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Résumé

Avec la taille croissante des systémes de communication sans fil, de nouveaux défis
apparaissent. En particulier, localiser I'intelligence revét une importance primor-
diale. Deux vues complémentaires dominent, & savoir le controle par une unité cen-
trale de traitement (approche centrée sur le réseau), ou I'administration du réseau
par les utilisateurs eux-mémes (approche centrée sur 1'utilisateur).

Cette thése se concentre sur I’analyse de performance des systémes de commu-
nication sans fil, et introduit des mécanismes pour améliorer leur efficacité, partic-
uliérement dans un contexte distribué. Les travaux sont caractérisés par 'utilisation
de méthodologies sophistiquées pour analyser les réseaux sans fil: théorie des ma-
trices aléatoires et théorie des jeux. Le but est de fournir une qualité optimale de
service aux utilisateurs, sous des contraintes comme la consommation d’énergie et
la connaissance limitée de I'environnement.

Une premiére partie du travail concerne des applications de la théorie des ma-
trices aléatoires & 'optimisation de grands réseaux cellulaires. Lorsque la taille des
réseaux augmente, les interférences entre utilisateurs augmentent, et les simulations
impliquent un nombre énorme de paramétres (aléatoires). L’effet de moyennage de
la théorie des matrices aléatoires permet d’isoler de maniére élégante les parameétres
pertinents dans un systéme asymptotique, quand le facteur d’étalement, le nombre
d’antennes ou le nombre de porteuses, et le nombre d’utilisateurs deviennent tous
deux trés grands a ratio fixé. Méme si les résultats sont obtenus asymptotiquement,
ils donnent des prévisions trés précises du comportement de systémes de taille finie,
comme le montrent les simulations. Cette analyse est destinée a servir d’étalon, en
comparaison & l'approche décentralisée, quand les mobiles prennent leurs propres
décisions basées sur leur information locale.

Une deuxiéme partie du travail est consacrée a appliquer des cadres de théorie des
jeux aux protocoles distribués. La théorie des jeux fournit une vaste panoplie d’outils
pour étudier toutes sortes d’interactions faisant intervenir des joueurs égoistes qui
raisonnent stratégiquement afin de prendre des décisions. Avec 'intérét croissant
pour le déploiement de réseaux s’auto-organisant, il est tentant de considérer des
mobiles présentant de telles caractéristiques. Certains domaines de la théorie des
jeux, que nous flimes les premiers a introduire dans un contexte de réseau, sont
particulierement prometteurs. Les jeux corrélés permettent d’inclure un mécanisme
de coordination entre les joueurs, tandis que les jeux évolutionnaires fournissent une
propriété additionnelle de robustesse des équilibres. Dans le régime asymptotique,
les jeux non-atomiques étudient des interactions au sein de populations denses ol le
comportement d’un individu a un impact négligeable sur le bien-étre de la popula-
tion. De tels cadres permettent de concevoir des protocoles distribués efficaces.



Contents




Abstract

With the growing size of wireless communication systems, new challenges are emerg-
ing. One of the main topics concerns the actual topology to route efficiently infor-
mation in the network. In particular, the exact localization of the intelligence is
of paramount importance. Two complementary views dominate, either managing
through a central controller (network centric) or letting the users themselves admin-
istrate the network (user centric).

This thesis focuses on the performance analysis of wireless communication sys-
tems, and introducing mechanisms to improve their efficiency, especially in a dis-
tributed context. The research is characterized by the novel use of sophisticated
methodologies for analyzing wireless networks: random matrix theory and game
theory. The purpose is to deliver an optimal quality of service to users, under con-
straints like energy consumption and limited knowledge of the environment.

A first part of the work concerns applications of random matrix theory and
unitary random matrix theory to the optimization of large cellular networks. As
multiuser networks grow large, the amount of interfering communications increases,
and simulations involve a huge number of (random) parameters. The self-averaging
effect of random matrix theory enables to elegantly single out parameters of interest
in asymptotic systems, when the number of chips, antennas or carriers and the
number of users both grow very large with fixed ratio. Even if the results are
obtained in the asymptotic regime, they give very accurate predictions of the system
behavior in the finite size case, as shown by simulations. The performance analysis
of centralized systems may serve as a benchmark, compared to the user centric case
when mobiles take individual decisions based upon their local information.

A second part of the work is devoted to applying game theoretical frameworks to
distributed multiuser schemes. Game theory provides a vast array of tools to study
all kinds of interactions among selfish players who reason strategically in order to
take rational decisions. With the increasing interest in deployment of self-organizing
networks, it is very alluring to consider mobiles as independent actors that demon-
strate such characteristics. A few subfields of game theory, which we were the first to
introduce in a network context, are particularly promising. Correlated games enable
to include a coordination mechanism between players, while evolutionary games pro-
vide additional properties of robustness of equilibrium strategies. In the asymptotic
regime, the relevant framework is non-atomic games, studying interactions of dense
populations where the behavior of a single individual has a negligible impact on the
welfare of the population as a whole. Such frameworks enable to derive efficient
distributed schemes.
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Résumé en Francais

Introduction

Analyse de Systémes Multi-Utilisateurs

La publication pionniére de 1948 de Shannon [Sha48] a initié a elle seule la discipline
de la théorie de I'information. Dans cet article, parmi beaucoup d’autres définitions
et théorémes fondamentaux, Shannon présente la notion de capacité d’un canal en
tant que mesure de performance. La capacité détermine le débit réalisable entre
deux terminaux qui communiquent & travers un canal bruité. Cette contribution
fondamentale fut I'étincelle qui mena a la publication d’une multitude de travaux,
comme le prouve I’étude [Ver98|. Presque soixante ans aprés sa naissance, le cas
“simple” d’un utilisateur unique, comme considéré dans [Sha48|, peut étre considéré
comme ayant été traité dans toute son ampleur par la communauté spécialisée dans
la théorie de 'information.

Le cas plus complexe de plusieurs utilisateurs partageant le méme milieu de
communication a été abordé pour la premiére fois par Shannon dans un article de
1961 [Sha6l]. Cette contribution marque la base de la théorie de linformation
a utilisateurs multiples. Le travail [Sha61| est consacré a 'é¢tude d’un canal bi-
directionnel, semblable & la téléphonie, ol 'interférence se produit entre les signaux
transmis dans les deux directions opposées. La notion conventionnelle de capacité
n’est plus appropriée ; néanmoins, une région bidimensionnelle de capacité peut
étre définie, qui indique I'ensemble de paires réalisables de débit. Malheureusement,
aucune expression explicite pour cette région de capacité n’existe, méme dans des
cas particuliérement simples. Seules des bornes peuvent étre dérivées.

Shannon conclut son article par la phrase suivante: “Dans un autre papier, nous
discuterons le cas d’un canal partagé par deux terminaux ou plus, uniquement dédiés
a la transmission, et un terminal uniquement dédié a la réception, cas pour lequel
une solution compléte et simple de la région de capacité a été trouvée. ”

Ceci définit ce qui est désigné maintenant sous le nom de canal a accés multi-
ple. Plusieurs émetteurs communiquent avec un récepteur simple & travers un canal
commun. Ceci a engendré une abondance de contributions ; une sélection effectuée
par Verdu parmi celles-ci peut étre trouvée dans I’étude [Ver98|, pp. 11-12. Il est a
noter que, contrairement a son annonce, Shannon n’a pas publié plus avant sur le
sujet, donc la portée réelle de sa solution reste indéterminée.

De nombreux protocoles pour permettre une mise en application efficace des
communications quand plusieurs utilisateurs sont impliqués ont été proposés dans
la littérature, et ont également trouvé une mise en place pratique. Les protocoles
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orthogonaux, tels que I’Accés Multiple & Répartition dans le Temps (TDMA) et
I’Accés Multiple par Répartition en Fréquence (FDMA), existaient déja avant la
parution de I'article de Shannon et étaient employés en télégraphie. D’autres, comme
I’Accés Multiple par Répartition en Code (CDMA), en étaient encore a leurs bal-
butiements. Il fut rapidement démontré que les protocoles orthogonaux, tels que
TDMA et FDMA, ne permettent généralement pas de réaliser la totalité de la ré-
gion de capacité du canal a utilisateurs multiples. D’autre part, les protocoles avec
un niveau controlé de I'interférence entre les utilisateurs, tels que le CDMA, perme-
ttent une telle optimisation. Afin de réaliser la totalité de la région de capacité dans
le cas de plusieurs terminaux communiquant simultanément avec une station de base
unique, un analogue pour utilisateurs multiples de l’algorithme a remplissage d’eau
(water-filling) individuel a été proposé dans [TH98|.

La frontiére de la région de capacité détermine le débit global du systéeme. C’est
I'une des multiples mesures de performance qui peuvent étre optimisées. Par ex-
emple, le délai que subissent les communications peut également étre considéré,
comme il est souligné dans [HT98|. La complezité est aussi fréquemment un facteur
a prendre en compte, en particulier aux noeuds mobiles, qui disposent seulement
d’une connaissance locale du systéme, ainsi que d’une puissance de calcul et d’un
approvisionnement en énergie limité.

En outre, un systéme a utilisateurs multiples fonctionne rarement en isolation.
Au contraire, il fait habituellement partie d’un réseau plus vaste. De plus en plus,
les interactions entre plusieurs systémes a utilisateurs multiples séparés sont prises
en considération, ainsi que le démontre la courte étude [SSZ04]. Afin de concevoir
une architecture de réseau efficace, beaucoup de possibilités ont été considérées dans
toute la littérature. En particulier, la conception de protocoles pour servir les util-
isateurs est un vaste sujet d’étude.

Dans cette thése, nous nous limitons aux protocoles de couche physique tels que
I’accés multiple par répartition en code, et nous passons en revue leurs performances
dans plusieurs cadres. Notre but est de développer et déployer une infrastructure
dans le but de servir les utilisateurs. En conséquence, nous étudions les différences
entre systémes centralisés et décentralisés. Pour cela, nous aurons tout d’abord
besoin de quelques définitions.

Définitions Utiles
Cellulaire, Ad-hoc, Hybride

Cellulaire signifie que la surface considérée est divisée en cellules. Dans chaque cel-
lule, les utilisateurs communiquent avec une station de base, i.e., un “super-noeud”
qui est habituellement supposé étre relié (par I'intermédiaire de lien cablé) a d’autres
stations de base, a I'Internet, etc. Les formes des cellules sont déterminées par dif-
férentes régles, par exemple leur surface est fixée, ou déterminée selon les zones qui
ont le rapport signal & bruit (SNR) maximal. En 2-D, un des modéles le plus sou-
vent, considéré est celui de cellules hexagonales réguliéres, afin de remplir le plan.
Il est a noter que ceci est un cas particulier de diagramme de Voronoi, quand les
stations de base sont réguliérement distribuées sur le plan. En 1-D, ceci correspon-
dra a des segments de longueur égale sur 'axe réel, qui sera un modéle que nous
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adopterons. De nos jours, les systémes cellulaires sont largement déployés, par con-
séquent 'intérét de leur analyse est intense, aussi bien en ce qui concerne les aspects
théoriques que pratiques. Une vue d’ensemble récente de la littérature consacrée
aux réseaux cellulaires est proposée dans 'étude [SSZ04].

Un systéme s’appelle ad-hoc s’il ne bénéficie pas d’une telle infrastructure fixe.
Habituellement, les noeuds sont alors supposés communiquer directement les uns
avec les autres et sont capables d’auto-organisation. La capacité de tels réseaux a
été analysée de maniére intensive, commencant par le célébre article de Gupta et
Kumar [GK99|, et en notant ’amélioration en débit fournie par la mobilité, aux
dépens d’un délai plus important [GT02|. Le compromis entre le débit et le délai a
depuis été étudié [GMPS06].

Les systemes hybrides sont également considérés dans la littérature. Les noeuds
qui sont loin d’une station de base communiquent entre eux, en mode ad-hoc, jusqu’a
ce que la communication arrive a un noeud prés d’une station de base. De tels
systémes représentent en quelque sorte un compromis entre les systémes centralisés
et décentralisés.

Systémes Centralisés et Décentralisés

Un environnement centralisé est un environnement dans lequel sont disponibles des
informations globales sur tous les noeuds dans le systéme. Les noeuds sont admin-
istrés par une unité centrale de traitement, qui collecte ces informations. Habituelle-
ment, les réseaux cellulaires sont supposés bénéficier d’une commande centralisée
fournie par la station de base. Un terme équivalent que nous emploierons est ap-
proche centrée sur le réseau, puisque le réseau est considéré comme une entité globale
dans cet environnement.

Au contraire, les réseaux ad-hoc sont généralement percus comme ’exemple type
de systémes décentralisés. Il n’y a aucune unité centrale de traitement, les mobiles
administrent le réseau par eux-mémes. Les algorithmes de communication dans ce
cas sont dit distribués. Un terme équivalent que nous emploierons est approche
centrée sur l'utilisateur puisque l'acteur principal dans un tel environnement est
I'utilisateur.

Coopération et Compétition

Quand les mobiles sont considérés en tant qu’entités indépendantes administrant
leurs transmissions, deux modéles de communication, dérivés de la théorie des jeux,
peuvent avoir lieu. Le premier est coopératif. Dans ce modéle, les mobiles collaborent
avec le but de réaliser un objectif commun, par exemple maximiser le débit global
du systéme.

Au contraire, dans le modéle non coopératif, les noeuds sont des individus au
comportement égoistes. Ils ne s’inquiétent pas du bien-étre du systéme dans son en-
semble, mais seulement de maximiser leur propre gain. Une solution dans ce cadre,
quand aucun mobile ne peut tirer bénéfice en déviant unilatéralement, s’appelle
un équilibre de Nash. Généralement, la performance globale a ’équilibre de Nash
est inférieure & la performance optimale qui peut étre atteinte dans un contexte
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coopératif. Des propriétés additionnelles de stabilité peuvent étre mises en appli-
cation, par exemple en présentant le concept de biologie mathématique dénommé
stratégie évolutionnairement stable.

Coordination

Enfin, coordination se rapporte & un domaine particulier de la théorie des jeux. Un
jeu corrélé peut avoir lieu entre joueurs coopératifs ou non coopératifs. Il consiste
en la présence d’'un degré additionnel de liberté aux mobiles par la présence d’un
arbitre. L’arbitre est une entité qui peut envoyer des messages aux mobiles ; elle n’a
pas besoin de disposer d’intelligence, ni d’une quelconque connaissance du systéme.
Elle envoie simplement des signaux aléatoires, dont les joueurs peuvent tenir compte
afin de maximiser conjointement leur utilité.

Une facon intuitive d’illustrer un phénoméne de coordination est la suivante.
Prenons deux personnes et disons-leur de choisir un entier positif, sans communica-
tion entre elles. Si elles choisissent toutes deux le méme entier, alors elles recoivent
toutes les deux une récompense. Sinon, aucune d’entre elles ne recoit quoi que ce soit.
Spontanément, les deux personnes choisissent le chiffre 1. C’est le point commun
que toutes deux partagent. Ainsi, la coordination peut représenter un juste milieu
entre les aspects coopératifs et non-coopératifs d’une situation donnée. Elle permet
d’améliorer d’une facon trés simple et ne nécessitant pas de calculs complexes ou de
transmissions de volumes importants de données la quantité d’information transmise
dans un systéme donné, comme nous le verrons plus tard.

Présentation de la Thése
Outils Mathématiques

Dans un premier temps, nous donnons une introduction aux outils mathématiques
utilisés dans le cadre de cette thése. Ceux-ci proviennent principalement de deux
théories mathématiques: la théorie des jeux et la théorie des matrices aléatoires.

L’introduction de la théorie des jeux et de la théorie des matrices aléatoires
au sein de la communauté de théorie de I'information est plutot récente. Dans le
chapitre 2, une courte histoire de ces domaines est retracée et de nombreux résultats
illustratifs et utiles sont fournis. En particulier, la théorie des jeux est un vaste
domaine mathématique, ainsi 'introduction est nécessairement trés partielle et lim-
itée a des concepts utilisés dans les communications sans fil et plus particuliérement
dans le reste de ce travail. Une application particuliére de la théorie des jeux dans
le domaine des communications sans fil est illustrée dans le contexte de ’attribution
de ressources.

Approche centrée sur le réseau

Dans un second temps, nous accomplissons 'analyse de performance de systémes
centralisés dans plusieurs cadres. Nous nous limitons au protocole CDMA (Accés
Multiple par Répartition en Codes). Nous étudions la performance de systémes
CDMA dans quatre cas.
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Le déploiement cellulaire infini en liaison descendante, avec codes orthogonaux.

Le déploiement cellulaire infini en liaison montante, avec codes aléatoires.

Le déploiement unicellulaire en liaison montante, avec codes orthogonaux.

Enfin, le déploiement cellulaire infini en liaison montante, avec codes orthog-
onaux, est considéré.

Cette analyse de performance est présentée de maniére détaillée dans les dif-
férentes sections du chapitre 3.

L’analyse de performance de systémes centralisés nous permet d’obtenir des
bornes sur la performance pouvant étre obtenue dans le cas de systémes décen-
tralisés. Ce qui est vraiment intéressant dans le cas de systémes accomodant un
grand nombre d’utilisateurs, c’est de construire des protocoles distribués. Ceux-ci
sont hautement désirables a plusieurs titres: chaque utilisateur accomplit les cal-
culs individuellement, & partir de son information locale, sans avoir recours a des
transmissions non-informationnelles avec la station de base; les protocoles obtenus
s’adaptent naturellement a une mise a 1’échelle.

Approche centrée sur 'utilisateur

Ainsi, dans un troisiéme temps, nous introduisons différents concepts de théorie des
jeux dans un contexte de systéme multi-utilisateurs. Nous nous intéressons cette fois
aux protocoles ALOHA, CDMA et OFDMA. Les cadres considérés sont les suivants.

e Nous introduisons la théorie des jeux évolutionnaires pour une grande popu-
lation de mobiles utilisant un protocole ALOHA.

e Nous introduisons la théorie des jeux corrélés pour une population de mobiles
communiquant via un protocole ALOHA a fenétres d’émission discrétes.

e Nous utilisons la théorie des jeux pour construire un algorithme d’allocation
de puissance pour un systéme CDMA unicellulaire.

e Enfin, nous utilisons la réciprocité du canal pour construire un protocole per-
mettant aux utilisateurs de communiquer avec la station de base sans que
celle-ci n’ait de connaissance du canal pour un systéme OFDMA unicellulaire.

Ces protocoles et leur analyse sont présentés dans les différentes sections du
chapitre 4.

Dans ce résumé en francais de la thése, I’accent sera mis sur certains résultats par-
ticuliérement illustratifs. Pour plus de détails sur les calculs ainsi que sur I’ensemble
des résultats, le lecteur est invité a se référer au corps de la thése.
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Outils Mathématiques

Théorie des Jeux

Pour cette thése, la théorie des jeux est un domaine mathématique qui occupe une
grande importance, et une partie entiére de ce rapport est consacrée & donner une
introduction aux notions importantes de ce domaine. Nous allons donner les grandes
lignes et définitions de la théorie des jeux dans les paragraphes qui suivent.

Bref Historique

Les racines de la théorie des jeux sont basées sur des situations de la vie courante.
Une analyse mathématique fut initialement proposée pour étudier des problémes
impliquant plusieurs joueurs, tels que les échecs ou les jeux de cartes. De nombreux
travaux ont posé les fondations, notamment pendant les dix-neuviéme et vingtiéme
siécles. Néanmoins, il est généralement considéré que le véritable texte fondateur de
la théorie des jeux est le livre Theory of Games and Economic Behavior, par J. von
Neumann and O. Morgenstern, paru en 1944. Ce livre donne un formalisme pour
les jeux coopératifs aussi bien que non-coopératifs.

Ces concepts ont ensuite été étendus par J. Nash. En particulier, c¢’est celui-ci
qui démontra I'un des théorémes les plus importants en théorie des jeux, a savoir
Pexistence d’un équilibre dans les jeux non-coopératifs, dénommeé depuis lors équili-
bre de Nash. Nash étudia également les jeux coopératifs, qui sont généralement
considérés comme requérant une analyse plus complexe, étant donné que les joueurs
peuvent former des coalitions pour atteindre le plus grand bien-étre collectif. Il
dériva la solution de marchandage de Nash pour de tels jeux. De nos jours, la
théorie des jeux est utilisée dans de nombreux domaines, en économie, en biologie
mathématiques, ainsi qu’en communications sans fil et en réseaux.

Généralités

La théorie des jeux fournit une vaste gamme d’outils pour étudier toutes sortes
d’interactions parmi des individus prenant des décisions. En particulier, la théorie
des jeux non-coopératifs est fondée sur deux prémisses majeures. La premiére est la
rationalité des individus impliqués, c’est a dire que les joueurs (égoistes) prennent
leurs décisions en fonction de leurs préférences quant au résultat qui en découle. La
seconde est leur capacité de raisonnement stratégique, c’est a dire que chaque joueur
prend également en compte les préférences des autres joueurs.
Un jeu non-coopératif est défini par trois ensembles.

e Un ensemble de joueurs S, qui consiste de K individus;
e Pour chaque joueur k € S¥, un ensemble de stratégies (ou actions) Sy;
e Pour chaque joueur k € S¥, une relation de préférence S = [, Si.

En général, la relation de préférence de chaque joueur s’exprime sous la forme
d’une fonction u; : S — R, appelée fonction d’utilité. Une discussion approfondie
sur ce sujet est fournie dans [MDOG].
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Ce modéle se situe & un niveau d’abstraction trés élevé. Ainsi, il permet de
couvrir une trés large gamme de situations. L’inconvénient est que sous cette forme,
aucun résultat général ne peut étre dérivé directement. Les paramétres doivent étre
spécifiés pour obtenir des résultats spécifiques a la version du jeu considéré.

Equilibre de Nash

Un vecteur de stratégies est dénoté p € S. Pour chaque joueur k£, la stratégie de
ce joueur est pg. Le vecteur de stratégies de tous les joueurs excepté le joueur k
est dénoté p(_i). Sile joueur £ joue la stratégie ¢ alors que tous les autres joueurs
conservent leurs stratégies selon p, le vecteur de stratégies résultant est dénoté
P(—k), q- Avec I'aide de cette notation, il est possible de donner la définition suivante,
originellement formulée par J. Nash. Quand chaque joueur a une vision pertinente
du jeu et agit rationnellement, alors le concept d’équilibre est appelé équilibre de
Nash. 1’équilibre de Nash d’un jeu stratégique (SX,S, (up)resx) est un vecteur de
stratégies p* € S tel que

Vk € S*, Vpi € Sy, Uk (P(_ky: Pr) < uk(P*).-

En d’autres termes, un équilibre de Nash est un profil d’actions tel qu’aucun
joueur ne peut tirer un bénéfice en déviant unilatéralement. C’est une meilleure
réponse & lui-méme. L’équilibre de Nash est un concept utilisé en thérie des jeux
non-coopératifs.

Equilibre de Pareto

D’un autre coté, quand les joueurs coopérent, le concept de solution est appelé
équilibre de Pareto. Un équilibre de Pareto est une solution coopérative dominante:
il est impossible d’accroitre le bien-é¢tre d’un joueur sans décroitre celui d’un autre
joueur. En général, les équilibres de Nash et de Pareto ne coincident pas.

Applications aux Télécommunications

Avec l'intérét croissant pour le déploiement de réseaux a organisation automatique,
la théorie des jeux représente un domaine alléchant pour considérer des mobiles en
tant qu’acteurs indépendants qui possédent ces caractéristiques. L’étude [ABAT06]
décrit une vaste gamme d’outils de théorie des jeux et leurs applications dans le
domaine des réseaux. Un livre dédié a introduire la théorie des jeux aux ingénieurs
en télécommunications a été récemment publié [MDO06]. Une étude détaillant les
applications des jeux non-coopératifs aux communications sans fil est également
en cours de parution [AA07]. Ce ne sont que quelques exemples qui illustrent la
popularité entourant la théorie des jeux dans le domaine des télécommunications.

Parmi les sous-domaines de la théorie des jeux, certains sont particuliérement
prometteurs. Dans cette thése, nous avons considéré notamment les deux suivants:
les jeux évolutionnaires et les jeux corrélés.
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Théorie des jeux évolutionnaires

La théorie des jeux évolutionnaires, adaptée de la biologie mathématique, est em-
ployée pour décrire et prévoir les propriétés de populations denses dont I’évolution
dépend d’un grand nombre d’interactions locales, chacune impliquant un nombre
fini d’individus. La théorie des jeux évolutionnaires peut étre reliée & Darwin, qui a
introduit le concept de sélection naturelle et donc la compétition entre les génotypes
et les phénotypes des individus. C’est J. Maynard Smith qui a véritablement défini
les jeux évolutionnaires, et en particulier leur solution possible au travers du concept
fondamental de stratégie évolutionnairement stable (ESS) en 1972 dans [Smi72].

Dans le contexte biologique, 1'utilité gagnée par un individu est directement
reliée & sa capacité de reproduction. Une facon intuitive de décrire une ESS est la
suivante. C’est une stratégie qui est bien adaptée contre elle-méme. Ceci exprime
le fait que, si des animaux jouant I’ESS prédominent dans la population, ils vont
tendre a rencontrer surtout d’autres animaux jouant la méme stratégie. Donc, ’'ESS
doit étre une bonne stratégie contre elle-méme afin de rester populaire.

Bien que définie dans un contexte biologique, I'ESS est pertinente dans un
contexte d’ingénierie [VV00]). En particulier, en ce qui concerne l'accés & un
médium commun, nous pouvons nous attendre a ce qu’une technologie qui four-
nit une meilleure performance gagne plus de parts de marché par rapport a des
concurrentes moins performantes. La dynamique de réplication associée aux jeux
évolutionnaires est également a l'origine de nombreuses applications prometteuses.

Théorie des Jeux Corrélés

Les jeux corrélés étudient I'impact d’ajouter un mécanisme permettant la coordi-
nation entre les joueurs sur les équilibres possibles et les optimisations conjointes
que les joueurs peuvent atteindre. La notion d’équilibre corrélé a été introduite par
R. Aumann en 1974 dans [Aum74].

L’équilibre corrélé est une généralisation du concept d’équilibre de Nash ; la
notion d’équilibre corrélé intervient lorsque les joueurs sont en présence d’un arbitre
qui peut envoyer des signaux (publics ou privés) aux joueurs. Ces signaux permettent
aux joueurs de coordonner leurs actions, et, en particulier, d’accomplir des choix
aléatoires communs de stratégies. L’arbitre dont il est question n’est pas une entité
intelligente et n’a pas besoin d’avoir la moindre connaissance du systéeme. Tout ce
en quoi consiste le travail de I’arbitre est de générer des signaux aléatoires (selon un
mécanisme aléatoire connus des joueurs) dont la prise de connaissance peut aider
les joueurs a se coordonner entre eux. Une multi-stratégie obtenue en utilisant les
signaux est un ensemble de stratégies (une stratégie pour chaque joueur qui dépend
sur toute 'information disponible pour ce joueur, y compris le signal qu’il recoit).
C’est un équilibre corrélé si aucun joueur ne bénéficie en déviant de sa partie de la
multi-stratégie.

Dans un contexte d’accés de multiples utilisateurs (considérés comme joueurs)
& un médium commun, l'introduction d’un degré de liberté supplémentaire par la
présence de 'arbitre peut apporter une amélioration de performance avec un surcofit
minime, étant donné le peu de contraintes pour définir un arbitre.
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Théorie des Matrices Aléatoires
Bref Historique

La théorie des matrices aléatoires a été récemment introduite dans le cadre de
la théorie de l'information. Jusqu’a une date récente, des simulations intensives
paraissaient étre le seul moyen pour optimiser un réseau donné. Cependant, avec
I'augmentation de la taille des réseaux, les simulations impliquaient un nombre
énorme de paramétres (aléatoires), et les simulations étaient également compliquées
par le fait que, dans les systémes a accés multiples, les communications inter-
férent entre elles. En outre, les simulations ne permettaient pas de distinguer aisé-
ment les parameétres d’intérét, étant donné qu’elles dépendaient d’un tel nombre de
parameétres.

Finalement, en 1999, Tse [TH99| et Verda [VS99] ont simultanément introduit la
théorie des matrices aléatoires pour analyser des systémes multi-utilisateurs. Tous
deux ont traité le cas de la performance de récepteurs linéaires pour des systémes
CDMA, dans la limite ot le nombre d’utilisateurs ainsi que le facteur d’étalement
tendent vers l'infini avec un ratio fixé. Dans un tel scénario asymptotique, 'effet
de moyennage des grandes matrices aléatoires permet d’obtenir des expressions ex-
plicites pour diverses mesures de performance telles que le rapport signal a bruit
(SINR) ou la capacité. Ceci permet de distinguer d’une maniére élégante des
parameétres d’intérét pour les systémes dans le régime asymptotique. Méme si les
résultats sont obtenus dans le régime asymptotique, ils donnent des prévisions trés
précises du comportement du systéme dans le cas de taille finie, comme montré par
des simulations.

Généralités

Les propriétés des matrices aléatoires ont tout d’abord été étudiées en physique
statistique. La question typique est de caractériser la distribution des valeurs propres
de familles de matrices aléatoires. Pour une taille finie, la distribution elle-méme
est le plus souvent aléatoire. En revanche, le vrai intérét des matrices aléatoires
repose dans le fait que, pour de nombreux cas, lorsque les dimensions des matrices
tendent vers l'infini avec un ratio fixé, la distribution limite est non-aléatoire et
peut méme étre caractérisée analytiquement. Une autre propriété intéressante des
matrices aléatoires est qu’il est possible de dériver des résultats pour des sommes et
des produits de matrices aléatoires.

De nos jours, la théorie des matrices aléatoires est utilisée dans de nombreux do-
maines, incluant ’hypothése de Riemann, les équations différentielles stochastiques,
la physique des matériaux condensés, les systémes chaotiques, I’analyse des fluctua-
tions boursiéres, etc. Et bien stir, la théorie de I'information, en particulier en ce qui
concerne I'analyse de performances. La théorie de I'information a méme représenté
une influence pour la dérivation de certains résultats sur les matrices aléatoires,
comme par exemple la démonstration rigoureuse de certaines expressions de rapport
signal & bruit utilisées dans la littérature [CMO04].

Récemment, un livre recensant les principaux résultats de théorie des matrices
aléatoires utilisés dans le domaine des télécommunications a été publié [TV04].
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Approche Centrée sur le Réseau

L’approche centrée sur le réseau est exemplifiée par 'analyse de performance de
systémes cellulaires CDMA. Une cellule CDMA consiste en une station de base,
couvrant une certaine surface et communiquant avec de multiples utilisateurs, qui
sont en pratique des mobiles.

