
Transactional Composite Applications

Frederic Montagut*°, Refik Molva° and Silvan Tecumseh Golega†

°Institut Eurecom
2229 Route des Cretes

06904 Sophia-Antipolis
France

*SAP Labs France
805, Av. du Dr Donat 06250

Mougins
France

 †Hasso-Plattner-Institut
Postfach 900460

D-14440 Potsdam
Germany

1

Transactional Composite Applications

ABSTRACT:

Composite applications leveraging the functionalities offered by Web services are today
the underpinnings of enterprise computing. However, current Web services composition
systems make only use of functional requirements in the selection process of component
Web services while transactional consistency is a crucial parameter of most business
applications. The transactional challenges raised by the composition of Web services are
twofold: integrating relaxed atomicity constraints at both design and composition time
and coping with the dynamicity introduced by the service oriented computing paradigm.
In this chapter, we present a new procedure towards automating the composition of
transactional Web services. This composition procedure does not take into account
functional requirements only but also transactional ones based on the Acceptable
Termination States model. The resulting composite Web service is compliant with the
consistency requirements expressed by business application designers and its execution
can easily be coordinated using the coordination rules provided as an outcome of our
approach. An implementation of our theoretical results based on OWL-S and BPEL
technologies is further detailed as a proof of concept.

KEY WORDS:
Web services, composition, termination states, transactional requirements

INTRODUCTION

Web services composition has been gaining momentum over the last years as it leverages
the capabilities of simple operations to offer value-added services. These complex
services such as airline booking systems result from interactions between Web services
that can span over organizational boundaries. Considering the lack of reliability akin to
distributed environments, assuring data and transactional consistency of the outcome of
cross-organizational workflow-based applications, such as composite applications, is
necessary. The requirements that are relevant to assuring consistency within the
execution of Web services composite applications are mainly twofold:

• Relaxed atomicity: atomicity of the execution can be relaxed as intermediate results

produced by a workflow-based application may be kept despite the failure of a
service. The specification process of transactional requirements associated with
workflows has to be flexible enough to support coordination scenarios more complex
than the coordination rule “all or nothing” specified within the two phase commit
protocol (ISO, n.d.).

• Dynamic assignment of business partners: composite applications are dynamic in
that the workflow partners or component services offering different characteristics
can be assigned to tasks depending on the resources available at runtime. Business
partners’ characteristics have thus to be combined or composed in a way such that the
transactional requirements specified for the workflow are met.

2

Existing transactional protocols (Elmagarmid, 1992), (Greenfield, Fekete et al. 2003) are
not adapted to meet these two requirements as they do not offer sufficient flexibility to
cope for instance with the runtime assignment of computational tasks. In addition,
existing solutions to combine or compose service providers based on the characteristics
they offer appear to be limited when it comes to integrating at the composition phase the
consistency requirements defined by workflow designers. These solutions indeed only
offer means to validate transactional requirements once the workflow business partners
have been selected but no solution to integrate these requirements as part of the
composite application building process. The next sections present our approach to
overcome these limitations.

Chapter contributions

In this chapter, we present an adaptive transactional protocol to support the execution of
composite applications. The execution of this protocol takes place in two phases. First,
business partners are assigned to tasks using an algorithm whereby workflow partners are
selected based on functional and transactional requirements. Given an abstract
representation of a process wherein business partners are not yet assigned to workflow
tasks, this algorithm enables the selection of service providers not only according to
functional requirements but also based on transactional ones. In our approach, these
transactional requirements are defined at the workflow design stage using the Acceptable
Termination States (ATS) model. The resulting workflow instance is compliant with the
defined consistency requirements and its execution can be easily coordinated as our
algorithm also provides coordination rules. The workflow execution further proceeds
through a coordination protocol that leverages the coordination rules computed as an
outcome of the partner assignment procedure.

Chapter outline

The remainder of the chapter is organized as follows. Section 2 discusses related work
and technical background. In section 3, we introduce preliminary definitions and the
methodology underpinning our approach. A simple example of composite application is
presented in section 4 for the purpose of illustrating our results throughout the chapter.
Section 5 introduces a detailed description of the transactional model used to represent
the characteristics offered by business partners. In section 6, we provide details on the
termination states of a workflow then section 7 describes how transactional requirements
expressed by means of the ATS model are derived from the inherent properties of
termination states. Section 8 presents the transaction-aware service assignment procedure
and the associated coordination protocol. An implementation of our theoretical results
based on Web services technologies including OWL-S (OWL Services Coalition, 2003)
and BPEL (Thatte, 2003) is presented in section 9. Finally, section 10 presents
concluding remarks.

3

TECHNICAL BACKGROUND

Transactional consistency of workflows and database systems has been an active research
topic over the last 15 years yet it is still an open issue in the area of Web services
(Curbera, Khalaf et al. 2003), (Gudgin, 2004), (Little, 2003) and especially composite
Web services. Composite Web services indeed introduce new requirements for
transactional systems such as dynamicity, semantic description and relaxed atomicity.
Existing transactional models for advanced applications (Elmagarmid, 1992) are lacking
of flexibility to integrate these requirements (Alonso, Agrawal et al. 1996) as for instance
they are not designed to support the execution of dynamically generated collaboration of
services. In comparison, the transactional framework presented in this chapter allows the
specification of transactional requirements supporting relaxed atomicity for an abstract
workflow specification and the selection of semantically described services respecting the
defined transactional requirements.

Our work is based on (Bhiri, Perrin et al. 2005) which presents the first approach
specifying relaxed atomicity requirements for composite Web services based on the ATS
tool and a transactional semantic. Despite a solid contribution, this work appears to be
limited if we consider the possible integration into automatic Web services composition
systems. It indeed only details transactional rules to validate a given composite service
with respect to defined transactional requirements. In this approach, transactional
requirements do not play any role in the component service selection process which may
result in several attempts for designers to determine a valid composition of services. On
the contrary, our solution provides a systematic procedure enabling the automatic design
of transactional composite Web services. Besides, our contribution also defines the
mathematical foundations to specify valid ATS for workflows using the concept of
coordination strategy that is defined later on.

