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Transactional Composite Applications 
 

ABSTRACT: 
 
Composite applications leveraging the functionalities offered by Web services are today 
the underpinnings of enterprise computing. However, current Web services composition 
systems make only use of functional requirements in the selection process of component 
Web services while transactional consistency is a crucial parameter of most business 
applications. The transactional challenges raised by the composition of Web services are 
twofold: integrating relaxed atomicity constraints at both design and composition time 
and coping with the dynamicity introduced by the service oriented computing paradigm. 
In this chapter, we present a new procedure towards automating the composition of 
transactional Web services. This composition procedure does not take into account 
functional requirements only but also transactional ones based on the Acceptable 
Termination States model. The resulting composite Web service is compliant with the 
consistency requirements expressed by business application designers and its execution 
can easily be coordinated using the coordination rules provided as an outcome of our 
approach. An implementation of our theoretical results based on OWL-S and BPEL 
technologies is further detailed as a proof of concept.   
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INTRODUCTION 
 
Web services composition has been gaining momentum over the last years as it leverages 
the capabilities of simple operations to offer value-added services. These complex 
services such as airline booking systems result from interactions between Web services 
that can span over organizational boundaries. Considering the lack of reliability akin to 
distributed environments, assuring data and transactional consistency of the outcome of 
cross-organizational workflow-based applications, such as composite applications, is 
necessary. The requirements that are relevant to assuring consistency within the 
execution of Web services composite applications are mainly twofold:  
 
• Relaxed atomicity: atomicity of the execution can be relaxed as intermediate results 

produced by a workflow-based application may be kept despite the failure of a 
service. The specification process of transactional requirements associated with 
workflows has to be flexible enough to support coordination scenarios more complex 
than the coordination rule “all or nothing” specified within the two phase commit 
protocol (ISO, n.d.). 

• Dynamic assignment of business partners: composite applications are dynamic in 
that the workflow partners or component services offering different characteristics 
can be assigned to tasks depending on the resources available at runtime. Business 
partners’ characteristics have thus to be combined or composed in a way such that the 
transactional requirements specified for the workflow are met. 
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Existing transactional protocols (Elmagarmid, 1992), (Greenfield, Fekete et al. 2003) are 
not adapted to meet these two requirements as they do not offer sufficient flexibility to 
cope for instance with the runtime assignment of computational tasks. In addition, 
existing solutions to combine or compose service providers based on the characteristics 
they offer appear to be limited when it comes to integrating at the composition phase the 
consistency requirements defined by workflow designers. These solutions indeed only 
offer means to validate transactional requirements once the workflow business partners 
have been selected but no solution to integrate these requirements as part of the 
composite application building process. The next sections present our approach to 
overcome these limitations. 

Chapter contributions 
 
In this chapter, we present an adaptive transactional protocol to support the execution of 
composite applications. The execution of this protocol takes place in two phases. First, 
business partners are assigned to tasks using an algorithm whereby workflow partners are 
selected based on functional and transactional requirements. Given an abstract 
representation of a process wherein business partners are not yet assigned to workflow 
tasks, this algorithm enables the selection of service providers not only according to 
functional requirements but also based on transactional ones. In our approach, these 
transactional requirements are defined at the workflow design stage using the Acceptable 
Termination States (ATS) model. The resulting workflow instance is compliant with the 
defined consistency requirements and its execution can be easily coordinated as our 
algorithm also provides coordination rules. The workflow execution further proceeds 
through a coordination protocol that leverages the coordination rules computed as an 
outcome of the partner assignment procedure.  

Chapter outline 
 
The remainder of the chapter is organized as follows. Section 2 discusses related work 
and technical background. In section 3, we introduce preliminary definitions and the 
methodology underpinning our approach. A simple example of composite application is 
presented in section 4 for the purpose of illustrating our results throughout the chapter. 
Section 5 introduces a detailed description of the transactional model used to represent 
the characteristics offered by business partners. In section 6, we provide details on the 
termination states of a workflow then section 7 describes how transactional requirements 
expressed by means of the ATS model are derived from the inherent properties of 
termination states. Section 8 presents the transaction-aware service assignment procedure 
and the associated coordination protocol. An implementation of our theoretical results 
based on Web services technologies including OWL-S (OWL Services Coalition, 2003) 
and BPEL (Thatte, 2003) is presented in section 9. Finally, section 10 presents 
concluding remarks. 
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TECHNICAL BACKGROUND 
 
Transactional consistency of workflows and database systems has been an active research 
topic over the last 15 years yet it is still an open issue in the area of Web services 
(Curbera, Khalaf et al. 2003), (Gudgin, 2004), (Little, 2003) and especially composite 
Web services. Composite Web services indeed introduce new requirements for 
transactional systems such as dynamicity, semantic description and relaxed atomicity. 
Existing transactional models for advanced applications (Elmagarmid, 1992) are lacking 
of flexibility to integrate these requirements (Alonso, Agrawal et al. 1996) as for instance 
they are not designed to support the execution of dynamically generated collaboration of 
services. In comparison, the transactional framework presented in this chapter allows the 
specification of transactional requirements supporting relaxed atomicity for an abstract 
workflow specification and the selection of semantically described services respecting the 
defined transactional requirements.        
 
Our work is based on (Bhiri, Perrin et al. 2005)  which presents the first approach 
specifying relaxed atomicity requirements for composite Web services based on the ATS 
tool and a transactional semantic. Despite a solid contribution, this work appears to be 
limited if we consider the possible integration into automatic Web services composition 
systems. It indeed only details transactional rules to validate a given composite service 
with respect to defined transactional requirements. In this approach, transactional 
requirements do not play any role in the component service selection process which may 
result in several attempts for designers to determine a valid composition of services. On 
the contrary, our solution provides a systematic procedure enabling the automatic design 
of transactional composite Web services. Besides, our contribution also defines the 
mathematical foundations to specify valid ATS for workflows using the concept of 
coordination strategy that is defined later on.  
 