Liaisons descendante et montante

Deux modalités de communication sont possibles: la liaison descendante et la liaison
montante. Une liaison descendante a lieu lorsque la station de base envoie simul-
tanément des informations a tous les utilisateurs présents dans la cellule. Dans le
cas de la liaison montante, ce sont les utilisateurs qui transmettent simultanément
leur information a la station de base. Le cas d’une cellule CDMA unique, opérant
sans interférence venant d’en-dehors de la cellule, a été abondamment traité dans la
littérature, aussi bien dans le cas de la liaison descendante que de la liaison montante.

Systéme Cellulaire

Usuellement, les cellules CDMA n’opérent pas en isolation, mais font partie d’un
réseau. Dans ce cas, les communications a I'intérieur de la cellule considérée subiront
également de l'interférence en provenance des cellules avoisinantes, ¢’est 'interférence
inter-cellulaire.

Modéle de Communication
Transmission en MC-CDMA

Le modéle de communication que nous considérons est le MC-CDMA, qui est asymp-

totiquement équivalent au CDMA en séquence directe [Hac04|. Le signal est envoyé

au travers d’'un médium de communication sans fil, pour lequel nous considérons le

cas réaliste d’un canal a trajets multiples, qui est sélectif en fréquence.
Globalement, le signal y recu a la réception est donné par

y = (HVP ®W)s +n,

ol ® est le produit de Hadamard, élément par élément.
Dans cette équation,

e H est la matrice d’atténuation sélective en fréquence, de taille N x K.

VP est la racine carrée de la matrice diagonale de perte par rayonnement, de
taille K x K.

W est la matrice d’étalement, i.e., les codes utilisés, de taille N x K.

s est le vecteur de signal transmis, de taille K x 1.

n est le vecteur de bruit additif Gaussian blanc, de moyenne nulle et de variance
o?, de taille N x 1.
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Mesures de Performance

La mesure de performance que nous prenons en compte pour l’analyse de perfor-
mance de ce systéme est le rapport signal & interférence plus bruit (SINR). Le SINR
pour l'utilisateur k est défini comme suit:

Puissance du signal utile pour I'utilisateur &

SINRy = — - - — ; —.
"~ Puissance du signal utile pour les autres utilisateurs + Puissance du bruit

Obtenir le SINR permet d’obtenir I'efficacité spectrale, qui mesure le nombre de
bits par unité de temps, de fréquence et de distance que le systéme est capable de
transmettre. L’efficacité spectrale du systéme est proportionnelle & la somme sur les
utilisateurs du logarithme de 1 + SINR.

K
C x Z log(1 + SINRy,).
k=1

Canal a Trajets Multiples

En ce qui concerne le médium de communication sans fil, pour chaque utilisateur k,
nous considérons un canal a trajets multiples. La réponse impulsionnelle du canal
est

~
—_

Ck(T) = cpk’gb(T - Tpk)

i
o

ot ¢(-) est le filtre impulsionnel de transmission.
La transformée de Fourier de ¢, aprés filtrage impulsionnel adapté au récepteur

est
L—1 )
, 1 si —¥<fr<lt
hi(f) =D core > [T(f)? ot U(f) = R
o0 0 sinon.

Pour z € [0, al, nous définissons le profil de variance de la matrice H par

h(f.z) = ha(f) si % << %

Répartition en Codes

En ce qui concerne I'étalement du signal, nous considérons deux types de codes:
codes orthogonaux et codes aléatoires. Usuellement, les codes orthogonaux util-
isés en pratique sont des colonnes extraites de matrices de Walsh-Hadamard, Pour
pouvoir utiliser des résultats de théorie des matrices aléatoires unitaires, les codes
considérés par la suite sont des colonnes extraites de matrices unitaires suivant la
distribution de Haar. Une matrice unitaire suit la distribution de Haar si elle est
tirée uniformément dans le groupe U(N) des matrices unitaires. Pour générer une
matrice unitaire suivant la distribution de Haar, il suffit d’opérer I'orthogonalisation
de Gram-Schmidt d’une matrice aléatoire Gaussienne. Il peut étre démontré que
les résultats ainsi obtenus sont identiques a ceux obtenus en considérant des codes
extraits de matrices de Walsh-Hadamard.
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En ce qui concerne les codes aléatoires, ce sont simplement des colonnes extraites
d’une matrice aléatoire dont les éléments sont indépendants et identiquement dis-
tribués, avec moyenne nulle et variance % La distribution particuliére des éléments
n’a pas d’importance, néanmoins considérer une distribution Gaussienne peut sim-
plifier certains calculs.

Déploiement cellulaire infini, codes orthogonaux, en liaison de-
scendante

Cas unicellulaire

Précédemment, seuls une cellule isolée, ou un réseau avec peu de cellules interférentes
ont été considérés. La nouvelle contribution de cette thése se situe dans I'analyse
de réseaux infinis, ou la contribution de toutes les cellules interférentes est prise
en considération. De tels réseaux sont étudiés dans la liaison descendante aussi
bien que dans la liaison montante. [’analyse est basée sur des résultats de théorie
des matrices aléatoires et de théorie des matrices unitaires aléatoires, dans le but
d’obtenir des expressions analytiques dépendant seulement d’un petit nombre de
paramétres signicatifs. Pour ces deux cas (liaison montante et liaison descendante),
la nouveauté consiste en I'analyse d’un systéme multi-cellulaire prenant en compte
Iinterférence en provenance de toutes les cellules environnantes.

Cas multi-cellulaire

Dans le cas de la liaison descendante, le cas multi-cellulaire avec codes orthogonaux
est considéré. FEn effet, en liaison descendante, la synchronisation est particuliére-
ment simple & effectuer, et il a été démontré que les codes orthogonaux permettent
un gain important par rapport aux codes aléatoire, méme en présence d’un canal
sélectif en fréquence, qui détruit I'orthogonalité. Ainsi, il est usuel de considérer le
cas de codes orthogonaux en liaison descendante.

En particulier, le cas d’un déploiement unidimensionnel infini de stations de
base est envisagé. Nous traitons ce cas, afin de déterminer le placement optimal des
stations de base dans ce cadre. Dans le cas de la liaison descendante CDMA, c’est
une premiére étape dans 'analyse du probléme complexe d’optimiser des réseaux
multi-cellulaires, en utilisant une nouvelle approche basée sur la théorie des matrices
unitaires aléatoires. Le but est de déterminer, pour un réseau multi-cellulaire dense
et infini, la distance optimale entre les stations de base. Nous voulons ne disposer ni
trop (pour diminuer les cotits de déploiement) ni pas assez (pour assurer la qualité de
service aux utilisateurs) de stations de base sur la ligne. En pratique, ce déploiement
peut étre considéré comme le modéle d’un déploiement de stations de base le long
d’une autoroute, avec les voitures comme utilisateurs qui communiquent avec les
stations de base.

Un réseau CDMA émettant en liaison descendante & travers un canal sélectif
en fréquence avec des codes orthogonaux ou chaque utilisateur est équipé du filtre
adapté linéaire est considéré. Nous supposons que les utilisateurs sont uniformément
distribués le long du secteur. Seul le cas de codes orthogonaux est considéré, sous
I’hypothése que les utilisateurs sont synchronisés dans chaque cellule. Le probléme
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est analysé dans le régime asymptotique : un réseau trés dense est considéré, ou le

facteur d’étalement N tend vers I'infini, le nombre d’utilisateurs par métre d tend
d

vers 'infini mais la charge par métre § = a reste constante.

Résultat Général

Dans ces conditions, le résultat général que nous obtenons est résumé dans la propo-
sition suivante. Lorsque N — oo avec % = q, lefficacité spectrale du CDMA en

liaison descendante avec codes orthogonaux aléatoires et filtre adapté est donnée par

o | P (& 5 )
C(a) = —Ey / log, | 1+ @ <W2f 2W’ U > dx
“o I(2) + 5§ [ h(F)Idf

avec

1) = 52 P() /Qmm%—%«/;wmw)

LSS R [ PR

q#0 2

L’important & retenir dans cette proposition est 'effet de moyennage opéré par
la théorie des matrices unitaires alétoires. Le résultat ne dépend pas des codes
employés mais seulement de quelques paramétres significatifs, tels que la distribution
de l'atténuation, la variance du bruit et la charge du systéme.

Le signal transmis subit principalement deux formes d’atténuation: la perte due
au rayonnement et I’atténuation due aux trajets multiples. Dans le but de découpler
les effets de ces deux formes d’atténuation, nous 6tons successivement les effets de
I'une, puis de l'autre.

Influence de la Perte par Rayonnement

Dans le cas ot il n’y a pas de trajets multiples, le canal n’est pas sélectif en fréquence.
L’expression de 'efficacité spectrale devient:

a/2
a P(z)
Cla) = —/ lo 1+ dx.
@) aw2g2< gﬂ+uﬂ2#uum>

Dans ce cas, I'orthogonalité est préservée. Il n’y a pas de terme d’interférence
intra-cellulaire, seul le terme d’interférence extra-cellulaire intervient. Des simula-
tions montrent qu’il existe une distance inter-cellulaire a optimale, qui maximise
lefficacité spectrale. Plus la perte par rayonnement est sévére, plus cette distance
inter-cellulaire optimale est réduite.
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Influence de I’Atténuation du Canal

Dans le cas on la perte due au rayonnement est absente et tend vers 1 (pas de
perte par rayonnement), 'efficacité spectrale tend vers 0. Cependant, il est possible
d’inférer sur le comportement de D'efficacité spectrale dans ce cas limite, en prenant
la dérivée de Defficacité spectrale par rapport a la distance inter-cellulaire. Aprés

calculs, nous obtenons
oC 3 E [|h|4}
90 S\ T o e )
o \2 (E[Ih]))

Le comportement de efficacité spectrale dépend donc du kurtosis de I'atténation

E[|n)* . . . PN P
ﬁ. Si le kurtosis est trop grand, 'orthogonalité est sévérement détruite, alors
la seule solution est de serrer autant que possible les stations de base les unes a coté
des autres. Si le kurtosis est suffisamment petit, alors il est possible pour chaque
station de base de couvrir autant d’utilisateurs que les codes orthogonaux peuvent

en accomoder.

Conclusions

Cette analyse fournit des indications sur les futures directions de recherche. Dans le
point de vue traditionnel des systémes cellulaires, ’avis généralement retenu est
d’accroitre la puissance de transmission avec la taille des cellules, pour réduire
Iatténuation due au trajet. Mais les résultats obtenus dans notre analyse mon-
tre que le trajet ne représente qu’une faible partie de la perte, étant donné qu’il
ne détruit pas l'orthogonalité des codes. Le premier obstacle est la selectivité en
fréquence du canal, qui exerce un effet destructeur sur 'orthogonalité. Ainsi, ces
considérations démontrent que I'effort doit étre concentré sur la réduction des effets
de la selectivité en fréquence du canal, en utilisant des techniques de diversité et
d’égalisation pour restaurer ’orthogonalité.

Notons que ces résultats ne concernent que la liaison descendante, et une étude
compléte doit prendre en compte également la liaison montante.

Déploiement cellulaire infini, codes aléatoires, en liaison mon-
tante

Dans le cas de la liaison montante, un systéme semblable est étudié. Un déploiement
infini de stations de base est considéré. Des mobiles sont répartis uniformément dans
les cellules et utilisent une transmission CDMA pour communiquer simultanément
avec la station de base qui leur est associée. Les codes considérés sont cette fois
aléatoires, étant donné que les utilisateurs ne sont pas supposés étre synchronisés.
La transmission a lieu & travers un canal sélectif en fréquence.

En utilisant des arguments asymptotiques, des expressions explicites de mesures
de performance, en termes d’efficacité spectrale, sont dérivées pour deux types de
structures de récepteur a la station de base : filtre adapté et filtre optimal. En
particulier, le gain potentiel obtenu avec un filtre optimum intra-cellulaire par rap-
port & un filtre linéaire est quantifié. L’impact de l'interférence inter-cellulaire est
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également quantifié pour divers types de récepteurs, pouvant éventuellement com-
biner les données de plusieurs cellules, et différentes distances inter-cellulaires. Ces
résultats donnent une vue d’ensemble du déploiement d’un réseau cellulaire en vue
d’atteindre un taux de transmission donné pour les utilisateurs.

[’analyse précédente ne prend en compte que le cas de codes aléatoires. Une
fagon d’obtenir un taux de transmission plus élevé peut étre d’utiliser des codes
orthogonaux. Dans un premier temps, la dérivation de résultats est effectuée dans
un contexte unicellulaire.

Déploiement unicellulaire, codes orthogonaux, en liaison mon-
tante

Motivation

La nouveauté est I’analyse d’un systéme en liaison montante utilisant des codes or-
thogonaux. Habituellement, uniquement des codes aléatoires sont employés dans la
liaison montante. Une des raisons repose sur le fait que, a cause de la sélectivité en
fréquence du canal, la convolution des codes avec les différents canaux des utilisa-
teurs peut étre représentée comme un nouvel ensemble de codes avec des propriétés
similaires a une séquence aléatoire.

En conséquence, méme si les codes sont explicitement concus pour assurer un
accés multiple orthogonal, le canal sélectif en fréquence détruit malheureusement
I'orthogonalité. Le volume de transmissions non-informatives pour synchroniser les
utilisateurs dans le réseau peut alors complétement réduire & néant le gain en signal
rapport a bruit da a la réduction de l'interférence multi-utilisateurs.

Cependant, comme des études précédentes en liaison descendante [DHLACO03a]
l'ont démontré, ce gain est loin d’étre négligeable, surtout dans des systémes avec
beaucoup d’utilisateurs. L’idée intuitive est que, avec une bonne égalisation, un
utilisateur peut restaurer ’orthogonalité en compensant I'effet de son propre canal
(qui est commun & tous les utilisateurs dans la liaison descendante). Mais dans la
liaison montante, un tel résultat n’est pas applicable étant donné que chaque code
est affecté de maniére indépendante par le canal de 'utilisateur correspondant.

En conséquence, n'importe quel mécanisme d’égalisation ne dispose que d’une
efficacité limitée, dépendant principalement des caractéristiques des canaux mis en
jeu.

Analyse

L’analyse est basée sur des résultats de théorie des matrices aléatoires unitaires
[HP0O, PR04|. En utilisant des arguments asymptotiques, ces outils permettent de
dériver des expressions analytiques de Defficacité spectrale pour le filtre adapté et le
filtre adapté avec annulation successive d’interférence dans le cas général d’un canal
a trajets multiples. Un cadre utile est fourni afin de déterminer si la synchronisation
des utilisateurs donne une amélioration significative de performance.
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Résultats

Dans le cas du filtre adapté, la proposition suivante est obtenue. Lorsque N — oo
et =~ — «, le SINR avec filtre adapté est donné par

o (i s ar)
o Jy In(f. @) df + (Ji o P@) IR ) [h(f9)) dfdy = (o))

SINRR™" =

2
avec p(z) = foa P(y)’fo1 h(f,x)h*(f, y)df‘ dy dans le cas de codes orthogonaux, et
par

ve) (Ji 1nCr ) df )
o [y I(E D df + (J57 Jy PR [1(F.) dfdy)

dans le cas de codes aléatoires.

L’effet de moyennage de la théorie des matrices aléatoires permet de se dispenser
des codes, et de mettre en valeur les paramétres significatifs du systéme, tels que
la charge du systéme, la variance du bruit et le profil de variance de la matrice des
atténuations.

Seul un terme additional p(z) distingue le SINR avec codes orthogonaux du
SINR avec codes aléatoires. Comme ce terme est toujours positif, nous en déduisons
immédiatement que le SINR avec codes aléatoires est toujours inférieur au SINR
avec codes orthogonaux.

SINRj" =

Cas de Délais Uniformément Répartis

Lorsque nous faisons I’hypothése que les délais sont uniformément répartis par rap-
port & la bande, le rapport entre le SINR avec codes orthogonaux et le SINR avec
codes aléatoires, i.e., le gain d’orthogonalité, devient

SINRY'™ o2+ a

SINRE™ 52 4 o (1— 1)

Remarquablement, pour un SNR élevé (0?2 — 0), le gain d’orthogonalité est

donné par
SINRgr" L

SINRP™ — L —1°
Ainsi, le paramétre majeur qui détermine le gain d’orthogonalité est le nombre
de trajets L. Le gain est le plus important lorsque le signal parvient a la station de
base en suivant un nombre de trajets le plus réduit possible.

Autres Filtres

Les cas d’autres filtres que le filtre adapté sont encore a I’étude. Néanmoins, des
simulations montrent que les conclusions restent qualitativement identiques pour
d’autres filtres. Le paramétre majeur est le nombre de trajets que subit le signal
transmis lors de sa propagation.
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Déploiement cellulaire infini, codes orthogonaux, en liaison
montante

Encore une fois, une cellule CDMA n’opére généralement pas en isolation. Afin
d’achever I'étude, le cas d’'un déploiement infini de cellules employant des codes
orthogonaux dans la liaison montante est étudié.

Dans ce cas, nous montrons que l'interférence inter-cellule se comporte de la
méme maniére qu’en présence de codes aléatoires. C’est uniquement l'interférence
intra-cellulaire qui est affectée par I'utilisation des codes orthogonaux.
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Approche Centrée sur 1I’Utilisateur

Dans le cas de 'approche centrée sur 1’'utilisateur, nous nous concentrons sur trois
protocoles : ALOHA, CDMA et OFDMA.

ALOHA

Dans le cas des réseaux décentralisés, une premiére contribution de cette thése est de
présenter deux types de jeux dans un contexte de gestion de réseau : jeux corrélés et
jeux évolutionnaires. Afin de maintenir cette introduction aussi simple que possible,
le protocole d’accés multiple considéré est ALOHA. A notre connaissance, nous avons
été les premiers & présenter les jeux corrélés et les jeux évolutionnaires pour étudier
le comportement non-coopératif dans les réseaux sans fil.

Théorie des Jeux Evolutionnaires et ALOHA

Etant donné que les interactions entre les utilisateurs sont répétées, il était logique de
présenter la notion biologique des jeux évolutionnaires dans un contexte de réseau.

Alinsi, nous considérons une grande population de terminaux communiquant en
utilisant un protocole ALOHA [Abr70| avec deux niveaux possibles de puissance de
transmission. Une modélisation simple est étudiée: si un unique mobile émet, sans
transmissions concurrentes pendant sa période de vulnérabilité, sa transmission est
correctement recue. Si plusieurs mobiles émettent en méme temps a la méme puis-
sance, toutes les transmissions sont perdues. Si un unique mobile émet a la puissance
la plus haute, tandis que toutes les autres transmissions interférentes ont lieu a la
puissance moins élevée, alors la transmission a puissance élevée est correctement
reque, tandis que tous les autres messages sont perdus et doivent étre retransmis
plus tard. Ce cadre permet d’obtenir des solutions analytiques explicites pour les
mesures de performance. Nous calculons ainsi analytiquement les solutions pour
plusieurs critéres d’optimisation non-coopérative.

Le probléme de choisir entre les deux niveaux de puissance de maniére non-
coopérative est posé en supposant que les mobiles sont des entités égoistes et ra-
tionnelles. Leur stratégie consiste en choisir la probabilité de transmettre avec
chaque niveau de puissance. Les gains sont fonctions des taux de transmission
obtenus ainsi que du cott des niveaux de puissance. En particulier, 'impact sur le
niveau de performance du systéme d’une stratégie de paiement est étudié.

Deux concepts d’équilibre non-coopératif sont étudiés : 1’équilibre de Nash et la
stratégie évolutionnairement stable (ESS). Cette derniére est dérivée de la biologie
mathématique dans le contexte des jeux évolutionnaires, qui permettent de décrire et
de prédire les propriétés de grandes populations dont 1’évolution dépend de beaucoup
d’interactions locales, chacune impliquant un nombre fini d’individus.

Théorie des Jeux Corrélés et ALOHA

Le second contexte étudié est celui des jeux corrélés.
Ajouter des mécanismes de coordination peut permettre aux mobiles d’augmenter
leur taux de transmission. Cet amélioration est étudiée dans le cadre non-coopératif
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aussi bien que dans le cadre coopératif, dans lequel les mobiles collaborent pour la
réalisation d’un but commun. Cette contribution étudie également 1’optimisation
multicritére, dans notre cas maximisant la sortie moyenne avec une contrainte sur
la puissance d’énergie moyenne.

L’application est faite dans le contexte d’ALOHA avec fenétres d’émission dis-
crétes |[Rob72|. Tous les mobiles sont supposés étre synchronisés. Une hypothése
fréquente lors de I'étude d’ALOHA, que nous reprenons, est que si plus d’un mobile
tente d’émettre un paquet pendant une fenétre d’émission, alors tous les paquets
sont perdus, et les mobiles attendent un nombre aléatoire de fenétres d’émission
avant de retenter une transmission, dans le but d’éviter des collisions répétées.

La contribution n’est pas seulement d’appliquer la notion d’équilibre corrélé dans
un contexte de réseau, mais également de considérer une optimisation multicritére.
Dans notre cas, chaque mobile a deux objectifs : taux de transmission moyen et
consommation de puissance moyenne. Nous utilisons 1’équilibre corrélé adapté au
contexte d’optimisation sous contraintes de chaque joueur, maximisant son taux de
transmission avec une contrainte sur sa puissance moyenne d’émission.

La coordination entre les joueurs est également utile dans le cas d’optimisation
coopérative. Lorsque les joueurs ont le méme objectif & maximiser, il est utile
pour eux de pouvoir se coordonner. Ils peuvent bénéficier de choisir conjointement
des stratégies aléatoires, ce qui peut ne pas étre possible étant donné la nature
distribuée du probléme. Le besoin de choix conjoint des stratégies aléatoires est
plus précisément dii au caractére multicritére du probléme étudié.

Conclusion

Ces exemples montrent que la théorie des jeux trouve facilement des applications
dans le domaine des réseaux, et donnent quelques indications sur la maniére de
laquelle la théorie des jeux peut étre introduite dans un contexte de réseau. Une
application plus substantielle en est faite dans un contexte d’allocation de ressources
pour le CDMA.

CDMA

Allocation de Ressources

L’allocation de ressources est un sujet de recherche de toute premiére importance
dans le le contexte des systémes a utilisateurs multiples, particuliérement dans la
liaison montante. Un mécanisme efficace d’allocation de puissance empéche une con-
sommation excessive des ressources limitées des utilisateurs, tout en leur permettant
d’atteindre la qualité de service qu’ils désirent.

Une allocation de puissance distribuée efficace peut étre réalisée en adoptant une
modélisation issue de la théorie des jeux. Cette approche a été introduite dans [Ji97|
et popularisée par [GM00, MWO01la]. De nombreux articles sur ce théme ont parus
depuis lors.
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Modéle

La nouveauté est ici de considérer le cas réaliste de transmission a travers un canal
sélectif en fréquence. Le modéle est étudié dans le cadre des jeux non-atomiques.
Ceci nous permet d’obtenir 'allocation de puissance comme fonction de 1’énergie
total du canal pour chaque utilisateur. Une autre nouvelle contribution est que, en
plus des filtres linéaires, les filtres optimaux et a annulation successive d’interférence
(SIC) (avec 'introduction d’un ordre des utilisateurs) sont étudiés.

La performance d'un systéme CDMA est analysée dans le contexte de canal
sélectif en fréquence. Les utilisateurs sont supposés disposer d’information unique-
ment sur leur propre canal de transmission, alors que la station de base connait
parfaitement tous les canaux des utilisateurs. Ce scénario illustre le cas de mécan-
ismes décentralisés, quand une information limitée sur le réseau est disponible au
terminal.

Cette contribution représente une extension de [MPSMO05| dans le cas de canaux
sélectifs en fréquence. Nous ne considérons pas le cas de porteuses multiples, comme
dans [MCPS06], et les résultats obtenus en différent de facon importante. L’extension
n’est pas triviale et requiert des résultats pointus sur les matrices aléatoires avec pro-
fil de variance dus & Girko |Gir90]. De plus, en sus des filtres linéaires étudiés dans
[MPSMO05], nous étudions I'amélioration fournie par les filtres optimum et SIC.

Nous dérivons des expressions simples pour 'allocation de puissance & ’équilibre
de Nash lorsque le nombre de mobiles devient grand et le facteur d’étalement aug-
mente, avec un ratio fixé. La théorie des jeux peut étre utilisée pour traiter le
cas d’'un nombre quelconque de joueurs. Cependant, lorsque la taille du systéme
augmente, le nombre de paramétres augmente drastiquement, et il est difficile de
visualiser les expressions obtenues. Pour obtenir des expressions dépendant seule-
ment d’un petit nombre de paramétres dans la limite d’un grand systéme, deux
méthodologies asymptotiques sont utilisées. La premiére est la théorie des matrices
aléatoires qui permet d’obtenir des expressions explicites de I'impact sur un mo-
bile donné de linterférence causée par tous les autres mobiles. La seconde est la
théorie des jeux non-atomiques qui permet de calculer de bonnes approximations de
I’équilibre de Nash lorsque le nombre de joueurs devient grand.

Jeu d’Allocation de Ressources

Le jeu considéré est le suivant. Les joueurs sont les mobiles présents dans la cellule.
Pour chaque joueur k, sa stratégie est son choix d’allocation de puissance P;. Son
utilité est donnée par

7 (Br)

=p
oll v est une mesure de performance et 3y est le SINR de 'utilisateur k.

Usuellement, la mesure de performance v utilisée pour définir 'utilité est une

version adaptée du goodput (1 — e #)M, ot M est le nombre de bits par paquet.
Malheureusement, la capacité ne peut étre utilisée, sous peine d’obtenir le résul-
tat trivial qu’aucun joueur ne transmet avec une puissance strictement positive a
I’équilibre.




Contents 27

Cette utilité est exprimée en bits/Joule. Elle prend en compte le fait que chaque
utilisateur veut maximiser la quantité d’information recue avec succés a la station
de base, tout en ne consommant pas trop de puissance.

Expression du SINR

L’expression du SINR est fournie par un théoréme da & Girko [Gir90] et exploité
dans [TLVO05|. Par exemple, pour le filtre minimisant erreur quadratique moyenne
(MMSE), la proposition suivante est obtenue.

Lorsque N, K — oo avec K/N — a, le SINR de l'utilisateur k en sortie du filtre

MMSE est donné par
k

¥
ot (§:[0,a] — R est une fonction définie par I’équation implicite

- L )P df
5(95)—})(*””)/0 o [ PR

1+08(y)

SINRy, = /(

Ce qu’il est important de constater dans cette expression, c¢’est d’une part 'effet
de moyennage des matrices aléatoires: les codes utilisés n’ont pas d’importance;
et d’autre part, le SINR de l'utilisateur £ est une fonction linéaire de son choix
d’allocation de puissance P,. Le résultat est similaire pour d’autres filtres tels que
le filtre adapté ou le filtre optimum.

Analyse

A partir de 'observation de la linéarité de SINR, en Py, une simple différentiation
nous fournit 1’équilibre de Nash comme intervenant pour un SINR (* solution de
I’équation scalaire

By (Br) —v(Bk) = 0.

Ce SINR cible g* détermine une allocation de puissance a I’équilibre. Pour le
filtre MMSE, I'allocation de puissance a ’équilibre est donnée par

/6*

LZN ||
— 1 1 K 2
N £n=1 175w ¥ 21,2k Pillngl

Py

Cette expression semble dépendre des réalisations de 'atténuation et des allo-
cations de puissance de tous les autres joueurs! La solution pour supprimer cette
dépendance est de considérer le systéme dans le régime asymptotique, ce qui est déja
le cas pour utiliser les résultats de théorie des matrices aléatoires.

Jeux Non-Atomiques

En effet, dans le régime asymptotique, le jeu non-coopératif devient un jeu non-
atomique, dans lequel 'impact (a travers I'interférence) de n’importe quel mobile
unique sur la performance des autres mobiles est négligeable. Dans le contexte du
jeu dans un réseau, le concept de solution associé est appelé équilibre de Wardrop
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[Warb2]. 11 est souvent plus facile a calculer que ’équilibre de Nash, et fournit une
bonne approximation de 1’équilibre de Nash [HMS85]. Nous dérivons des expres-
sions pour ’équilibre non-atomique, qui correspond généralement a une allocation
de puissance non uniforme entre les utilisateurs.

Nous faisons ’hypothése que le canal de chaque utilisateur a L trajets et que
I'atténuation sur le f-éme trajet de l'utilisateur k est hg(%). Nous définissons

I'énergie totale du canal de 'utilisateur k comme Ej, = Y1, ‘hg(%)f

Résultats

Avec cette notation, nous obtenons les allocations de puissance a I’équilibre suivantes.
Respectivement, pour le filtre adapté

1 0.25*
P=——"f < —
T Ed—ap T B
et pour le filtre MMSE
1 2p* 1
Pk—Eiﬂ*fOI'Oé<1+—*
kl—aw 5

Dans le cas d’un trajet unique, ces formules donnent les mémes résultats que
dans [MPSMO5|.
Pour le filtre optimum

1 23+ 1
PkZE—L/ﬁfora<1+—+
kl—a1+ﬁ+ B

ou A7 est solution de ’équation (qui a toujours une solution unique)

+
a10g2 (1 —+ ﬁ‘f') — alogQ(G)m
aft
+lo 1+ = alog, (1+ 5%).
g2< 1+ﬂ+1—alf;+> gQ( ﬁ)

Nous observons que I’allocation de puissance est une fonction linéaire de I'inverse
de ’énergie totale du canal Eik Etant donné que I'énergie totale du canal est une
somme de variables aléatoires indépendantes et identiquement distribuées, suivant
la loi des grands nombres, nous observons un effet similaire au “durcissement du
canal” déja constaté en MIMO [HMTO04]. Lorsque le nombre de trajets augmente,
I’allocation de puissance & ’équilibre tend a devenir uniforme parmi les utilisateurs.

Annulation Successive d’Interférence

I’équilibre non-atomique est étudié pour plusieurs récepteurs linéaires, parmi lesquels
le filtre adapté et le filtre minimisant 'erreur quadratique moyenne (MMSE), ainsi
que pour le filtre optimal. Néanmoins, il est possible d’améliorer encore les perfor-
mances en utilisant des filtres & annulation successive d’interférences [MVO1].
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Cependant, pour pouvoir accomplir 'annulation successive d’interférence, les
utilisateurs doivent connaitre leur ordre de décodage, pour pouvoir ajuster leur taux
de transmission. Deux fagons d’obtenir un ordre des utilisateurs de maniére dis-
tribuée sont introduites. Il est possible de donner un ordre aux utilisateurs sous des
hypothéses peu exigeantes.