Within the Web services stack, three specifications feature solutions towards assuring the
transactional coordination of services: Web Services Coordination (WS-Coordination,
(Langworthy, 2005)), Web Services Atomic Transaction (WS-AtomicTransaction,
(Langworthy, 2005)) and Web Services Business Activity Framework (WS-
BusinessActivity, (Langworthy, 2005)). They are often referred to as Web Services
Transaction Framework (WSTF). The goal of WS-Coordination is to provide a
framework that can support various coordination protocols specified in terms of
coordination types. When service providers register to transactional coordinators they
specify as part of a coordination type, the coordination protocol that should be
implemented to support a composite application execution. The WS-AtomicTransaction
and WS-BusinessActivity specifications are the two main coordination protocols
available. Making use of compensation techniques WS-AtomicTransaction requires all
participants to be compensatable and to support certain isolation levels; this is in fact an
implementation of the two phase-commit protocol. WS-BusinessActivity on the other
hand offers a coordination framework suitable for long-running transactions, called
business activities. WS-BusinessActivity does not however specify appropriate tools to
describe coordination strategies i.e. how the coordination protocol should react in the face
of failures so that a composite application can reach consistent termination states. It is, in

4

Figure 1: Principles

fact, only mentioned that different strategies are possible in addition to the classical “all
or nothing” principle. Besides the Web Services Transaction Framework there are several
other initiatives towards establishing transaction management within Web service
interactions. The Business Process Execution Language for
Web Services (BPEL4WS or BPEL) implements the concept of Long-Running
(Business) Transactions (LRT). It supports coordination of transactions in local BPEL
processes. A comparison of BPEL Long-running transactions and WS-BusinessActivity
and an approach to unify them can be found in (Melzer and Sauter, 2005). The Business
Transaction Protocol (BTP, (Abbott, 2005)) specifies roles, interactions, behaviors and
messages to coordinate long-running transactions in the fashion of the WS-
BusinessActivity specification.

These various coordination protocols do not however offer adequate support for
designers to specify flexible coordination scenarios wherein component services feature
different transactional properties such as the ability to compensate the execution of a task
or to retry the execution of a failed task. The solution presented in this chapter can be
used to augment these standardization efforts in order to provide them with adaptive
coordination specifications based on the transactional properties of the component
services instantiating a given workflow.

PRELIMINARY DEFINITIONS AND METHODOLOGY

Transactional consistency is a crucial aspect of composite services execution. In order to
meet consistency requirements at early stages of the service composition process, we
need to consider transactional requirements a concrete parameter determining the choice
of the component Web services. In this section we present a high level definition of the
consistency requirements and a methodology taking into account these requirements
during the building process of composite applications and later on during the
coordination of their execution.

Consistent composite Web services

5

1W

TS(W1) Task 1 Task 2 Task 3 Task 4
ts1 completed completed completed completed
ts2 completed completed completed failed
ts3 completed compensated completed failed
ts4 completed compensated compensated failed
ts5 completed completed compensated failed
ts6 compensated compensated compensated failed
ts7 compensated completed compensated failed
ts8 compensated completed completed failed
ts9 compensated compensated completed failed
ts10 completed failed completed aborted
ts11 completed failed compensated aborted
ts12 completed failed canceled aborted
ts13 compensated failed completed aborted
ts14 compensated failed compensated aborted
ts15 compensated failed canceled aborted
ts16 completed completed failed aborted
ts17 completed compensated failed aborted
ts18 completed canceled failed aborted
ts19 compensated completed failed aborted
ts20 compensated compensated failed aborted
ts21 compensated canceled failed aborted
ts22 failed aborted aborted aborted

Figure 2: Production line process

A composite Web service Ws consists of a set of n Web services () []naas s=W 1,∈ whose
execution is managed according to a workflow W which defines the execution order of a
set of n tasks () []naat=W 1,∈ performed by these services (for the sake of simplicity, we
consider that one service executes only one task). The assignment of services to tasks is
performed by means of composition engines based on functional requirements. Yet, the
execution of a composite service may have to meet transactional requirements aiming at
the overall assurance of consistency. Our goal is to design a service assignment process
that takes into account the transactional requirements associated with W in order to obtain
a consistent instance Ws of W as depicted in Figure 1. We consider that each Web service
component might fulfill a different set of transactional properties. For instance a service
can have the capability to compensate the effects of a given operation or to re-execute the
operation after failure whereas some other service does not have any of these capabilities.
It is thus necessary to select the appropriate service to execute a task whose execution
may be compensated if required. The assignment procedure based on transactional
requirements follows the same strategy as the one based on functional requirements. It is
a match-making procedure between the transactional properties offered by services and
the transactional requirements associated to each task. Once assigned, the
services () []naas 1,∈ are coordinated with respect to the transactional requirements during the
composite application execution. The coordination protocol is indeed based on rules
deduced from the transactional requirements. These rules specify the final states of
execution or termination states each service has to reach so that the overall process
reaches a consistent termination state. Two phase-commit the famous coordination
protocol (ISO, n.d.) uses for instance the simple rule: all tasks performed by different
services have to be compensated if one of them fails. The challenges of the transactional
approach are therefore twofold.

• Specify a Web service assignment procedure that builds consistent instances of
W according to defined transactional requirements,

• Specify the coordination protocol managing the execution of consistent
composite services.

6

Methodology

In our approach, the services involved in Ws are selected according to their transactional
properties by means of a match-making procedure. We therefore need first to specify the
semantic associated with the transactional properties defined for services. The match-
making procedure is indeed based on this semantic. This semantic is also to be used in
order to define a tool allowing workflow designers to specify their transactional
requirements for a given workflow. Using these transactional requirements, we are able
to assign services to workflow tasks based on rules which are detailed later on. Once the
composite service is defined, we can define a protocol in order to coordinate these
services according to the transactional requirements specified at the workflow designing
phase. The proofs of the theorems underpinning the work presented in this chapter can be
found in (Montagut and Molva, 2006).

MOTIVATING EXAMPLE

In this section we introduce a simple motivating example that will be used throughout the
chapter to illustrate the presented methodology. We consider the simple process of a
manufacturing firm involving four steps as depicted in

1W
Figure 2. A first service, order

handling service is in charge of receiving orders from clients. These orders are then
handled by the production line (step 2) and in the meantime an invoice is forwarded to a
payment platform (step 3). Once the ordered item has been manufactured and the
payment validated, the item is finally delivered to the client (step 4). Of course in this
simple scenario, a transactional approach is required to support the process execution so
that it can reach consistent outcomes as for instance the manufacturing firm would like to
have the opportunity to stop the production of an item is the payment platform used by a
customer is not a reliable one. On the other hand, it may no longer be required to care
about canceling the production if the payment platform claims it is reliable and not prone
to transaction errors. Likewise, customers may expect that their payment platform offer
refunding options in case the delivery of the item they ordered is not successful. Those
possible outcomes mostly define the transactional requirements for the execution of this
simple process and also specify what actions need to be taken to make sure that the final
state of the process execution is deemed consistent by the involved parties. This example
although simple perfectly meets our illustration needs within this chapter as it
demonstrates the fact that based on the specified transactional requirements a clever
selection of the business process participants has to be performed prior to the process
instantiation since for instance the selection of both a payment platform that do not offer
any refunding options and an unreliable delivery means may result in a disappointed
customer. It should be noted that the focus of this example is not the trust relationship
between the different entities and we therefore assume the trustworthiness of each of
them yet we are rather interested in the transactional characteristics offered by each
participant.

