the time domain provided by the spreading. This trading is
typical of the asynchronous systems described above and does
not extend to synchronous systems with the same waveform
as apparent from (15).

IV. CAPACITY PER CHIP CONSTRAINED TO A CHIP PULSE

WAVEFORM

There exists a close relation between the total capacity of a
CDMA system and the multiuser ef ciency of a linear MMSE
detector for the same system [3], [11]. The rationale behind
this relation is a fundamental connection between mutual
information and minimum mean-squared error in Gaussian
channels [11]. In the following, we extend the results in
Section III to get insight into the capacity per chip of an
asynchronous CDMA system constrained to a chip pulse
waveform, i.e. the capacity of a CDMA system for which the
chip pulse waveforms for all the users and the chip intervals
are identical to a given chip pulse waveform.

The total capacity per chip for large synchronous CDMA
systems with random spreading in an additive white Gaussian
noise channel is [1]

C(syn)(β,SNR) = β log2

(
1 + SNR− 1

4
�(SNR, β)

)
+log2

(
1 + βSNR− 1

4
�(SNR, β)

)
− log2 e

4
SNR�(SNR, β)

being

�(y, z) =
(√

y(1 +
√

z)2 + 1−
√

y(1−√z)2 + 1
)2

.

Consistently with the normalization adopted in the system
model SNR = N−1

0 .
The total capacity per chip of a synchronous CDMA sys-

tem is equal to C(syn)(β,SNR) for any square root Nyquist
waveform.

The expression of the total capacity per chip for asyn-
chronous CDMA systems constrained to a given chip pulse
waveform φ(t) of bandwidth B can be obtained by making
use of the results in Section III and the fundamental relation
between mutual information and MMSE in Gaussian channels
provided in [11]. In the following Corollary 1 we present
the results for CDMA system satisfying the assumptions of
Theorem 1.
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Corollary 1 Let us adopt the same de nitions and assump-
tions as in Theorem 1. Then, as K,N →∞ with K

N → β, the
total capacity per chip constrained to the chip pulse waveform
φ(t) converge to a deterministic value

C(asyn)
(
β,N−1

0 , φ
)

=
β

ln 2

∫ N−1
0

0

dt

∫ +∞

0

λη(t)dF|A|2(λ)
1 + λtη(t)

where η(t) is the multiuser ef ciency of MMSE detectors in
(10).
Let us consider again the case of chip pulse waveforms
de ned in (13), uniform distribution of the time delays, and
additive white Gaussian channel without fading. Then, the total
capacity per chip constrained to the chip pulse waveform (13)
for large systems is

C(sinc)(β, SNR, γ)
∣∣
SNR=N−1

0
=

β

ln 2

∫ N0
−1

0

η(sinc)(t)dt

1+λtη(sinc)(t)
(16)

where η(sinc)(t) is the solution to the xed point equation
(14). A similar equation holds also synchronous systems, when
η(sinc)(t) is replaced by the multiuser ef ciency for synchro-
nous system. As already noticed in Section III η(sinc)(t) for an
asynchronous system with load β equals η(syn)(t) in (15) for
a synchronous system with load β

′
= β

γ . Then, the following
relation holds for the capacities

C(sinc)(β, SNR, γ)
∣∣
SNR=N−1

0
= γ C(syn)

(
β

γ
, SNR

)∣∣∣∣
SNR=N−1

0

.

Similarly, it can be proven that the same relation holds also for
at fading channels. It is apparent from (16) that synchronous

and asynchronous systems have the same capacity for γ = 1.
In order to compare different systems (with possibly differ-

ent spreading gains and data rates) the total capacity per chip
has to be given as a function of Eb

N0
, the level of energy per

bit per noise level equal to [1] [3] Eb

N0
= βSNR
C(∗)(β,SNR,·) .

In Figure 1 we compare the capacities per chip
C(sinc)(β, SNR, γ) for asynchronous CDMA systems with
C(syn) (β, SNR) for synchronous CDMA systems. The capac-
ities are plotted as functions of γ with Eb

N0
= 10dB and

β = 1. We see that asynchronous CDMA systems outperform
synchronous systems and they compensate to some extent
for the loss in spectral ef ciency due to the increase in
bandwidth of synchronous CDMA systems. In Figure 2 we

compare the spectral ef ciencies C(∗)(β,SNR,·)
γ of synchronous

and asynchronous systems using the chip pulse waveform (13)
for γ = 1 and γ = 2. The spectral ef ciency is plotted as a
function of the system load β for Eb

N0
= 10 dB. In contrast

to the synchronous case, asymptotically for β → ∞ the
gap in spectral ef ciency between synchronous/asynchronous
systems with γ = 1 and asynchronous systems with γ = 2
vanishes.
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