Within the Web services stack, three specifications feature solutions towards assuring the 
transactional coordination of services: Web Services Coordination (WS-Coordination, 
(Langworthy, 2005)), Web Services Atomic Transaction (WS-AtomicTransaction, 
(Langworthy, 2005)) and Web Services Business Activity Framework (WS-
BusinessActivity, (Langworthy, 2005)). They are often referred to as Web Services 
Transaction Framework (WSTF). The goal of WS-Coordination is to provide a 
framework that can support various coordination protocols specified in terms of 
coordination types. When service providers register to transactional coordinators they 
specify as part of a coordination type, the coordination protocol that should be 
implemented to support a composite application execution.  The WS-AtomicTransaction 
and WS-BusinessActivity specifications are the two main coordination protocols 
available. Making use of compensation techniques WS-AtomicTransaction requires all 
participants to be compensatable and to support certain isolation levels; this is in fact an 
implementation of the two phase-commit protocol. WS-BusinessActivity on the other 
hand offers a coordination framework suitable for long-running transactions, called 
business activities. WS-BusinessActivity does not however specify appropriate tools to 
describe coordination strategies i.e. how the coordination protocol should react in the face 
of failures so that a composite application can reach consistent termination states. It is, in  
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Figure 1: Principles 

fact, only mentioned that different strategies are possible in addition to the classical “all 
or nothing” principle. Besides the Web Services Transaction Framework there are several 
other initiatives towards establishing transaction management within Web service 
interactions. The Business Process Execution Language for  
Web Services (BPEL4WS or BPEL) implements the concept of Long-Running 
(Business) Transactions (LRT). It supports coordination of transactions in local BPEL 
processes. A comparison of BPEL Long-running transactions and WS-BusinessActivity 
and an approach to unify them can be found in (Melzer and Sauter, 2005). The Business 
Transaction Protocol (BTP, (Abbott, 2005)) specifies roles, interactions, behaviors and 
messages to coordinate long-running transactions in the fashion of the WS-
BusinessActivity specification.  
 
These various coordination protocols do not however offer adequate support for 
designers to specify flexible coordination scenarios wherein component services feature 
different transactional properties such as the ability to compensate the execution of a task 
or to retry the execution of a failed task. The solution presented in this chapter can be 
used to augment these standardization efforts in order to provide them with adaptive 
coordination specifications based on the transactional properties of the component 
services instantiating a given workflow.  
 

PRELIMINARY DEFINITIONS AND METHODOLOGY 
 
Transactional consistency is a crucial aspect of composite services execution. In order to 
meet consistency requirements at early stages of the service composition process, we 
need to consider transactional requirements a concrete parameter determining the choice 
of the component Web services. In this section we present a high level definition of the 
consistency requirements and a methodology taking into account these requirements 
during the building process of composite applications and later on during the 
coordination of their execution. 

Consistent composite Web services 
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1W

TS(W1) Task 1 Task 2 Task 3 Task 4
ts1 completed completed completed completed
ts2 completed completed completed failed
ts3 completed compensated completed failed
ts4 completed compensated compensated failed
ts5 completed completed compensated failed
ts6 compensated compensated compensated failed
ts7 compensated completed compensated failed
ts8 compensated completed completed failed
ts9 compensated compensated completed failed
ts10 completed failed completed aborted
ts11 completed failed compensated aborted
ts12 completed failed canceled aborted
ts13 compensated failed completed aborted
ts14 compensated failed compensated aborted
ts15 compensated failed canceled aborted
ts16 completed completed failed aborted
ts17 completed compensated failed aborted
ts18 completed canceled failed aborted
ts19 compensated completed failed aborted
ts20 compensated compensated failed aborted
ts21 compensated canceled failed aborted
ts22 failed aborted aborted aborted  

Figure 2: Production line process 
 
A composite Web service Ws consists of a set of n Web services ( ) [ ]naas s=W 1,∈ whose 
execution is managed according to a workflow W which defines the execution order of a 
set of n tasks ( ) [ ]naat=W 1,∈ performed by these services (for the sake of simplicity, we 
consider that one service executes only one task). The assignment of services to tasks is 
performed by means of composition engines based on functional requirements. Yet, the 
execution of a composite service may have to meet transactional requirements aiming at 
the overall assurance of consistency. Our goal is to design a service assignment process 
that takes into account the transactional requirements associated with W in order to obtain 
a consistent instance Ws of W as depicted in Figure 1. We consider that each Web service 
component might fulfill a different set of transactional properties. For instance a service 
can have the capability to compensate the effects of a given operation or to re-execute the 
operation after failure whereas some other service does not have any of these capabilities. 
It is thus necessary to select the appropriate service to execute a task whose execution 
may be compensated if required. The assignment procedure based on transactional 
requirements follows the same strategy as the one based on functional requirements. It is 
a match-making procedure between the transactional properties offered by services and 
the transactional requirements associated to each task. Once assigned, the 
services ( ) [ ]naas 1,∈ are coordinated with respect to the transactional requirements during the 
composite application execution. The coordination protocol is indeed based on rules 
deduced from the transactional requirements. These rules specify the final states of 
execution or termination states each service has to reach so that the overall process 
reaches a consistent termination state. Two phase-commit the famous coordination 
protocol (ISO, n.d.) uses for instance the simple rule: all tasks performed by different 
services have to be compensated if one of them fails. The challenges of the transactional 
approach are therefore twofold. 

• Specify a Web service assignment procedure that builds consistent instances of 
W according to defined transactional requirements, 

• Specify the coordination protocol managing the execution of consistent 
composite services. 
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Methodology 
 
In our approach, the services involved in Ws are selected according to their transactional 
properties by means of a match-making procedure. We therefore need first to specify the 
semantic associated with the transactional properties defined for services. The match-
making procedure is indeed based on this semantic. This semantic is also to be used in 
order to define a tool allowing workflow designers to specify their transactional 
requirements for a given workflow. Using these transactional requirements, we are able 
to assign services to workflow tasks based on rules which are detailed later on. Once the 
composite service is defined, we can define a protocol in order to coordinate these 
services according to the transactional requirements specified at the workflow designing 
phase. The proofs of the theorems underpinning the work presented in this chapter can be 
found in (Montagut and Molva, 2006). 
 