7

Figure 3: Service state diagram

TRANSACTIONAL MODEL

In this section, we define the semantic specifying the transactional properties offered by
services before specifying the consistency evaluation tool associated to this semantic. Our
semantic model is based on the “transactional Web service description” defined in (Bhiri,
Perrin et al. 2005).

Transactional Properties of Services

In (Bhiri, Perrin et al. 2005) a model specifying semantically the transactional properties
of Web services is presented. This model is based on the classification of computational
tasks made in (Schuldt, Alonso et al. 1999), (Mehrotra, Rastogi et al. 1992) which
considers three different types of transactional properties. An operation and by extension
a Web service executing this task can be of type:

• Compensatable: the results produced by the task can be rolled back
• Retriable: the task is sure to complete successfully after a finite number of tries
• Pivot: the task is neither compensatable nor retriable

These transactional properties allow us to define four types of services: Retriable (r),
Compensatable (c), Retriable and Compensatable (rc) and Pivot (p).

In order to properly detail the model, we can map the transactional properties with the
state of data modified by the services during the execution of computational tasks. This
mapping is depicted in Figure 3. Basically, data can be in three different states: initial (0),
unknown (x), completed (1). In the state (0), either the task execution has not yet started
initial, the execution has been stopped, aborted before starting, or the execution has been
properly completed and the modifications have been rolled back, compensated. In state
(1) the task execution has been properly completed. In state (x) either the task execution
is not yet finished active, the execution has been stopped, canceled before completion, or
the execution has failed. Particularly, the states aborted, compensated, completed,
canceled, and failed are the possible final states of execution of these tasks. Figure 4
details the transition diagram for the four types of transactional services. We must
distinguish within this model the inherent termination states: failed and completed which

8

Figure 4: Transactional Properties of services

result from the normal course of a task execution and the one resulting from a
coordination message received during a coordination protocol instance: compensated,
aborted and canceled which force a task execution to either stop or rollback. The
transactional properties of the services are only differentiated by the states failed, and
compensated which indeed respectively specify the retriability and compensatability
aspects.

Definition 5.1 We have for a given service s:

• failed is not a termination state of s iff s is retriable
• compensated is a termination state of s iff s is compensatable

From the state transition diagram, we can also derive some simple rules. The states failed,
completed and canceled can only be reached if the service is in the state active. The state
compensated can only be reached if the service is in the state completed. The state
aborted can only be reached if the service is in the state initial.

Termination states

The crucial point of the transactional model specifying the transactional properties of
services is the analysis of their possible termination states. The ultimate goal is indeed to
be able to define consistent termination states for a workflow i.e. determining for each
service executing a workflow task which termination states it is allowed to reach.

Definition 5.2 We define the operator termination state ts(x) which specifies the possible
termination states of the element x. This element x can be:

• a service s and () { }dcompensatecompleted,failed,canceled,aborted,sts ∈
• a task t and () { }dcompensatecompleted,failed,canceled,aborted,tts ∈
• a workflow () []naat=W 1,∈ and () () () ()()ntts,,tts,tts=Wts ...21
• a composite service Ws of W composed of n services () []naas s=W 1,∈ and

() () () ()()ns sts,,sts,sts=Wts ...21

The operator TS(x) represents the finite set of all possible termination states of the
element x, () ()() []jkk xts=xTS 1,∈ . We have especially, () (WTSWTS s ⊆) since the set

(sWTS)represents the actual termination states that can be reached by Ws according to the

9

Task 1 s11 yes no
s12 no yes
s13 yes yes

Task 2 s21 yes no
s22 no yes

Task 3 s31 yes no
s32 no yes

Task 4 s41 no no

Available
Services

Retriable Compensatable

Task 1 Task 2 Task 3 Task 4
ats1 ts1 completed completed completed completed
ats2 ts6 compensated compensated compensated failed
ats3 ts14 compensated failed compensated aborted
ats4 ts15 compensated failed canceled aborted
ats5 ts20 compensated compensated failed aborted
ats6 ts21 compensated canceled failed aborted

ATS1(W1)

Task 1 Task 2 Task 3 Task 4
ats1 ts1 completed completed completed completed
ats2 ts17 completed compensated failed aborted
ats3 ts11 completed failed compensated aborted
ats4 ts5 completed completed compensated failed
ats5 ts18 completed canceled failed aborted
ats6 ts12 completed failed canceled aborted

ATS2(W1)

Figure 5: Acceptable termination states of W1 and available services

transactional properties of the services assigned to W. We also define for x workflow or
composite service and []na 1,∈ :

• ()atx,ts : the value of ()atts in ts(x)
• tscomp(x): the termination state of x such that [] () completed=tx,tsna a1,∈∀

For the remainder of the chapter, () []naat=W 1,∈ represents a workflow of n tasks
and () []naas s=W 1,∈ a composite service of W.

Transactional consistency tool

We use the Acceptable Termination States (ATS) (Rusinkiewicz and Sheth 1995) model
as the consistency evaluation tool for our workflow. ATS defines the termination states a
workflow is allowed to reach so that its execution is judged consistent.

Definition 5.3 An ATS(W) is a subset of TS(W) whose elements are considered consistent
by workflow designers for a specific execution of W. A consistent termination state of W
is called an acceptable termination state ()Watsk thus () ()() []ikk Wats=WATS 1,∈ . A set
ATS(W) specifies the transactional requirements defined by designers associated with a
specific execution of W.

ATS(W) and TS(W) can be represented by a table which defines for each termination state
the tuple of termination states reached by the workflow task as depicted in Figure 5.
Depending on the application different ATS tables can of course be specified by designers
for the same workflow, and for the sake of readability we do not introduce in this chapter
an index (as in ATSi(W)) in the notation ATS(W). As mentioned in the definition, the
specification of the set ATS(W) is done at the workflow designing phase. ATS(W) is
mainly used as a decision table for a coordination protocol so that Ws can reach an
acceptable termination state knowing the termination state of at least one task. The role of
a coordination protocol indeed consists in sending messages to services in order to reach
a consistent termination state given the current state of the workflow execution. The
coordination decision, i.e. the termination state that has to be reached, made given a state

10

of the workflow execution has to be unique; this is the main characteristic of a
coordination protocol. In order to cope with this requirement, ATS(W) which is used as
input for the coordination decision-making process has therefore to verify some
properties that we detail later on.

ANALYSIS OF TS(W)

Since () (WTSWATS ⊆), ATS(W) inherits the characteristics of TS(W) and we logically
need to analyze first TS(W). In this section, we first precise some basic properties of
TS(W) derived from inherent execution rules of a workflow W before examining TS(W)
from a coordination perspective.