Dans le cas ou les utilisateurs sont trés nombreux, 'ordre est automatique selon
la loi inverse de distribution de 1’énergie totale du canal ; nous démontrons que ceci
permet également un décodage des utilisateurs dans l'ordre optimal. Cet ordre est
basé sur un lemme de Shamai et Verdu [SV02].

Un autre moyen est d’utiliser un arbitre, dans un cadre de jeux corrélés, qui per-
met d’ordonner les utilisateurs. Ceci donne lieu a une forme différente d’allocation de
puissance, par rapport aux simples filtres linéaires, qui fait intervenir explicitement
I'ordre de décodage des utilisateurs.

Les allocations de puissance a I’équilibre pour les filtres & annulation successive
d’interférence sont les suivantes.

2 2% 1 K-k
pur _ 7 p 14— g
k + Nﬁ )

Ej,
* * K—k
PyMSE:O% (1+l s )
E, N1+ p3* '

De plus, le gain obtenu a I’équilibre de Nash par rapport a I'allocation uniforme
de puissance est quantifié, selon le nombre de chemins. L’originalité du travail
repose sur le fait que nous montrons que, lorsque le nombre de chemins augmente,
I’allocation de puissance devient de plus en plus uniforme, & cause du comportement
ergodique du canal sélectif en fréquence. Ceci n’est pas sans rappeler un effet déja
observé en MIMO [HMTO04/[, le “durcissement de canal”. Le gain le plus grand, en
termes d’utilité, est obtenu pour un canal non sélectif en fréquence, pour lequel les
disparités d’atténuation entre utilisateurs sont les plus fortes.

OFDMA

Nous introduisons un mécanisme distribué d’allocation de porteuses pour l'accés
multiple par répartition en fréquence orthogonale (OFDMA). Le choix des porteuses
est fait au niveau des mobiles plutét qu’au niveau de la station de base. Ce mécan-
isme de diversité multi-utilisateur fait usage de la réciprocité du canal sur chaque
porteuse, pour supprimer le besoin de feedback. La nouveauté est que chaque util-
isateur ne connait que les coefficients du canal de ses porteuses, tandis que la station
de base n’a aucune connaissance du canal, et la communication a lieu dans un cadre
non-coopératif a un taux de transmission fixé.

L’algorithme exploite la réciprocité du canal, en supposant qu’une séquence
d’entrainement est recue par les utilisateurs avant la communication. Chaque util-
isateur estime ainsi les atténuations sur ses différentes porteuses et sélectionne les
porteuses garantissant le taux de transmission voulu. L’algorithme permet a chaque
utilisateur d’envoyer stirement des données a un taux prescrit, en connaissant seule-
ment son canal, sous des hypothéses asymptotiques faibles.
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Pour plusieurs modéles de canal, nous dérivons des expressions analytiques de
Iefficacité spectrale des utilisateurs dans le régime asymptotique (nombre élevé de
porteuses) pour deux types de filtres a la station de base : filtre adapté et filtre
optimum. Le résultat est basé sur la prévisibilité de I'interférence a mesure que le
nombre de porteuses augmente.

Nous montrons que dans un tel environnement non-coopératif, les utilisateurs
peuvent émettre & un certain taux de transmission. De plus, dans le cas du fil-
tre adapté, un choix judicieux du nombre de porteuses peut accroitre le taux de
transmission, en comparaison a I’émission sur toutes les porteuses disponibles.
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Conclusion

En conclusion, nous avons fourni des éléments d’analyse aussi bien en considérant
une approche centrée sur le réseau qu'une approche centrée sur 'utilisateur. Nous
avons abordé le probléme de I'endroit ou mettre l'intelligence dans le réseau. Quand
il y a beaucoup d’utilisateurs, il est légitime de mettre 'intelligence entre les mains
de ceux-ci. Ainsi, différents scénarios dans lesquels U'intelligence se trouve au niveau
des utilisateurs ont été étudiés. Comme le titre de cette thése I'affirme, les deux
conceptions ne sont cependant pas opposées, mais compléntaires. Il est possible de
réaliser des protocoles qui, dépendant de I’état du systéme, pourraient jongler entre
les deux paradigmes. Lorsque les conditions permettent une optimisation a faible
cotit, ils permettraient d’imposer le choix de 1’allocation de ressources aux mobiles;
tandis que, au contraire, ils laisseraient la bride sur le cou des utilisateurs pour
qu’ils déterminent eux-mémes leur meilleure option en accord avec leur connaissance
limitée de I'environnement qui les entourent, lorsque la perte liée a 'opération au
sein d’un milieu non-coopératif reste faible.
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Chapter 1

Introduction

1.1 Multiuser Communications

Shannon’s landmark 1948 publication [Sha48| singlehandedly launched the discipline
of information theory. In this paper, among many other important definitions and
theorems, Shannon introduces the notion of capacity of a channel as a relevant mea-
sure of performance. The capacity determines the achievable rate of communication
between two terminals that send signals over a (noisy) channel. This foundational
contribution has been the spark that ignited the publication of a multitude of works,
as surveyed in [Ver98]. Nearly sixty years after its inception, the “simple” case of
a single user considered in [Sha48| can be considered to have been treated in a full
extent.

The more involved case of several users sharing the same communication medium
was first tackled by Shannon in his 1961 single-authored publication [Sha61]. It
marks the foundation of multiuser information theory. The work [Sha61] is devoted
to the study of a two-way channel, similar to telephony, where interference occurs
between signals transmitted in concurrent directions. The conventional notion of
capacity is no longer relevant; nevertheless, a two-dimensional capacity region can
be defined, which specifies the set of achievable rate pairs. Unfortunately, no explicit
expression for this capacity region exists, even in simple particular cases. Only
bounds are derived.

Shannon concludes his paper with the sentence: “In another paper we will discuss
the case of a channel with two or more terminals having inputs only and one terminal
with an output only, a case for which a complete and simple solution of the capacity
region has been found.”

This defines what is now referred to as the multiple-access channel. Several trans-
mitters communicate with a single receiver over a common channel. This spawned
an abundance of contributions, a selection of which can be found in the survey
[Ver98|, pp. 11-12. Note that, contrary to his announcement, Shannon did not
publish further on the subject, therefore the actual scope of his solution remains
undetermined.

Several practical protocols were proposed to implement efficient communication
when several users are involved. Orthogonal protocols, like Time Division Multiple
Access (TDMA) and Frequency Division Multiple Access (FDMA), already existed



34 Introduction

before the advent of Shannon’s paper and were used in telegraphy. Others, like
Code Division Multiple Access (CDMA), were just nascent. It was rapidly shown
that orthogonal protocols, such as TDMA and FDMA, generally did not achieve
the full capacity region of the multiuser channel. On the other hand, protocols
with a controlled level of interference between users, such as CDMA, enable this
optimization. In order to achieve the capacity region in the case of several terminals
communicating simultaneously with a single base station, an equivalent of the single-
user water-filling algorithm was proposed in [TH98].

The capacity region is a polygon in the plane (or a polytope in higher dimensions,
when more than two users are considered). In the two-user case, the points on the
border of this polygon determine pairs of rates that can be achieved simultaneously
by both players, such that none of the rates can be increased without decreasing
the rate of the other user (and similarly in the case of more than two users). The
border of the capacity region determines the global throughput of the system. It is
but one among several performance measures that can be optimized. For example,
delay can be taken into account as well, as pointed in [HT98|. Complezxity is also
frequently an issue, in particular at the mobile nodes, which may dispose of only
local knowledge of the system, as well as limited battery and computational power.

In addition, a multiuser system seldomly operates in isolation. On the contrary,
it is usually part of a larger network. Increasingly, the interactions between sev-
eral separate multiuser systems are taken into account, as the short survey [SSZ04|
demonstrates.

In order to design an efficient network architecture, a lot of possibilities have
been considered throughout the literature. In particular, protocol design is a vast
topic. Here is a question for the reader. Think about it a few seconds. Is the
best solution cellular, ad-hoc, centralized, distributed, cooperative, non cooperative,
coordinated?

When asked to determine the best solution, the answer is generally “It depends”.
As pointed in this summary of economy [Wil05], there is rarely a single answer that
is always valid to such a broad, and, more embarrassingly, seemingly subjective,
question. It lacks focus, information. When presented with a choice between two (or
more) alternatives, it is necessary to define objective criteria in order to circumscribe
the problem; those criteria will necessarily reduce the scope of the original problem.
The problem of optimizing multiuser systems can be considered from an abundance
of points of view, even when only the physical layer is taken into account. To each
of them can be associated a relevant performance measure that is to be optimized.
However, there is necessarily a tradeoff between different performance measures such
as throughput, delay, complexity.

In this thesis, we restrict ourselves to physical layer protocols such as code divi-
sion multiple access and review their performances in several frameworks.

1.1.1 Definition of Terms

Cellular means that the surface considered is divided into cells. Users in each cell
communicate with a base station, that is a super-node which is usually assumed to
be connected (via a wired link) to other base stations, the Internet, etc. The shapes
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of cells are determined by different rules, either fixed surface or depending on the
zones that have the maximal Signal to Noise Ratio (SNR). In 2-D, one of the models
most often considered is regular hexagonal cells, in order to fill the plane. Note this
is a particular case of Voronoi diagram, when base stations are regularly distributed
on the plane. In 1-D, this will correspond to equal length segments on the real axis.
Cellular systems are nowadays widely deployed, hence the heightened interest in
their analysis, considering both theoretical and practical aspects. A recent overview
of the literature dedicated to multi-cell networks is available in [SSZ04].

A system is called ad-hoc if it doesn’t profit from such a fixed infrastructure.
Nodes then communicate directly with each other and are usually assumed to be
capable of auto-organization. The capacity of such networks has been thoroughly
analysed, beginning with the famous article of Gupta and Kumar |[GK99|, and then
noticing the amelioration in throughput provided by mobility, at the expense of
greater delay [GT02]. The tradeoff between throughput and delay has since been
extensively studied [GMPS06].

Hybrid systems, such as mesh networks, are also considered in the literature.
Nodes that are far from a base station communicate with one another, in ad-hoc
fashion, until the communication arrives to a node close to a base station. Such
systems represent a middle-ground between centralized and decentralized systems.

A centralized environment is one in which there is global information about all
nodes in the system. Nodes are administrated by a central controller. Cellular
networks are usually assumed to benefit from centralized control provided by the
base station. An equivalent term that we will use is network centric, since the
network is considered as a global entity in this environment.

On the contrary, ad-hoc networks are generally viewed as quintessentially decen-
tralized systems. There is no central controller, mobiles administrate the network
by themselves. Communication algorithms in this case are called distributed. The
respective advantages of centralization and decentralization will be illustrated by
the example of resource allocation in the next section. An equivalent term that we
will use is user centric since the main actor in such an environment is the end user.

When mobiles are considered as independent entities administrating their trans-
missions, two models of communications, derived from game theory, can occur. The
first one is cooperative. In this model, mobiles work together with the purpose to
achieve a common goal, for example maximize the global throughput of the system.

On the contrary, in the non-cooperative model, nodes are selfish. They do not care
about the welfare of the system as a whole, but solely on their own gain. A solution in
this framework, when no mobile can benefit from deviating singlehandedly, is called a
Nash Equilibrium. Generally, the global performance at Nash Equilibrium is inferior
to the optimal cooperative gain that can be attained. Additional properties of
stability can be implemented, for example by introducing the mathematical biology
concept of Evolutionary Stable Equilibrium.

Finally, coordinated refers to a subclass of game theory models. A coordinated
game can occur either between cooperative or non-cooperative players. It consists
in providing an additional degree of liberty to the mobiles by the presence of an
arbitrator. An arbitrator is an entity that can send messages to the mobiles; it
needs not have any intelligence, nor any knowledge of the system. It simply sends
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random signals, that players can take into account in order to jointly maximize their
utility. Some useful game theory concepts will be described in more detail in a later
chapter.

1.1.2 Network Centric or User Centric: an Example

In telecommunications, a centralized system is one in which most communications
are administrated by one or more major central controllers. Such a system allows
certain functions to be concentrated in the hubs of the system, freeing up resources in
the terminals. Another benefit of centralization is the ease of maintaining accurately
updated lists of data that can be easily accessed from all points. The weaknesses of
centralization are centered around the heavy reliance on a few central components; if
the hubs of the system are put out of operation, either accidentaly or through hostile
action, the system and its peripheral components are severely affected. In addition,
the complexity of computations at the central hub generally increases exponentially
with the number of users, hence centralized systems pose problems of scalability
when the size of the system increases.

Conversely, a decentralized environment has no source of global knowledge. Each
node knows at most its own state and any information about other nodes must be
gathered explicitly. The allure of decentralization lies in the promise of robust-
ness, open-endedness and infinite scalability. Distributed procedures are especially
interesting, since centralized procedures require added infrastructure, latency, and
network vulnerability. The Internet itself is the largest decentralized computer sys-
tem in the world. Ironically, in the 90s, many systems built on the Internet were
completely centralized. Note that, in practice, extreme architectural choices in either
direction are seldom the way to build a usable system.

Consider the terms described earlier in the context of resource allocation for
cellular systems. Resource allocation, and especially power allocation, is of major
interest in the context of multiuser systems. In the uplink multiuser systems, it
is important for users to transmit with enough power to achieve their requested
quality of service, but not more than necessary, in order to minimize the amount of
interference caused to other users. Thus, an efficient power allocation mechanism
allows to prevent an excessive consumption of the limited ressources of the users.

The most straightforward way to design a power allocation mechanism is as a cen-
tralized procedure, with the base station receiving training sequences from the users
and signaling back the optimal power allocation. This is the case of global state infor-
mation. The transmission power levels for all mobiles are chosen by the base station
that has full information on the channel states of all mobiles. Centralized schemes
in cellular systems were first introduced for TDMA /FDMA [Zan92, GVGZ93|; more
recently an optimal scheme was derived for CDMA [Wu99]. In order to achieve
optimal capacity, the users may also be sorted according to some rule of precedence
[TH98|. However, this involves a non negligible overhead and numerous non infor-
mational transmissions. In addition, the complexity of centralized schemes increases
dramatically with the number of users. Decentralized schemes may be simpler to
implement in practice as the size of systems grows. As discussed in [EOA00], cen-
tralized algorithms provide useful bounds on the performance that can be attained
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by implementing distributed algorithms.

A way to avoid the constraints of a centralized procedure is to implement a
decentralized one where each user calculates its estimation of the optimal trans-
mission power according to its local knowledge of the system. Most of the time, a
distributed algorithm means an iterative version of a centralized one. Mobiles up-
date their power allocation according to some rule based on the limited information
they retrieve from the system. This is the case of local state information. Each
mobile chooses its own power level based solely on the condition of its own radio
channel to the base station. Supposing that an optimal power allocation exists,
a distributed iterative algorithm is derived from a differential equation in [FM93|
and its convergence is proven analytically. A distributed version of the algorithm
of [GVGZ93| is presented in [GVG94|. Building on these results, a general frame-
work for power control in cellular systems is given in [Yat95|. A review of different
methods of centralized and distributed power control in CDMA systems is given
in [EOAO00]. The survey [HT99] focuses on single-cell CDMA, and discusses the
measures of performance, using some advanced tools of random matrix theory.

In this context, a natural framework is game theory, which studies competition
(as well as cooperation) between independent actors. It was introduced to design
efficient power allocation schemes. Following the popularization of power allocation
games by |GM00, MWO01la|, an abundance of works can be found on the subject.
Some of these works are presented in more detail in Chapter 2.

1.2 Dissertation Overview

1.2.1 Chapter 2: Game Theory and Random Matrix Theory

Game Theory provides a vast array of tools to study all kinds of interactions among
selfish players that reason strategically in order to take rational decisions. With
the increasing interest in deployment of self-organizing networks, it is very allur-
ing to consider mobiles as independent actors that possess these characteristics. A
few subfields of game theory are particularly promising. Evolutionary game theory,
adapted from mathematical biology, is used to describe and to predict properties of
large populations whose evolution depends on many local interactions, each involv-
ing a finite number of individuals. Correlated games study the impact of adding
coordination mechanisms on the possible equilibria and joint optimizations that the
players can perform.

Random Matrix Theory was recently introduced in Information Theory. In order
to optimize a given network, intensive simulations can be performed. However, as
networks grow large, simulations involve a huge number of (random) parameters,
and in multiple access systems, communications interfere with one another. In
addition, simulations do not readily allow to single out parameters of interest, as
they depend upon so many of them. Random matrix theory gives tools to circumvent
this problem. The self-averaging effect of large random matrices enables to elegantly
single out parameters of interest in systems in the asymptotic regime, when number
of chips, antennas or carriers and number of users both grow very large with fixed
ratio. Even if the results are obtained in the asymptotic regime, they give very
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accurate predictions of the system’s behavior in the finite size case, as shown by
simulations.

The introduction of game theory and random matrix theory to the information
theoretic community is rather recent. In Chapter 2, a short history of these fields
and a few useful results are provided. Game theory especially is a vast mathematical
domain so the introduction is necessarily very limited and partial to concepts used
in wireless communications and in particular in the remainder of this work. A
particular use of game theory in wireless communications is illustrated in the context
of resource allocation.

1.2.2 Chapter 3: Multiuser Communication Schemes

This chapter is devoted to explaining principles of multiple-access protocols such
as CDMA, ALOHA and OFDMA. In particular, models and notations used in the
subsequent chapters are introduced, as well as the measures of performance: SINR,
capacity, spectral efficiency, and goodput in the context of power allocation games.

1.2.3 Chapter 4: Network Centric Communications

Network centric communications are exemplified by the performance analysis of
cellular CDMA systems.

Previously, single cell and networks with few interfering cells had been consid-
ered. The new contribution of this thesis lies in the analysis of infinite networks,
where the contribution of all interferers is taken into account. Such networks are
investigated in the downlink as well as in the uplink. The analysis makes use of re-
sults of random matrix theory and unitary random matrix theory, in order to obtain
analytical expressions depending only on a small number of meaningful parameters.

Downlink Multi-Cell Orthogonal CDMA

In the downlink CDMA case, it is a first step into analyzing the complex problem
of optimizing downlink CDMA multi-cell networks, using a new approach based
on unitary random matrix theory. The purpose is to determine, for a dense and
infinite multi-cell network, the optimal distance between base stations. A downlink
frequency selective fading CDMA scheme with orthogonal codes where each user is
equipped with a linear matched filter is considered. The users are assumed to be
uniformly distributed along the area. Only orthogonal access codes are considered
as the users are synchronized within each cell. The problem is analyzed in the
asymptotic regime: very dense networks are considered where the spreading length
N tends to infinity, the number of users per meter d tends to infinity but the load
d

per meter & = « 1s constant.

Uplink Multi-Cell Random Spreading CDMA

In the uplink CDMA case, a similar setting is investigated. An infinite length base
station deployment is considered and performance results, in terms of spectral effi-
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ciency, are derived for two types of receiver structures: Matched filter and Optimum
filter.

Uplink Single-Cell Orthogonal CDMA

Usually, random codes are used in the uplink. The new contribution is in deriving
performance results with orthogonal codes. In the single-cell context, the perfor-
mance of an uplink CDMA system with orthogonal spreading is analyzed. A useful
framework is provided in order to determine if synchronization of the users gives a
significant performance improvement. Using asymptotic arguments, analytical ex-
pressions of the spectral efficiency for the Matched Filter and Successive Interference
Cancellation Matched Filter are derived in the general case of a multipath channel.

Uplink Multi-Cell Orthogonal CDMA

In order to complete the study, the case of an infinite deployment of cells using
orthogonal codes in the uplink is investigated.

1.2.4 Chapter 5: User Centric Communications

In the case of user centric communications, we focus on three protocols: ALOHA,
CDMA and OFDMA.

ALOHA

In the case of decentralized networks, a first contribution of this thesis is to introduce
two types of games in a networking context: correlated games and evolutionary
games. In order to keep this introduction as simple as possible, the multiple-access
protocol considered is ALOHA. To the best of our knowledge, we have been the first
to introduce correlated games and evolutionary games to study non-cooperative
behavior in wireless networks.

Since interactions between users are repeated, it was natural to introduce the bi-
ological notion of Evolutionary Games in a networking context. On the other hand,
adding coordination mechanisms may enable mobiles to increase their throughput.
This setting is investigated both in a non-cooperative as well as in a cooperative
Correlated Games framework. This contribution also studies multi-criterion opti-
mization, in our case maximizing the average throughput with a constraint on the
average power consumption.

CDMA

Power allocation is an important topic in the context of multi-user systems, espe-
cially in the uplink, since an efficient power control mechanism allows to prevent
an excessive consumption of the limited ressources of the users. An energy-efficient
power allocation can be achieved by modeling power control as a game.

The contribution to power allocation games is in considering the frequency-
selective model. The model is investigated in a non-atomic games framework. This
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enables us to obtain power allocation as function of the total channel energy for each
user. In addition to linear filters, the optimal and successive interference cancellation
(SIC) filters (with the introduction of an ordering of the users) are investigated. SIC
filters are shown to exhibit interesting properties in relation to the accomodation of
users.

OFDMA

A novel distributed carrier allocation technique for OFDMA is introduced. The
choice of carriers is done at the transmitters rather than at the base station. Using
the reciprocity of the channel on each carrier, the algorithm enables each user to send
reliably data at a prescribed rate knowing only its channel, under mild asymptotic
conditions. For several channel models, we derive analytical expressions of the cell
spectral efficiency in the asymptotic regime (high number of carriers) for two filter
types: matched filter and optimum filter. The result is based on the predictability
of the interference as the number of carriers increases.

1.3 Published Works

During the course of this thesis, eight contributions were published: two interna-
tional journal publications and six publications in refereed conferences. The disser-
tation is based on the first seven of these contributions, in addition to unpublished
results.
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M. Debbah, E. Altman and G. Caire, IEEE ICASSP 2005, Philadelphia, USA,
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[BADO5] “An Evolutionary Game Perspective to ALOHA with Power Control”,
N. Bonneau, E. Altman, M. Debbah and G. Caire, 19th ITC, Beijing, China,
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[BDACO05b] “When to Synchronize in Uplink CDMA”, N. Bonneau, M. Debbah,
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[BDHAO05]| “Performance of Channel Inversion Schemes for Multi-User OFDMA”,
N. Bonneau, M. Debbah, A. Hjorungnes and E. Altman, 2nd ISWCS, Siena,
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[BDAO06] “Spectral Efficiency of CDMA Downlink Cellular Networks with Matched
Filter”, N. Bonneau, M. Debbah, E. Altman, FURASIP Journal on Wireless
Communications and Networking, 2006.

orrelated Equilibrium in Access Control for Wireless Communications”,

ABDO06] “Correlated Equilibrium in A. C 1 for Wireless C ications”
E. Altman, N. Bonneau and M. Debbah, Networking 2006, Coimbra, Portugal,
May 15-19, 2006.



1.4 Submitted Works 41

[BDAHO7b] “Wardrop Equilibrium for CDMA Systems”, N. Bonneau, M. Debbah,
E. Altman and A. Hjgrungnes, RAWNET 2007, Limassol, Cyprus, April 16,
2007.

[AABT07] “Constrained Cost-Coupled Stochastic Games with Independent State
Processes”, E. Altman, K. Avrachenkov, N. Bonneau, M. Debbah, R. El-Azouzi
and D. Sadoc Menasche, accepted for publication in Operations Research Let-
ters, 2007.

1.4 Submitted Works

[BDAHO7a] “Non-Atomic Games for Multi-User Systems”, N. Bonneau, M. Deb-
bah, E. Altman and A. Hjgrungnes, submitted to IEEE JSAC Special Issue
on “Game Theory in Communication Systems”, 2007.



42

Introduction




Chapter 2

Game Theory and Random Matrix
Theory

2.1 Game Theory for Wireless Communications

2.1.1 A Short History of Game Theory

Game theory is a field of applied mathematics that studies interactions among in-
dividuals making decisions. It relies on two assumptions. The first is the rationality
of the individuals involved, i.e., the players choose their strategies according to their
own preferences. The second is their capability of strategic reasoning, i.e., they also
take into account the preferences of the other players.

Game theory provides a set of tools to study such interactions, which can be
non-cooperative or cooperative. In the first case, players are selfish and are only
concerned with maximizing their own benefit. In the second case, players cooperate
in order to achieve a common goal. Therefore, it is natural that interest has been
growing in recent years in studying competition aspects of networking in general,
access to a common medium in particular, within the framework of game theory.
The survey paper [ABAT06] describing a vast array of game theoretical tools and ap-
plications, or the recent publication of a book dedicated to introducing game theory
to wireless communication engineers [MDOG| are but the tip of the iceberg. A survey
detailing applications of non-cooperative game theory to wireless communications is
also going to appear in French [AA0Q7].

The website “A Chronology of Game Theory” [Wal95| provides a summary of
some important dates of the field. The roots of game history are based on real-life
situations. A mathematical analysis was originally introduced to study problems
involving several players, like chess or card games. Several works touched upon the
subject and lay the groundwork, during the nineteenth century and beginning of
the twentieth century. It is however generally considered that the real breakthrough
occurred with the publishing of Theory of Games and Economic Behavior, by J. von
Neumann and O. Morgenstern, in 1944. This book gave a formalism for cooperative,
as well as non-cooperative games. Those concepts were further extended by J. Nash!
between 1950 and 1953. In particular, he demonstrated one of the most important

1J. Nash has received in 1994 the Nobel prize in economy for his contributions to game theory.
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theorems of game theory, namely the existence of an equilibrium in non-cooperative
games, henceforth denominated Nash equilibrium. Nash also studied cooperative
games, which are generally considered more involved to analyze, since the players can
form coalitions to cooperate for the greater good. He derived the Nash bargaining
solution for such games. Nowadays, game theory is used in economics, mathematical
biology, as well as wireless communications and networking.

A first contribution to networking games was, albeit in an indirect manner,
[War52], which treated the case of road traffic, and found many subsequent ap-
plications in networking. Nearly fifty years ago, a game theoretic formulation of the
communication process was already formulated by Blachman [Bla57], as a zero-sum
noncooperative game. A saddle-point arguments shows that Gaussian noise is the
worst, case noise that can affect a signal in terms of mutual information between sent
and received signal.

2.1.2 Useful Results and Illustrations of Game Theory

Game theory is a vast mathematical domain. This introduction is limited to giving
useful insights to understand the concepts used in the remainder of the thesis. For
an introductory course in game theory, refer for example to the book [OR94|.

Definition 1 A strategic game consists of
o A set of players S¥, consisting of K individuals;
o For each player k € S¥, a set of strategies (or actions) Sy;

e For each player k € S, a preference relation on S =[], S.

In most cases of interest, the preference relation can be expressed as a utility
(or payoff) function wuy : S — R. See for example [MDO06] for a detailed discussion
on the conditions of existence of a utility function. Since those conditions are very
broad and encompass most practical cases, we will always assume that the preference
relation is expressed as a utility function in the following.

This model is very abstract; hence, it allows to cover a very wide variety of
situations. There is no restriction on the set of actions available to a player. The
only limit to analysis is the obligation to define a preference relation. Of course, no
results can be derived directly from the model of Def. 1. The parameters have to
be specified, in order to obtain results relating to the specific version of the game
considered.

A strategy vector is denoted p € S. For each player k, the strategy of this player
is pr. The vector of strategies of all players except player k is denoted p(_y). If
player k£ plays strategy ¢ when all other players keep their strategies according to p,
the resulting strategy vector is denoted p(_x), q. With the help of this notation, we
state the following definition.

When each player holds an appropriate vision of the game and acts rationnally,
the equilibrium concept is called Nash equilibrium.
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Definition 2 A Nash equilibrium of a strategic game (S%,S, (uy)pesx) is a profile
pP* €S of actions such that

Vk € S*, Vpr € S, un(p{_g), Pr) < ur(p).

In others words, a Nash equilibrium is a profile of actions such that no player
can benefit by unilaterally deviating. It is a best response to itself. The Nash equi-
librium is a concept used in non-cooperative game theory. On the other hand, when
considering cooperation among players, the solution concept is called Pareto equilib-
rium. A Pareto equilibrium is a cooperative dominating solution: it is impossible to
increase the payoff of a player without decreasing the payoff of another. Generally,
Nash and Pareto equilibria do not coincide.

In order to give examples, the most simple games are 2-player games, with two
strategies each. Those games are conveniently represented as 2 x 2 payoff matrices.
Player 1 chooses the row, and player 2 the column. The first number in the pair is
player 1’s payoff, and the second number player 2’s payoff. Although simple, such
games provide good insight on the possible outcomes of games in general.

One of the most renowned such games is nicknamed the Prisonner’s Dilemna. In
this game, two inmates are given the choice between confessing and not confessing.
If both confess, they get each 3 years in prison. If only one of them confesses,
he is released while the other gets 4 years. If neither confesses, both get a minimal
sentence of 1 year. By appropriately reevaluating the payoffs, we get a payoff matrix
that has the following form.

D | C
D|[3,3]0,4
Cl4,0]1,1

While the social (Pareto) optimum is obviously (D,D), it is not an equilibrium in
the non-cooperative game since any player is better off by deviating. Hence, the
only Nash equilibrium of the game is the suboptimal (C,C), yielding a payoff of 1
for each player.

A second example of 2 x 2 game is called Battle of the Sexes. In this game, a
couple has to decide where to spend the evening. Their payoffs are positive only
if they spend the evening together, but their actual values depend on the chosen
event. The man prefers event A (theater) while the woman would rather assist to
event B (dance). The payoff matrix has the following form.

A| B
A[21]0,0
B 0,012

This game admits two pure Nash equilibria (A A) and (B,B).

A third example is the game of Matching Pennies. Both players call Head or
Tail. If their choices differ, player 1 pays 1 Euro to player 2. Otherwise, player 2
pays 1 Euro to player 1. Hence, both players have diametrically opposed interests:
this is a zero-sum game. This game has no Nash equilibrium when players choose a
single strategy.
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H T
H|1,-1]—1,1

Y

T|-L,1]1,—1

As shown by Matching Pennies, not every game has a Nash equilibrium in pure
strategies, i.e., when players deterministically choose one of their strategies. It is
possible to extend the possible set of strategies of the players to include nonde-
terministic actions, i.e., the set of probability distributions A(Sy) over the set of
strategies Si. The payoff associated to such a probability distribution is the aver-
age payoff over the strategies that may be employed. In this case, we talk about
mixed strategies. Extending strategic games to mixed strategies enables to state the
important theorem of Nash about the existence of a Nash equilibrium.

Theorem 1 (Nash) Every finite game in strategic form has a mized strategy Nash
equilibrium.