MOTIVATING EXAMPLE 
 
In this section we introduce a simple motivating example that will be used throughout the 
chapter to illustrate the presented methodology. We consider the simple process  of a 
manufacturing firm involving four steps as depicted in 

1W
Figure 2. A first service, order 

handling service is in charge of receiving orders from clients. These orders are then 
handled by the production line (step 2) and in the meantime an invoice is forwarded to a 
payment platform (step 3). Once the ordered item has been manufactured and the 
payment validated, the item is finally delivered to the client (step 4). Of course in this 
simple scenario, a transactional approach is required to support the process execution so 
that it can reach consistent outcomes as for instance the manufacturing firm would like to 
have the opportunity to stop the production of an item is the payment platform used by a 
customer is not a reliable one. On the other hand, it may no longer be required to care 
about canceling the production if the payment platform claims it is reliable and not prone 
to transaction errors. Likewise, customers may expect that their payment platform offer 
refunding options in case the delivery of the item they ordered is not successful. Those 
possible outcomes mostly define the transactional requirements for the execution of this 
simple process and also specify what actions need to be taken to make sure that the final 
state of the process execution is deemed consistent by the involved parties. This example 
although simple perfectly meets our illustration needs within this chapter as it 
demonstrates the fact that based on the specified transactional requirements a clever 
selection of the business process participants has to be performed prior to the process 
instantiation since for instance the selection of both a payment platform that do not offer 
any refunding options and an unreliable delivery means may result in a disappointed 
customer. It should be noted that the focus of this example is not the trust relationship 
between the different entities and we therefore assume the trustworthiness of each of 
them yet we are rather interested in the transactional characteristics offered by each 
participant. 
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Figure 3: Service state diagram 

TRANSACTIONAL MODEL 
 
In this section, we define the semantic specifying the transactional properties offered by 
services before specifying the consistency evaluation tool associated to this semantic. Our 
semantic model is based on the “transactional Web service description” defined in (Bhiri, 
Perrin et al. 2005). 

Transactional Properties of Services 
 
In (Bhiri, Perrin et al. 2005) a model specifying semantically the transactional properties 
of Web services is presented. This model is based on the classification of computational 
tasks made in (Schuldt, Alonso et al. 1999), (Mehrotra, Rastogi et al. 1992) which 
considers three different types of transactional properties. An operation and by extension 
a Web service executing this task can be of type:  
 
• Compensatable: the results produced by the task can be rolled back 
• Retriable: the task is sure to complete successfully after a finite number of tries 
• Pivot: the task is neither compensatable nor retriable 
 
These transactional properties allow us to define four types of services: Retriable (r), 
Compensatable (c), Retriable and Compensatable (rc) and Pivot (p).  
 
In order to properly detail the model, we can map the transactional properties with the 
state of data modified by the services during the execution of computational tasks. This 
mapping is depicted in Figure 3. Basically, data can be in three different states: initial (0), 
unknown (x), completed (1). In the state (0), either the task execution has not yet started 
initial, the execution has been stopped, aborted before starting, or the execution has been 
properly completed and the modifications have been rolled back, compensated. In state 
(1) the task execution has been properly completed. In state (x) either the task execution 
is not yet finished active, the execution has been stopped, canceled before completion, or 
the execution has failed. Particularly, the states aborted, compensated, completed, 
canceled, and failed are the possible final states of execution of these tasks. Figure 4 
details the transition diagram for the four types of transactional services. We must 
distinguish within this model the inherent termination states: failed and completed which  
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Figure 4: Transactional Properties of services 

result from the normal course of a task execution and the one resulting from a 
coordination message received during a coordination protocol instance: compensated, 
aborted and canceled which force a task execution to either stop or rollback. The 
transactional properties of the services are only differentiated by the states failed, and 
compensated which indeed respectively specify the retriability and compensatability 
aspects. 
 
Definition 5.1 We have for a given service s: 
 
• failed is not a termination state of s iff s is retriable 
• compensated is a termination state of s iff s is compensatable 
 
From the state transition diagram, we can also derive some simple rules. The states failed, 
completed and canceled can only be reached if the service is in the state active. The state 
compensated can only be reached if the service is in the state completed. The state 
aborted can only be reached if the service is in the state initial. 

Termination states 
 
The crucial point of the transactional model specifying the transactional properties of 
services is the analysis of their possible termination states. The ultimate goal is indeed to 
be able to define consistent termination states for a workflow i.e. determining for each 
service executing a workflow task which termination states it is allowed to reach.    
 
Definition 5.2  We define the operator termination state ts(x) which specifies the possible 
termination states of the element x. This element x can be: 
 
• a service s and ( ) { }dcompensatecompleted,failed,canceled,aborted,sts ∈  
• a task t and ( ) { }dcompensatecompleted,failed,canceled,aborted,tts ∈  
• a workflow ( ) [ ]naat=W 1,∈  and ( ) ( ) ( ) ( )( )ntts,,tts,tts=Wts ...21  
• a composite service Ws of W composed of n services ( ) [ ]naas s=W 1,∈  and 

( ) ( ) ( ) ( )( )ns sts,,sts,sts=Wts ...21  
 

The operator TS(x) represents the finite set of all possible termination states of the 
element x, ( ) ( )( ) [ ]jkk xts=xTS 1,∈ . We have especially, ( ) (WTSWTS s ⊆ )  since the set 

( sWTS )represents the actual termination states that can be reached by Ws according to the  
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Task 1 s11 yes no
s12 no yes
s13 yes yes

Task 2 s21 yes no
s22 no yes

Task 3 s31 yes no
s32 no yes

Task 4 s41 no no

Available 
Services

Retriable Compensatable

Task 1 Task 2 Task 3 Task 4
ats1 ts1 completed completed completed completed
ats2 ts6 compensated compensated compensated failed
ats3 ts14 compensated failed compensated aborted
ats4 ts15 compensated failed canceled aborted
ats5 ts20 compensated compensated failed aborted
ats6 ts21 compensated canceled failed aborted

ATS1(W1)

Task 1 Task 2 Task 3 Task 4
ats1 ts1 completed completed completed completed
ats2 ts17 completed compensated failed aborted
ats3 ts11 completed failed compensated aborted
ats4 ts5 completed completed compensated failed
ats5 ts18 completed canceled failed aborted
ats6 ts12 completed failed canceled aborted

ATS2(W1)

 

Figure 5: Acceptable termination states of W1 and available services 

transactional properties of the services assigned to W. We also define for x workflow or 
composite service and [ ]na 1,∈ :  
 
• ( )atx,ts : the value of ( )atts in ts(x)  
• tscomp(x): the termination state of x such that [ ] ( ) completed=tx,tsna a1,∈∀   
 
For the remainder of the chapter, ( ) [ ]naat=W 1,∈  represents a workflow of n tasks 
and ( ) [ ]naas s=W 1,∈ a composite service of W.  

Transactional consistency tool 
 
We use the Acceptable Termination States (ATS) (Rusinkiewicz and Sheth 1995)  model 
as the consistency evaluation tool for our workflow. ATS defines the termination states a 
workflow is allowed to reach so that its execution is judged consistent.    
 
Definition 5.3 An ATS(W) is a subset of TS(W) whose elements are considered consistent 
by workflow designers for a specific execution of W. A consistent termination state of W 
is called an acceptable termination state ( )Watsk  thus ( ) ( )( ) [ ]ikk Wats=WATS 1,∈ . A set 
ATS(W) specifies the transactional requirements defined by designers associated with a 
specific execution of W. 
 