Inherent properties of TS(W)

We state here some basic properties relevant to the elements of TS(W) and derived from
the transactional model presented above. TS(W) is the set of all possible termination
states of W based on the termination states model we chose for services. Yet, within a
composite service execution, it is not possible to reach all the combinations represented
by a n-tuple () () ()(ntts,,tts,tts ...21) . The first restriction is introduced by the sequential
aspect of a workflow:

• (P1) A task becomes activated iff all the tasks executed beforehand according to the

execution plan of W have reached the state completed

 (P1) simply means that to start the execution of a workflow task, it is required to have
properly completed all the workflow tasks required to be executed beforehand.

Second, we consider in our model that only one single task can fail at a time and that the
states aborted, compensated and canceled can only be reached by a task in a given

()Wtsk if one of the services executing a task of W has failed. This means that the
coordination protocol is allowed to force the abortion, the compensation or the
cancellation only in case of failure of a service. We get (P2):

• (P2) if () { }ts then canceledaborted,d,compensateW,tak ∈ []nl 1,∈!∃ such that
() failed=W,tts lk .

Classification within TS(W)

As we explained above the unicity of the coordination decision during the execution of a
coordination protocol is a major requirement. We try here to identify the elements of
TS(W) that correspond to different coordination decisions given the same state of a
workflow execution. The goal is to use this classification to determine ATS(W). Using the
properties (P1) and (P2), a simple analysis of the state transition model reveals that there
are two situations whereby a coordination protocol has different possibilities of

11

coordination given the state of a workflow task. Let two tasks at and bt and assume that
the task bt has failed:

• the task at is in the state completed and either it remains in this state or it is

compensated
• the task at is in the state active and either it is canceled or the coordinator lets it reach

the state completed

From these two statements, we define the incompatibility from a coordination perspective
and the flexibility.

Definition 6.1 Two termination states ()Wtsk and ()Wtsl are said incompatible from a
coordination perspective iff ∃ two tasks at and bt such that

failedtWtstWtscompletedtWts blbkak ===),(),(,),(and () dcompensate=W,tts al .
Otherwise, ()Wtsl and ()Wtsk are said compatible from a coordination perspective.

The value in { }completedd,compensate reached by a task at in a termination state

()Wtsk whereby () failed=W,tts bk is called recovery strategy of at against bt in
()Wtsk . By extension, we can consider the recovery strategy of a set of tasks against a

given task.

If two termination states are compatible, they correspond to the same recovery strategy
against a given task. In fact, we have two cases for the compatibility of two termination
states ()Wtsk and ()Wtsl . Given two tasks ba t,t such that () () failed=W,tts=W,tts blbk :

• () ()alak tW,ts=tW,ts
• () { } () { }canceledaborted,W,t,tscompletedd,compensateW,tts alak ∈∈

The second case is only possible to reach if at is executed in parallel with bt . Intuitively,
the failure of the service assigned to bt occurs at different instants in ()Wtsk and ()Wtsl .

Definition 6.2 A task at is flexible against bt iff ()Wtsk∃ such that () failed=W,tts bk
and () canceled=tW,ts ak . Such a termination state is said to be flexible to at against bt .
The set of termination states of W flexible to at against bt is denoted ()ba t,t .

FTS

From these definitions, we now study the termination states of W according to the
compatibility and flexibility criteria in order to identify the termination states that follow
a common strategy of coordination.

12

Definition 6.3 A termination state of W, ()Wtsk is called generator of at iff
() failed=W,tts ak and []nb 1,∈ such that ∀ bt is executed before or in parallel with at ,
() { }d . The set of termination states of W compatible with compensatecompleted,W,tts bk ∈
()Wtsk generator of at is denoted ()()ak t,WtsCTS .

The set ()(ak t,WtsCTS)specifies all the termination states of W that follow the same
recovery strategy as ()Wtsk against at .

Definition 6.4 Let () ()WTSWtsk ∈ be a generator of at . Coordinating an instance Ws of
W in case of the failure of at consists in choosing the recovery strategy of each task of W
against at and the n<za tasks ()

[]aziiat 1,∈
 flexible to at whose execution is not canceled

when at fails. We call coordination strategy of Ws against at the set:

 If the service

[]),()),((),)(),(,(
1

,1 aa

z

i
akaziaks ttFTStWtsCTSttWtsWCS

i

a

ai U
=

∈ −=

as assigned to at is retriable then

Ws is said to be coordinated according to []), if in case of the
failure of

[] ∅=∈),)(),(,(,1 aziaks ttWtsWCS
ai

)(),(,(,1 aziaks ttWtsW
ai ∈CS

at , Ws reaches a termination state in []), . Of course, it
assumes that the transactional properties of Ws are sufficient to reach

)(),(,(,1 aziaks ttWtsWCS
ai ∈

()Wtsk .

From these definitions, we can deduce a set of properties:

Theorem 6.5 Ws can only be coordinated according to a unique coordination strategy at
a time.

Theorem 6.6 Let)(Wtsk such that failedtWts ak =),(but not generator of at . If

)(then []jl ,1∈∃ such that)()(sk WTSWts ∈)(sl WTSWts ∈ is a generator of at compatible
with)(Wtsk . This theorem states that if a composite service is able to reach a given
termination state wherein a task at fails, it is also able to reach a termination state
generator compatible with the latter.

Given a task at the idea is to classify the elements of TS(W) using the sets of termination
states compatible with the generators of at . Using this approach, we can identify the
different recovery strategies and the coordination strategies associated with the failure of

at as we decide which tasks can be canceled.

13

FORMING ATS(W)

Defining ATS(W) is deciding at design time the termination states of W that are
consistent. ATS(W) is to be inputted to a coordination protocol in order to provide it with
a set of rules which leads to a unique coordination decision in any cases. According to the
definitions and properties we introduce above, we can now explicit some rules on
ATS(W) so that the unicity requirement of coordination decisions is respected.

Definition 7.1 Let)(such that failed)(WATSWtsk ∈ tWts ak =),(. ATS(W) is valid iff

[]jl ,1 such that)(Wtsl generator of ! ∈∃ at compatible with)(Wtsk and

)(for a set of tasks []ai ziat ,1)(∈ flexible to),(ATSttFTS aai
⊂)

1

W
z

i
a

a

−
=
U),((tWtsCTS l at .

The unicity of the termination state generator of a given task comes from the
incompatibility definition and the unicity of the coordination strategy. A valid ATS(W)
therefore contains for all in which a task fails a unique coordination strategy
associated to this failure and the termination states contained in this coordination strategy
are compatible with . In

)(Wtsk

)(Wtsk Figure 5, an example of possible ATS is presented for the
simple workflow W1. It just consists in selecting the termination states of the table TS(W1)
that we consider consistent and respect the validity rule for the created ATS(W1).