Reconsider the previous examples in terms of mixed strategies. For the Prison-
ner’s Dilemna, nothing is changed, the only Nash equilibrium is still (C,C), in pure
strategies. For the Battle of the Sexes, in addition to the two previous equilibria,
(2/3 A +1/3B,1/3 A + 2/3 B) is also a Nash equilibrium, yielding a payoft of
(%, %) Finally, for Matching Pennies, the equilibriais (1/2H + 1/2 T, 1/2 H + 1/2
T), yielding a payoft of (0,0).

What is the underlying motivation for players to randomize their strategies?
Different interpretations can be given, several of which are discussed in [OR94|.
One of them is the fact that we are interested in a steady state of the game. When
players use mixed strategies, the steady state will be stochastic. Note that for mixed
strategies, there is the underlying assumption that players are uncoordinated in their
random choice. They may receive signals from “nature” enabling them to randomize,
but those signals are kept strictly private and independent. If we want players to
jointly randomize their strategies, the framework is that of correlated games, which
are introduced in the next section.

2.1.3 Correlated Games

The notion of correlated equilibrium was introduced by R. Aumann? in [Aum74|
and further studied in [Aum87, HS89, Ney97|. An algorithm for the computation
of correlated equilibria is developed in |[Pap05]. Correlated equilibria are general-
izations of the Nash equilibrium concept; the correlated equilibria are defined in a
context where there is an arbitrator who can send (private or public) signals to the
players. These signals allow players to coordinate their actions, and, in particular,
to perform joint randomization over strategies.

In many contexts, an arbitrator is thought of as an intelligent entity, used for
helping to solve conflicts and for proposing compromises to the different sides in-
volved. In contrast, in correlated games, an arbitrator needs not have any intelli-
gence. It is assumed to generate signals that do not depend on the system (or on

2R. Aumann has received in 2005 the Nobel prize in economy for his contributions to game
theory, together with Thomas Schelling.
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individual) states. Moreover, it does not need to have any knowledge on the sys-
tem. All the arbitrator has to do is to create some random signals (according to a
randomized mechanism known by the players) that can help the synchronization (or
coordination) between them.

An arbitrator may even be a virtual entity. As an example, the players can agree
to use some random data (e.g., the first word they hear on the radio) as the signal
or as an input to a function that allows to create a common signal (or a signal which
may differ from one player to another).

In the context of non-cooperative games, each player has the possibility not to
consider the signal(s) it receives. A multi-strategy obtained using the signals is a set
of strategies (one strategy for each player which may depend on all the information
available to the player including the signal it receives). It is said to be a correlated
equilibrium if no player has an incentive to deviate unilaterally from its part of the
multi-strategy. A special type of “deviation” in this definition can be of course to
ignore the signals.

As an example, consider the Battle of the Sexes, already discussed above. This
game has three Nash equilibria, two in pure strategies, yielding payoffs (2,1) and
(1,2), and one in mixed strategies, yielding payoff (%, %) Now, if we add one degree
of liberty by sending a common signal to the players randomly chosen in (0, 1) with
equal probability, what happens? There is a new equilibrium, in which both players
choose A if the received signal is 0 and B if the received signal is 1. Indeed, if the
received signal is 0, player 1 knows that player 2 will choose A, so it is optimal for

him to choose A as well, and reciprocally. This new equilibrium yields payoff (%, %)

2.1.4 Evolutionary Games

Evolutionary Game Theory can arguably be traced back to Darwin, who introduced
the concept of natural selection and hence competition between genotypes and phe-
notypes of individuals. The way their programmed genetics enable animals to thrive
determine their capability of reproduction, or fitness. In 1967, Bill Hamilton pub-
lished a paper about a sex ratio strategy than can’t be beaten, using ideas from
game theory. Rationality becomes population dynamics, and utility, the Darwinian
fitness. This work was extended during the 70s by John Maynard Smith. He first de-
fined the concept of Evolutionary Stable Strategy (ESS) in 1972 in [Smi72|. Smith’s
seminal text Fvolution and the Theory of Games [Smi82| appeared in 1982. In the
context of mathematical biology, ESS are used to describe and to predict properties
of large populations whose evolution depends on many local interactions, each in-
volving a finite number of individuals. The payoff obtained by a strategy depends
on all the strategies present in the population, which is an important game theory
concept. In the biological context, the amount of reward for an individual is related
to its reproduction capability. A higher reward to some behavior (which can repre-
sent more food or more chances to mate) implies a higher growth rate of individuals
that adopt it.

An intuitive way of explaining what is an ESS is the following. It is a strategy
that does well against itself. It expresses the fact that, if animals “playing” the ESS
predominate in the population, they will tend to encounter mostly animals playing
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the same strategy. Therefore, the ESS must do well against other copies of itself
in order to stay successful. This simplified explanation will be completed after the
introduction of complementary definitions.

Competition between animals of the same species occurs frequently. Consider for
example the reproduction period of stags: stags will compete in order to mate with
females. A most common illustration of evolutionary games is the following. There
are two attitudes: Hawk (H) and Dove (D). Animals meet randomly by pairs and
compete for a resource (gain G). If both are dovish, they display (non-violently)
until one of them leaves the scene. If a hawk encounters a dove, the latter flees
immediately, letting the hawk get the resource all for itself. When two hawks meet,
they fight for the resource, until one of them is hurt (cost C). We assume that if
two animals of the same kind meet, they have an equal chance to get the resource.
The associated payoff matrix is

H D
H|{(G-0C),3(G-C)| G,0
D 0,G 5G. 3G

Given the payoff matrix, stags may adopt pure or mixed strategies. This is
an example of random matching game: two individuals taken at random in the
population compete at each turn. A strategy is called ESS if it is resistant against
mutant strategies. Compared to the Nash equilibrium, it is hence characterized by
a robustness property (that need not be satisfied by a Nash equilibrium): under an
ESS, the populations become immune to the proliferations of mutations.

Let us define the concept of ESS in a more rigorous fashion. We restrict to the
case of a symmetric game, i.e., all individuals have the same strategy set and the
same utility function. The definition is simpler to state in this case, but extension
to non-symmetric games is straigthforward.

A population is a set of individuals (in great numbers) who possess the same set
of strategies A = {1,...,n} and the same utility function U (in matrix form). A
population state is a probability vector on A, denoted p. p belongs to the simplex
At = {p € R"/p; > 0,37 pi = 1}. p; is the frequency of action ¢ in the
population. The fitness function J(-,-) describing the encounter of two members of
the population is J(p,q) = p’Uq. Note that J(-,) is bilinear. A population can
be monomorphic (all individuals randomize between the strategies) or polymorphic
(each pure strategy is represented by a fraction of the population).

An ESS occurs if a small proportion of mutants cannot invade. p is an ESS if
for all q distinct from p, there exists ¢’ such that for all € < €/,

J(q,eq+ (1 —€)p) < J(p,eq+ (1 —€)p).
A simpler (and equivalent) relation is given by

J(q,p) < J(p,P)

J(q,p) = J(p,p) and J(q,q) < J(p,q).

In other words, a strategy p is ESS if it doesn’t accept any best response except
itself (2.1.4), or, if there exists another best response, the latter obtains a strictly
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inferior payoff when confronted to itself than initial strategy p (2.1.4). In the first
case, the fraction of the mutations in the population will tend to decrease (as mutants
have a lower reward, meaning a lower growth rate). p is then immune to mutations.
In the second case, the population using p is “weakly” immune against a mutation
q since as the population of mutants grows, then individuals with strategy p shall
frequently compete with mutants; in such cases, the higher payoff for p ensures that
the growth rate of the original population exceeds that of the mutations.

The Hawk-Dove game above can be analyzed in this light. If C' > G, it has a
unique symmetric mixed strategy equilibrium (G/C,1 — G/C), which is the only
ESS. If C' < G, the unique Nash equilibrium is when all players are Hawks. This is
also the only ESS.

Remark that (2.1.4) characterizes a strict Nash equilibrium, meaning a Nash equi-
librium that accepts no best response except itself. Replacing the strict inequality in
(2.1.4) by a large inequality yields the characterization of a Nash equilibrium. Hence,
there is a chain of implication regarding ESS: Strict Nash implies ESS implies Nash.
Examples can be built to show that the reverse implications are generally false.

One of the most alluring aspects of evolutionary game theory and ESS is the
vast array of tools that are associated to it to analyze the dynamics of a population.
See [HS03] for a rundown of the different dynamics that can be associated to an
evolutionary game and their convergence in presence of ESS.

Although the concept of ESS has been defined in the context of biological sys-
tems, it is highly relevant to engineering as well (see [VV00]). In particular, in the
context of competition in the access to a common medium, we can expect that a
technology that provides better performance will gain more market shares at the
expense of less performant technologies.

2.1.5 Power Allocation Games

As discussed in Chapter 1, resource allocation is an important research topic in
the context of multi-user wireless communications. Game theory can be naturally
applied to the context of uplink resource allocation, considering that mobiles are
players in the game, with their transmit powers as strategies. The utility is deter-
mined by the benefit obtained, as well as the cost incurred by the player using the
strategy. Building on the framework of [Yat95], such a game theoretic approach was
introduced in [Ji97] and presented in [GM00, MWO0la]. Numerous works on power
allocation games have followed since.

We remind that a Nash equilibrium is a stable solution, where no player has
an incentive to deviate unilaterally, while a Pareto equilibrium is a cooperative
dominating solution, where there is no way to improve the performance of a player
without harming another one. Generally, both concepts do not coincide.

The utility generally considered takes into account both the gain from achieving
a higher throughput as well as the cost of transmitting with higher power. It has
been first introduced in works with an economic leaning [Ji97, SMGO01, SMGO02|.
Customarily, it consists in throughput-to-power ratio (see Sec. 3.5.4). This particular
form of the utility function is justified in [Rod03], where the author describes a widely
applicable model “from first principles”. Conditions under which the utility will
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allow to obtain non-trivial Nash equilibria (i.e., users actually transmit with nonzero
powers at the equilibrium) are derived. The utility consisting of throughput-to-
power ratio is shown to satisfy these conditions. In addition, it possesses a property
of reliability in the sense that the transmissions occur at non-negligible rates at the
equilibrium.

Unfortunately, Nash equilibria often lead to inefficient allocations, in the sense
that higher rates (Pareto equilibria) could be obtained for all mobiles if they coop-
erated. To alleviate this problem, in addition to the non-cooperative game setting,
[SMGO2] introduces a pricing strategy to force users to transmit at a socially opti-
mal rate. With this additional mechanism, communication at Pareto equilibrium is
obtained.

Game theory can be used to treat the case of any number of players. However,
as the size of the system increases, the number of parameters increases drastically
and it is difficult to gain insight on the expressions obtained. In order to obtain
simple expressions, asymptotic analysis of the system using random matrix theory
is performed in [MPSMO5].

Defining the utility as advised in [Rod03] as the ratio of the throughput to the
transmission power, the authors obtain results of existence and unicity of a Nash
equilibrium for a CDMA system. They derive explicit expressions depending only on
a few parameters for the equilibrium power allocation corresponding to three linear
receivers: matched filter, MMSE filter and decorrelator. This work is extended to
the case of multiple carriers in [MCPSO06|. In particular, it is shown that users will
select and only transmit over their best carrier. As far as the attenuation is con-
cerned, the consideration is restricted to flat fading in [MPSMO05] and in [MCPS06]
(each carrier experiencing flat fading in the latter). However, wireless transmissions
generally suffer from the effect of multiple paths, thus becoming frequency-selective.
In Sec. 5.2, we treat the case of power allocation games in frequency selective fad-
ing. In addition to the linear filters, optimal and successive interference cancellation
filters are considered.
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2.2 Random Matrix Theory for Wireless Commu-
nications

2.2.1 A Short History of Random Matrix Theory

Until recently, in the field of information theory, simulations were widely believed to
be the only means to optimize a given network. However, as the number of users and
the size of the communication systems grew, simulations had to be very intensive
and did not allow to single out parameters of interest easily. This changed when
simultaneously in 1999, Tse [TH99| and Verda [VS99] introduced tools of Random
Matrix Theory in order to analyse multi-user systems. Both treated the case of
performance of linear receivers for CDMA systems, in the limit when the number
of users as well as the spreading length tend to infinity, with a fixed ratio. In this
asymptotic scenario, the use of random matrix theory leads to explicit expressions
for various measures of interest such as capacity or Signal to Interference plus Noise
Ratio (SINR). Interestingly, it enables to single out the main parameters of interest
that determine the performance in numerous models of communication systems with
more or less involved models of attenuation [TH99, VS99, ET00, SV01, TLV05|.
In addition, these asymptotic results provide good approximations for the practical
finite size case, as shown by simulations. A recent overview of random matrix theory,
centered on the applications to information theory, is given in the book by Tulino
and Verdua [TV04].

The properties of random matrices were first studied by statistical physicists.
One of the first studies was done in 1928 by Wishart [Wis28]. He computed the
probability density of vivil + .. + v, vl where v; are i.i.d. Gaussian vectors. His
results are among the few available concerning finite dimensional matrices. Indeed,
most results of random matrix theory are asymptotic, i.e., limit properties when
considering sequences of random matrices whose dimensions tend to infinity with
fixed ratio.

The typical question is to characterize the distribution of (some of) the eigen-
values of random matrices. For finite matrix size this distribution itself is usually
random. The real interest in random matrices surged when non-random limit distri-
butions were derived for matrices whose dimensions tend to infinity, among others
in 1955 by Wigner [Wigh5| and in 1967 by Marchenko and Pastur [MP67|, under
simple hypotheses on the distribution of the matrix elements. The introduction of
the (Cauchy-)Stieltjes transform [Pas72, SB95, Gir90| then enabled to derive dis-
tributions for more general matrix forms: correlation among the elements of the
matrix, independant non-identically distributed elements.

Random matrices are also particular non-commutative random variables. The
theory of non-commutative random variables is called Free Probability Theory [Bia98|.
Freeness for non-commutative random variables is the analogue of independence for
commutative random variables. Families of random matrices can be shown to be
asymptotically free, which enables to derive results of interest on sums and products
of random matrices, as was shown by Voiculescu [Vo0i91| and subsequent works. Free
probability theory can also be used to treat the case of unitary random matrices.
Results on unitary random matrices are extensively developped in [HP0O].
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Nowadays random matrix theory is used in numerous domains, including but not
limited to Riemann hypothesis, stochastic differential equations, condensed matter
physics, statistical physics, chaotic systems, numerical linear algebra, neural net-
works, multivariate statistics, stock exchange analysis, etc. And of course informa-
tion theory [Miil03, TV04]! Information theory has even influenced work on random
matrices. For example, |[BS07| studies the expression of the MMSE SINR from a
mathematical point of view, and provides a rigorous demonstration in a general
setting of results previously used in the litterature [CMO4].

2.2.2 Illustrations of Random Matrix Theory

In the following, upper case and lower case boldface symbols will be used for ma-
trices and column vectors, respectively. (.)7 will denote the transpose operator,
(.)* conjugation and (.) = (()T)* hermitian transpose. E denotes the expectation
operator.

Definition 3 Let v = [vq,...,un]| be a vector. Its empirical distribution is the
function Fy : R — [0,1] defined by:

F];(x):%#{wgm:l...zv}.

In other words, F¥(x) is the fraction of elements of v that are inferior or equal
to x. In particular, if v is the vector of eigenvalues of a matrix V, Fy is called the
empirical eigenvalue distribution of V.

Examples of Empirical Eigenvalue Distributions

One of the first results explicitly derived concerns a particular class of random ma-
trices, called Wigner matrices. A Wigner matrix is an N x N symmetric matrix
H with diagonal entries zero and upper-triangle entries i.i.d. zero mean and vari-
ance 1. As N — oo, the empirical eigenvalue distribution of \/LNH converges to the

semicircle law:
) = VA= [N <2
o if [\ >2

The semicircle law is plotted in Fig. 2.1, as well as the plot obtained by tracing
the histogram of the eigenvalues of a single realization of a 512 x 512 Wigner matrix,
with 1.i.d. Gaussian N (0, 1) distribution of the upper-triangle entries. The semicircle
law already provides a good approximation of the eigenvalue distribution in the
finite size case. Note that even though the nonzero entries are not bounded, the
distribution of the eigenvalues has a bounded support.

Wigner matrices have quite a constrained form, but it also possible to obtain
results for a non-symmetric matrix. If H is an N x N matrix with entries i.i.d. zero
mean and variance 1, then the eigenvalues of LNH are uniformely distributed on
the unit circle. This property is often referred to as Girko’s full circle law.

The full circle law is plotted in Fig. 2.2, as well as the plot of the eigenvalues
of a single realization of a 512 x 512 random matrix, with i.i.d. Gaussian N (0, 1)
distribution of the entries.
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Figure 2.1: Semicircle law and simulation for a 512 x 512 Wigner matrix.
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Figure 2.2: Full circle law and simulation for a 512 x 512 matrix.
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3.5

Figure 2.3: Marchenko-Pastur density function for o = 1,0.5,0.2.

When nonsquare N x K matrices are under consideration, a common property to
ensure asymptotic convergence of the distribution is that the ratio of the dimensions
% be kept constant. One of the first derivations of an explicit nonrandom limit
distribution is due to Marchenko and Pastur. Let H be an N x K matrix, with
i.i.d. zero-mean complex entries with variance % and fourth moments O (#) As
K, N — oo, with % — q, the empirical eigenvalue distribution of H?H converges

almost surely to a nonrandom limit distribution with density

f(z) = {1 - lrém N V0 —al" [p—a*

«Q 2rax

where a = (1 — y/a)* and b = (1 + Va).

The Marchenko-Pastur law is plotted in Fig. 2.3 for different values of a. The
asymptotic analysis has an averaging effect: the limit distribution depends only
on «, and not on the particular distribution of the entries of the matrices. The
eigenvalues have a bounded support between (1 — /a)? and (1 + /@)’

Example of Application to Wireless Communications

In information theory, communication over a noisy medium between one or several
transmitters and a receiver is generally considered. The model can be summarized
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by a single equation. Most of the information theoretic litterature focuses on vector
memoryless channels of the form:

y = Hs +n. (2.1)

Here, y is the received signal vector, s is the transmitted signal vector, n is additive
white Gaussian noise, and H is the channel matrix, representing the attenuation
that affects the transmitted signal vector.

Eq. (2.1) covers the cases of a number of multiple access techniques, including
but not limited to Code Division Multiple Access (CDMA), Orthogonal Frequency
Division Multiple Access (OFDMA) and Multiple Input Multiple Output (MIMO).
According to the technique and the channel model considered, the general form of
the channel matrix H is determined.

One of the performance measures of a wireless communication system is called
capacity (see Chapter 3). It was originally introduced by Shannon [Sha48]. Un-
der some assumptions, the capacity for a single user of the system is given by the
following expression.

1 1
C:Nlogdet (I+;HH )

Given the properties of the logarithm,
1 & 1
_ H
C = N ;:1 log (1 + UQAZ- (HH ))

1) 1 &
log (1 - §A> N;‘S (A =X (HH)) dx

/
— /log (1 + %A) FR(A)d),

where FEE” denotes the empirical eigenvalue distribution of HHY.

Thus, as shown by the derivation above, the empirical eigenvalue distribution
naturally appears in the expression of the capacity. Knowing the empirical eigenvalue
distribution of a family of random matrices thus enables to get immediate insight on
the performance of the corresponding communication system. In addition, even if
the result is obtained in the asymptotic regime, when the dimensions of the matrix
both tend to infinity with a fixed ratio, the results give very close approximations
of finite-size system behavior, as shown by simulations.

There exists other performance measures that can be easily obtained as a function
of the eigenvalues of the matrices involved. Thus, random matrix theory also enables
to derive expressions for several other performance measures of interest, such as
Signal to Interference plus Noise Ratio (SINR) or multiuser efficiency [VS99].

Unfortunately, the three laws plotted above are among the few known empirical
eigenvalue distributions which have an explicit analytical expression. Generally, as
in the subsequent case, the limit distributions are given by implicit equations, and
can only be computed numerically.
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2.2.3 Useful Results of Random Matrix Theory

Before giving an important theorem of random matrix theory, originally demon-
strated by Girko [Gir90], and having since found use to derive spectral efficiency of
CDMA systems under frequency selective fading [TLV05], we need some additional
definitions.

Definition 4 Let v be a probability measure. The Stieltjes transform m” associated
to v s gwen by

1
m”(z) = v(dt).
()= [ vt
The Stieltjes transform is analytic for Im(z) > 0. This is a one to one mapping.
If the Stieltjes transform is known, the probability measure can be retrieved through
the following inversion formula:

d 1
flz) = é T) = ;ylir(rﬁ m”(z + iy). (2.2)
Definition 5 Let V be a N x K random matriz with independent columns and
entries v;;. Denote by |- ] the closest smaller integer. V is said to behave ergodically
if, as N, K — oo with K/N — «, for x € [0,1], the empirical distribution of

[‘UL:BNJ,1|2 EERE! }ULINLKF]

converges almost surely to a non-random limit distribution denoted FY (-) and, for
y € [0, ], the empirical distribution of

2 2
“Ul,LyNJ’ 7""|UN7LyNJ’ }
converges almost surely to a non-random limit distribution denoted Fyv()

Definition 6 Let 'V be a N x K random matrixz that behaves ergodically as in Def.
5, such as FY (-) and F)(-) have all their moments bounded. The two-dimensional
channel profile of V is the function p¥(x,y) : [0,1] x [0,a] — R such that, if the
random variable X is uniformly distributed in [0,1], then the distribution of p¥ (X, vy)
equals F)Y(-) and, if the random variable Y is uniformly distributed in [0, c], then
the distribution of p¥ (z,Y) equals FY (-).

Theorem 2 Let Y = VO W be a N x K matrix, where ® is the Hadamard
(element-wise) product and V and W are independent N x K random matrices.
Assume that 'V behaves ergodically with channel profile p¥ (x,y) as in Def. 6 and
that W has i.i.d. entries with zero mean and variance % Then, as N, K — oo with
K/N — «, the empirical eigenvalue distribution of YYH converges almost surely to
a non-random limit distribution function whose Stieltjes transform m¥Y" s given

by:

1 _
m¥Y"(2) = lim N Trace <(YYH — 2I) 1)

N—oo

- /0 lu(x,z)dx
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and u(z, z) satisfies the fized point equation:

1

u(, ) (2.3)

PV (z,y)dy

pr— . .
b TN e 2

The solution to equation (2.3) exists and is unique in the class of functions u(z, z) >
0, analytic for Im(z) > 0, and continuous on z € [0, 1].

When considering a random matrix product such as in Th. 2, it looks tiresome to
first get the Stieltjes transform from (2.3), and then retrieve the empirical eigenvalue
distribution using the inversion formula (2.2). However, it is not necessary to do
both steps. If we go back to wireless communications, taking the equation previously
derived for the capacity

1 "
C= /log (1 + —2)\) FHEY () a),
g

and differentiating according to o2, we obtain

1
__4)\ "
oC _ / o FHH ()\)d)\

do? 1+ 5\
_ _% —%;jiz L prat gy
_ _% n / )\jazFHHH()\)d)\
= T (%),
where m¥H" is the Stieltjes transform of the empirical eigenvalue distribution of

HH”Y.

Therefore, the capacity is directly expressed as a function of the Stieltjes trans-
form of the empirical eigenvalue distribution of HH*. Finding the Stieltjes trans-
form is often enough! Th. 2 is thus used in [TLV05] to derive formulas for the SINR
and spectral efficiency of CDMA under frequency-selective fading.

2.2.4 Useful Results of Unitary Random Matrix Theory

Random matrix theory also provides results on unitary matrices [HP00|. A unitary
matrix V = [vy] is a N x N matrix with complex entries such as VV# = VIV = 1.
Note that the entries are therefore dependent.

N N
Z o] = Z lvi|> =1, forall 1 <i k<N,
k=1 i=1

N
Zvilvl*k =0, foralli##k.
=1
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The following definition is given in [PR04]. Since the set U(N) of N x N unitary
matrices forms a compact topological group with respect to the matrix multiplica-
tion and the usual topology, there exists a unique nonzero left and right invariant
measure. It is known as the Haar measure. A unitary random matrix V is Haar
distributed if it takes its values uniformly in U(N), i.e., if for any subset H of U(N),
the probability that V € H is equal to the normalized Haar measure p of H:

P(V € H) = u(H).

Given that the left invariance characterizes the Haar measure, to show that a
unitary random matrix V is Haar distributed, it is sufficient to show that for any U &€
U(N), UV has the same distribution as V. The Gram-Schmidt orthonormalization
procedure can be used on the column vectors of a N x N Gaussian matrix with
independent entries to obtain a Haar unitary matrix. If X is a Gaussian i.i.d. matrix,

then V = X (X#X) "% is Haar unitary [DHLAC03a]
o VV = X(XHX)~1/2(XHX)" 12X =1,
e UV = UX(XAUHUX)"!/2 has the same distribution as V.

Results are known on the moments of entries of Haar distributed random matri-
ces. The entries of such a matrix V satisfy [HP0O|:

1
E [Jvil’] = & forall1<i k<N, (2.4)
1 2 ,
1
E U/Uik’2 ’Uﬂ‘z] — m, for all [ # k, 1 S ’i, k S N, (26)
1 .
E [vik*vilvjkvﬂ*] = —m, for all k& 7é l, 7 7é ] (27)

All other combinations of degree inferior or equal to 4 of elements of V have expec-
tation equal to zero.

In actual CDMA systems, as far as orthogonal codes are concerned, Walsh-
Hadamard codes are generally used. However, in order to get interpretable ex-
pressions of the SINR, isometric N x K matrices [vy,...,Vvk] obtained by extract-

ing K < N columns from a Haar unitary matrix X (XH X)_% will be considered.
Although of limited practical use, these random matrices represent a very useful
analytical tool as simulations [DHLAC03a| show that their use provides similar per-
formances as Walsh-Hadamard codes. Those results are used in Chapter 4 in the
downlink CDMA case, when orthogonal, rather than i.i.d. spreading codes are used.
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Chapter 3

Wireless Networks at Large

In this part, the principles of Code Division Multiple Access (CDMA), ALOHA,
and Orthogonal Frequency Division Multiple Access (OFDMA) are explained. Since
CDMA is the most investigated multiuser scheme in this thesis, the model is most
detailed for CDMA. References are included for OFDMA, which has been extensively
treated in the litterature.

The models and notations used are introduced. Comments are given on the mea-
sures of performance like Signal to Interference plus Noise Ratio (SINR), capacity,
spectral efficiency and goodput .

3.1 Channel Modeling

Suppose we transmit a signal over a wireless channel. Different forms of attenuation
will affect the signal. In this section, I will concentrate on the Single-Input Single-
Output (SISO) case, when there is a single antenna both at the transmitter and the
receiver.

The wireless channel is usually highly volatile and changes over time. The signal
is affected by several forms of attenuation. Fading is the effect due to the presence
of scatterers between the transmit and the receive antenna. Scatterers are assumed
to induce some attenuation, usually modeled as a random variable, and some delay
in the signal propagation. One of the most frequent assumption is that it is possible
to group scatterers with same propagation delay in L distinct clusters. In this case,
the signal is said to propagate through a (discrete) multipath channel, described by

the impulse response:
L1

c(t,7) =Y m(t)d(r — 7e(t)). (3.1)

=0

L is the number of paths. The attenuation 7,(t) comes from the aggregate
coefficients of the scatterer cluster £ and is a random variable. The delay associated
with the /-th multipath is 7,(¢). In the models, we will consider that transmission
takes place over a short time interval, or with low mobility, and drop the dependency
on the time index ¢ for simplicity. If there is a single path, then the channel is flat
fading: its effect on the signal does not vary with frequency. On the contrary, if
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L > 1, the channel is frequency selective: signal transmitted at different frequencies
will experience different attenuations.

Another non determistic effect witnessed during the propagation in a wireless
channel is called shadowing, which is caused by trees, hills or buildings, i.e., objects
that do not scatter the signal, but only attenuate its power. Usually, Rayleigh fading
varies much more rapidly than shadowing. In the remainder of this thesis, the effect
of shadowing will not be taken into account.

Finally, the propagation of any waveform through the air is affected by path loss,
which is the deterministic attenuation of the signal with the distance. It is generally
modeled in a polynomial form as proportional to d =7, where d is the distance between
the receive antenna and the transmit antenna, and [ is the path loss factor, generally
between 2 and 4.

3.2 Code Division Multiple Access

Code Division Multiple Acces (CDMA) is a multi-access technique enabling high
rate wireless communications between the different nodes. A review of the state
of CDMA was made fifteen years ago in [Lee91]. For a thorough introduction to
CDMA, consult the book [Vit95].

Contrary to Time Division Multiple Access (TDMA) or Frequency Division Mul-
tiple Access (FDMA), CDMA is generally a non-orthogonal protocol. Users and base
stations transmit at the same time and on the same frequency band. They make
use of spreading codes to simultaneously transmit their information, so that the
receiving end can discriminate between the interfering users. However, even when
orthogonal codes are used, since frequency-selective fading destroys orthogonality,
communications will suffer from multiple-access interference. Using channel coding
at the transmitter and/or signal processing at the receiver, the signal of interest is
then reconstructed.

CDMA is implemented in the UMTS standard. UMTS (Universal Mobile Telecom-
munications System) is one of the 3G mobile phone technologies, currently offered
by operators in many continents.

3.2.1 CDMA Communication Model

Different models will be used in the subsequent parts of this thesis. They are uplink
multi-cell and downlink multi-cell, uplink single-cell and downlink single-cell CDMA.
Downlink may not be considered separately as it turns out to be a particular instance
of uplink, where the signals intended for different users experience the same value
of the fading when they reach the user under study [TLV05, Cot06]. The crucial
similarities in the models are pointed out.

An important problem that arises in the design of CDMA systems concerns the
deployment of an efficient architecture to cover the users. In a single-cell setting
(without outside interference), the performances of CDMA have been thoroughly
investigated by the information theory community, with no fading [TH99, VS99| or
frequency-flat fading [ET00, SVO01|. Extensions with a more involved attenuation
model, frequency-selective fading, are derived in [TLV05].
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However, when several cells are involved, the communications in a cell are per-
turbated by intra-cell (users within the cell) as well as inter-cell interference (users
outside the cell). In order to get tractable expressions, previous studies of CDMA
multi-access schemes were restricted to the study of a few interfering nodes, with
Wyner’s model [ZSVO01] or with simple interference models [Lee91, GJP191, TW94,
SVI7, CMV98, KM99, KA01, ZA01, LLAO03, SZS04].

However, none has taken explicitly into account the cumulative effect from all
interfering nodes with realistic path loss and fading models. Increasing the number
of nodes in a given area yields indeed a better coverage but increases at the same
time inter-node interference. The gain provided by a cellular network is not at all
straightforward and depends on many parameters: path loss, type of codes used,
receiving filter, channel characteristics.