ATS(W) and TS(W) can be represented by a table which defines for each termination state 
the tuple of termination states reached by the workflow task as depicted in Figure 5. 
Depending on the application different ATS tables can of course be specified by designers 
for the same workflow, and for the sake of readability we do not introduce in this chapter 
an index (as in ATSi(W)) in the notation ATS(W). As mentioned in the definition, the 
specification of the set ATS(W) is done at the workflow designing phase. ATS(W) is 
mainly used as a decision table for a coordination protocol so that Ws can reach an 
acceptable termination state knowing the termination state of at least one task. The role of 
a coordination protocol indeed consists in sending messages to services in order to reach 
a consistent termination state given the current state of the workflow execution. The 
coordination decision, i.e. the termination state that has to be reached, made given a state 
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of the workflow execution has to be unique; this is the main characteristic of a 
coordination protocol. In order to cope with this requirement, ATS(W) which is used as 
input for the coordination decision-making process has therefore to verify some 
properties that we detail later on.   
 

ANALYSIS OF TS(W) 
 
Since ( ) (WTSWATS ⊆ ), ATS(W) inherits the characteristics of TS(W) and we logically 
need to analyze first TS(W). In this section, we first precise some basic properties of 
TS(W) derived from inherent execution rules of a workflow W before examining TS(W) 
from a coordination perspective.  

Inherent properties of TS(W) 
 
We state here some basic properties relevant to the elements of TS(W) and derived from 
the transactional model presented above. TS(W) is the set of all possible termination 
states of W based on the termination states model we chose for services. Yet, within a 
composite service execution, it is not possible to reach all the combinations represented 
by a n-tuple ( ) ( ) ( )( ntts,,tts,tts ...21 ) . The first restriction is introduced by the sequential 
aspect of a workflow: 
 
• (P1) A task becomes activated iff all the tasks executed beforehand according to the 

execution plan of W have reached the state completed 
 
 (P1) simply means that to start the execution of a workflow task, it is required to have 
properly completed all the workflow tasks required to be executed beforehand. 
 
Second, we consider in our model that only one single task can fail at a time and that the 
states aborted, compensated and canceled can only be reached by a task in a given 

( )Wtsk  if one of the services executing a task of W has failed. This means that the 
coordination protocol is allowed to force the abortion, the compensation or the 
cancellation only in case of failure of a service. We get (P2): 

• (P2) if ( ) { }ts  then canceledaborted,d,compensateW,tak ∈ [ ]nl 1,∈!∃  such that 
( ) failed=W,tts lk .  

Classification within TS(W) 
 
As we explained above the unicity of the coordination decision during the execution of a 
coordination protocol is a major requirement. We try here to identify the elements of 
TS(W) that correspond to different coordination decisions given the same state of a 
workflow execution. The goal is to use this classification to determine ATS(W). Using the 
properties (P1) and (P2), a simple analysis of the state transition model reveals that there 
are two situations whereby a coordination protocol has different possibilities of 
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coordination given the state of a workflow task. Let two tasks at  and  bt  and assume that 
the task bt  has failed:  
 
• the task at  is in the state completed and either it remains in this state or it is 

compensated 
• the task at  is in the state active and either it is canceled or the coordinator lets it reach 

the state completed 
 
From these two statements, we define the incompatibility from a coordination perspective 
and the flexibility. 
 
Definition 6.1 Two termination states ( )Wtsk  and ( )Wtsl  are said incompatible from a 
coordination perspective iff ∃  two tasks at  and bt  such that 

failedtWtstWtscompletedtWts blbkak === ),(),(,),(  and ( ) dcompensate=W,tts al . 
Otherwise, ( )Wtsl  and ( )Wtsk are said compatible from a coordination perspective.  

 
The value in { }completedd,compensate  reached by a task at  in a termination state 

( )Wtsk  whereby ( ) failed=W,tts bk  is called recovery strategy of at  against bt  in 
( )Wtsk . By extension, we can consider the recovery strategy of a set of tasks against a 

given task. 
 
If two termination states are compatible, they correspond to the same recovery strategy 
against a given task. In fact, we have two cases for the compatibility of two termination 
states ( )Wtsk  and ( )Wtsl . Given two tasks ba t,t  such that ( ) ( ) failed=W,tts=W,tts blbk :  
 
• ( ) ( )alak tW,ts=tW,ts   
• ( ) { } ( ) { }canceledaborted,W,t,tscompletedd,compensateW,tts alak ∈∈  
 
The second case is only possible to reach if at  is executed in parallel with bt . Intuitively, 
the failure of the service assigned to bt occurs at different instants in ( )Wtsk and ( )Wtsl . 
 
Definition 6.2  A task at is flexible against bt  iff ( )Wtsk∃  such that ( ) failed=W,tts bk  
and ( ) canceled=tW,ts ak . Such a termination state is said to be flexible to at  against bt . 
The set of termination states of W flexible to at  against bt  is denoted ( )ba t,t .     
 

FTS

From these definitions, we now study the termination states of W according to the 
compatibility and flexibility criteria in order to identify the termination states that follow 
a common strategy of coordination. 
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Definition 6.3  A termination state of W, ( )Wtsk  is called generator of at  iff 
( ) failed=W,tts ak  and [ ]nb 1,∈  such that ∀ bt  is executed before or in parallel with at , 
( ) { }d . The set of termination states of W compatible with compensatecompleted,W,tts bk ∈
( )Wtsk  generator of at  is denoted ( )( )ak t,WtsCTS .  

 
The set ( )( ak t,WtsCTS )specifies all the termination states of W that follow the same 
recovery strategy as ( )Wtsk  against at .  
 
 
Definition 6.4  Let ( ) ( )WTSWtsk ∈  be a generator of at . Coordinating an instance Ws of 
W in case of the failure of at  consists in choosing the recovery strategy of each task of W 
against at  and the n<za  tasks ( )

[ ]aziiat 1,∈
 flexible to at  whose execution is not canceled 

when at fails. We call coordination strategy of Ws against at  the set: 

                   

 If the service

[ ] ),()),((),)(),(,(
1

,1 aa

z

i
akaziaks ttFTStWtsCTSttWtsWCS

i

a

ai U
=

∈ −=

as assigned to at is retriable then  
 
Ws is said to be coordinated according to [ ] ),  if in case of the 
failure of

[ ] ∅=∈ ),)(),(,( ,1 aziaks ttWtsWCS
ai

)(),(,( ,1 aziaks ttWtsW
ai ∈CS

at , Ws reaches a termination state in [ ] ), . Of course, it 
assumes that the transactional properties of Ws are sufficient to reach 

)(),(,( ,1 aziaks ttWtsWCS
ai ∈

( )Wtsk . 
 