DERIVING COMPOSITE SERVICES FROM ATS

In this section, we introduce a new type of service assignment procedure: the transaction-
aware service assignment procedure which aims at assigning n services to the n tasks at
in order to create an instance of W acceptable with respect to a valid ATS(W). The goal of
this procedure is to integrate within the instantiation process of workflows a systematic
method ensuring the transactional consistency of the obtained composite service. We first
define a validity criteria for the instance Ws of W with respect to ATS(W), the service
assignment algorithm is then detailed. Finally, we specify the coordination strategy
associated to the instance created from our assignment scheme.

Acceptability of Ws with respect to ATS(W)

Definition 8.1 Ws is an acceptable instance of W with respect to ATS(W) iff

)(.)(WATSWTS s ⊆

Now we express the condition in terms of coordination strategies.
The termination state generator of

)()(WATSWTS s ⊆

at present in ATS(W) is noted . The set of tasks
whose execution is not canceled when

)(Wts
ak

at fails is denoted . []az,i iat 1)(∈

14

Theorem 8.2)(iff)(WATSWTS s ⊆ [] [])(),)(),(,(,1 ,1 WATSttWtsWCSna aziaks aia
⊂∈∀ ∈

An instance Ws of W is therefore an acceptable one iff it is coordinated according to a set
of n coordination strategies contained in ATS(W). It should be noted that if

 where represents the acceptable termination states of the
task

),(atWATSfailed∉),(atWATS

at in ATS(W) then [] ∅=∈),)(,1 azia tt
ai

),(,(ks WtsW
a

CS .

Transaction-aware assignment procedure

In this section, we present the procedure that is used to assign services to tasks based on
transactional requirements. This algorithm uses ATS(W) as a set of requirements during
the service assignment procedure and thus identifies from a pool of available services
those whose transactional properties match the transactional requirements associated to
workflow tasks defined in ATS(W) in terms of acceptable termination states. The
assignment procedure is an iterative process, services are assigned to tasks one after the
other. The assignment procedure therefore creates at each step i a partial instance of W
noted . We can define as well the set which represents the termination states
of W that the transactional properties of the i services already assigned allow to reach.
Intuitively the acceptable termination states refer to the degree of flexibility offered when
choosing the services with respect to the different coordination strategies verified in
ATS(W). This degree of flexibility is influenced by two parameters:

i
sW)(i

sWTS

• The list of acceptable termination states for each workflow task. This list can be

determined using ATS(W). This is a direct requirement which specifies the
termination states allowed for each task and therefore introduces requirements on the
service’s transactional properties to be assigned to a given task: this service can only
reach the states defined in ATS(W) for the considered task.

• The assignment process is iterative and therefore, as we assign new services to tasks,
)(i

sWTS changes and the transactional properties required to the assignment of further
services too. For instance, we are sure to no longer reach the termination states

()()ak t,W allowing the failure of the task tsCTS at in ATS(W) when we assign a
service of type (r) to at . In this specific case, we no longer care about the states
reached by other tasks in ()()ak t,WtsCTS and therefore there is no transactional
requirements introduced for the tasks to which services have not already been
assigned.

We therefore need to define first the transactional requirements for the assignment of a
service after i steps in the assignment procedure.

Extraction of transactional requirements

From the two requirements above, we define for a task at :

15

•),(atW : Set of acceptable termination states of ATS at which is derived from ATS(W)
•),(i

sa Wt : This is the set of transactional requirements that the service assigned to DIS

at must meet based on the previous assignments. This set is determined based on the
following reasoning:

(DIS1): the service must be compensatable iff),(i

sa WtDISdcompensate ∈

(DIS2): the service must be retriable iff),(i

sa WtDISfailed∉

Using these two sets, we are able to compute

 which defines the transactional properties a
service

),(),(),,(i
saa

i
saaTP WtDIStWATSWtsMIN I=

as has at least to comply with in order to be assigned to the task at at the i+1
assignment step. We simply check the retriability and compensatability properties for the
set :),, i

saa WtsMIN (TP

•),, iff (i

saaTP WtsMINfailed∉ as has to verify the retriability property
•),, iff (i

saaTP WtsMINdcompensate ∈ as has to verify the compensatability property

The set is easily derived from ATS(W). We need now to compute

. We assume that we are at the i+1 step of an assignment procedure, i.e. the
current partial instance of W is . Computing means determining whether
(DIS1) and (DIS2) are true. From these two statements we can derive three properties:

),(atWATS
)i

s,(a WtDIS
i

sW),(i
sa WtDIS

1. (DIS1) implies that state compensated can definitely be reached by at
2. (DIS2) implies that at can not fail
3. (DIS2) implies that at can not be canceled

The two first properties can be directly derived from (DIS1) and (DIS2). The third one is
derived from the fact that if a task can not be canceled when a task fails, then it has to
finish its execution and reach at least the state completed. In this case, if a service can not
be canceled then it can not fail, which is the third property. To verify whether 1., 2. and
3. are true, we introduce the theorems Theorem 8.3, Theorem 8.4and Theorem 8.5.

Theorem 8.3 The state compensated can definitely be reached by at iff [] { }anb −∈∃ ,1
verifying (8.3b): bs not retriable is assigned to bt and)()(WATSWtsk ∈∃ generator of

bt such that d compensatetWts ak =),(.

16

Theorem 8.4 at can not fail iff [] { }anb −∈∃ ,1 verifying (8.4b): (bs not compensatable
is assigned to bt and)(WATS)(Wtsk ∈∃ generator of at such that

d or (compensatetWts bk =),() bt is flexible to at and bs not retriable is assigned to bt
and)(such that failed)(WATSWtsk ∈∀ tWts ak =),(, canceledtWts bk ≠),().

Theorem 8.5 Let at and bt such that at is flexible to bt . at is not canceled when bt fails
iff (8.5b): bs not retriable is assigned to bt and)()(WATSWtsk ∈∀ such that

failed tWts bk =),(, canceledtWts ak ≠),(.

Based on the theorems 8.3, 8.4 and 8.5, in order to compute , we have to
compare

),(i
sa WtDIS

at with each of the i tasks { }ab tWt −∈ to which a service bs has been already
assigned. This is an iterative procedure and at the initialization phase, since no task has
been yet compared to at , as can be of type (p): { }failedWtDIS i

sa =),(.
1. if bt verifies (8.3b) then),(i

sa WtDISdcompensate ∈

2. if bt verifies (8.4b) then),(i
sa WtDISfailed∉

3. if bt is flexible to at and verifies (8.5b) then),(i
sa WtDISfailed∉

The verification stops if and . With

, we are able to select the appropriate service to be assigned to a given
task according to transactional requirements.