Concerning the multi-cell scenario, without loss of generality and in order to ease
the understanding, we focus our analysis on a one dimensional (1-D) network. This
scenario represents for example the case of the deployment of base stations along a
motorway (users, i.e., cars are supposed to move along the motorway). An infinite
length base station deployment is considered (see Fig. 3.1). The base stations are
supposed equidistant with inter-base station distance a. The spreading length N is
fixed and is independent of the number of users. The number of users per cell is
K = da (d is the density of the network, with d/N = «) and the load of each cell
is % = aa. Note that as the size of the cell increases, each cell accommodates more
users (with the constraint da < N if orthogonal codes are used).

Figure 3.1: Representation of a CDMA Cellular Network

3.2.2 Uplink Multi-Cell

User k wants to transmit the signal sg,, n € Z. The general case of wide-band
CDMA is considered where the signal transmitted by user £ has complex envelope

ri(t) = Z SknUg(t — nT). (3.2)

In (3.2), v(t) is an weighted sum of elementary modulation pulses () which
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satisfy the Nyquist criterion with respect to the chip interval T, (T' = NT,):

N
Uk(t) = ngl/J(t — (f — 1)TC)
=1

In CDMA, all users transmit simultaneously, thus creating interference. The
vector v with elements vy, is the spreading code of user k. The spreading code
enables to mitigate the interference in the sum of transmitted signals ), 74(2).

However, the signals are transmitted over the wireless channel, which attenuates
the signal. We consider a frequency selective channel with impulse response ¢ (7).
The base station will receive a convolution of the channel impulse reponse ¢ (7) with
the sum of transmitted signals ), 7(¢). Without loss of generality, we consider the
signal received at the base station located at the origin. Under the assumption of
slowly-varying fading, the continuous time received signal y(¢) at the base station
has the form:

y(t) = Z Z S]m/ P/ P(xi)en(T)op(t — nT — 7)dr

n k=1

+ Z Z s;m/ V P/ P(xy)ei(T)op(t — nT — 7)dr +n(t). (3.3)

n k=K+1

where n(t) is the complex white Gaussian noise.

Any user k is determined by his position x;, with respect to the considered base
station, located at the origin.

In (3.3), /P, represents the power allocation of user k. \/P(x}) represents the
attenuation of the signal sent by user k due to potential path loss, i.e., deterministic
attenuation, as opposed to (random) fading. We will suppose that the attenuation
P(xy) can be represented as an even integrable function P(x).

The signal (after pulse matched filtering by 1*(—t)) is sampled at the chip rate
to get a discrete-time signal that has the form:

y= Z Ckrvk\/Fk\/ P(xy)sk + Z Ckvk\/ﬁk\/P(xk)sk + n. (3.4)

k=K+1

Zle Civiv/Pir/ P(x1)sy is the useful signal, transmitted by users actually com-
municating with the receiving antenna. E;‘;KH Civiv/Prr/ P(x1)sy is the inter-cell
interference.

Cy is a N x N Toeplitz matrix representing the frequency selective fading for
the k-th user, v is a N x 1 vector representing the spreading code of the k-th user,
and n is an N x 1 Additive White Gaussian Noise (AWGN) vector with covariance
matrix o?Iy.

We consider the case of a multipath channel similar to (3.1). Under the assump-
tion that the number of paths from user k to the base station is given by L, the
model of the channel is given by

Li—1

cr(T) =D et (T — 7o), (3.5)
=0
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where we assume that the channel is invariant during the time considered. In order
to compare channels at the same signal to noise ratio, we constrain the distribution
of the i.i.d. fading coefficients n, such as:

0
E [nke] = 0 and E U??kz|2] = I (3.6)
Usually, fading coefficients 7, are supposed to be independent with decreasing
variance as the delay increases. In all cases, o is the average power of the channel,
such as E [|ck(7')|2] = YR [|nkg|2] = p, for all channels considered. For the

fading process cx(7), the frequency response of the channel at the receiver is given
by:

Ly—1

hi(f) = Z Meee 72T W ()] (3.7)
=0

where we assume that the transmit filter W(f) and the receive filter ¥*(— f) are such
that, given the bandwidth W,

1 if —¥<f<
] — 2 =7 =2 3.8
(7) {0 otherwise. (3:8)
Sampling at the various frequencies f; = —%, fa = —% + %W7 , In =
—% + %W, we obtain the coefficients h;,, 1 <7 < N, as
Ly—1 .
hiw = hi(f) = D mpge PN eI (3.9)
£=0

Note that E [|hzkﬂ = 0.

Since the users are supposed to be synchronized with the base stations and for
sake of simplicity, we will consider in all the following that users add a cyclic prefix
of length equal to the channel impulse response length to their code sequence.! This
case is similar to uplink MC-CDMA [FP93, Lin96|. As a consequence, matrices
{Cy} are circulant [Bin90] and can all be diagonalized in the Fourier basis F [Gra06].
Model (3.4) simplifies therefore to:

K [e's)
y =Y FHF'vi\/Po/Play)si+ Y FHF vi\/Pi/P(ay)s, +n. (3.10)
k=1

k=K+1

where Hy is a diagonal matrix with diagonal elements {h;};=1. . For each user
k, the coefficients h;, are the discrete Fourier transform of the channel impulse
response.

In order to simplify further (3.10), we make assumptions on the codes that the
users employ. The codes can be i.i.d. random or orthogonal. In the i.i.d. case, we
assume that users employ Gaussian i.i.d. codes with zero mean and variance 1/N

!Note that in the asymptotic case (when N — 00), the result holds without the need of a cyclic
prefix as long as the channel is absolutely summable [Gra06].



66 Wireless Networks at Large

[ET00]. In the orthogonal case, we assume that, for each cell, the codes are columns
extracted from a Haar distributed unitary matrix (see Sec. 2.2.4). Note that each
cell uses a different isometric code matrix.

These assumptions enable us to state simply our results, however almost all of
the results are valid for any distribution of the codes as long as it has mean zero and
variance 1/N. Namely, we make use of the fact that every unitary transformation of
a Gaussian i.i.d. vector is a Gaussian i.i.d. vector, and every unitary transformation
of a Haar distributed unitary matrix has the same distribution as the initial matrix.
In particular, since F is unitary, Fn and w;, = Fv; have respectively the same
distribution as n and vy, for all k. We multiply y in (3.10) with F¥ and obtain
without any change in the statistics:

y = Z Hywi\/Pe/P(2i)si + Z H.wi\/ P/ P(zy) sy + n. (3.11)

k=K+1

Writing (3.11) in a more compact form, we finally obtain
y=HVPOW)s+> (HP,oOW)s +n (3.12)
I=1

where ® is the Hadamard (element-wise) product.
In (3.12), H (for the considered cell) and H;, [ > 1, (corresponding to each
interfering cell) are the frequency selective fading matrices, of size N x K:

hin hie ... hig
Ho | - . .
hyvt hyo ... hyk
hiax+1y  higg+2) - heyr
H, = . . .
hyarsy hyaxt2) - hveenr)

VP (for the considered cell) and v/P;, | > 1, (corresponding to each interferin
g g
cell) summarize the power allocation and power attenuation in diagonal matrix form,

of size K x K:
\/Fl\/P<5U1)
\/PK\/P(ﬁK)

VB vV P(iE’zKH)
VP =

vV Pusyr v/ Plrask)
W and W, are N x K random spreading matrices, with either columns of Gaus-

sian i.i.d. entries ~ N(O, %), or orthogonal columns extracted from a Haar dis-
tributed unitary matrix:

W = [w1|w2| _ ’WK}

W, = (Wit [ Wikl - [Wesn k]
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Note that asymptotically (as N — o00), for a given multipath channel of length
L, model (3.12) is also valid for the case of uplink DS-CDMA since all Toeplitz
matrices can be asymptotically diagonalized in a Fourier Basis [Gra06, Hac04].

In the following, we will assume that the frequency selective fading matrices H;
behave ergodically, as in Def. 5. The two-dimensional channel profile of H;/P; is
denoted p(f,z) = P(z) |h(f,z)[*, f € [0,1], z € [a(la —a/2),a(la+a/2)]. fis the
frequency index and z is the user index. In the notations of (3.7), if £ <z < &L
is the index of user k, this gives

Li—1

h(f, x) = Z nppe I 2WTheS QI TW i (3.13)
=0

This enables us to use Th. 2 in order to obtain expressions for the SINR.
In the case of flat fading, h;, = hy for all .. Denoting D the diagonal matrix

with diagonal elements hq, ..., hx, we obtain the following equality:
1 ... 1
HVPOW=|: .. :|DVPOW =WDVP.
1 ... 1

Injecting this in (3.11), the received signal expression reduces to:

k=K+1

This case is treated in [BDAC05a].

3.2.3 Downlink Multi-Cell

For the downlink case, the multi-cell model is a particular instance of the uplink
case, due to the fact that each base station signal will experience the same fading
realization. Since I devote a part of this thesis to a particular instance of downlink
optimization, I detail completely this model as well, in order to introduce the nota-
tions, that differentiate between cells rather than between users, and point out the
similarities.

The general case of downlink wide-band CDMA is considered where the signal
intended to be transmitted by the base station in cell p to user 7 has complex
envelope

xp;(t Z Spj(n)vy;(t — nT). (3.15)

In (3.15), v,;(t) is a weighted sum of elementary modulation pulses 1 (¢) which
satisfy the Nyquist criterion with respect to the chip interval T, (T' = NT.):

Mz

Upjg@/) t — E - 1)T)

pJ
(=1
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The vector v,; with elements v,;, is the spreading code that the base station in
cell p uses to communicate with user j. The signals are transmitted over frequency
selective channels with impulse response ¢,;(7). Under the assumption of slowly-
varying fading, the continuous time signal y,;(¢) received by user j in cell p has the
form:

Yp ( Z Z Z Sqr(n / V Pyir) Py(5)cqi(T)vgi(t — nT — 7)dr 4+ n(t). (3.16)

n k=1

where n(t) is the complex white Gaussian noise.

In (3.16), the index ¢ stands for the cell, the index n for the transmitted symbol
and the index k for the user (in each cell, there are K users). User j is determined
by his position z;. The signal (after pulse matched filtering by ¢*(—t)) is sampled
at the chip rate to get a discrete-time received signal of user j in cell p of a downlink
CDMA system that has the form:

;) = Z v/ Py(2;)Cy; Vs, + 1. (3.17)

We can obtain directly (3.17) from (3.4) by denoting the K x 1 transmit vector
of cell ¢ for its K users as s, = [\/Pusq(1),...,/Paxsq(K)]" and assuming the
fading and path loss realizations from base statlon q to user j are identical for all
those signals. \/P_qk represents the power control attributed to the signal destined
to user k by base station g. P,(z;) represents the path loss between base station ¢
and user j whereas C,; represents the N x N Toeplitz structured frequency selective
channel matrix between base station ¢ and user j. n = [n(1),...,n(N)]" isan N x 1
noise vector with i.i.d. Gaussian entries with zero mean and variance 0. Each base
station has an isometric N x K code matrix V, = [vg1, ..., Vyk]. V, is assumed to
be obtained by extracting K columns from a Haar distributed matrix, as discussed
in Sec. 2.2.4. Note that each cell uses a different isometric code matrix. User j
is subject to intra-cell interference from other users of cell p as well as inter-cell
interference from all the other cells.

Notice that the assumption on the code structure model enables us to simplify
model (3.17) as previously. Matrices {C,;} can all be diagonalized in the Fourier
basis F [Gra06]. As a consequence, model (3.17) is equivalent to:

Z (7)) H,; W s, + n. (3.18)

where Hg; is a diagonal matrix with the Discrete Fourier Transform of the channel
impulse response hy;(i) given by (3.9) as diagonal elements [Gra06].

The general path loss P,(x;) depends on a path loss factor which characterizes
the type of attenuation. The greater the factor, the more severe the attenuation. In
the downlink case, we will derive expressions for an exponential path loss P,(z;) =
Pe~lzi=mal [FBS04], where m,, are the coordinates of base station q. Note that in the
usual model, the attenuation is generally of the polynomial form: P(x;) = m.
We use the exponential form for the sake of calculation simplicity and therefore
put the framework in the most severe path loss scenario in favor of the multi-cell

approach.
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3.2.4 Uplink Single-Cell

We consider a single uplink multi-user system cell, i.e., inter-cell interference free
case. The model for single-cell uplink is essentially the same as for multi-cell uplink
without the inter-cell interference term. The spreading length is denoted N. The
number of users in the cell is K. When considering a single cell, we do not take the
size of the cell into account. For example, as far as orthogonal codes are concerned,
path loss does not affect orthogonality and can be neglected. Therefore, the size of
the cell is not an relevant parameter. The load is simply o = K/N.

Under the same assumptions, and with the similar notations, we obtain equations
similar to (3.11) and (3.12).

K

y =Y Hywi\/Pes+n (3.19)
k=1

y = (HVP©W)s+n. (3.20)

Model (3.20) is essentially similar as the one studied in [TLVO05].

3.2.5 Downlink Single-Cell

A single downlink multi-user system cell is inter-cell interference free. The model for
single-cell uplink is essentially the same as for multi-cell uplink without the inter-
cell interference term. As pointed out in [TLV05], it is a particular case of uplink
single-cell. It is treated as such extensively in |[DHLAC03a, TLVO05].

3.3 ALOHA

ALOHA is one of the simplest access schemes for users sharing a common medium.
Unslotted ALOHA was introduced by [Abr70|. In the context of a discrete time
system, the slotted ALOHA protocol [Rob72| enables to enhance throughput, under
the constraint that users are synchronized.

3.3.1 ALOHA Communication Model

Users simply transmit their packets and wait for an acknowledgement.

The time required to transmit a packet is one unit. In unslotted ALOHA [Abr70],
if a packet is transmitted at time ¢, then any other transmission during the so-called
vulnerable period [t — 1,¢ 4 1] will cause a collision. In slotted ALOHA [Rob72|,
if two (or more) packets are transmitted during the same slot, this will create a
collision. If there is a collision between packets, all the packets are assumed to be
lost. Users then wait a random amount of time (or a random amount of time slots
in slotted ALOHA) before retransmitting. The waiting time is random in order to
prevent repeated collisions.

When users transmit at different powers, the capture phenomenon may enable a
single higher power transmission to be correctly decoded [Rob72, LKZ98|.
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Note that propagation is not taken into account, only collisions between concur-
rent transmissions are, in a control access protocol setting. This model is used in
Secs. 5.1.1 and 5.1.2.

3.3.2 ALOHA Performance

ALOHA is typically a user centric protocol. There is no central controller involved
and in particular no collision control mechanism. Improvements of ALOHA involving
collision control have been introduced such as CSMA, IEEE 802.11, etc.

Several previous papers have already studied ALOHA or slotted ALOHA in a
non-cooperative context. The papers [MWO01b, JK02, AAJ03, MW03, ABAJ04] have
studied ALOHA for a non-cooperative choice of transmission probabilities. Several
papers study slotted ALOHA with power diversities in the context of the cooperative
formulation [Met76, LKZ98, SHH02|. In [ABBAO5| the authors have studied the
performance of slotted ALOHA in a non-cooperative context, modeled as a game,
in which both retransmission probabilities as well as power levels are chosen by the
players. A Markov chain formulation has been obtained, whose numerical solutions
enable to study the system performance.

3.4 Orthogonal Frequency Division Multiple Access

A N carrier Orthogonal Frequency Division Multiplexing (OFDM) system [Bin90]
using a cyclic prefix or zero-padding |[Muq01] for preventing inter-block interfer-
ence is known to be equivalent in the Frequency Domain to N flat fading parallel
transmission channels.

Orthogonal Frequency Division Multiple Access (OFDMA) is the extension to
multiple users of the OFDM digital modulation scheme. Multiple access is achieved
in OFDMA by assigning subsets of subcarriers to individual users. This allows
simultaneous low data rate transmission from several users. This emerging multiple
access technology is already in use in WiMAX.

OFDMA is an alternative to combining OFDM with time division multiple access
(TDMA). Users requesting low rates can send continuously with low transmission
power instead of punctually using a single high-power carrier. Constant delay, and
shorter delay, can be achieved.

OFDMA can also be described as a combination of frequency division and time
division multiple access, where the resources are partitioned in the time-frequency
space, and slots are assigned along the OFDM symbol index as well as OFDM
subcarrier index.

3.4.1 OFDMA Communication Model

We consider the uplink of a single cell network. K users are simultaneously commu-
nicating with a base station using OFDM modulation over N carriers.

On each carrier i, user k sends the information si(i). sg(¢) is the transmitted
data such as E [|3k(z)|2} =1. Aset M; C {1,..., K} of users can select the same
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frequency carrier ¢, which introduces interference. As a consequence, the received
signal on carrier ¢ at the base station is given by:

y(i) = 3 ha(i)v/Pe(Dsi(i) + (i) (3.21)

keM;

where Py () is the power control and n(7) is additive white Gaussian noise.

3.4.2 OFDMA Performance

In order to optimize the users’ rate, scheduling of the users is required. An efficient
scheduling algorithm is based on multi-user diversity schemes [KH95|. The algorithm
requires an estimation by the scheduler (usually the base station) of the N carriers
of the K users. Based on this feedback information about the channel conditions,
adaptive user-to-subcarrier assignment can be achieved. Only users with the high-
est carrier-to-noise ratio (CNR) are allowed to transmit. An interesting property of
OFDMA is that such an assignment maintains fairness among users [WLO04]. If the
assignment is done sufficiently fast, this scheme further improves the OFDM robust-
ness to fast fading and narrow-band cochannel interference, and enables to increase
the system spectral efficiency. In order to control the data rate and error probability
individually for each user, a different number of subcarriers can be assigned to each
user.

One drawback of OFDMA is that the scheduler needs complete channel state
information, which creates many non-informational transmissions. To reduce the
feedback load, selective multiuser diversity algorithms have been introduced: only
the users that have a CNR above a threshold send feedback to the scheduler [GA04].
Multiple feedback thresholds can be used [HAGQ05] and are generally found numer-
ically. Another drawback is that, for high mobility, channel conditions vary in a fast
manner and the algorithm becomes inaccurate.

As far as power control is concerned, OFDMA presents challenges as the optimal
policies perform adaptive joint allocation of subcarriers and powers. Several algo-
rithms have been designed in the single-cell case [WCLM99, JL03, HJL05]. In the
context of fixed wireless networks, when inter-cell interference is present, [KAS05|
introduces a subcarrier and bit loading algorithm that satisfies users requested rates.
A centralized version of the algorithm is introduced as a constrained optimization
problem. A distributed version of the algorithm is also presented, when users it-
eratively adjust their choice of subcarriers and power allocation. However, even in
the case when the set of requested rates can be achieved, the convergence of the
distributed scheme is not guaranteed.

Since subcarriers are narrow in bandwidth, the fading coefficients on adjacent
subcarriers are correlated. A way to alleviate this correlation is to group adjacent
carriers in clusters, that can be assumed to experience independant fading values
(see [BZ06] and references therein). In [BZ06], a distributed scheme for resource
allocation is described, for which each user needs to know only local information
about the system to transmit at its requested rate, whenever it is possible. The
success of transmissions simply has to be acknowledged by the base station. It is
shown that this scheme performs almost as well as an equivalent centralized scheme.
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3.5 Performance Measures

3.5.1 Signal to Interference plus Noise Ratio

At the receiver, the received signal y will be processed in order to retrieve the
original symbols. The optimal detectors usually demand a prohibitive calculation
complexity with the increasing number of users. However, simpler, almost optimal,
detectors can be implemented by linear filters. A linear filter for user £ is a vector
g, that enables to obtain an estimate of the original symbol. For example, starting
from uplink single-cell model (3.20), after filtering,

glly = gl(HVP © W)s + g/n. (3.22)

Denote hy the k-th column of H, and H(_j the matrix H with h;, removed, and
similarly for the code matrix W. From (3.22), the Signal to Interference plus Noise
Ratio (SINR) for user k is immediately deduced.

Pkglg(hk © wi)(hy © Wk)Hgk
o?gilgr + gt (Hr)/Pr) © W) (Hp)/Prr © Wp) g

The simplest linear filter is the Matched Filter g = /Py(hy ® wy), which
simply takes into account only the code of the user of interest. The minimum
mean square error (MMSE) Filter is the filter that minimizes the mean square error
E Hsk — g,fyH. It can be proven that it is given by the following expression.

SINRy, =

g = (o’Iy + (HVP © W)HVP 0 W)" ) (b © wy).

Remark that since H and W are random matrices, the SINR itself is generally
a random variable.

3.5.2 Capacity

In his seminal paper [Sha48|, Shannon introduces a quantity called capacity. This
performance measure enables to quantify the number of bits of information per time
and frequency unit the system is able to deliver. The capacity of a channel is the
maximal quantity of information that can be transmitted through this channel.

In a multi-user communication system, it has been shown [GVR02| that the
interference plus noise for randomly spread systems can be considered as Gaussian
when K and N are large enough. When the SINR of user k is defined, the capacity
of this user is given by:

Cr = logy(1 + SINRg).

The capacity of the channel is the sum of individual capacities

K
C = logy(1+ SINRy).
k=1

Hence, the capacity of the channel is also generally a random variable.
Two cases can occur:
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e If the channel is ergodic, the capacity can be averaged over the channel real-
izations to obtain the ergodic capacity

C=E .

K
> “logy(1 + SINRy)

k=1

e If the channel is static, what counts is the minimal rate at which users will be
able to transmit at least (1 — q)% of the time, called outage capacity

C’Ozargmgx{RZO|IP(C<R) <q}.

For example, if ¢ = 0.01, users will be able to transmit at least 99% of the
time at rate Cj.

3.5.3 Spectral Efficiency

In the context of a multi-cell network, capacity is specialized in a quantity called
spectral efficiency, which quantifies the number of bits/s/Hz the system is able to
deliver to all the users given a certain inter-cell distance. In the infinite multi-cell
setting detailed above, due to invariance by translation, the spectral efficiency per
cell is the same for all cells. Since the network capacity is infinite, the measure
of performance in this case is the number of bits per second per hertz per meter
(bits/s/Hz/m) the system is able to deliver defined by:

1

= o sy). (3.23)

where F' is the frequency reuse (meaning F adjacent cells use F' different frequen-
cies), T is the chip time (set to 1 in the rest of the report) and I(s,y) is the mutual
information between the received signal and the transmitted signal for a given re-
ceiver structure. The network capacity is a linear scaling factor of C.

For linear detectors such as Matched Filter or MMSE Filter, a SINR can be
defined, the spectral efficiency is simply written:

1

C=——
FNa

K
> “logy(1 + SINRy). (3.24)
k=1

In general, the SINR is a random variable, and we will consider the mean spectral
efficiency, averaged over the fading distribution.

3.5.4 Goodput

Another performance measure that is frequently used, notably in power allocation
games, is the goodput, or rather an adapted version of it [GMOO].

The wireless system transmits packets with L informational bits. Those bits are
coded, so that M > L bits are effectively transmitted. The transmission rate is R
bits/s. If the SINR of user k is [, the probability of correct reception is ¢(fx),
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where ¢(-) is a function that depends on the details of the modulation, coding,
interleaving, wireless channel, etc. Hence, the number of transmissions required to
receive a packet correctly is a random variable. The goodput can be expressed as

1(65k) = RyalB). (3.25)

The probability of correct reception is generally expressed as ¢(fy) = (1 —
BER;)M, where BER is the bit error rate. For example, in the case of transmis-
sion with binary phase-shift-keying modulation with no channel coding, ¢(6x) =

(1-Q (\/2_516))M, where Q(+) is the normal distribution function.

The goodput is a customary performance in power allocation games. In the game
theoretical framework, the users are considered as players in a game, their choice of
transmit powers represent their strategies. The utility measures the gain of a user
as a result of the strategy this user plays. In [Rod03], the author derives what he
calls Throughput to Power Ratio (TPR) under minimal requirements. The utility
of user k is expressed as (8

v (B
ug = P (3.26)

The utility is expressed in bit/Joule, so it represents the amount of successful
transmissions obtained from every Joule of energy spent by the user. This is a
relevant performance measure, as each mobile wants to use its (limited) battery
power to transmit the maximum possible amount of information.

In (3.26), the function ~(-) is at least C? and should satisfy conditions detailed
in [Rod03] in order to obtain an “interesting” equilibrium. However, the goodput
7 (Bk), which is proportional to ¢(3;,) = (1—BER4), does not satisfy the conditions.
Namely, this quantity is not zero when the transmitted power is zero. Using this
function in the utility would lead to the unsatisfying conclusion that mobiles should
not transmit at all, since the (improbable) event of a correct guess gives them infinite
utility.

Therefore, it is customary to consider an adapted version of the goodput. An
efficiency function f(B) is introduced [GMO00|, which should mimic closely the be-
havior of (/) while satisfying the desirable property f(0) = 0. A usual way to
achieve this is simply to add a factor 2 in front of the BER, f(3y) = (1 — 2BERy)™.
More specifically, the function f(5x) = (1 —exp(—0%)) is widely used as such an
efficiency function [GM00, MPSMO05].

Summing up, from (3.25) and (3.26), the following expression is used for the
utility in the setting of power allocation games:

oL f(B)




Chapter 4

Network Centric Communications

4.1 Downlink Multi-Cell Orthogonal CDMA

In this section, the downlink multi-cell model detailed in Chapter 3 is used. It is
a first step into analyzing the complex problem of downlink CDMA multi-cell net-
works, using a new approach based on unitary random matrix theory. Asymptotic
results for the performance of a downlink CDMA system with orthogonal spreading
and multi-cell interference have been derived when considering a finite dense net-
work [Deb04]. Our contribution is in extending this analysis to an infinite network
[BDAOG|.

The purpose is to determine, for a dense and infinite multi-cell network, the op-
timal distance between base stations. A downlink frequency selective fading CDMA
scheme where each user is equipped with a linear matched filter is considered. The
users are assumed to be uniformly distributed along the area. Only orthogonal access
codes are considered as the users are synchronized within each cell. The problem
is analyzed in the asymptotic regime: very dense networks are considered where
the spreading length N tends to infinity, the number of users per meter d tends to
infinity but the load per meter % = « is constant. The analysis is mainly based on
asymptotic results of unitary random matrices [HP00, PR04].

4.1.1 Model

In all the following, without loss of generality, we will focus on user j of cell p. The
received signal of this user is given by (3.18):

yp(z;) = Z Py(z;)HgjWs, + 1.
q

4.1.2 Performance Analysis

General SINR formula

We assume that the users do not know the codes of the other cells as well as the
codes of other users within the same cell. As a consequence, user j of cell p is
equipped with the matched filter receiver g,; defined by g,; = Hp;w,,.
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The output of the matched filter is given by:

gg)’p(xj) =/ Pp<xj)gngijjsp(j)
+ \/ Pp(xj)gfijjWé_j)
(K-1)x1
+ Z \/ Pq(mj)gququsq + gf;n- (4.1)

sp(1)

Sp (K )

a#p
where W;ffj) = [Wp1, -, Wp(j—1)s Wp(j+1), - - - Wpk]. From (4.1), we obtain the ex-
pression for the output SINR of user j in cell p with coordinates x; and code w,;:
5 (x;)
SINR(z;, w,;) = J . 4.2
W) = L) T Ily) + W HEH,w, 2
where
* 2
S*(w;) = Pyl)) |WyHp Hyjwy, | (4.3)
Ii(xj) =Y Pylay)whHIH, W WIHIH, W, (4.4)
a7#p
s _oH
I(z;) = Py(z;)whHIH, Wi WED HIH, w;. (4.5)

Note that the SINR is a random variable with respect to the channel model.
For a fixed d (or K = da) and N, it is extremely difficult to get some insight on
expression (4.2). In order to provide a tractable expression, we will analyze (4.2) in
the asymptotic regime (N — oo, d — oo but % — «) and show in particular that
SINR(z;, wp;) converges almost surely to a random value SINRy;, (2, p) independent
of the code wy;. Usual analysis based on random matrices use the ratio % [VS99]

also known as the load of the system. In our case, the ratio % is equal to aa.

Proposition 1 When N grows towards infinity and % — «, the SINR of user j
wn cell p in downlink CDMA with orthogonal spreading codes and matched filter is
given by:

) (3 Sy s (1) P)

J
W
2

SINRhm(l’j,p) == (46)

Ieg) + Baes) + 5 [y s (F)Pf

i () gy ()" lf

w

Mm:%a@>[ywmm—%<ﬂﬂmmw)

Proof See Appendiz 7.1.
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Spectral Efficiency

We would like to quantify the number of bits/s/Hz the system is able to provide to
all the users. The mean (with respect to the position of the users and the fading)
spectral efficiency of cell p is given by:

K
- %JEM S log, (1 + SINR (25, wyy)) |. (4.7)
j=1

In the asymptotic case and due to invariance by translation, the spectral efficiency
per cell is the same for all cells. As a consequence, the network spectral efficiency
is infinite. Without loss of generality, we will consider a user in cell 0 (z; € [~$, §])
and the corresponding asymptotic SINR is denoted SINRyyy,(z;). Assuming the
same distribution for all the users in cell 0, we drop the index j. The measure
of performance in this case is the number of bits per second per hertz per meter

(b/s/Hz/meter) the system is able to deliver:

1K
C = ENE“‘ [log, (1 + SINRyjim(x))] = aE, 4, [logy (1 + SINRyim())]. (4.8)

According to the size of the network, the total spectral efficiency scales linearly with
the factor C. If we suppose that in each cell, the statistics of the channels are the
same, then denoting by Py(z) = P(x), ho(f) = h(f) and Ly = L, we obtain the
following proposition from Prop. 1.

Proposition 2 When the spreading length N grows towards infinity and % — «, the
asymptotic spectral efficiency per meter of downlink CDMA with random orthogonal
spreading codes, general path loss, and matched filter is given by:

P) (& Sy WOPar)

Cla) = gEh /; log, | 1+ o dx|. (4.9)
“o I(x) + 5 [ [W(H)IPdf
Ie) = G5 Ra) [ PP

q#0 2

e | [ ol ( /. rh<f>r2df>

with a € [0, 1].