From these definitions, we can deduce a set of properties: 
 
Theorem 6.5 Ws can only be coordinated according to a unique coordination strategy at 
a time.  
 
Theorem 6.6 Let )(Wtsk  such that failedtWts ak =),(  but not generator of at . If 

)(  then [ ]jl ,1∈∃ such that )()( sk WTSWts ∈ )( sl WTSWts ∈  is a generator of at  compatible 
with )(Wtsk . This theorem states that if a composite service is able to reach a given 
termination state wherein a task at  fails, it is also able to reach a termination state 
generator compatible with the latter. 
 
Given a task at the idea is to classify the elements of TS(W) using the sets of termination 
states compatible with the generators of at . Using this approach, we can identify the 
different recovery strategies and the coordination strategies associated with the failure of 

at  as we decide which tasks can be canceled.   
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FORMING ATS(W) 
 
Defining ATS(W) is deciding at design time the termination states of W that are 
consistent. ATS(W) is to be inputted to a coordination protocol in order to provide it with 
a set of rules which leads to a unique coordination decision in any cases. According to the 
definitions and properties we introduce above, we can now explicit some rules on 
ATS(W) so that the unicity requirement of coordination decisions is respected.  
 
Definition 7.1  Let )(  such that failed)( WATSWtsk ∈ tWts ak =),( . ATS(W) is valid iff 

[ ]jl ,1  such that )(Wtsl  generator of ! ∈∃ at  compatible with )(Wtsk  and 

)(  for a set of tasks [ ]ai ziat ,1)( ∈  flexible to ),( ATSttFTS aai
⊂)

1

W
z

i
a

a

−
=
U),(( tWtsCTS l at .  

 
The unicity of the termination state generator of a given task comes from the 
incompatibility definition and the unicity of the coordination strategy. A valid ATS(W) 
therefore contains for all  in which a task fails a unique coordination strategy 
associated to this failure and the termination states contained in this coordination strategy 
are compatible with . In 

)(Wtsk

)(Wtsk Figure 5, an example of possible ATS is presented for the 
simple workflow W1. It just consists in selecting the termination states of the table TS(W1) 
that we consider consistent and respect the validity rule for the created  ATS(W1). 
 

DERIVING COMPOSITE SERVICES FROM ATS 
 
In this section, we introduce a new type of service assignment procedure: the transaction-
aware service assignment procedure which aims at assigning n services to the n tasks at  
in order to create an instance of W acceptable with respect to a valid ATS(W). The goal of 
this procedure is to integrate within the instantiation process of workflows a systematic 
method ensuring the transactional consistency of the obtained composite service. We first 
define a validity criteria for the instance Ws of W with respect to ATS(W), the service 
assignment algorithm is then detailed. Finally, we specify the coordination strategy 
associated to the instance created from our assignment scheme.      

Acceptability of Ws with respect to ATS(W) 
 
Definition 8.1 Ws is an acceptable instance of W with respect to ATS(W) iff 

)( .  )( WATSWTS s ⊆
 
Now we express the condition  in terms of coordination strategies. 
The termination state generator of 

)()( WATSWTS s ⊆

at present in ATS(W) is noted . The set of tasks 
whose execution is not canceled when 

)(Wts
ak

at  fails is denoted . [ ]az,i iat 1)( ∈
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Theorem 8.2 )(  iff )( WATSWTS s ⊆ [ ] [ ] )(),)(),(,(,1 ,1 WATSttWtsWCSna aziaks aia
⊂∈∀ ∈   

 
An instance Ws of W is therefore an acceptable one iff it is coordinated according to a set 
of n coordination strategies contained in ATS(W). It should be noted that if 

 where  represents the acceptable termination states of the 
task 

),( atWATSfailed∉ ),( atWATS

at  in ATS(W) then [ ] ∅=∈ ),)( ,1 azia tt
ai

),(,( ks WtsW
a

CS .  

Transaction-aware assignment procedure 
 
In this section, we present the procedure that is used to assign services to tasks based on 
transactional requirements. This algorithm uses ATS(W) as a set of requirements during 
the service assignment procedure and thus identifies from a pool of available services 
those whose transactional properties match the transactional requirements associated to 
workflow tasks defined in ATS(W) in terms of acceptable termination states. The 
assignment procedure is an iterative process, services are assigned to tasks one after the 
other. The assignment procedure therefore creates at each step i a partial instance of W 
noted . We can define as well the set  which represents the termination states 
of W that the transactional properties of the i services already assigned allow to reach. 
Intuitively the acceptable termination states refer to the degree of flexibility offered when 
choosing the services with respect to the different coordination strategies verified in 
ATS(W). This degree of flexibility is influenced by two parameters:   

i
sW )( i

sWTS

 
• The list of acceptable termination states for each workflow task. This list can be 

determined using ATS(W). This is a direct requirement which specifies the 
termination states allowed for each task and therefore introduces requirements on the 
service’s transactional properties to be assigned to a given task: this service can only 
reach the states defined in ATS(W) for the considered task.  

• The assignment process is iterative and therefore, as we assign new services to tasks, 
)( i

sWTS  changes and the transactional properties required to the assignment of further 
services too. For instance, we are sure to no longer reach the termination states 

( )( )ak t,W  allowing the failure of the task tsCTS at  in ATS(W) when we assign a 
service of type (r) to at . In this specific case, we no longer care about the states 
reached by other tasks in ( )( )ak t,WtsCTS  and therefore there is no transactional 
requirements introduced for the tasks to which services have not already been 
assigned. 

   
We therefore need to define first the transactional requirements for the assignment of a 
service after i steps in the assignment procedure. 