),(i
sa WtDISfailed∉),(i

sa WtDISdcompensate ∈

),,(i
saaTP WtsMIN

Service assignment process

Services are assigned to each workflow task based on an iterative process. Depending on
the transactional requirements and the transactional properties of the services available
for each task, different scenarios can occur:

(i) Services of type (rc) are available for the task. It is not necessary to compute

transactional requirements as such services match all transactional requirements.
(ii) Only one service is available for the task. We need to compute the transactional

requirements associated to the task and either the only available service is
sufficient or there is no solution.

(iii) Services of types (r) and (c) but none of type (rc) are available for the task. We
need to compute the transactional requirements associated to the task and we have
three cases. First, (retriability and compensatability) is required in which case
there is no solution. Second, retriability (resp. compensatability) is required and
we assign a service of type (r) (resp. (c)) to the task. Third, there is no
requirement.

17

)(sWTS

1b ib 1+ib

Figure 6: Transactional Architecture

The idea is therefore to assign first services to the tasks verifying (i) and (ii) since there is
no flexibility in the choice of the service. Tasks verifying (iii) are finally analyzed. Based
on the transactional requirements raised by the remaining tasks, we first assign services to
tasks with a non-empty transactional requirement. We then handle the assignment for
tasks with an empty transactional requirement. Note that the transactional requirements of
all the tasks to which services are not yet assigned are also affected (updated) as a result
of the current service assignment. If no task has transactional requirements then we
assign the services of type (r) to assure the completion of the remaining tasks’ execution.

Coordination of Ws

Using the notations introduced so far, we are able to specify the coordination strategy of
Ws against each workflow task. We get indeed the following theorem.

Theorem 8.6 Let Ws be an acceptable instance of W with respect to ATS(W). We note

[]ri niat ,1)(∈ the set of tasks to which no retriable services have been assigned.

 { } U UU
r

iji

a

iia

n

i
aa

z

j
akss ttFTStWtsCTSWtscompWTS

1 1

),()),(()()(
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

Having computed TS(Ws), we can deduce the coordination rules associated to the
execution of Ws.

Example

Back to our motivating example, we consider the workflow W1 of Figure 2. Designers
have defined ATS2(W1) as the transactional requirements for the considered business
application and the set of available services for each task of W1 is specified in Figure 5.
The goal is to assign services to workflow tasks so that the instance of W1 is valid with
respect to ATS2(W1) and we apply the assignment procedure presented in section 6.2. We
first start to assign the services of type (rc) for which it is not necessary to compute any

18

Figure 7: Transactional Web services composition system

transactional requirements. s13 which is available for task 1 is therefore assigned without
any computation. We then consider the tasks for which only one service is available. This
is the case for task 4 for which only one service of type (p) is available. We therefore
verify whether s41 can be assigned to task 4. We
compute .

and
),(),(),,(1

14412
1

14 ssaTP WtDIStWATSWtsMIN I=

{ }failedcompletedt ,), 41 =WATS (2 { }failedWtDIS s =),(1
14

{ }failedWts sa =),, 1
14

 as s13 the only service
already assigned is of type (rc) and the theorems 8.3, 8.4 and 8.5 are not verified, none
the conditions required within these theorems are indeed verified by the service s13. Thus

 and s41 can be assigned to task 4 as it matches the
transactional requirements. Now we compute the transactional requirements of task 2 for
which services of type (r) and (c) are available and we get .
As described in the assignment procedure we do not assign any service to this task as it
does not introduce at this step of the procedure any transactional requirements to make a
decision on the candidate service to choose. We therefore compute the transactional
requirements of task 3 and we get

MINTP (

{ }failedWtsMIN saTP =),,(2
12

{ }dcompensate,failedWtsMIN saTP),,(2
13 = as theorem

8.3 is verified with the service s41 that is indeed not retriable. The service s32 which is of
type (c) can thus be assigned to task 3 as it matches the computed transactional
requirements. We come back now to task 2 and compute the transactional requirements
once again and we get { }dcompensatefailedWtsMIN saTP ,),,(3

12 = as theorem 8.3 is
now verified with the service s32 which is indeed not retriable. It should be noted that at
this step, the transactional requirements associated
to task 2 have been modified because of the assignment of the service s32 to task 3. As the
service s22 matches the transactional requirements it can be assigned to the task.

19

COORDINATION OF COMPOSITE APPLICATIONS

In this section an implementation of the work presented in this chapter based on Web
services technologies is described. The implementation features the transactional
coordination of a cross-organizational composite application that is built based on our
transaction-aware assignment procedure. To that respect, the business partners involved
in the composite application share their services and communicate through local
workflow engines that help them manage the overall collaboration in a distributed
manner. These workflow engines are based on the BPEL workflow description language.
Of course, the services they share may offer various transactional properties as the ones
we detailed so far in the chapter. It is thus required to adapt local workflow engines to
integrate into the composite application business logic the transactional model we
presented in section 8. The system architecture is depicted in Figure 6. In order to support
the execution of cross-organizational composite applications, we implemented in the
fashion of the WS-Coordination initiative (Langworthy, 2005) a transactional stack
composed of the following components:

• Transactional coordinator: this component is supported by the composite

application initiator. On the one hand it implements the transaction-aware business
partner assignment procedure as part of the composition manager module and on the
other hand it is in charge of assuring the coordinator role of the transactional protocol
relying on the set TS(Ws) outcome of the assignment procedure.

• Transactional submanager: this component is deployed on the other partners and is
in charge of forwarding coordination messages from the local workflow to the
coordinator and conversely.

In the remainder of this section, our implementation is described in terms of the
implementation of the transaction-aware partner assignment procedure, the internal
communications that take place between the elements deployed on a business partner and
the structure that the BPEL processes deployed on each business partner’s workflow
engine should be compliant with in order to support the coordination protocol execution.

OWL-S transactional and functional matchmaker

To implement the assignment procedure presented in this chapter we augmented an
existing functional OWL-S matchmaker (Tang, Liebetruth et al. 2003) with transactional
matchmaking capabilities. In order to achieve our goal, the matchmaking procedure has
been split into two phases. First, the functional matchmaking based on OWL-S semantic
matching is performed in order to identify subsets of the available partners that meet the
functional requirements for each workflow vertex. Second, the implementation of the
transaction-aware partner assignment procedure is run against the selected sets of
partners in order to build an acceptable instance fulfilling defined transactional
requirements.

The structure of the matchmaker consists of several components whose dependencies are
displayed in Figure 7. The composition manager implements the matchmaking process

20

Figure 8: Infrastructure internal communications

and provides a Java API that can be invoked to start the selection process. It gets as input
an abstract process description specifying the functional requirements for the candidate
partners and a table of acceptable termination states. The registry stores OWL-S profiles
of partners that are available. Those OWL-S profiles have been augmented with the
transactional properties offered by business partners. This has been done by adding to the
non-functional information of the OWL-S profiles a new element called
transactionalproperties that specifies two Boolean attributes that are retriable and
compensatable as follows.