In the next two paragraphs, two simplifying assumptions are introduced, in order
to get expressions that are more easy to manipulate.
Equispaced Delays

For ease of understanding of the impact of the number of paths on the orthogonality
gain, we suppose that in each cell ¢, all the users have the same number of paths L,
and the delays are uniformly distributed according to the bandwidth:

i
Tt =5 LS U< Ly, (4.10)
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Hence, replacing h(f) and h,(f) with their expression with respect to the tem-
poral coefficients (3.7) and using (4.10), (4.9) from Prop. 2 reduces to

o | Pl (Shs W)z
C((I):aEn /_ log, | 1+ 1@+l dx|. (4.11)

L—1 Lg—1 min(L,Lg)
o=oaSrio) (S ) (Sef)+ 3 Swownne

NIl

40 =0 - =0 O#e
+anlls (zzm e ) |
=0 0'#0

In the case of a single path, i.e., L, = 1 for all ¢, the signal is only affected by
flat-fading, therefore orthogonality is preserved and intra-cell interference vanishes.

: Ple) nf?
log, 5 dz|. .
[ e (”aazqﬂPq(x)\nq\ +a2> ] (412

Exponential path loss and ergodic case

In the case of an exponential path loss, explicit expressions of the spectral efficiency
can be derived when L, — oo for all ¢, referred in the following as the ergodic case.
Although L, grows large, we suppose L, to be negligible with respect to N (see
Appendix 7.1). The impact of frequency reuse is also considered. In other words,
r adjacent cells may use different frequencies to reduce the amount of interference.
This point is a critical issue to determine the impact of frequency reuse on the
spectral efficiency of downlink CDMA networks.

Proposition 3 When the spreading length N and the number of paths L, (for all
q) grow towards infinity with % — « and % — 0, the asymptotic spectral efficiency
per meter of downlink CDMA with random orthogonal spreading codes, exponential
path loss, frequency reuse r and matched filter is given by:

C(a) = % /j log, (1 + Pe (E [lhﬂ) ) dx. (4.13)

. I(z) + o2E [|h]?]

2

I(z) = aaP (E Uh\ b —arm cosh(yz)
+aaPe e (B [|01'] — (B [|0]*])?)

with a € [0, 1.

Proof See Appendiz 7.1.
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In the case where a — 0, the number of b/s/Hz/meter depends only on the
fading statistics, the path loss and the factor a = ]iv through:

PE [|h|']
20.PE(|h|’]

C0) =alog, | 1+ (4.14)

0—2
Proof Leta— 0 in (4.13).

4.1.3 Discussion

In all the following discussion, P = 1, 02 = 1077, @ = 1072 and r = 1 (unless
specified otherwise).

Path Loss versus Orthogonality

We would like to quantify the impact of path loss on the overall performance of the
system when considering downlink unfaded CDMA. In this case,

C(a) = %/_i log, (1 + %) dx. (4.15)
I(x) = aaz P,(z)

q#0

with a € [0, £].

In Figs. 4.1 and 4.2, we have plotted the spectral efficiency per meter with respect
to the inter-cell distance for an exponential (y = 1,2,3) and polynomial (5 = 4)
path loss, without frequency-selective fading. Remarkably, for each path loss factor,
there is an optimum inter-cell distance which maximizes the users’ spectral efficiency.
This surprising result shows that there is no need into packing base stations without
bound if one can remove completely the effect of frequency-selective fading. It can be
shown that optimal spacing depends mainly on the path loss factor v and increases
with a decreasing path loss factor.

Ergodic fading versus Orthogonality

We would like to quantify the impact of the channel statistics on the inter-cell
distance. In other words, in the case of limited path loss, should one increase or
reduce the cell size? A neat framework can be formulated in the case of exponential
path loss with vanishing values of the path loss factor «v and ergodic fading. Although
the spectral efficiency tends to zero, one can infer on the behavior of the derivative
of the spectral efficiency which is given by:

oC 3 E[n"]
w (- w ) e

with a € [0, £].
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Proof See Appendiz 7.1.

This simplified case (exponential path loss with ergodic fading) is quite instruc-
tive on the impact of frequency-selective fading on orthogonal downlink CDMA. In
the ergodic case and with limited path loss, the optimum number of cells depends
M f7T >3
(E[ine])" >
orthogonality is severely destroyed by the channel and one has to decrease the cell
size whereas if T' < %, one can increase the cell size'.

only on how “peaky” the channel is through the kurtosis 7' =

Number of paths versus Orthogonality

We would like to quantify the impact of the number of multi-paths on the overall
performance of the system. In Fig. 4.3 and 4.4, we have plotted the spectral efficiency
per meter with respect to the inter-cell distance for an exponential (y = 1) and
polynomial (5 = 4) path loss, in each case for numbers of multi-paths L = 1, L = 2,
L = 10 (supposing an equal number of paths is generated by each cell) and Rayleigh
fading. For L = 1, fading does not destroy orthogonality and as a consequence, an
optimum inter-cell distance is obtained as in the non-fading case. However, for any
value of L > 1, the optimum inter-cell distance is equal to 0.

Impact of reuse factor

In Fig. 4.5, we consider a realistic case with ergodic Rayleigh frequency-selective
fading and 7 = 2 and reuse factor r = 1,2,3. The spectral efficiency has been
plotted for various values of the inter-cell distance. The curve shows that the users’
rate decreases with increasing inter-cell distance, which is mainly due to frequency-
selective fading. Note that the best spectral efficiency is achieved for a reuse factor
of 1, meaning that all base stations should use all the available bandwidth.

General discussion

We would like to show that, in a cellular system, multipath fading is in fact more dra-
matic than path loss and restoring orthogonality through diversity (multiple anten-
nas at the base station) and equalization techniques (MMSE,...) pays off. To visually
confirm this fact, Fig. 4.6 plots for a path loss factor v = 2 the spectral efficiency
per meter with respect to the inter-cell distance in the ergodic Rayleigh frequency-

selective fading, non-fading and inter-cell interference free case (i.e. % f_%g log,(1 +
2

%)d:c). The figure shows that one can more than triple the spectral efficiency per
meter by restoring orthogonal multiple access for any inter-cell distance. Moreover,
for small values of the inter-cell distance, greater gains can be achieved if one re-
moves inter-cell interference (by exploiting the statistics of the inter-cell interference
for example). Note also that even with fading and inter-cell interference, the capac-
ity gain with respect to the number of base stations is not linear and therefore, based
on economic constraints, the optimal inter-base station distance can be determined.

IThe value % is mainly dependent on the type of path loss (exponential, polynomial...)
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Capacity versus the Inter—Cell distance with exponential path loss
0.018 T T T T T T T T T

0.016F % i

0.014F

0.012H/
001},

=3
0.008 -

bits/s/Hz/meter

0.006 -

T
|

0.004 S, — o

0.002

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Inter—Cell Distance

Figure 4.1: Spectral efficiency versus inter-cell distance (in meters) in the case of
exponential path loss and no fading: 0?2 =107, P=1,v=1,2,3.

Hence, based on the quality of service targets for each user, the optimum inter-cell
distance can be straightforwardly derived.

4.1.4 Conclusion

Using asymptotic arguments, an explicit expression of the spectral efficiency was
derived and was shown to depend only on a few meaningful parameters. This gives
some insight in terms of future research directions. In the “traditional point of view”
of cellular systems, the general guidance to increase the cell size has always been
related to an increase in the transmitted power to reduce path loss. However, these
results show that path loss is only the second part of the story and the first obstacle
is on the contrary frequency-selective fading since path loss does not destroy orthog-
onal multiple-access whereas frequency-selective fading does. These considerations
show therefore that all the effort must be focused on combating frequency-selective
fading through diversity and equalization techniques in order to restore orthogonal-
ity. Finally, note that these results deal only with the downlink and any deployment
strategy should take also into account the uplink traffic, as in the next section.
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Figure 4.2: Spectral efficiency versus inter-cell distance (in meters) in the case of
polynomial path loss (3 = 4) and no fading: 0% = 1077, P = 1.
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Figure 4.3: Spectral efficiency versus inter-cell distance (in meters) in the case of
exponential path loss and multipath fading: 02 =107, P=1,~v=1, L = 1,2, 10.



4.1 Downlink Multi-Cell Orthogonal CDMA 83

0.09

0.08

0.07

0.06

0.05

0.04

bits/s/Hz/meter

0.03

0.02

0.01

0 10 20 30 40 50 60 70 80 90 100

Inter—Cell Distance

Figure 4.4: Spectral efficiency versus inter-cell distance (in meters) in the case of
polynomial path loss (8 = 4) and multipath fading: 2> =10"7, P =1, L = 1,2, 10.
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Figure 4.5: Effect of the reuse factor: spectral efficiency versus inter-cell distance (in
meters) in the case of exponential path loss and fading: 02 = 1077, v = 2, P = 1,

r=1,2,3.
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Capacity versus the Inter-Cell distance with exponential path loss
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Figure 4.6: Spectral efficiency versus inter-cell distance (in meters) in the case of
exponential path loss with fading, without fading and interference free case (one

cell): 02 =10"7, P=1,v=2.
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4.2 Uplink Multi-Cell Random Spreading CDMA

In this section, the uplink counterpart of the model studied in Sec. 4.1 is studied.
In the context of flat fading, this is the topic of our contribution [BDACO05a]. It is
extended here to the more realistic case of frequency selective fading.

4.2.1 Model

We consider an infinite linear deployement of cells. The cell size is a and the density
of users is d, so that there are K = da users per cell. The spreading length is N,
with d/N = «, so that the load is K/N = «a. The model of communication is
exactly (3.12) from Sec. 3.2.2.

y = (H\/ﬁew)s+§:(ﬂl\/ﬁ@wl)sl+n. (4.17)

In the following, we assume that the frequency selective fading matrices H; be-
have ergodically, as in Def. 5. The two-dimensional channel profile of H;\/P; is
denoted p(f,z) = P(z) |h(f,z)]°, f€[0,1], z € [a(la —a/2),a(la+a/2)]. fis the
frequency index and x is the user index. This enables us to use Th. 2 in order to
obtain expressions for the SINR.

In the case of flat fading, h;x = hy for all i. Eq. (4.17) reduces to:

K 00
y = Zwkhk\/P(fL'k)Sk + Z thk\/P(xk)sk + n.
k=1 k=K+1

This case is treated in [BDACO05al.

4.2.2 Matched Filter
Single Cell

In this section, we assume that s; = 0 for all [ > 1. Let hj; be the k-th column of

H, and H(_;) be H with h; removed. Similarly, let w;, be the k-th column of W,

and W) be W with w;, removed. Let v/P(_j be vP with the k-th column and

line removed. Let Gy = H\/ﬁ@ W. Finally, let G(,k) = H(,k) \/ﬁ(,k) ® W(,k).
Supposing perfect CSI at the receiver, the matched filter for the k-th user is given

by g. = (hk\/P(xk) ® wk). This leads to the following expression for the SINR. of

user k

|t gi|”

o’gilgr + gff (G<_k)G{{k)) 8k

SINRy, =

Proposition 4 [TLV05] As N, K — oo with K/N — «aa, the SINR of user k at
the output of the matched filter is given by



4.2 Uplink Multi-Cell Random Spreading CDMA 87

where BMF : [—aa/2, aa/2] — R is given by

(f 1n(s,) \Qdf)2

M (z) = P(x)— — . (4.18)
o [y [n(F, @) P df + [0, [y P(y) IB(F,9)I [h(f,2) dfdy
Denoting SINR;, = SMF Prop. 4 enables us to extract an approximation of the
value of the SINR of user k in the finite size case
2
by (i > |hnk|2>
MF _ ol (4.19)

T a2\ 2 N 2 2"
N n=1 ‘hnk| + % Z];ﬁk Zn:l P] |h’n]’ |hnk‘
Single Cell Processing

In the case of the cellular network, there is also interference from outside the
cell. In addition to the notations of Sec. 4.2.2, let G, = H;»/P; ©® W,. Suppos-
ing perfect CSI at the receiver, the matched filter for the k-th user is given by

gr = (hk P(zy) ® wk>. This leads to the following expression for the SINR of

user k )
|2t |

o’gilgr + 8’ <G<—k>Gf’_k> + 25 GG/ ) gk

Proposition 5 As N, K — oo with K/N — «a, the SINR of user k at the output
of the matched filter is given by

SINRy, = M (24)
where BMF : [—aa/2,aa/2] — R is given by

o (Ji 1mtf. ) I2df>2
o2 [y Ih(f ) df + [12 [y PW) [h(f, ) [h(f, ) dfdy

Proof Foralll <k < K andl > 1, g and G; have independent entries, using
standard arguments [TLV05],

SINRy, =

OF

(4.20)

a(lata/2)

1
lim g/G/G/g, = / / P@) (o) B )P dfdy.  (421)

a(la—a/2)
Given the fact that P(y) is assumed to be an integrable function and that the fading
is ergodic, integrals from (4.21) can be summed for | > 1.

Compared to the smgle cell case of Sec. 4.2.2, there is an additional interference
term aa/2 fo ) [R(f, )7 |R(f, z)” dfdy in (4.20). In the finite size case,

2
N 2
E 7 & N 2 N 2 2°
WQ n=1 |hnk| + ﬁ Z#k Zn:1 ‘P] |hnj| |hnk|
Compared to the flat fading case in [BDACO05a], i.i.d. frequency selective fading

has an averaging effect, and only the distribution of the sum of the square norms of
the fading coefficients appears in the spectral efficiency.

(4.22)
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Joint Multi-Cell Processing

In the case of joint multi-cell processing, the matched filter gives the same SINR
results for each user, but is applied to a much greater (infinite) number of users.

4.2.3 Optimum Receiver
Single Cell

We recall that for a complex Gaussian process Y with zero-mean and auto-covariance
@, the differential entropy is [CT91]

H(Y) = log, det(2meQ) (4.23)

In this section, we assume that s; = 0 for all [ > 1. In the case of a single
cell, without inter-cell interference, the mutual information between Y and s at the
output of the optimum receiver is given by:

I(s,y) = H(y) — H(y/s)
= log, det(R + 0*I) — log, det(o?1)

where R = (H\/ﬁ ® W) (H\/ﬁ ® W)H By invariance, the spectral efficiency of
any cell (3.23) is given by

= %I(s,y) (4.24)

Proposition 6 When N — oo and % — «, the spectral efficiency with i.1.d. random
spreading and optimum filter is:

2

C = a%@) /; (mR(—z) — %) dz (4.25)

where m®(-) is the Stieltjes transform of the empirical distribution function of the
eigenvalues of R given by Th. 2:

) = [ ats 2

and u(f, z) satisfies the fized point equation:

1
u(f,z) = faa/z P(@)|h(f.0)2dx
—aa/2 14 [ P(z)|h(f ) Pu(f 2)df

—_— Z‘
Proof Note that
;N
C = Na ;1 log, ()\Z»R + 0%) — log, (0?)

! (logy (A + 0?) —log, (6°)) dF®(N)

N—ooco @
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where {)\ZR}Z-:L_,N is the set of eigenvalues of R, and F® is the empirical distribution

unction of the eigenvalues. Differentiating this expression with respect to o we
J f g g P /Z

obtain: oc
1 R, 2y L
do2  aln? (m ( 0) 02)

where m® is the Stieltjes transform of FR.

Another way to obtain the optimum capacity in the single-cell case is the fol-
lowing. Assuming perfect cancellation of decoded users, successive interference can-
cellation with MMSE filter achieves the optimum capacity [M01]. The following
proposition ensues from this fact.

Proposition 7 [TLV05] As N, K — oo with K/N — «, the optimal capacity is
given by:

a aa/2 o
C=- log, (1 + 3°°(x)) da

a aa/2

where 351¢ : [—aa/2,aa/2] — R is a function defined by the implicit equation

1 2
SIC _ \h(f, )| df
ﬁ I (x) B P(x) /0 0‘2 + ffcm/2 P(y)|h(f,y)|2dy ' (426)

1+357(y)

Single Cell Processing

The mutual information between y and s at the output of the optimum receiver
(based only on the knowledge of the intra-cell signatures) is given by:

I(s,y) = H(y) — H(y/s)
= log, det(Rg + 1) — log, det(R™ + o°1)

where R* = 3 (H;P; © W) (Hv/P, 0 W))" and Rf = R+ R,

Proposition 8 When N — oo and % — «, the spectral efficiency with i.1.d. random
spreading and optimum filter is:

C= ali(?) /02 <mR3r(—z) - mR+(—z)> dz (4.27)

“+o00

where m®o (2) and mR"(2) are the Stieltjes transforms of the empirical distribution
functions of the eigenvalues of Ry and RT given by Theorem 2:

i) = [ U2,
) = [ ()
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and t(f,z), v(f, z) satisfy the fized point equations:

1
t(f,2) = f+oo P(2)|h(f,2)2dz _
—aa/2 14 [ P(a)|h(f"2)Pt(f',2)df’
1
U(f? Z) = f+oo P(x)|h(f,z)|2dm o Z‘

aa/2 T [T P(@) (") (=) df’

Proof Note that
;N .
_ 2 : R, 2 Rt 2
= Na P 1o8; <Ai Lt ) ~ log, (Ai to )

1
i / logy (A + 0?) (dFRrT(A) - dFR*(A))
K/N—Cste

+
where {/\zRO bic1.n and {)\ZR+ Yie1..n are the sets of eigenvalues of Ry and RT, and
FRS and FRY are the empirical distribution functions of the eigenvalues. If we
derive this expression with respect to o we obtain:

o2 aln? (/ 02+/\dF ) /02+/\dF ()\))
1
= oz (7 () =™ ().

Joint Multi-Cell Processing

Proposition 9 When N — oo and % — «, the spectral efficiency with i.1.d. random
spreading, optimum filter and joint multi-cell processing is:

C = al;@) /; <mR3(—z) - %) dz. (4.28)

4.2.4 Simulations

In the following, we consider two special flat-fading cases.

e The unfaded case, i.e., the distribution function of the fading is 6(t — 1) (9 is
the Dirac function)

e The Rayleigh fading case, i.e., the distribution function of the fading is exp(—t).

The path loss is of the polynomial type P(x) = 1/(|z|+1)”. In Fig. 4.7, we have
plotted the spectral efficiency for 3 = 2, a = 0.01 and ¢? = 10~7. In addition to the
matched filter and optimum filter, we have drawn the curves for the MMSE filter (see
Sec. 3.5.1) in both cases of single cell processing (partial knowledge Wiener filter)
and joint multi-cell processing (full knowledge Wiener filter). Contrary to the case
for downlink CDMA, spectral efficiency always decreases when the inter-cell distance
increases. One can see that the fading does not have a great impact as faded and
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Spectral efficiency versus the inter—cell distance with polynomial path loss
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Figure 4.7: Results for a = 0.01, P(x) = 1/(|z| +1)%, 8 = 2.

unfaded curves are very close. Additionally, the curves show that optimum intra-cell
processing can more than double the spectral efficiency with respect to the use of
the matched filter or the Wiener filter. The relative gap is even higher for increasing
inter-cell distance (in which case the cell system is overloaded). In fact, the curve
given by (4.28) (not plotted due to scaling factors) shows that inter-cell interference
reduces spectral efficiency by a factor of 3 for the range of values of a considered in
Fig. 4.7.

4.2.5 Conclusion

Using asymptotic arguments, an explicit expression of the spectral efficiency of multi-
cell networks has been derived considering realistic path loss and fading models. We
have shown in particular the potential gain in cellular environments of optimum
intra-cell processing with respect to various receivers. The impact of inter-cell in-
terference has also been quantified for various inter-cell distances. The results are
especially useful for the deployment of cellular networks for a given target user rate.
Note that although the model under consideration applies to 1-D networks, it is
straightforward to extend the analysis to 2-D networks (in the case of a regular
pattern).
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4.3 Uplink Single-Cell Orthogonal CDMA

4.3.1 Motivation

Usual studies of uplink CDMA schemes suppose a multiple access communication
scheme where each user modulates his signal with a pseudo-random i.i.d. sequence
[TH99, SVO01, TLV05]. One of the reasons relies on the fact that, due to the multi-
path channel, the convolution of the codes with the different channels of the users
can be represented as a new set of codes with properties similar to a pseudo-random
sequence due to the randomness of the channel. As a consequence, even if codes are
designed for an orthogonal multiple access scheme, the multi-path channel unfortu-
nately destroys orthogonality. Therefore, the signaling overhead for synchronizing
the users in the network (by estimation/reshifting of each users channel delay in
a GSM mode) may overcome the SINR improvement due to the reduction of the
multi-user interference.

However, recently, Debbah et al. [DHLACO03a] showed that, as far as downlink
is concerned, a non-negligible gain can be achieved if one uses orthogonal codes to
serve the users, especially for highly loaded systems. The intuitive idea is that by
appropriate equalization, a user can restore orthogonal access in the network by
compensating the effect of his own channel (which is also common to all the users
in the downlink). The gain is mainly a function of the load (see [DLACO04]) and
the type of equalizer. However, in the uplink, such a result can not be applied as
each user code is distorted independently by a different channel. As a consequence,
the ability of any equalization scheme to restore orthogonality is very limited and is
mostly dependent on the channel (orthogonality destroying) fading characteristics.

The goal is to assess more precisely how multi-path fading affects the performance
of uplink-CDMA. In particular, for a given statistical environment, the gain of using
orthogonal codes in the uplink is theoretically quantified. The setting is analyzed
for the simple receiver structure of the Matched Filter as well as the Successive
Interference Cancellation (SIC) Matched Filter. In order to obtain interpretable
expressions, the problem is analyzed in the asymptotic regime: a high number of
users is considered where the spreading length N tends to infinity, the number of
users K tends to infinity but the ratio % — « is constant.

The results are based on random unitary matrix theory [HP00, PR04]. This
tool enables us to express the SINR in a very simple form in the large system limit.
Moreover, the theoretical results are shown to be very accurate predictions of the
system’s behavior in the finite size case (spreading length N of 256). This section is
based upon [BDACO5b].

4.3.2 Model

We consider a single uplink multi-user system cell, i.e., inter-cell interference free
case. The spreading length is denoted N. The number of users in the cell is K. The
load is & = K/N. The general case of wide-band CDMA is considered, as in (3.20):

y = (H\/ﬁ ® W)s +n. (4.29)
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Users are assumed to employ orthogonal codes. Although not restrictive and
in order to derive tractable expressions of the SINR, vectors wy = [wy, . . . ,ka]T
are supposed to be columns extracted from a Haar distributed unitary matrix, as
described in Sec. 2.2.4. Hence, W is an N x K unitary spreading matrix.

Wik
W = [W1|W2| e |WK} where wj, =

WNE

In the following, we assume that the frequency selective fading matrice H be-
haves ergodically, as in Def. 5. The two-dimensional channel profile of H is denoted
p(f,z) = P(x) |h(f,z)], f €[0,1], z € [0,a]. fis the frequency index and z is
the user index. This enables us to use results on unitary random matrices in order
to obtain expressions for the SINR.

4.3.3 Matched Filter

Let hy, be the k-th column of H, and H_;) be H with h;, removed. Similarly, let
wy, be the k-th column of W, and W _) be W with w;, removed. Let \/ﬁ(_k) be
VP with the k-th column and line removed. Let Gy = HVP ©® W. Finally, let
G(r=H VP r O Wy,

Supposing perfect CSI at the receiver, the matched filter for the k-th user is given
by g, = (hk\/P(xk) ® wk>. This leads to the following expression for the SINR of
user k
Bl
o’gi g + g (G<_k)Gf{k)> g

SINR;, = (4.30)

Proposition 10 For given channel coefficients, the SINR, with orthogonal codes,
converges almost surely to a deterministic value as N — oo and % — «, namely:

f(mk)Q

SINRy™ = P e on T vww) = o)

where

() = / Ih(f @) df,

=
&
S~—
I
—

/0 P(y) |h(f, =) |h(f, v)[ df dy.

/0 W, o) (f.9)df]| dy.

0
a

P(y)

=
=
I
—

0

Proof See Appendiz 7.1.
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Note that in the case of random codes (i.i.d. elements with zero mean and variance
), the SINR has the following expression (see [TLVO05]):

&(w)?

rand __
SINR,™ = o2& (xy) + v(zk)

The additional term p(xy) characterizes the orthogonality gain of the channel
and ranges from 0 to v(zy). The orthogonality gain is function of the selectivity
of the channel as well as the correlation between the channels. For example, if the
channels are all the same, SINRY"™ = gf—Q’“) and the orthogonality gain is maximal.

4.3.4 Discussion

Since path loss does not affect orthogonality, from now on, we set P(x) = 1 for all
users. We consider the case of a multipath channel. User k transmits through a
channel with impulse response as in (3.5)

L—1
Ck(T) = ang(;(T — Tkg).
=0

where we assume that the channel is invariant during the time considered. As in
(3.9), the coefficients hy, are given by the Discrete Fourier Transform of the fading

process.
L—1

hy, = Z nkgefﬂﬂ%wmzejﬂwme_
=0
We will use two simplifying hypotheses. The first one is that, in order to compare
channels at the same signal to noise ratio, we constrain the fading coefficients to be
complex Gaussian i.i.d. random variables with zero mean and variance 7.

E (] = 0 and E [[ne|?] (4.31)

_ ¢
T
The second one is that, for ease of understanding of the impact of the number of
paths on the orthogonality gain, the delays are supposed to be uniformly distributed
according to the bandwidth

14
From (4.32), the expression of A(f, x) from (3.13) is simply written
Ly—1
h(f,x) =Y nuee 7> el
=0

As a consequence, we obtain immediately:

L—

EOED

=0

—_
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As far as the terms v(zy) and p(zyg) are concerned, we obtain (see Appendix 7.1
for derivations):

L-1
(k) = CYQZ e (4.33)
=0
0 L-1
plaw) = a ZZ; el (4.34)
This gives us the following expressions for the SINR:
o |77k€‘2
SINROrth — =0 ,
g o +ap(l1-1)
L-1 |?7 ’2
SINRpd = &0 TR0
o°+ ap

We observe that the orthogonal gain depends only on the four parameters o2, a;,
oand L:
SINRy™ o+ ap
SINRE™ 02+ ap(1—1)°
Remarkably, at high SNR (02 — 0), the SINR gain is given by:

SINRg™ L

SINRP™ — L —1°
Hence, in the case of a two-path channel, one can increase by 3 dB the SINR
by synchronizing the users whereas for a 5-path channel, the synchronization gain
is less than 1 dB.

4.3.5 Simulations

In Fig. 4.8, the asymptotic SINR gain has been plotted versus the number of paths
L for an SNR of 10 dB (SNR=%). The simulated SINR gain for N = 256 has
also been plotted. The simulation curve has been obtained by generating at random
a single fading matrix and a single spreading code matrix. On Fig. 4.8, we can
observe that the simulations are very close to the theoretical formulas for a realistic
spreading length.

In Fig. 4.9, the mean spectral efficiency of the system with Matched filter has
been plotted. For the case of orthogonal spreading, the mean spectral efficiency is
given by:

L—1 2
=0 |77ké|

o +e0-D)

No

C = O‘E{nk} 10g2 1+
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where x represents the random variable 5;01 \77M|2, and p(z) is its distribution,
given by a Chi-Squared distribution with 2L degrees of freedom

folesz/g
(L—=1)!(e/L)"

In order to assess the gap with more complex receivers, the performance of the
Successive Interference Cancellation Matched Filter [MVO01]| has been plotted in
Fig. 4.9 in addition to the simple Matched Filter (MF). The principle of SIC receivers
is quite simple: assuming ergodic channels, users are ordered and are decoded suc-
cessively. At each step, supposing that the user has been encoded at the appropriate
decoding rate, the signal is decoded and its contribution to the interference is then
perfectly substracted. This removes some of the inter-user interference and therefore
increases the SINR of the following decoded users. The SINR of the k-th decoded
user is then:

p(x) =

L—1 2
0=0 |77ké‘

R )

SINRy"™" =

since the contributions of the £—1 first decoded users have already been substracted.
In the limit when N — oo and % — «, Cis then given by the implicit equation:

cmto(l—1

No

o —+00 T
C = / / log, | 1+ p(z)dzdy.
o Jo y ( 1 1))

Figure 4.9 shows C' for various values of L with orthogonal codes, with or without
successive interference cancellation (SIC), as well as comparative plots of C' obtained
with random i.i.d. spreading codes. The following results are obtained:

e ii.d. spreading always provides a lower spectral efficiency than orthogonal
spreading, with respect to the same filter.

e In the case of orthogonal spreading, the spectral efficiency is higher for low
values of L for any receiver (to ensure orthogonality between users). This is
in contrast with the case of i.i.d. spreading where L must be high in order to
decrease the randomness of the fading.

e As L increases, the gap between orthogonal and i.i.d. spreading reduces for
any kind of receiver. This result has already been shown previously through
the orthogonality gain expression.

e For L > 2, the gain of using a SIC scheme with respect to the Matched filter
is equivalent for i.i.d. and orthogonal spreading.

Other receivers can be considered, like the MMSE and optimum filters. How-
ever, the study involves more sophisticated tools for the orthogonal case, and the
theoretical analysis of these receivers is still under study. In the case of i.i.d. codes,
the results rely on a theorem due to Girko [Gir90, TLVO05].
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SINR gain on a multipath channel

—— simulation
—— theory

SINR gain

B E— —+— i )
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Number of multipaths

Figure 4.8: SINR gain on a multipath channel, « = 1, SNR = 10dB.

In order to evaluate the potential gains, simulations are shown for both orthog-
onal and i.i.d. random codes, with 3 different filters: matched filter (MF), MMSE
filter and optimum filter, on channels with respectively L=1 path (Fig. 4.10) and
L=5 paths (Fig. 4.11). The curves prompt the same comments as Fig. 4.9: though
there is always a gain in spectral efficiency with orthogonal codes, this gain de-
creases as L increases for any receiver. However, note that in the particular case
of the optimum receiver, i.i.d. codes achieve the single user Gaussian bound when
the load tends to infinity. Therefore, i.i.d. codes can outperform the performance of
orthogonal codes (if the system is working at high loads, see Fig. 4.11).

4.3.6 Conclusion

Using asymptotic arguments, an explicit expression of the SINR of an uplink CDMA
cell using orthogonal spreading codes and Matched Filter has been derived consid-
ering a realistic frequency selective fading model. The orthogonality gain has been
shown to depend mainly on the number of paths and the load of the system through
very simple insightful expressions. As a consequence, the need to synchronize the
users is mainly a function of the environment at hand and one could think of adap-
tive synchronization protocols for future multiple access CDMA schemes to increase
the rate.
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Figure 4.9: Spectral efficiency of the multipath channel, SNR = 10dB

Single User Gaussian Channel

Single User Rayleigh fading Channel

4+

Orth MF/MMSE/Optimum Random Optimum

Spectral Efficiency
w
T

Random MF

0 Il Il Il Il Il Il Il Il Il J

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Ratio Number of users/Spreading length

Figure 4.10: Simulations on the multipath channel, L=1, SNR = 10dB
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Figure 4.11: Simulations on the multipath channel, L=5, SNR = 10dB
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4.4 Uplink Multi-Cell Orthogonal CDMA

In this section, the infinite deployment of cells using orthogonal uplink CDMA as in
Sec. 4.3 is studied.