Extraction of transactional requirements 
  
From the two requirements above, we define for a task at  :  
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• ),( atW : Set of acceptable termination states of ATS at  which is derived from ATS(W) 
• ),( i

sa Wt : This is the set of transactional requirements that the service assigned to DIS

at  must meet based on the previous assignments. This set is determined based on the 
following reasoning: 

 
(DIS1): the service must be compensatable iff  ),( i

sa WtDISdcompensate ∈
 
(DIS2): the service must be retriable iff   ),( i

sa WtDISfailed∉
 
Using these two sets, we are able to compute 

 which defines the transactional properties a 
service 

),(),(),,( i
saa

i
saaTP WtDIStWATSWtsMIN I=

as  has at least to comply with in order to be assigned to the task at  at the i+1 
assignment step. We simply check the retriability and compensatability properties for the 
set : ),, i

saa WtsMIN (TP

 
• ),,  iff ( i

saaTP WtsMINfailed∉ as  has to verify the retriability property 
• ),,  iff ( i

saaTP WtsMINdcompensate ∈ as  has to verify the compensatability property    
 
The set  is easily derived from ATS(W). We need now to compute 

. We assume that we are at the i+1 step of an assignment procedure, i.e. the 
current partial instance of W is . Computing  means determining whether 
(DIS1) and (DIS2) are true. From these two statements we can derive three properties: 

),( atWATS
)i

s,( a WtDIS
i

sW ),( i
sa WtDIS

 
1. (DIS1) implies that state compensated can definitely be reached by at  
2. (DIS2) implies that at  can not fail 
3. (DIS2) implies that at  can not be canceled 
 
The two first properties can be directly derived from (DIS1) and (DIS2). The third one is 
derived from the fact that if a task can not be canceled when a task fails, then it has to 
finish its execution and reach at least the state completed. In this case, if a service can not 
be canceled then it can not fail, which is the third property. To verify whether 1., 2. and 
3. are true, we introduce the theorems Theorem 8.3, Theorem 8.4and Theorem 8.5.   
 
Theorem 8.3 The state compensated can definitely be reached by at  iff  [ ] { }anb −∈∃ ,1  
verifying (8.3b): bs  not retriable is assigned to bt  and )()( WATSWtsk ∈∃  generator of 

bt  such that d  compensatetWts ak =),( .
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Theorem 8.4 at  can not fail iff [ ] { }anb −∈∃ ,1  verifying (8.4b): ( bs  not compensatable 
is assigned to bt  and )(WATS)(Wtsk ∈∃  generator of at  such that 

d  or (compensatetWts bk =),( ) bt  is flexible to at  and bs  not retriable is assigned to bt  
and )(  such that failed)( WATSWtsk ∈∀ tWts ak =),( , canceledtWts bk ≠),( ). 
 
 
Theorem 8.5  Let at and bt such that at is flexible to bt . at  is not canceled when bt  fails 
iff (8.5b): bs  not retriable is assigned to bt  and )()( WATSWtsk ∈∀  such that 

failed   tWts bk =),( , canceledtWts ak ≠),( .
 
Based on the theorems 8.3, 8.4 and 8.5, in order to compute , we have to 
compare 

),( i
sa WtDIS

at  with each of the i tasks { }ab tWt −∈  to which a service bs  has been already 
assigned. This is an iterative procedure and at the initialization phase, since no task has 
been yet compared to at , as  can be of type (p): { }failedWtDIS i

sa =),( .  
1. if bt  verifies (8.3b) then  ),( i

sa WtDISdcompensate ∈

2. if bt  verifies (8.4b) then  ),( i
sa WtDISfailed∉

3. if bt  is flexible to at  and verifies (8.5b) then  ),( i
sa WtDISfailed∉

 
The verification stops if  and . With 

, we are able to select the appropriate service to be assigned to a given 
task according to transactional requirements.  

),( i
sa WtDISfailed∉ ),( i

sa WtDISdcompensate ∈

),,( i
saaTP WtsMIN

Service assignment process 
 
Services are assigned to each workflow task based on an iterative process. Depending on 
the transactional requirements and the transactional properties of the services available 
for each task, different scenarios can occur: 
 
(i) Services of type (rc) are available for the task. It is not necessary to compute 

transactional requirements as such services match all transactional requirements. 
(ii) Only one service is available for the task. We need to compute the transactional 

requirements associated to the task and either the only available service is 
sufficient or there is no solution. 

(iii) Services of types (r) and (c) but none of type (rc) are available for the task. We 
need to compute the transactional requirements associated to the task and we have 
three cases. First, (retriability and compensatability) is required in which case 
there is no solution. Second, retriability (resp. compensatability) is required and 
we assign a service of type (r) (resp. (c)) to the task. Third, there is no 
requirement. 
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Figure 6: Transactional Architecture 

The idea is therefore to assign first services to the tasks verifying (i) and (ii) since there is 
no flexibility in the choice of the service. Tasks verifying (iii) are finally analyzed. Based 
on the transactional requirements raised by the remaining tasks, we first assign services to 
tasks with a non-empty transactional requirement. We then handle the assignment for 
tasks with an empty transactional requirement. Note that the transactional requirements of 
all the tasks to which services are not yet assigned are also affected (updated) as a result 
of the current service assignment. If no task has transactional requirements then we 
assign the services of type (r) to assure the completion of the remaining tasks’ execution. 

Coordination of Ws 
 
Using the notations introduced so far, we are able to specify the coordination strategy of 
Ws against each workflow task. We get indeed the following theorem. 
 
Theorem 8.6 Let Ws be an acceptable instance of W with respect to ATS(W). We note 

[ ]ri niat ,1)( ∈  the set of tasks to which no retriable services have been assigned. 

                { } U UU
r

iji

a

iia

n

i
aa

z

j
akss ttFTStWtsCTSWtscompWTS

1 1

),()),(()()(
= =

⎟
⎟
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⎞
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⎝

⎛
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Having computed TS(Ws), we can deduce the coordination rules associated to the 
execution of Ws. 

Example 
 
Back to our motivating example, we consider the workflow W1 of Figure 2. Designers 
have defined ATS2(W1) as the transactional requirements for the considered business 
application and the set of available services for each task of W1 is specified in Figure 5. 
The goal is to assign services to workflow tasks so that the instance of W1 is valid with 
respect to ATS2(W1) and we apply the assignment procedure presented in section 6.2. We 
first start to assign the services of type (rc) for which it is not necessary to compute any  
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Figure 7: Transactional Web services composition system 

transactional requirements. s13 which is available for task 1 is therefore assigned without 
any computation. We then consider the tasks for which only one service is available. This 
is the case for task 4 for which only one service of type (p) is available. We therefore 
verify whether s41 can be assigned to task 4. We 
compute .

and 
),(),(),,( 1

14412
1

14 ssaTP WtDIStWATSWtsMIN I=

{ }failedcompletedt ,), 41 =WATS (2 { }failedWtDIS s =),( 1
14

{ }failedWts sa =),, 1
14

 as s13 the only service 
already assigned is of type (rc) and the theorems 8.3, 8.4 and 8.5 are not verified, none 
the conditions required within these theorems are indeed verified by the service s13. Thus 

 and s41 can be assigned to task 4 as it matches the 
transactional requirements. Now we compute the transactional requirements of task 2 for 
which services of type (r) and (c) are available and we get . 
As described in the assignment procedure we do not assign any service to this task as it 
does not introduce at this step of the procedure any transactional requirements to make a 
decision on the candidate service to choose. We therefore compute the transactional 
requirements of task 3 and we get 