<tp:transactionalproperties retriable="true" compensatable="true"/>

In the first phase of the selection procedure, the business partner manager is invoked with
a set of OWL-S profiles that specify the functional requirements for each workflow
vertex. The business partner manager gets access to the registry, where all published
profiles are available and to the functional matchmaker which is used to match the
available profiles against the functional requirements specified in the workflow. For each
workflow vertex, the business partner manager returns a set of functionally matching
profiles along with their transactional properties. The composition manager then initiates
the second phase, passing these sets along with the process description, and the table of
acceptable termination states to the transactional composer. The transactional composer
starts the transaction-aware business partner assignment procedure using the transactional
matchmaker by classifying first those sets into five groups:

• sets including only services of type (p)
• sets including only services of type (r)
• sets including only services of type (c)
• sets including services of types (r) and (c)
• sets including services of type (rc)

21

Once those sets are formed the iterative transactional composition process takes place as
specified above based on the table of acceptable termination states. Depending on the set
of available services and the specified acceptable termination states, the algorithm may
terminate without finding a solution.

Internal communications within a business partner infrastructure

In the infrastructure that is deployed on each business partner to implement the
transactional protocol presented in this chapter, the transactional coordinator plays the
role of interface between the business process and the other business partners when it
comes to managing the notification messages exchanged during the execution of the
transactional protocol. Some of these messages received by the transactional coordinator
should be forwarded to the local business process to take appropriate actions while some
others are only relevant to the local transactional (sub)coordinator. The business process
may also require to issue a notification to its local transactional (sub)coordinator when a
failure occurs. The messages exchanged between these three layers are derived from the
state model depicted in Figure 3. The infrastructure deployed on a given business partner
basically consists of three layers:

• The transactional service layer representing the business partner’s available

operations,
• The local workflow layer corresponding to the local workflow engine,
• The coordination layer implementing the local (sub)coordinator module.

The message exchanges that can take place on a given business partner between these
three layer are depicted in Figure 8. The set of notification messages that is exchanges
between the different components of the infrastructure is basically derived from the
transactional model depicted in Figure 4.

• Activate: The activate message is basically issued by the local workflow engine to

the local workflow engine of the next business partner involved in the workflow. In
fact this message instantiates the process execution on the business partner side.

• Compensate, Cancel: The compensate and cancel messages are received at the
coordination layer and forwarded to the local workflow layer that forwards them in a
second time to the transactional service layer to perform to corresponding functions
i.e. compensation or cancellation of an operation.

• Compensated, Canceled, Completed: These messages simply notify that the
corresponding events have occurred: compensation, cancellation, or completion of an
operation. Issued at the transactional service layer, they are forwarded to the
coordination layer in order to be dispatched to the composite application coordinator.

• Failed: Issued at the transactional service layer, the failed message is forwarded to
the coordination layer in order to be dispatched to the composite application
coordinator. If the operation performed at the transactional service layer is retriable,
no failed message is forwarded to the local workflow layer as we consider that the
retry primitive is inherent to any retriable operation.

22

• Abort, Aborted: The abortion message is received at the coordination layer and
acknowledged with an aborted message. Upon receipt of this message, the business
simply leaves the composite application execution; no message is forwarded to the
other layers since the local workflow has not yet been instantiated.

• Leave: The leave message is received at the coordination layer and the business
partner can leave the execution of the composite application execution. The leave
message is forwarded to the local workflow layer if the business partner implements
an operation that is compensatable. In this case, the business process deployed on the
local workflow engine indeed has two possible outcomes, either the results produced
by its task are compensated or it can leave the process execution.

Reliable, Compensatable

Reliable, Retriable

Figure 9: Transactional BPEL processes (Process graphs from ActiveBPEL engine)

23

Specification of Transactional BPEL processes

In our implementation, the local workflow engine is implemented using BPEL as the
workflow specification language. In order to support the message exchanges identified in
section 9.2 the structure of BPEL business processes has to match some templates that we
describe in this section. Using the constructs available in the BPEL language, the
specification of these transactional BPEL processes is straightforward.

The business process activation is performed using the usual BPEL process instantiation
construct <receive> described as follows.

<receive createInstance="yes" operation="launch" partnerLink="PLT"
 portType="PT" variable="Data">
 <correlations>
 <correlation initiate="yes" pattern="in" set="CS1"/>
 </correlations>
</receive>

The cancel message can be received at any moment during the execution of the process
and is thus handled using the <eventHandlers> construct as follows. Of course the
BPEL process has to expose a dedicated operation to receive the cancel message.

<eventHandlers>
 <onMessage partnerLink="PLT" portType="PT"
 operation="Cancel" variable="workflowid">
 <correlations>
 <correlation set="CS1"/>
 </correlations>
 <terminate/>
 </onMessage>
</eventHandlers>

In order to detect the failure of an operation that is not retriable, the <scope> and the
<faultHandlers> constructs are used as follows. The failure of the operation is
forwarded to the transactional coordination layer inside the <faultHandlers>.

<scope name="invokation_try">
 <faultHandlers>
 <catchAll>
 <invoke inputVariable="failedid" name="1"
 operation="transacFailed" partnerLink="PLT"
 portType="LocalAdminImpl"/>
 </catchAll>
 </faultHandlers>
 <invoke inputVariable="DataInc" outputVariable="DataOut"
 name="invoke1" operation="Addition"
 partnerLink="PLT" portType="Add">
 </invoke>
</scope>

Finally, if the business process implements an operation that is compensatable, the
process execution can lead to two possible outcomes depending on whether a compensate

24

or a leave message is received. We use the <pick> construct to express this choice as
follows.

<pick>
 <onMessage partnerLink="PLT" portType="publicPT"
 operation="Leave" variable="workflowid">
 <correlations>
 <correlation set="CS1"/>
 </correlations>
 <empty/>
 </onMessage>
 <onMessage partnerLink="PLT" portType="PT"
 operation="Compensate" variable="workflowid">
 <correlations>
 <correlation set="CS1"/>
 </correlations>
 <invoke inputVariable="serviceid" name="invoke1"
 operation="Compensate"
 partnerLink="PLT" portType="Add"/>
 </onMessage>
</pick>

It should be noted that in the listings depicted in this section, we use BPEL correlation
sets because the coordination messages are received asynchronously during the process
execution and need to be mapped to the appropriate instance of the workflow to be
processed by the engine. These BPEL listings can be combined in the design of
transactional BPEL processes depending of course on the transactional properties offered
by business partners. Two examples of transactional BPEL processes are depicted in
Figure 9. For instance, if the task executed by a business partner is not compensatable,
the associated BPEL process only ends with the completed notification since it is not
required to wait for a leave message. Similarly, a task which is retriable is not surrounded
by <scope> constructs as there is no fault to catch.