4.4.1 Model

We consider an infinite linear deployement of cells. The cell size is a and the density
of users is d, so that there are K = da users per cell. The spreading length is N,
with d/N = «, so that the load is K/N = aa. The model of communication is
similar to (3.12) from Sec. 3.2.2.

y = (H\/ﬁ ® W)S + i(Hl\/FZQ Wl)Sl +n. (4.35)

=1

Users are assumed to employ orthogonal codes. Although not restrictive and
in order to derive tractable expressions of the SINR, vectors wj = (w1, ..., wyni]?
are supposed to be columns extracted from a Haar distributed unitary matrix, as
described in Sec. 2.2.4. Hence, W and W;, 1 <[ < oo, are N x K independent
unitary spreading matrices.

In the following, we assume that the frequency selective fading matrices H; be-
have ergodically, as in Def. 5. The two-dimensional channel profile of H;y/P; is
denoted p(f,z) = P(z) |h(f,z)]", f€[0,1], z € [alla —a/2),a(la+a/2)]. fis the
frequency index and x is the user index. This enables us to use results on unitary
random matrices in order to obtain expressions for the SINR.

4.4.2 Matched Filter

Let hy, be the k-th column of H, and H(_;) be H with h;, removed. Similarly, let
wy, be the k-th column of W, and W _y) be W with w;, removed. Let \/ﬁ(_k) be
VP with the k-th column and line removed. Let Gy = HVP ® W. Finally, let
G(_k) = H(_k)\/ﬁ(_k) ® W(_k) and G, = Hl\/l?l@ W,. .

Supposing perfect CSI at the receiver, the matched filter for the k-th user is given
by g, = (hk\/P(xk) ® wk>. This leads to the following expression for the SINR of

user k
BN

SINR; = .
ogl'e + gl (GnGlLy + 57, GGl ) &

(4.36)

Proposition 11 As N, K — oo with K/N — aa, the SINR of user k at the output
of the matched filter is given by

5(%)2

SINR;™ = P(l“k’)gzg(xk) + (W(z) — p(xr)) + vt (zr)
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where

v) = / Ih(f, @) df,

/ N / y) [b(f, )" |h(f, ) dfdy,

aa/j
oL
/+ /0 P(y) [h(f,)[* [P (f,9)I dfdy.

a/2

2

/ h(f,x)h*(f,y)df| dy,

Proof See Appendiz 7.1.

Note that in the case of random codes (i.i.d. elements with zero mean and variance
), the SINR has the following expression (see Sec. 4.2):
£ (%)2

IN rand —PpP
S Rk; (xk)02€($k) +V+($k)

The additional term p(xy) characterizes the orthogonality gain of the channel
and ranges from 0 to v(zg). The orthogonality gain is function of the selectivity
of the channel as well as the correlation between the channels. For example, if the
channels are all the same,

4

orth

and the orthogonality gain is maximal. Note that using orthogonal codes does not
affect the inter-cell interference term, and reduces only the intra-cell interference.
The intensity of the inter-cell interference depends mainly on the type of path loss,
the more severe the path loss, the less severe the inter-cell interference.

4.4.3 Conclusion

Using asymptotic arguments, an explicit expression of the SINR of a multi-cell uplink
CDMA network using orthogonal spreading codes has been derived considering a
realistic frequency selective fading model. The orthogonality gain affects only intra-
cell interference, while the inter-cell interference is not reduced compared to the
random spreading case.

This concludes the chapter on network centric communications. We considered
only the case of CDMA in this performance analysis. However, numerous results
also exist in the case of other protocols, in particular, see Sec. 3.4.2 for examples in
the case of OFDMA.
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Chapter 5

User Centric Communications

5.1 ALOHA

In this chapter, we introduce in a networking context the two types of games pre-
sented earlier, namely Evolutionary Games and Correlated Games. A population of
mobile terminals competes over the access to a common channel. In order to keep
things simple, the model considered here is intentionally as simple as possible, i.e.,
ALOHA [Abr70, Rob72|. The results presented here come from the two publications
[BADO5] and [ABDO6].

In Sec. 5.1.1, a large population of communicating terminals using an unslotted
ALOHA protocol [Abr70] with two possible levels of transmission power is stud-
ied. An alternative simpler modeling approach is investigated, which enables to
obtain explicit analytical expressions for the performance measures. This enables to
compute analytically the solutions for various non-cooperative optimization criteria.

The problem of how to choose between both power levels is posed in non-
cooperative fashion, when mobiles are selfish and rational players. Their strategy
consists in choosing the probability to transmit with either power level. The consid-
ered payoffs are functions of the obtained throughputs and of the cost for the power
levels. In particular, the impact on the system performance of pricing for the power
levels is studied.

Two non-cooperative optimization concepts are studied: the Nash equilibrium
and the Evolutionary Stable Strategy (ESS). The latter was introduced in mathe-
matical biology in the context of Evolutionary Games, which allows to describe and
to predict properties of large populations whose evolution depends on many local
interactions, each involving a finite number of individuals (see Chapter 2).

To the best of our knowledge, this contribution is the first to apply evolutionary
games to study non-cooperative behavior in wireless networks.

In Sec. 5.1.2, the framework of correlated games is applied to slotted ALOHA
[Rob72|. All mobiles are thus supposed to be synchronized. As is frequently assumed
when studying slotted ALOHA, we assume that if more than one mobile attempts
to send a packet at time slot ¢ then all transmitted packets are lost and mobiles
wait a random amount of slots before retransmitting their packets, in order to avoid
repeated collisions.

We consider both the cooperative as well as the non-cooperative approaches. For
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each case we study the impact of adding coordination mechanisms on the through-
put.

The contribution is not only in applying the notion of correlated equilibrium in
the context of networking, but also in extending it to the multi-criterion case; in our
case, each mobile (player) has two objectives: expected throughput and expected
power consumption. We use the correlated equilibrium setting adapted to the con-
text of constrained optimization by each player (maximizing the average throughput
with a constraint on the average power consumption).

Coordination between players turns out to be useful also in the case of cooperative
optimization. Indeed, the coordination may be needed also in the so called team
problem [BC82, ABAT06], i.e., when various players have the same common objective
that they maximize (e.g., the global throughput). Users may benefit from performing
joint randomizations, which may not be possible without coordination due to the
distributed nature of the problem. The need for joint randomization in the team
setting is due to the multi-objective nature of the problem (more precisely to the
constraints on the expected power consumption).

5.1.1 Evolutionary Game Perspective to ALOHA
Unslotted ALOHA Model

We consider an infinite population of mobile terminals. We use a model similar
to |BG87| for unslotted ALOHA where the global arrival of new packets from all
mobiles follows a Poisson process with intensity .

We assume that for each packet, its source can choose the transmitted power
among two levels. All packets of the lower power level involved in a collision are
assumed to be lost and will have to be retransmitted later. In addition, if more
than one packet of the higher power level is involved in a collision then all packets
are lost. The power differentiation thus allows one packet of the higher power level
to be successfully transmitted in collisions that do not involve other packets of the
higher power level. This is the capture phenomenon [Rob72, LKZ98|.

In this section, we study the choice of power levels. A strategy for a mobile
corresponds to the choice of a power level. This can be a deterministic choice or a
randomized one. We assume that the power level choice for a retransmitted packet
is the same as the power level at which it was transmitted the first time. Thus,
if the whole population uses the same strategy ¢ for transmissions (meaning that
the higher power level is chosen with probability ¢, and the lower with probability
g = 1 — q) then the rate of arrival of packets that will be transmitted with higher
power level is given by Agq.

We consider a non-cooperative approach in which each mobile determines its
power level so as to maximize its payoff, which has two components:

e Pouc(p,q), which is the success probability when it chooses the higher power
level (level 1) with probability p and the lower one (level 2) with probability
p = 1 — p, given that all other mobiles choose the higher power level with
probability ¢ and the lower one with probability ¢ = 1 — ¢ (we shall keep using
q below as the strategy of other mobiles).



5.1 ALOHA 105

e 7(p), which represents the cost of a packet transmission when choosing the
higher power level with probability p. m(p) can be linear: if a is the cost for the
higher power level and b (b < a) for the lower one then we have 7(p) = ap+bp.
In this case 7(p) can represent in particular the expected transmission power.
7(p) can also be chosen as an arbitrary function 7, (p) representing the pricing
paid by the users. In this case, m3(p) is generally assumed to be strictly convex
and increasing.

We shall consider the following payoff function, given as the ratio between the
packet success probability and expected consumed power: J,.(p,q) = Ps%gm. This
type of payoff can represent in particular the power efficiency, i.e., the expected
number of packets that can be transmitted per a unit power transmitted [SMGO1].

Using the approach of [BG87|, we assume that the point process describing pack-
ets that are either transmitted with power level ¢ or retransmitted at a power level ¢
(1 = 1,2) is a Poisson process with intensity ¢g; = g;(\, q) (it depends on the arrival

process of packets as well as on the fraction of packets sent with each power level).

Computing the Performance Measures

Retransmission rates The function LambertW(-) is defined in the following way.
If 2z > —exp(—1), 2 = LambertW(z) is the root greater than or equal to —1 of the
equation z = z exp(x).

Remark 1 The function LambertW(-) satisfies the following property.

z

LambertW = 1
exp(LambertW(z)) LambertW(z) (5.1)
Theorem 3 e Assuming that \q < %exp(—l), we have
1
g1\, q) = —3 LambertW(—2\q). (5.2)
o Assume
A < %exp(—l),
if g < #p(_l) then A\qexp (exp(—l)%) < %exp(—l).
Then,
1 —2qg1 1 q
g2(\,q) = ~5 LambertW =—3 LambertW | = LambertW(—2\q) | .
q q
(5.3)
e Under the same conditions, we have
_ rq , P4
Piuce(p q) = pexp(—2¢1) + pexp(=2(g1 + g2)) = A (Z + g) . (54

e [f the conditions on (X, q) are not met, then there is no possible steady state.
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Proof The success probability of a higher power level (re)transmission is given
by exp(—2g1). Thus the rate of departure of type 1 packets (i.e., the rate of suc-
cessful packet transmissions and retransmissions of higher power level) is given by
g1exp(—2g1).

Since at steady state, \q, the rate of arrival of type 1 packets equals to the rate
of departure of type 1 packets, we have

Aq = g1 exp(—2¢1). (5.5)

FEq. (5.5) has a solution if 2\q < exp(—1), thus we obtain (5.2). It follows from
(5.2) that g1(X,0) =0 and g1(X, 1) = —1 LambertW(—2)\).

The success probability for type 2 packets is given by exp (—2[g1 + go]). Thus the
rate of departure of type 2 packets is given by gsexp (—2[g1 + ¢2]). Hence at steady
state:

A = gaexp (—2[g1 + g2]) (5.6)

A
Using (5.5), we can write exp(—2g;) = —q, and substituting in equation (5.6),
91
we obtain

—2qg:

= —2go exp(—2¢2). (5.7)

Eq. (5.7) has a solution if 2(7% < exp(—1). Since g1 < %, this is always verified
if ¢ > H%p(*l)' If ¢ < m, this condition becomes LambertW(—2Aq) >
exp(—1)%, and since the function x — wexp(z) is increasing for v > —1, we can
apply it to both sides of the inequality and get (5.3). It follows from (5.6) that

92(\, 1) =0 and g2(),0) = —1 LambertW(—2)\).

A
As (5.6) implies exp(—2[g1 + ¢o]) = 2 we obtain the global success probability
92

expression (5.4).

We observe that Py,..(p, q) is a linear function in p:

g q Aq
Psucc(paq) = )\p (_ - _) + —.
g1 g2

The coefficient multiplicating p is zero for ¢ = 1 and strictly positive other-

wise. More specifically, when ¢ = 1, we have exp(—2¢;(\, 1)) = —W){N(_Q/\) and
g2(A, 1) =0, so that
2\
Psucc ;1 = - . 5.8
(P 1) =~ [ mbertw(—2)) (5:8)
When ¢ = 0, we have g;(A,0) =0 and exp(—2¢2()\,0)) = —WM, so that
_ 2\
Psucc(pa O) =p—p (59)

LambertW(—2))
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Optimization issues We first seek to find the maximum throughput that can be
achieved (through the choice of A and ¢). (5.5) together with (5.6) imply that the
global throughput of the system is

O = g1 exp(—2g1) + g2 exp(—2[g1 + 92]). (5.10)

To obtain g, that gives the maximum throughput for a fixed ¢, we differentiate
(5.10) with respect to g» and equate to zero. This gives g5 = 1. g3 does not depend
on g; and the optimization of © corresponds to the optimization of the single-variable
function gy exp(—2¢;) + 3 exp(—2g; — 1). Therefore, g = 3 (1 — exp(—1)), and

O = %exp (exp(—1) —1). (5.11)

These values are obtained for A = ©* = L exp (exp(—1) — 1) and ¢ = 1—exp(—1),
which satisfy the conditions of Th. 3. We observe that this throughput is higher (by
a factor exp(exp(—1))) than the maximum stable throughput with a single power
level, which is equal to %exp(—l) for unslotted ALOHA. Such optimal performance
can usually be obtained only in a cooperative setting, for example when a regulator
enforces a common policy for all mobiles.

Nash Equilibrium

Power Efficiency case The payoff function for a mobile using strategy p while

the population uses strategy ¢ is given by
a4 _ aq q 9 _ q
Psucc(p7 Q) . A |:(91 92) p+ 92i| . A (91 gz)

m(p) (a—bp+b  a-—b

qg1 _ b
—q 3
1 + q92—4q91 a

P+

Jr(p.q) =

(5.12)
We begin by checking whether the boundary cases ¢ = 1 and ¢ = 0 are Nash
equilibria.
When ¢ = 1, we obtain from (5.8)

_ 22
Jr 1) = LambertW(—2X) . 5.13
R (5.13)

J.(p, 1) is strictly decreasing over p € [0,1]. Thus p = 0 optimizes J.(p, 1), so that
q = 1 is not a Nash equilibrium.
When ¢ = 0, we obtain from (5.9)

2

p—= ﬁLambertW(—Q)\)
Jo(p,0) = 5.14
(p, 0) @ bp+l (5.14)
Differentiating (5.14),
%( O) _ b + aLambefti\N(—Q/\) (5 15)
op ((a—b)p+b)? |

we conclude the following:
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o If —W’\\N(_Q/\) > 2 (ie, A < —LInl) then J.(p,0) is non-increasing over

p € [0, 1]. Therefore ¢ = 0 is a Nash equilibrium.

o If —W’\\N(_m < 2 (ie, A > —2In?) then J(p,0) is strictly increasing

over p € [0,1]. Thus ¢ = 0 is not a Nash equilibrium.

To obtain other equilibria, consider now ¢ € (0,1). The following theorem is
deduced from (5.12).

Theorem 4 J.(p,q) does not depend on p if Ggi(a —b) = (qg2 — Gg1)b. Ifg >
exp(—1), there are three solutions to this equation, ¢ =0, ¢ =1, and

_ 21 (3)
LambertW (-2 (4)"")

¢ =1

When ¢* € (0,1) (which is not necessarily the case), ¢* is a Nash equilibrium.

Note that if we allow the parameters 2 € [exp(—1),1) and A € (0,3 exp(—1))

to fluctuate independently, then it is rather straightforward that the expression of
q* can take any value in (—oo,1). However, we observe that for A = —%lng,
¢* = 0, which implies that if A > —2Z1In2 then ¢* € (0,1), and if A < —>In 2 then
q* € (—00,0].

To find other possible equilibria, compute

9J, _ q92b — qgia
_( ’ ) =A 2"
9192 ((a = b)p+b)

The solutions to %‘g‘ (p,q) = 0 reduce to the case studied in Th. 4.

(5.16)

Pricing case When the cost function 7y (p) is strictly convex, and we consider the
payoff function

 Pucclpa) A (5_(11 N %>
Jr(pa Q) - 7T2(p) - 7T2(p)

non-trivial potential Nash equilibria are determined by the following implicit equa-
tion:

m2(p)
; r(q”) In(r(q")) ) P
1 LambertW (=2 (r(¢*))7(@") where 7(p) % -p+1
T2

Evolutionary Stable Strategy

In the biological context, the payoff, or fitness, for an individual is related to its
reproduction capability. A higher reward to some behavior (which can represent
more food or more chances to mate) implies a higher growth rate of individuals that
adopt it.

Assume a population uses a strategy ¢*. This could be obtained either by a
fraction ¢* of the population playing one strategy and the remainder ¢* playing the
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other, or by each individual randomizing between the strategies. A small fraction
(identified as mutations) adopts another distribution p over the two strategies.
The definition of an ESS ¢* is given by the following relation, for all p # ¢*.

J(p.q") < J(q". q"), (5.17)
J(p,q") = J(¢",q") and J(p,p) < J(¢",p). (5.18)

If (5.17) is verified, then the fraction of the mutations in the population will
tend to decrease (as it has a lower fitness, meaning a lower growth rate). ¢* is then
immune to mutations.

In the special case of (5.18), a population using ¢* is “weakly” immune against a
mutation using p. If the mutant’s population grows, then we shall frequently have
individuals with strategy ¢* competing with mutants; in such cases, the condition
J(q*,p) > J(p,p) ensures that the growth rate of the original population exceeds
that of the mutations.

Computing ESS: Power Efficiency Evolutionary Stable Strategies constitute
a subset of the set of Nash equilibria, therefore we only have to check whether the
Nash equilibria satisfy either condition (5.17) or (5.18).

Assume that A < —2=In2 then the Nash equilibrium ¢* = 0 (see (5.15)) is also
an ESS, since (5.15) implies that for all p # 0, condition (5.17) holds.

Assume that g > exp(—1) and A\ > —% lng then the Nash equilibrium in Th. 4
exists, and is ¢* € (0,1). We note that the utility of a player does not depend on his
choice of p: J.(¢*, ¢*) = J.(p,q"), ¥p. Thus condition (5.17) does not hold. However,
from (5.16), if p < ¢*, then 86{; (¢,p) > 0 and if p > ¢*, then aa—ﬁ(q,p) < 0, which
means that for all p # ¢*, condition (5.18) holds. Therefore ¢* is an ESS. Finally,
for A\=—21n2, (5.17) does not hold, but (5.18) does and ¢* = 0 is an ESS.

Therefore, all Nash equilibria previously exhibited are ESS as well. As stated in
the previous subsection, this fact has the following interpretation. All these equi-
libria are robust against small perturbations either in the “immune” or the “weakly
immune” sense.

Numerical Results

Figs. 5.1 and 5.2 show curves delimiting the atteignable regions of (), ¢) in steady
state. Remember that the system is in steady state if the throughput is equal to the
arrival rate A\. The different atteignable regions are located on the left of the curves
pictured. If the arrival rate is larger than certain values (possibly dependent on the
transmission probability ¢), then there is no possible steady state.

As a means of comparison, the bound on the throughput of an ALOHA scheme
with a single power level has been plotted. This bound is equal to %exp(—l). The
atteignable region with one power level lies on the left of the dashdotted straight line.
For two power levels, (), ¢) must satisfy the two conditions of Theorem 3 and the
bound on the obtainable throughput is always larger than %exp(—l). In particular,
the point defined by (5.11) appears as the rightmost point on the dashed curve in
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both figures. The atteignable region using two power levels lies on the left of the
dashed curve. It is to be noted that these theoretical results can be applied to any
ratio b/a < 1 of the two powers; however, if b/a is too close to 1, then the hypothesis
of capture phenomenon becomes questionable.

In the case of a linear cost function, an interesting result occurs when b/a =
exp(—1). For this particular value, the Nash equilibria curve will merge with the
bound curve up to the point defined by (5.11), as seen in Fig. 5.1. It can be shown
using the theoretical formulas, that this is the only case in which the optimum
throughput represents a Nash equilibrium. For b/a > exp(—1), the Nash equilibria
(and ESS) points are always on the left of the bound. However, there still exists Nash
equilibria points up to a certain throughput greater than %exp(—l). In addition,
for all b/a, the highest A such that there exists a corresponding Nash equilibrium
which lies on the bound curve, as can be seen on Fig. 5.2.

The case of an exponential pricing is shown in Fig. 5.3. The curve obtained for
the Nash equilibria shows a similar behaviour as the case of a linear payoff.

In Fig. 5.4, we show the curves of the payoff function at the Nash equilibrium
for some values of the parameter b/a, as well as for an exponential pricing, with
regard to the rate of arrival A (which is also the throughput at steady state). For
the linear cost function, two distinct decreasing regions can be distinguished in each
case, the first one corresponding to the trivial Nash equilibria and the second one
to the equilibria of Th. 4. For the exponential pricing, the curve is plotted only for
the non-trivial Nash equilibria we have found. These curves show that even though
the throughput with a lower value of b/a is higher, the payoff for a mobile is lower.
These results provide an insight on the potential gains when using several power
levels in a non-cooperative framework in wireless communications.

5.1.2 Correlated Equilibrium in ALOHA
Slotted ALOHA Model

We consider a finite population of K mobile terminals. Each mobile has a unique
i.d. number ranging between 1 and K. Time is slotted.

Let N'= {0, 1}¥ represent the set of all 2% subsets of {1,..., K}. At each time
slot, a subset of mobiles Z(t) € N is assumed to be active. The number of active
terminals at time ¢ is equal to the Hamming weight |Z(t)| = S.5, Zi(t) of Z(t)
and denoted by N(t). Z(t) (and thus N(t) = |Z(t)|) are assumed to be stationary
ergodic processes.

Each active mobile is assumed to be saturated, i.e., it always has packets to
send. At each time slot, a random subset of mobiles is active. If at a time slot, more
than one active mobile attempts to transmit then there is a collision and all packets
transmitted in the time slot are lost.

Let g; denote the probability that mobile i transmits a packet when active (we
call ¢; the strategy). If z € N, let ((z) be the probability that the subset z of
mobiles is active at a slot and let m, = >, _, ((z) be the probability that there are
n active mobiles at a slot. In particular, the probability that mobile i is the only



5.1 ALOHA 111

—_

\\ Optimum
*«_ Throughput

P

. Optimum Throughput
with one power level

o
©

o
oo
T

o
3
T

o
(2]
T

o
(o)
T

o
~
T

o
w
T

Nash Equilibria

o
n
T

124
o
T

0.1

Transmission probability g for power level

o

0.3

o

Arrival rate A

Figure 5.1: Atteignable throughput, Nash equilibria points with power efficiency
payoff function, b/a = exp(—1).

active mobile in a slot is ((e;) where e; is the vector whose elements are all zero
except for the ith entry which equals one.
The probability of a successful transmission at a time slot is

Oun(qi;- -, qx) = Ez Z% H (1—q5)

€2 jeZ\{i}

=Y @Y a [] t-q) (5.19)

zeN €z jez\{i}

which is also the system throughput. The expected average throughput per mobile
is Ou1/ K. The throughput of mobile i conditioned on being active is given by

@?Ct(ql,,qK):Ez q; H (1—(]]) ZEZ
jez\{i}

—4> ¢ ] 1-a). (5.20)

zeN jez\{i}
1€2

In the following, the purpose of cooperative optimization will be to maximize
the system throughput ©,;, whereas in a non-cooperative setting, each mobile will
attempt to maximize selfishly its conditional throughput ©2<* which we call its
utility.
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No Coordination Mechanism

General Case The maximal throughput that can be attained is obtained by max-
imizing the system throughtput O,y (qi, ..., qx) given by (5.19) over (q1,...,qx) €
[0,1]%. Since O.u(qi,...,qx) is a multivariate polynomial, hence continuous in
(q1,.--,qx), and [0,1]¥ is a compact set, the existence of a maximum is immediate.
For given {((z)/z € N}, computing this maximum is a constrained optimization
problem [Lue84].

If the mobiles are non-cooperative and care only for their own throughput then
it is immediate from (5.20) that the only Nash equilibrium is wheN all mobiles
transmit with ¢; = 1. The global throughput is then 7, and the expected average
throughput per mobile is 7 /K.

In the non-cooperative case, we are also interested by the conditional throughput,
i.e., the throughput of a mobile averaged over the activity periods of the mobile. The
conditional throughput of mobile 7 when ¢; = 1 for all mobiles is given by ((e;).

Power Considerations In reality mobile users are sensitive to power consump-
tion. Their objective is to maximize the system throughput (in the cooperative
case) or the individual throughput (in the non-cooperative case) under the con-
straints ¢; < ¢ for some constant ¢]"**, for all users ¢. In the cooperative case,
we can model the choice of transmission probability ¢; as a constrained optimization
problem. In the non-cooperative case, it is easy to see that the Nash equilibrium

is obtained with ¢; = ¢™* for all mobiles. From (5.19), this gives at the Nash
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equilibrium the throughput of

Oun(g™, ... ™) => () > g™ ] 1 —g¢™),

zeN i€z jez\{i}

and from (5.20), the conditional throughput as

@act( max’ o 7q%ax _ qinax Z C H q;nax).

zeN JGZ\{Z}
1€2Z

Coordination, Correlated Equilibrium and Optimization

Coordination Mechanism If the base station had full information and could
schedule transmissions of the mobiles then full utilisation (i.e., a throughput of
1 —mp) could be achieved by a TDMA type approach. We consider however the case
where the base station has no control over the mobiles and has no information on
their power constraints nor on their number. It can only serve as an arbitrator, in
the sense that was discussed in the introduction.

We therefore consider the following coordination mechanism. We assume that
at each time slot t, the base station can send a signal to all mobiles in the form of
a random variable X (), uniformly distributed over the integers {0,...,x — 1} for
some integer k > 2. We assume for simplicity that K is a multiple of k. The process
X (t) is assumed to be independent of Z(t). Our goal is to look at the incentive
given to the selfish mobiles so that possibly, for a given coordination signal, only a



114 User Centric Communications

1 T T T T T
0.8} ]
- b/a = exp(-0.5)
‘-06 0.6 —
>
©
o
04 / , |
b/a = exp(-1)
0.2f .
0 0.55 011 o.‘15 012 o.‘25
Arrival Rate

Figure 5.4: Values of the payoff function, power efficiency b/a = exp(—1) and b/a =
exp(—0.5), and exponential pricing.

fraction of the mobiles has a nonzero transmission probability. Thus we introduce
the coordination mechanism detailed in the following.

Transmission Strategy for Mobiles In absence of any coordination mechanism,
a strategy of a mobile would be the probability of transmitting a packet. In the
presence of the coordination mechanism, a mobile has the possibility to use a larger
notion of strategies.

Definition 7 We define the set of correlated policies as follows.

o We partition the set of all mobiles into x subgroups S;, j = 1,..., Kk where S;
contains a mobile i if and only if i = j — 1 (mod k) (denotedi=j—1).

o A correlated strategy of a mobile is described using two real numbers in the
unit interval: p; and g;.

o At time t, an active mobile i transmits a packet with probability p; if and only
if © € Sx(). Otherwise it transmits with probability g;.

The class of correlated strategies includes in particular the non-correlated strate-
gies. Thus, in the non-cooperative setting, a mobile has always the possibility of
ignoring the signals X (¢) by using p; = ¢;. The latter can be viewed as a non-
correlated strategy.
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We call (p;, q;) the strategy of mobile i. For two K-dimensional vectors p and q
we define (p,q) to be a multi-strategy for all mobiles, where mobile i uses the ith
entry (p;, q;) of the vectors (p,q). Let

U=A{p,q)/vie{l,...,K}, pie|0,1], ¢ €[0,1]}
denote the class of all multi-strategies.
Define (p,q)~" to be the set of K — 1 strategies of all mobiles except for mobile
i, and set ((p, q) (P, q’)i> to be the policy where all mobiles other than the ith
one use the policies described by (p,q)~* whereas the ith mobile uses policy (p', ¢').

Power Considerations We assume that mobile ¢ has a constraint on the average
power it can use while active. In our model, this power constraint is directly linked
to the probabilities of transmission of the mobile. More precisely, the average power
consumption during activity periods of a mobile with parameters (p, q) is

p, (k- 1)q_

Pow(p, q) = = 5.21
ow(p,q) ==+ (5.21)
We then assume that mobile ¢ has the power constraint

Pow(p;, ¢;) < ¢;" where ¢ < 1. (5.22)

Let U™ denote the class of strategies of mobile i satisfying (5.22). Let
U ={uel/VNie{l,...,K}, v € U™}
denote the class of multi-strategies u for which for each i, u; = (p;, ¢;) satisfies (5.22).

Definition 8 A multi-strategy u € U™ is said to be a correlated equilibrium if for
all i and (p',q'") € U™

Or(u) = O (u™, (¢, ); ). (5.23)

Definition 9 A multi-strategy u* € U™ is said to be correlated optimal if for all
feasible multi-strategies u € U™,

Ouu(u”) > O4y(u). (5.24)

The expressions for O, (u) and ©3*(u) can be written as

Ou(w) =3 @Y [ = T[ a-p) I] -0

zeN i€z jez\{i} jez\{i}
J=i J#

q; -
+; E | | (1 _pj) | | (1 - qJ) (5'25)
k=1 jez\{i} jez\{i}
k#i =k J#k
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and

o =23 ¢z) I a-») I] 0-a)

zeN jez\{i} jez\{i}
1€Z j=i VE=)
qi .
+ > ¢=)> [ a-p) J] —g)- (5.26)
zeN k=1 jez\{i} jez\{i}
i€z k#Ei " =k J#k

©2¢*(u) is an affine function of p; and ¢;. Therefore, in order to maximize ©2(u),
the inequality in (5.22) will be an equality: each mobile will transmit at the maxi-
mum of its possibilities. In the next section, we investigate how the power is split
between p; and ¢; for each mobile in a particular case.

Symmetric case Solving the constrained optimization problems of (5.19) or (5.25),
as well as finding Nash or correlated equilibria, becomes rapidly intractable in the
general case when the number of mobiles K (and hence the number of variables in
the multivariate polynomials involved) increases. To simplify the analysis, we con-
sider a symmetric case when the coefficients ((z) depend only on |z|, and the power
constraints ¢"** = ¢™** are the same for all users.