MINTP (

{ }failedWtsMIN saTP =),,( 2
12

{ }dcompensate,failedWtsMIN saTP ),,( 2
13 =  as theorem 

8.3 is verified with the service s41 that is indeed not retriable. The service s32 which is of 
type (c) can thus be assigned to task 3 as it matches the computed transactional 
requirements. We come back now to task 2 and compute the transactional requirements 
once again and we get { }dcompensatefailedWtsMIN saTP ,),,( 3

12 =  as theorem 8.3 is 
now verified with the service s32 which is indeed not retriable. It should be noted that at 
this step, the transactional requirements associated  
to task 2 have been modified because of the assignment of the service s32 to task 3. As the 
service s22 matches the transactional requirements it can be assigned to the task. 
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COORDINATION OF COMPOSITE APPLICATIONS 
 
In this section an implementation of the work presented in this chapter based on Web 
services technologies is described. The implementation features the transactional 
coordination of a cross-organizational composite application that is built based on our 
transaction-aware assignment procedure. To that respect, the business partners involved 
in the composite application share their services and communicate through local 
workflow engines that help them manage the overall collaboration in a distributed 
manner. These workflow engines are based on the BPEL workflow description language. 
Of course, the services they share may offer various transactional properties as the ones 
we detailed so far in the chapter. It is thus required to adapt local workflow engines to 
integrate into the composite application business logic the transactional model we 
presented in section 8. The system architecture is depicted in Figure 6. In order to support 
the execution of cross-organizational composite applications, we implemented in the 
fashion of the WS-Coordination initiative (Langworthy, 2005) a transactional stack 
composed of the following components: 
 
• Transactional coordinator: this component is supported by the composite 

application initiator. On the one hand it implements the transaction-aware business 
partner assignment procedure as part of the composition manager module and on the 
other hand it is in charge of assuring the coordinator role of the transactional protocol 
relying on the set TS(Ws) outcome of the assignment procedure. 

• Transactional submanager: this component is deployed on the other partners and is 
in charge of forwarding coordination messages from the local workflow to the 
coordinator and conversely.        

 
In the remainder of this section, our implementation is described in terms of the 
implementation of the transaction-aware partner assignment procedure, the internal 
communications that take place between the elements deployed on a business partner and 
the structure that the BPEL processes deployed on each business partner’s workflow 
engine should be compliant with in order to support the coordination protocol execution.  

OWL-S transactional and functional matchmaker 
 
To implement the assignment procedure presented in this chapter we augmented an 
existing functional OWL-S matchmaker (Tang, Liebetruth et al. 2003) with transactional 
matchmaking capabilities. In order to achieve our goal, the matchmaking procedure has 
been split into two phases. First, the functional matchmaking based on OWL-S semantic 
matching is performed in order to identify subsets of the available partners that meet the 
functional requirements for each workflow vertex. Second, the implementation of the 
transaction-aware partner assignment procedure is run against the selected sets of 
partners in order to build an acceptable instance fulfilling defined transactional 
requirements. 
 
The structure of the matchmaker consists of several components whose dependencies are 
displayed in Figure 7. The composition manager implements the matchmaking process  
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Figure 8: Infrastructure internal communications 

and provides a Java API that can be invoked to start the selection process. It gets as input 
an abstract process description specifying the functional requirements for the candidate 
partners and a table of acceptable termination states. The registry stores OWL-S profiles 
of partners that are available. Those OWL-S profiles have been augmented with the 
transactional properties offered by business partners. This has been done by adding to the 
non-functional information of the OWL-S profiles a new element called 
transactionalproperties that specifies two Boolean attributes that are retriable and 
compensatable as follows. 
 

<tp:transactionalproperties retriable="true" compensatable="true"/> 
 
In the first phase of the selection procedure, the business partner manager is invoked with 
a set of OWL-S profiles that specify the functional requirements for each workflow 
vertex. The business partner manager gets access to the registry, where all published 
profiles are available and to the functional matchmaker which is used to match the 
available profiles against the functional requirements specified in the workflow. For each 
workflow vertex, the business partner manager returns a set of functionally matching 
profiles along with their transactional properties. The composition manager then initiates 
the second phase, passing these sets along with the process description, and the table of 
acceptable termination states to the transactional composer. The transactional composer 
starts the transaction-aware business partner assignment procedure using the transactional 
matchmaker by classifying first those sets into five groups:  
 
• sets including only services of type (p) 
• sets including only services of type (r) 
• sets including only services of type (c) 
• sets including services of types (r) and (c) 
• sets including services of type (rc) 
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Once those sets are formed the iterative transactional composition process takes place as 
specified above based on the table of acceptable termination states. Depending on the set 
of available services and the specified acceptable termination states, the algorithm may 
terminate without finding a solution. 

Internal communications within a business partner infrastructure 
 
In the infrastructure that is deployed on each business partner to implement the 
transactional protocol presented in this chapter, the transactional coordinator plays the 
role of interface between the business process and the other business partners when it 
comes to managing the notification messages exchanged during the execution of the 
transactional protocol. Some of these messages received by the transactional coordinator 
should be forwarded to the local business process to take appropriate actions while some 
others are only relevant to the local transactional (sub)coordinator. The business process 
may also require to issue a notification to its local transactional (sub)coordinator when a 
failure occurs. The messages exchanged between these three layers are derived from the 
state model depicted in Figure 3. The infrastructure deployed on a given business partner 
basically consists of three layers:  
 
• The transactional service layer representing the business partner’s available 

operations, 
• The local workflow layer corresponding to the local workflow engine, 
• The coordination layer implementing the local (sub)coordinator module. 
 
The message exchanges that can take place on a given business partner between these 
three layer are depicted in Figure 8. The set of notification messages that is exchanges 
between the different components of the infrastructure is basically derived from the 
transactional model depicted in Figure 4. 
 
• Activate: The activate message is basically issued by the local workflow engine to 

the local workflow engine of the next business partner involved in the workflow. In 
fact this message instantiates the process execution on the business partner side. 

• Compensate, Cancel: The compensate and cancel messages are received at the 
coordination layer and forwarded to the local workflow layer that forwards them in a 
second time to the transactional service layer to perform to corresponding functions 
i.e. compensation or cancellation of an operation. 