CONCLUSION

We presented an adaptive transactional protocol to support the execution of cross-
organizational composite applications. This approach actually meets the requirements
that are relevant to assuring consistency of the execution of cross-organizational
processes which are mainly twofold:

• Relaxed atomicity: atomicity of the workflow execution can be relaxed as

intermediate results produced by the workflow may be kept intact despite the failure
of one partner.

• Dynamic selection of business partners: the execution of cross-organizational
workflows may require the execution of a composition procedure wherein candidate
business partners offering different characteristics are assigned to tasks depending on
functional and non-functional requirements associated with the workflow
specification.

25

The execution of the protocol we proposed takes place in two phases. First, business
partners are assigned to workflow tasks using an algorithm whereby partners are selected
based on functional and transactional requirements. Given an abstract representation of a
process wherein business partners are not yet assigned to workflow tasks, this algorithm
enables the selection of partners not only according to functional requirements but also to
transactional ones. The resulting workflow instance is compliant with the defined
consistency requirements and its execution can be easily coordinated as our algorithm
also provides coordination rules. The workflow execution further proceeds through a
hierarchical coordination protocol managed by the workflow initiator and controlled
using the coordination rules computed as an outcome of the partner assignment
procedure. This transactional protocol thus offers a full support of relaxed atomicity
constraints for workflow-based applications and is also self-adaptable to business
partners’ characteristics.

Besides, a complete transactional framework based on the Web services technologies has
been implemented as a proof of concept of our theoretical results. On the one hand the
business partner assignment procedure we designed can be used to augment existing
composition systems (Agarwal, Dasgupta, et al. 2005) as it can be fully integrated in
existing functional match-making procedures. On the other hand, our approach defines
adaptive coordination rules that can be deployed on recent coordination specifications
(Langworthy, 2005) in order to increase their flexibility.

REFERENCES

Abbott, M. (2005), Business transaction protocol.

Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., Srivastava, B. (2005), A service
creation environment based on end to end composition of web services, Proceedings of the WWW
conference, May 10-14, 2005, in Chiba, Japan, 128-137.

Alonso, G., Agrawal, D., Abbadi, A. E., Kamath, M., Gnthr, R., Mohan, C. (1996), Advanced transaction
models in workflow contexts, Proceedings of the 12th International Conference on Data Engineering, New
Orleans, 574-581.

Bhiri, S., Perrin, O., Godart, C. (2005), Ensuring required failure atomicity of composite web services,
Proceedings of the WWW conference, May 10-14, 2005, in Chiba, Japan, 138 - 147.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S. (2003), The next step in web services,
Communications of the ACM, 46(10), 29 - 34.

Elmagarmid, A. K. (1992), Database Transaction Models for Advanced Applications, Morgan Kaufmann.

Greenfield, P., Fekete, A., Jang, J., Kuo, D. (2003), Compensation is not enough, Proceedings of the 7th
International Enterprise Distributed Object Computing Conference (EDOC’03), 232, 16-19 September
2003, Brisbane, Australia.

Gudgin, M. (2004), Secure, reliable, transacted; innovation in web services architecture, Proceedings of the
ACM International Conference on Management of Data, Paris, France; June 15-17, 2004, 879 - 880.

Langworthy, D. (2005), WS-AtomicTransaction.

Langworthy, D. (2005), WS-BusinessActivity.

Langworthy, D. (2005), WS-Coordination.

Little, M. (2003), Transactions and web services, Communications of the, 46(10), 49–54.

26

27

Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H. (1992), A transaction model for multidatabase
systems, Proceedings of the 12th IEEE International Conference on Distributed Computing Systems
(ICDCS92), June 9-12, 1992, Yokohama, Japan, 56-63.

Melzer, I., Sauter, P. (2005), A Comparison of WS-Business-Activity and BPEL4WS Long-Running
Transaction. In Kommunikation in Verteilten Systemen, Informatik aktuell. Springer.

Montagut, F., Molva R., (2006) Augmenting Web services composition with transactional requirements. In
ICWS 2006, IEEE International Conference on Web Services, September 18-22, 2006, Chicago, USA, 91-
98.

OWL Services Coalition. (2003), OWL-S: Semantic Markup for Web Services.

Rusinkiewicz, M., Sheth, A. (1995), Specification and execution of transactional workflows, Modern
database systems: the object model, interoperability, and beyond, 592 - 620.

Schuldt, H., Alonso, G., Schek, H. (1999), Concurrency control and recovery in transactional process
management, Proceedings of the Conference on Principles of Database Systems, Philadelphia,
Pennsylvania May 31 - June 2, 1999, 316 - 326.

Tang, S. Liebetruth, C., Jaeger, M. C. (2003), The OWL-S matcher software, http://flp.cs.tu-berlin.de/

Thatte, S. (2003), Business Process Execution Language for Web Services Version 1.1 (BPEL).

ISO. (n.d.), Open System Interconnection- Distributed Transaction Processing (OSI-TP) Model, ISO IS
100261

	INTRODUCTION
	Chapter contributions
	Chapter outline

	TECHNICAL BACKGROUND
	PRELIMINARY DEFINITIONS AND METHODOLOGY
	Consistent composite Web services
	Methodology

	In our approach, the services involved in Ws are selected according to their transactional properties by means of a match-making procedure. We therefore need first to specify the semantic associated with the transactional properties defined for services. The match-making procedure is indeed based on this semantic. This semantic is also to be used in order to define a tool allowing workflow designers to specify their transactional requirements for a given workflow. Using these transactional requirements, we are able to assign services to workflow tasks based on rules which are detailed later on. Once the composite service is defined, we can define a protocol in order to coordinate these services according to the transactional requirements specified at the workflow designing phase. The proofs of the theorems underpinning the work presented in this chapter can be found in (Montagut and Molva, 2006).
	MOTIVATING EXAMPLE
	TRANSACTIONAL MODEL
	Transactional Properties of Services
	Termination states
	Transactional consistency tool

	ANALYSIS OF TS(W)
	Inherent properties of TS(W)
	Classification within TS(W)

	FORMING ATS(W)
	DERIVING COMPOSITE SERVICES FROM ATS
	Acceptability of Ws with respect to ATS(W)
	Transaction-aware assignment procedure
	Extraction of transactional requirements
	Service assignment process
	Coordination of Ws
	Example

	COORDINATION OF COMPOSITE APPLICATIONS
	OWL-S transactional and functional matchmaker
	Internal communications within a business partner infrastructure
	Specification of Transactional BPEL processes

	CONCLUSION
	REFERENCES