• Compensated, Canceled, Completed: These messages simply notify that the 
corresponding events have occurred: compensation, cancellation, or completion of an 
operation. Issued at the transactional service layer, they are forwarded to the 
coordination layer in order to be dispatched to the composite application coordinator. 

• Failed: Issued at the transactional service layer, the failed message is forwarded to 
the coordination layer in order to be dispatched to the composite application 
coordinator. If the operation performed at the transactional service layer is retriable, 
no failed message is forwarded to the local workflow layer as we consider that the 
retry primitive is inherent to any retriable operation.  
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• Abort, Aborted: The abortion message is received at the coordination layer and 
acknowledged with an aborted message. Upon receipt of this message, the business 
simply leaves the composite application execution; no message is forwarded to the 
other layers since the local workflow has not yet been instantiated.   

• Leave: The leave message is received at the coordination layer and the business 
partner can leave the execution of the composite application execution. The leave 
message is forwarded to the local workflow layer if the business partner implements 
an operation that is compensatable. In this case, the business process deployed on the 
local workflow engine indeed has two possible outcomes, either the results produced 
by its task are compensated or it can leave the process execution. 
 
 

Reliable, Compensatable

Reliable, Retriable

 

Figure 9: Transactional BPEL processes (Process graphs from ActiveBPEL engine) 
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Specification of Transactional BPEL processes 
 
In our implementation, the local workflow engine is implemented using BPEL as the 
workflow specification language. In order to support the message exchanges identified in 
section 9.2 the structure of BPEL business processes has to match some templates that we 
describe in this section. Using the constructs available in the BPEL language, the 
specification of these transactional BPEL processes is straightforward. 
 
The business process activation is performed using the usual BPEL process instantiation 
construct <receive> described as follows. 
 

<receive createInstance="yes" operation="launch" partnerLink="PLT"  
         portType="PT" variable="Data"> 
    <correlations> 
      <correlation initiate="yes" pattern="in" set="CS1"/> 
    </correlations> 
</receive> 

 
The cancel message can be received at any moment during the execution of the process 
and is thus handled using the <eventHandlers> construct as follows. Of course the 
BPEL process has to expose a dedicated operation to receive the cancel message. 
 

<eventHandlers> 
  <onMessage partnerLink="PLT" portType="PT"  
             operation="Cancel" variable="workflowid"> 
      <correlations> 
        <correlation set="CS1"/> 
      </correlations> 
    <terminate/> 
  </onMessage> 
</eventHandlers> 

 
In order to detect the failure of an operation that is not retriable, the <scope> and the 
<faultHandlers> constructs are used as follows. The failure of the operation is 
forwarded to the transactional coordination layer inside the <faultHandlers>.  
 

<scope name="invokation_try"> 
  <faultHandlers> 
    <catchAll> 
       <invoke inputVariable="failedid" name="1"  
               operation="transacFailed" partnerLink="PLT"  
               portType="LocalAdminImpl"/> 
    </catchAll> 
  </faultHandlers> 
  <invoke inputVariable="DataInc" outputVariable="DataOut" 
          name="invoke1" operation="Addition"  
          partnerLink="PLT" portType="Add"> 
  </invoke> 
</scope> 

Finally, if the business process implements an operation that is compensatable, the 
process execution can lead to two possible outcomes depending on whether a compensate 
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or a leave message is received. We use the <pick> construct to express this choice as 
follows.  
 

<pick> 
  <onMessage partnerLink="PLT" portType="publicPT"  
             operation="Leave" variable="workflowid"> 
    <correlations> 
      <correlation set="CS1"/> 
    </correlations> 
    <empty/> 
  </onMessage> 
  <onMessage partnerLink="PLT" portType="PT"  
             operation="Compensate" variable="workflowid"> 
    <correlations> 
       <correlation set="CS1"/> 
    </correlations> 
    <invoke inputVariable="serviceid" name="invoke1"  
            operation="Compensate"  
            partnerLink="PLT" portType="Add"/> 
  </onMessage> 
</pick> 

 
It should be noted that in the listings depicted in this section, we use BPEL correlation 
sets because the coordination messages are received asynchronously during the process 
execution and need to be mapped to the appropriate instance of the workflow to be 
processed by the engine. These BPEL listings can be combined in the design of 
transactional BPEL processes depending of course on the transactional properties offered 
by business partners. Two examples of transactional BPEL processes are depicted in 
Figure 9. For instance, if the task executed by a business partner is not compensatable, 
the associated BPEL process only ends with the completed notification since it is not 
required to wait for a leave message. Similarly, a task which is retriable is not surrounded 
by <scope> constructs as there is no fault to catch.    
 

CONCLUSION 
 
We presented an adaptive transactional protocol to support the execution of cross-
organizational composite applications. This approach actually meets the requirements 
that are relevant to assuring consistency of the execution of cross-organizational 
processes which are mainly twofold:  
 
• Relaxed atomicity: atomicity of the workflow execution can be relaxed as 

intermediate results produced by the workflow may be kept intact despite the failure 
of one partner.  

• Dynamic selection of business partners: the execution of cross-organizational 
workflows may require the execution of a composition procedure wherein candidate 
business partners offering different characteristics are assigned to tasks depending on 
functional and non-functional requirements associated with the workflow 
specification.  
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The execution of the protocol we proposed takes place in two phases. First, business 
partners are assigned to workflow tasks using an algorithm whereby partners are selected 
based on functional and transactional requirements. Given an abstract representation of a 
process wherein business partners are not yet assigned to workflow tasks, this algorithm 
enables the selection of partners not only according to functional requirements but also to 
transactional ones. The resulting workflow instance is compliant with the defined 
consistency requirements and its execution can be easily coordinated as our algorithm 
also provides coordination rules. The workflow execution further proceeds through a 
hierarchical coordination protocol managed by the workflow initiator and controlled 
using the coordination rules computed as an outcome of the partner assignment 
procedure. This transactional protocol thus offers a full support of relaxed atomicity 
constraints for workflow-based applications and is also self-adaptable to business 
partners’ characteristics.   
 
Besides, a complete transactional framework based on the Web services technologies has 
been implemented as a proof of concept of our theoretical results. On the one hand the 
business partner assignment procedure we designed can be used to augment existing 
composition systems (Agarwal, Dasgupta, et al. 2005) as it can be fully integrated in 
existing functional match-making procedures. On the other hand, our approach defines 
adaptive coordination rules that can be deployed on recent coordination specifications 
(Langworthy, 2005) in order to increase their flexibility.   
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