We consider a simple model when mobiles are independently active with a proba-
bility . This corresponds to the model used in [KL75| for users with a single packet
buffer, when the probability of arrival of a new packet is equal to the probability
of retransmission of a backlogged packet. In this case, the coefficients in (5.19) and
(5.25) become symmetric, since for all z such that |z| = n, ((z) are equal:

((z) = 77l(1 — m)K -l (5.27)

In the non-cooperative case, we can restrict to the same strategy (p,q) being used
by all users, and investigate if a single user deviating from this strategy benefits by
using a different strategy (p, ¢). Recall that m, = -, _ ((z). Let

N

K K

After some manipulations, (5.26) can be rewritten as:

~ K
@&Lct(u) _ B Z Lﬂ_

K n=1 (I'rf) !

min({—1,n—1)

<o (U ameras e

k=max(0,n—1—X\)
K

(k= 1)q 1
+ 5 T
2T

min(4,n—1)

<2 (,i) (n i;i k,) (1-p)1—g" " (5.28)

k=max(0,n—\)




5.1 ALOHA 117

The power constraints (5.22) give us
p = kq™™ — (k—1)q. (5.29)

Replacing p by this expression in (5.28), we obtain ©**(u) as an affine function in
q. Hence, the optimal ¢ will be either

max __ ] max

" ) or min(1, .
Ii j—

Kk—1

)

max (0,

depending on the sign of the coefficient

K min(¢,n—1)
1 4 A—1 k n—1—k
S > ()2 u g
n=1 \n k=max(0,n—\)
min(¢—1,n—1)

_f%m > ()i Jeera-art e

n=1 k=max(0,n—1—X\)

This gives us a simple formula to investigate whether or not a given value of
(p, q) that saturates (5.22) is a correlated equilibrium: replace (p, q) by their values
in (5.30) and estimate the sign of the expression. If the chosen ¢ satisfies

)

and the sign of (5.30) is negative or if the chosen ¢ satisfies

)

and the sign of (5.30) is positive, then (p, ¢q) is indeed a correlated equilibrium.

quax -1

= 0
q = max(0, —

max

Kk—1

¢ = min(1,

Numerical Results

We use the terms cooperative and non-cooperative to describe the behavior of mo-
biles, whereas the term coordination refers to the presence of a common signal.
Without coordination, the equilibrium concept in the non-cooperative case is the
Nash equilibrium, whereas it is the correlated equilibrium with coordination.

In this section, we consider the setting of Sec. 5.1.2. However, an interesting
result is that, even in this symmetric case, the optimal throughput is neither reached
by saturating the power constraints ¢/*** for all users nor for a symmetric attribution
of the channel (i.e., the same strategy for all users).

In Fig. 5.5, we have plotted the system throughput ©,; versus the probability
of being active m with and without coordination, according to (5.19) and (5.25), for
6 users, without power constraints (¢** = 1 for all users). We observe that the
optimal throughput with the same strategy for all mobiles reaches a plateau and
stays constant, no matter how active the mobiles are. With coordination, the value
of this plateau is increased.

With a non-symmetric attribution of the strategies, a higher system throughput
can be achieved. The linear portion of the curve, for 7 > 0.5, is actually obtained by
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letting only one user transmit; for 7 < 0.5, it is optimal to let several users transmit.
Without power constraints, the optimal throughput with coordination is the same
as without coordination.

The system throughput reached at Nash equilibrium (i.e., ¢ = 1 for all mobiles)
is close to the optimum for low values of = (when few mobiles are active), but rapidly
decreases and approaches 0 as the probability of being active increases. Note that
without power constraints, Nash and correlated equilibrium coincide, therefore the
coordination mechanism does not increase the throughput in the non-cooperative
case. We remark that the curve for Nash equilibrium corresponds to the throughput
calculated in [KL75], which is simply Km(1 — m)%-1.

The optimal curves in Fig. 5.5 are obtained without power constraints. With
power constraints the optimal curves will always be lower.

In Fig. 5.6, we have plotted the system throughput ©,; obtained in the correlated
equilibrium with power constraint ¢™** = 0.25. In the case k = 3, two correlated
equilibria are possible: p = 0.75, ¢ = 0 or p = 0, ¢ = 0.375 (denoted respectively
as 1 and 2 in the figure). In the case kK = 2, there are two correlated equilibria as
well: p=0.5,¢=0and p =0, ¢ = 0.5 (both give the same system throughput). As
a comparison, we have plotted the optimal throughput that can be obtained under
the power constraint ¢™** = (.25 in the cooperative case, as well as the throughput
obtained in the Nash equilibrium without coordination.

Non-cooperative throughput is improved compared to the case without power
constraints. With strong power constraints, we observe that the coordination mech-
anism allows to obtain higher values of the throughput in the non-cooperative case.
For some probabilities 7, non-cooperative global throughput almost reaches the val-
ues obtained in the cooperative case.

5.1.3 Conclusion

This chapter was devoted to introducing two game theoretical concepts in a net-
working context. It shows that game theory is a relevant concept in the engineering
of communication systems and gives insight on how to apply game theoretical tools
to networking and wireless communications.
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5.2 Non-Atomic Games for CDMA

The performance of a CDMA system is analyzed in the context of frequency selective
fading channels. Using game theoretic tools, a useful framework is provided in
order to determine the optimal power allocation when users know only their own
channel (while perfect channel state information is assumed at the base station).
The realistic case of frequency selective channels for uplink CDMA is considered.
This scenario illustrates the case of decentralized schemes, where limited information
on the network is available at the terminal.

This represents an extension of [MPSMO05| in the case of frequency-selective fad-
ing. We do not consider the case of multiple carriers, as in [MCPS06], and the
results are very different to those obtained in that work. The extension is not trivial
and involves advanced results on random matrices with non-equal variances due to
Girko [Gir90] whereas classical results rely on the work of Silverstein [SB95]. A part
of this work was published as a conference paper [BDAHO07b|. Moreover, in addition
to the linear filters studied in [MPSMO05], we study the enhancements provided by
the optimum and successive interference cancellation filters.

The goal is to derive simple expressions for the non-cooperative Nash equilibrium
power allocation as the number of mobiles becomes large and the spreading length
increases. (Game theory can be used to treat the case of any number of players.
However, as the size of the system increases, the number of parameters increases
drastically and it is difficult to gain insight on the expressions obtained. In order to
obtain expressions depending only on few parameters in the large system limit, two
asymptotic methodologies are combined. The first is asymptotic random matrix
theory which allows us to obtain explicit expressions of the impact of all other
mobiles on any given tagged mobile. The second is the theory of non-atomic games
which computes good approximations of the Nash equilibrium as the number of
mobiles grows.

In the asymptotic regime, the non-cooperative game becomes a non-atomic one,
in which the impact (through interference) of any single mobile on the performance
of other mobiles is negligible. In the networking game context, the related solution
concept is often called Wardrop equilibrium [War52]; it is often much easier to com-
pute than the original Nash equilibrium [ABAT06]|, and yet, the former equilibrium
is a good approximation for the latter, see details in [HM85|. The non-atomic equi-
librium is derived, and is shown to correspond generally to a non-uniform power
allocation for the users.

The non-atomic Nash equilibrium is studied in this section for several linear
receivers, namely the matched filter and the MMSE filter, as well as non-linear
filters, such as the successive interference cancellation (SIC) [MVO01] version of those
filters. However, in order to perform SIC, the users need to know their decoding
order, in order to adjust their rates. Two ways of obtaining an ordering of the users
in a distributed manner are introduced. The ordering can be determined simply
in a distributed manner under weak hypotheses. This gives rise to a different kind
of power allocation, that depends explicitly on the order in which the users are
decoded.

Moreover, the gain of the non-uniform power allocation with respect to uniform
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power allocation is quantified, according to the number of paths. The originality
of the work lies in the fact that we show that as the number of paths increases,
the optimal power allocation becomes more and more uniform due to the ergodic
behavior of all the CDMA channels. This is reminiscent of an effect (“channel hard-
ening”) already revealed in MIMO [HMT04]. The highest gain (in terms of utility)
is obtained in the case of flat fading (which also favors dis-uniform power allocation
between the users).

5.2.1 Model

We consider a single uplink multi-user system cell, i.e., inter-cell interference free
case. The spreading length is denoted N. The number of users in the cell is K. The
load is a = K/N. The general case of wide-band CDMA is considered, as in (3.20):

K
y = ZDka\/FkSk +n
k=1
= (HVPOW)s+n (5.31)

where ® is the Hadamard (element-wise) product.

Notations are the same as in Chapter 3 and are summarized here for clarity. In
(5.31), H is the frequency selective fading matrix, of size N x K. /P is the root
square of the diagonal power control matrix, of size K x K. W is an N x K random
spreading matrix.

In the following, we will assume that the frequency selective fading matrix H
behaves ergodically, as in Def. 5. The two-dimensional channel profile of HVP is
denoted p(f,z) = P(x)|h(f,z)[>, f €[0,1], z € [0,a]. f is the frequency index
and x is the user index. This enables us to use Th. 2 in order to obtain expressions
for the SINR.

It is also assumed that the power of all users is upper bounded by P, and the
square norm of the fading, on all paths, for all users, is upper bounded by hax-

5.2.2 Asymptotic SINR Expressions

Let hy be the k-th column of H, and H(_;) be H with hy, removed. Similarly, let wy,
be the k-th column of W, and W _;) be W with w;, removed. Let \/ﬁ(,k) be VP
with the k-th column and line removed. Finally, let G = H(_k)\/ﬁ(_k) O W .

Matched Filter

Supposing perfect CSI at the receiver, the matched filter for the k-th user is given
by gr = Py (hy ® wy,). This leads to the following expression for the SINR of user
k

2
e
o’gi g + g (G<_k)Gf{k)> g

SINRy, =
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Proposition 12 [TLV05] As N, K — oo with K/N — «, the SINR of user k at
the output of the matched filter is given by

k
SINR;, = pM* <N>

where BMF : [0, a] — R is given by

MF (H(I))z
z) = P(x .
) = P e o % o 1T PO 1k o) PG 0P dfdy (5.3

and H(x fo \h(f, )| df.

Denoting SINRy = S'F, Prop. 12 enables us to extract an approximation of the
value of the SINR of user k in the finite size case

2
N 2
E T, . .
o N + 5 3 oy Py gl [

We observe that Pj,—5— aﬁ k = BMF,

MMSE Filter

Supposing perfect CSI at the receiver, the MMSE filter for the k-th user is given by
H

gMMSE — R-lg, where R = ((H\/ﬁ © W) (H\/ﬁ © W> + 021N). This leads

to the following expression for the SINR, of user & [TH99]

SINRk = g/? (G(fk)Ggik) + 0'211\1)71 . (534)

Proposition 13 [TLV05] As N, K — oo with K/N — «, the SINR of user k at
the output of the MMSFE receiver is given by:

k

where BMMSE . [0, o] — R is a function defined by the implicit equation

! h 2d
ﬁMMSE(IE) — P($)/ ‘ ((lfp'f)‘h(ff)l ey (535)
0 o2+ o By

Denoting SINR;, = SMMSE Prop. 13 enables us to extract an approximation of
the value of the SINR of user £ in the finite size case

1
MMSE
n=1 o+ N Zﬁgk L+ GMVSE
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MMSE
From (5.34), we observe that P 6ﬁgpk — [MMSE,

From Prop. 13, we have the capacity of user k

1
CYVSE =  log, (1+ BYMS7).

The global capacity of the system is

CMMSE — /a log, (1 + gMYSE(z)) da. (5.37)
0

Optimal Filter

The term optimal filter designates a filter capable of decoding the received signal
at the bound given by Shannon’s capacity. Hence it is difficult to define an SINR
associated to it. However, results of random matrix theory can still be applied. Let

Y = (H\/§ ® W) The definition of Shannon’s capacity per dimension for our
system is

1 1
COPT — —Jog,det [ Iy + =YY . 5.38
() N oszdet { v + o2 (5.38)

As N, K — oo with K/N — a,
1

where v is the empirical eigenvalue distribution of YY¥, as in Def. 3. If we differ-
entiate the asymptotic value COF'T of (5.39) with respect to o2, we obtain

HCOPT _U_l4t
507 :logz(e)/ 1+Ltl/(dt)

o2 (—ly_ 1 1
= logQ(e)/ (a;zl n (it) ) v(dt)

= log,(e) (/t_l_lazy(dt) - %/u(dt))

~logy(e) (m (-0 - ;) (5.40)

g

where m¥(-) is the Stieltjes transform of the empirical eigenvalue distribution of
YY#. From Th. 2, m”(-) is given by

) = [ (. 2)df

where u(f, z) is given by (2.3) with pPVP(f,2) = p(f,z) = P(z) |h(f,z)]>. Given
that if 0% = 400, COPT = 0, it is immediate to obtain COT from (5.40) as

CoT ~tog(e) [

+00 1
m”(—z) — —dz. (5.41)
z

2
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Proposition 14 COFT and CMMSE gre related through the following equality

COPT — CMMSE _ 164 (p) Oa %dm
' Lo p(f,x)

Proof See Appendiz 7.2.

The additional term in the right-hand side of (5.42) corresponds to the non-linear
processing gain. It quantifies the gain in terms of capacity that can be achieved
between pure linear MMSE and non-linear filtering.

Assuming perfect cancellation of decoded users, successive interference cancella-
tion with MMSE filter achieves the optimum capacity [M01]. The following propo-
sition ensues from this fact.

Proposition 15 [TLV05] As N, K — oo with K/N — «, the optimal capacity is
given by:

CoPT = / log, (14 8%%(2)) da
0

where 351 : 0, a] — R is a function defined by the implicit equation

(A(f, )| df

fﬂc P(y)|h(fy)Pdy
0 1+p51¢y)

57w = P) [ —— (5.43)

Prop. 15 enables us to extract an expression that is analog to the SINR for the

optimal filter. Similarly to the case of 3MMSE in Sec. 5.2.2, the derivative of this

. o SIC SIC
expression obeys the property P = .

B
oP, — Ik

5.2.3 Games and Equilibria

From now on, we denote SINRy, = 3, whichever filter is actually used.

Power Allocation Game

A game with a unique strategy set for all users is defined by a triple {S,S, (ux)res}
where S is the set of players, S is the set of strategies, and (uy)res is the set of utility
functions, uy, : SI° — R.

In our setting, the players are simply the users, indexed by the set SK =
{1,...,K}. The strategy for a mobile is its power allocation Py, which we will
assume belongs to a compact interval S = [0, Ppnax] € R. The utility measures the
gain of a user as a result of the strategy this user plays. In [Rod03], the author de-
rives what he calls Throughput to Power Ratio (TPR) under minimal requirements.
The utility of user k is expressed

Yk
= — h.44
e = p (5.44)
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Denote v, = v(0k), where 7(-) is the same function for all users. In (5.44), v is
at least C? and should satisfy conditions detailed in [Rod03] in order to obtain an
“interesting” equilibrium.

For example, in the simulations, we consider the goodput 7 (/x), which is pro-
portional to (1 — e_ﬁk)M where M is the number of bits transmitted in a CDMA
packet, as detailed in Sec. 3.5.4.

This utility is expressed in bits per joule. In the non-cooperative game setting,
each user wants to selfishly maximize its utility. A Nash equilibrium is obtained
when no user can benefit by unilaterally deviating from its strategy.

To obtain the maximum utility achievable by user k, we differentiate u; with
respect to the power P, and equate to 0. We obtain

9Pk
Po— — = 0. 5.45
kop, Y ) = (%) (5.45)
For all filters under consideration, (5.32), (5.35) and (5.43) imply P, 2%t = 3,

Py
thus (5.45) reduces an equation on [y

By (Be) — v(Br) = 0. (5.46)

Eq. (5.46) is particularly interesting in the case when there exists a unique
solution [*.

The existence of a solution to (5.46) is guaranteed as long as the function ~(+)
is a quasiconcave function of the SINR, i.e., there exists a point below which the
function is non-decreasing, and above which the function is non-increasing [SMGO02,
Rod03]. In addition, we assume that the function () takes value v(0) = 0, so that
users cannot achieve an infinite utility by not transmitting. This occurs for several
functions ~y(+) of interest, in particular the goodput [MPSMO05|, which we will use for
simulations. Unfortunately, the capacity can not be used as a function ~(-), since
it leads to the trivial result 5* = 0 for this utility function. The uniqueness of the
solution 5* to (5.46) is due to fact that the SINR of each user is a strictly increasing
function of its transmit power. Given the target SINR (*, we obtain the strategy of
users in the next section.

5.2.4 Power Allocation in the Nash Equilibrium
Flat Fading

In this subsection, we show that the results of [MPSMO05] for Matched and MMSE
filters are a special case of our setting when L = 1 (flat fading case). In addition,
we derive the power allocation for the Optimum filter. When there is only one path,
for each user k, denoted by its index £ = z € [0,0], h(f,z) does not depend on
f. Given the target SINR (*, we have explicit expressions of the power with which
user k transmits for the various receivers.

In Appendix 7.2, we show that the influence of the strategy of a player on the
payoffs of other players is (asymptotically) “small”. Tt justifies the fact that we can
obtain an equilibrium in the asymptotic setting, without the need for players to
possess all the information on the system. Their local information is sufficient. In



126 User Centric Communications

the asymptotic limit, we obtain results similar to Wardrop equilibrium: the strategy
used by each user does not influence the strategy of other users.

Matched filter

From Prop. 12, the continuous formulation is

_ B (@[5 Py) [hy)[ dy)
()]

P(x)

or equivalently in a discrete form

th (02 + % Zjl'(:l,j;ék; P |hj|2)

P, = . (5.47)
[
Summing (5.47) over k = 1,..., K, we obtain a closed form expression for the
minimum power with which user k transmits when using the matched filter
1 o?p* 1
P, = — fora < —. 5.48

MMSE filter

From Prop. 13, the continuous formulation is

0" (0* + w5 Jy P) 1h(w) P dy)
(o)

P(z) =

or equivalently in a discrete form

B (02 + ok i B )
P, = 144 N £=j=1j7#k = J 177 ' (5.49)
1k

Summing (5.49) over k = 1,..., K, we obtain a closed form expression for the
minimum power with which user k transmits when using the MMSE filter

1 o2 1
Pt ¢ 5ﬂ* for o < 1+ —. (5.50)
| Fuk | 1_O‘W g

Both (5.48) and (5.50) are the same results as in [MPSMO05].

Optimum filter

Each user maximizes its utility for a SINR equal to *. However, in the case of
the optimum filter, the SINR is not defined directly. It is nevertheless possible to
extract an equivalent quantity from the expression of the capacity, since the value
of the capacity of user k at the equilibrium is given by C* = < log, (1 + *).
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Proposition 16 The power allocation is given by

1 0.25+
P, = fora<l4 — (5.51)
[hel* 1 — a7 Bt
where BT is the solution to
+
alog, (1 + @Jr) — alog,(e) 15
aft .
+log, | 1+ — | = alog, (1+ 5%). (5.52)
1+p+1 -~ ozlfﬂJr

Proof See Appendiz 7.2.

Frequency Selective Fading

In the context of frequency selective fading, for each user &, denoted by its index % =

€ [0, al, there are L > 1 paths with respective attenuations hy(z), { = 1,..., L,
which are i.i.d. random variables with some known distribution. We suppose that
he(z) has mean zero, and the distributions of the real part and imaginary part of
he(zx) are even functions, as for example the Gaussian distribution, which we consider
in the simulations. h(f r) depends on f through h(f,z) = Ze L he(z)e2mif =1,
Given the target SINR (*, the Nash equilibrium power allocation is determined by
implicit equations for the various receivers.

Matched filter

The continuous formulation is

+f0 fo (y) )| |h(f, 37)| df dy

Pla) == <Hmf

or equivalently in a discrete form
2 <N 2 N 2
5 ome i 7 s ek Y P Ihngl

o Ep I

(5.53)

In (5.53), hur = b (%54, &).

In this expression, the power allocation of user k£ seems to depend on the power
allocation and fading realization of all the other users. However, when the number of
users tends to infinity, the strategy of any single user does not have any influence on
the payoff of user k, as shown in Appendix 7.2. Hence, the appropriate framework
is non-atomic games. The expression % Z]K:1 P; |hnj]2 is asymptotically a constant
(not depending on n), denoted (.

(5.54)
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N
where B = £ 20 [y
As K — oo, we can apply the Central Limit Theorem to the sum of random

variables
2

K
1 |
il ) 5.55
szzl E, (5.55)

It tends to its expectation, which is equal to 1 (see Appendix 7.2).
f_ﬁ;‘; (and simulations in Sec. 5.2.6 prove
that this approximation is valid for moderate finite values of N). From (5.53), we

obtain a formula similar to (5.48)

It follows that asymptotically Q =

1 o%p* 1
Po=———f < —. 5.56
k Frl—ap or « L ( )
MMSE filter
The continuous formulation is
ﬁ*
fo o2+ 1757 Jo' PW)Ih(f.)|*dy
or equivalently in a discrete form
P, = —— s P (5.58)
Ly nk ;
N &n=1 g2+ 1+1,3* % 2i=1,5%k Pilhngl

In (5.58), hn, = h (%5, %).
As previously, when the number of users tends to infinity, % Z]K:l P; |hnj|2 is
asymptotically a constant (not depending on n), denoted €.

*x 2 1 K |hnj‘2
af* o7 Do E;

1— af* 1 K |Fanj |2
1+6* K j=1 E;

Q:

(5.59)

where Ej = % ZZ:I |hmj|2~
af*o?

It follows that asymptotically = —#=7—, we obtain a formula similar to (5.50)

T
1 23~ 1
Pk:—Lﬁ* fora <1+ —. (5.60)
Ekl—am ﬁ

Optimum filter

Each user maximizes its utility for a SINR equal to *. However, in the case of
the optimum filter, the SINR is not defined directly. It is nevertheless possible to
extract an equivalent quantity from the expression of the capacity, since the value
of the capacity of user k at the equilibrium is given by C* = 5 log, (1 + *).



5.2 Non-Atomic Games for CDMA 129

Proposition 17 Asymptotically, as N, K — oo, the power allocation is given by

1 2Bt 1
Po=——2" _ fora<l+— (5.61)

Ex1— alfw Bt

where 3% is the solution to
+
alog, (1 + ﬁ"‘) — alogQ(G)m
1 aft

+1lo 1+ = alog, (1+6%). (5.62
g2< 1+ﬁ+1_a_lf;+> g2 (1+07). (5.62)

Proof The proof is similar to the proof of Prop. 16.

We observe that for all filters considered, the optimal power allocation is a con-
stant times the inverse of the total energy of the channel F;. Via Parseval’s Theorem,

E; = Zle ‘h[ (%) ’2. It is a sum of i.i.d. random variables. As the number of paths
increases, the optimal power allocation tends to a uniform power allocation. This
is an effect similar to “channel hardening” [HMTO04|: as the number of paths in-
creases, the variance of the distribution of the channel energy decreases and the
Nash equilibrium power allocation becomes more and more uniform for all users.

5.2.5 Successive Interference Cancellation

The optimal filter gives a bound on the performance that can be achieved through
(non-linear) filtering at the base station. In order to improve the performance of
the system, we introduce Successive Interference Cancellation (SIC) [MVO01] at the
base station. Under the assumption of perfect decoding, SIC improves immensely
the performance of linear filters (Matched Filter or MMSE Filter). The MMSE SIC
filter actually achieves the optimum filter bound, under the assumption of perfect
decoding. The principle of SIC receivers is quite simple: users are ordered and are
decoded successively. At each step, supposing that the user has been encoded at the
appropriate decoding rate, the signal is decoded and its contribution to the interfer-
ence is then perfectly subtracted. This removes some of the inter-user interference
and therefore increases the SINR of the following decoded users.

The challenge is that the users must transmit at the appropriate rate to avoid
the catastrophic occurrence of imperfect decoding. Usually, the ordering of users is
done in a centralized way, at the base station which then advertises it to the users.
However, for the protocol to remain distributed, users should be able to decide,
based on their local information, at which rate to transmit.

At equilibrium, the rate is determined by the SINR *, and it is the transmission
power of the user that is determined according to its rank of decoding. The equi-
librium power allocation can be determined in a simple manner when the number
of multipaths is finite (L < co) and the number of users is very high (K — o0). In
Sec. 5.2.5, we make use of the fact that the whole law of £} is realized in this case,
so that users automatically know their rank of decoding. Another manner to give a
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(random) ordering of decoding is to introduce an additional degree of liberty in the
system. In Sec. 5.2.5, we develop a correlated game framework that enables users to
learn their rank of decoding in a simple way. In the following, we assume that each
user has a unique has a unique i.d. number j ranging between 1 to K.

Ordering when K — oo

If the number of users K — oo, with L fixed, the whole law of the total channel
energy will be realized. More specifically, we make use of the following lemma from

[SV02].

Lemma 1 Denote by D(-) the cumulative distribution function of the total channel
energy coefficients E;, and by (Erqy, ..., Exk)) the vector of coefficients ordered by

decreasing order. Then, Er;) converges in probability, as K — oo, to D1 (%)

forg=1... K.

Assume the base station advertises to the users that they will be decoded by
decreasing total channel energy. Each user knows, according to the realization of
its fading, its rank in the decoding order given by K times 1 minus the cumulative
distribution function D(-) of the total channel energy E;.

rank;, = K(1 — D(E})).

In case that the base station advertises to the users that they will be decoded
by increasing total channel energy, user j will have rank rank; = KD(E;).

Correlated Equilibrium

We wish to introduce a simple mechanism that enables players to coordinate and
to know in which order they will be decoded. We place ourselves in the context of
correlated games, as introduced in Sec. 2.1.3

The simplest and most intuitive coordination mechanism is given by a common
signal which users as well as the base station overhear before each transmission.
There are K! possible permutations of K users. Hence, the arbitrator broadcasts
a signal to the users belonging to the set {0,..., K! — 1}. Each of these numbers
corresponds to a permutation m of {1,..., K} that gives the (random) ordering of
decoding as rank; = 7(j). The users can then adjust their transmit power according
to this ordering. In terms of size of the message, this is equivalent to the case
when the base station decides the decoding order and broadcasts it to the users,
or sends K individual messages of In(K) bits containing the rank, since In(K!) =
KIn(K) + o(K In(K)). However, there is no need of either any knowledge of the
system or computations at the base station in the case of the correlated mechanism.

SIC Power Allocations

In both cases, once the users know their order, they can calculate their transmit
power according to the filter that is used. The equilibrium still occurs when all
users reach the SINR (*. A single user will not benefit by deviating, since it would
decrease its utility. From now on, index k& denotes the rank of decoding.
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In the case of the matched filter with SIC, the SINR of the user decoded at rank
k is )
Py (% 227:1 |hnk|2>

MF
k = o2 N N . (563)
>y [kl” + 52 2ok omey B B | [Pk
From (5.63), we get the equilibrium power allocation of user k as
szﬂ*NZn 1|hnk’ +N2 Z]>k2n IP ’hnj| |hnk| (564)

EP I

In the case of the MMSE filter with SIC, the SINR of the user decoded at rank k is

1
MMSE _ p — Z |hnk\ (5.65)

Pjlhn;|?
N Z]>k 1+EMI\J/ISE
From (5.65), we get the equilibrium power allocation of user k as
/8*
N B
%Zn:l 1 J ki'K

p)
U2+Wﬁ 2isk Pilhngl

P, = (5.66)

For flat fading, a simple recursion gives the equilibrium power allocation (see
Appendix 7.2). We obtain respectively

25* K-k
P = T ( + 5) , (5.67)
k
2 % 1 5* K—k
pase _ O (L . .
A T e (5.68)

As far as frequency-selective fading is concerned, this gives us the form of the
asymptotic expressions. Asymptotically, the power allocation of one user will not
depend on the power allocation of the other users, as shown in Appendix 7.2. With
a similar reasoning as in Sec. 5.2.4, the expressions mimic (5.67) and (5.68) with the
total channel energy Ej, replacing |hx|*, ie.,

25* K-k
PMY = <1 + 6*) : (5.69)
Ey
2 % 1 5* K—k
pMMSE _ 7 2 b 1+ — : .
& E, + NI+ 5 (5.70)

These expressions are also validated by simulations.

Since MMSE SIC with perfect decoding is equivalent to the optimum filter, we
thus obtain a second possible equilibrium power allocation for the optimum filter. In
Sec. 5.2.6, we investigate which is the power allocation which minimizes total amount
of power needed to transmit at equilibrium SINR. In the case of automatic ordering
of the users, one question is whether it is best to order the users by increasing or
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decreasing total fading energy. The answer is the following: it is always best to
decode the users by decreasing total channel energy F; < --- < Ej (see Appendix
7.2).

An interesting feature of equilibrium power allocation (5.69) and (5.70) is that
there is no limitation on the number of users than can be accomodated by the
system, contrary to the previous case of (5.56), (5.60) and (5.61). The limitation is
only imposed by the increasing power needed for each new user decoded last, which
grows without bound as an exponential.

5.2.6 Numerical Results

In all the following, we consider that P,y is chosen sufficiently high so that users can
actually transmit at the equilibrium power allocation values. For the simulations,
we consider the usual case of Rayleigh fading. Although Rayleigh distribution is not
bounded from above, simulations show that the results still hold.

We consider a CDMA system with K = 32 users and a spreading factor N = 256.
The noise variance is 02 = 1071°. For a number of bits in a CDMA packet M = 100,
the goodput is vy(5) = (1 — 6_/@)100, and * = 6.48. The capacity achieved at the
Nash Equilibrium is C' = a'log, (1 4+ 5*) = 0.39 bits/s. Unfortunately, the capacity
itself cannot be used as a relevant performance measure in the definition of the
utility, because in this case the maximal utility is obtained when not sending.

We have performed simulations over 10000 realizations. Fig. 5.7 shows the good
fit of theoretic values calculated directly from (5.56), (5.60) and (5.61) (thick straight
lines) with the simulation points for various numbers of multipaths (losanges). The
values of the utility do not depend on the number of multipaths. We see that
optimum filter requires the minimal power, and matched filter the maximal power
to achieve the required goodput.

In Fig. 5.8 we have plotted the average utility versus the number of multipaths
L. Multipaths are supposed to be i.i.d. Rayleigh distributed with variance 1/L, in
order for the channels to have the same energy. Two cases are considered: the utility
obtained in the Nash equilibrium, according to the power allocation given by (5.53)
and (5.58), and the utility in the case where all nodes transmit at the same power.
For comparison purposes, the sum of the uniform powers is equal to the sum of the
powers used in the Nash equilibrium. In addition, simulations (not reproduced here)
show that this value gives the higher average utility for a uniform power allocation.

The utility does not vary with L in the Nash equilibrium: the Central Limit
Theorem applies to the utility, which is a constant times the random variable Ej
in the Nash equilibrium. The utility with uniform powers is always inferior to the
utility in the Nash equilibrium. However, as L increases, the gap decreases, as the
variance of Fj, decreases, and the equilibrium power allocation becomes uniform.

In Fig. 5.9 we have plotted the average of the inverse power of the users in the
Nash equilibrium for each of the investigated schemes. We plot the average inverse
power because of the direct relation to the utility for the users. The higher this
average, the higher the utility for the user. The SIC filters are always more efficient
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Figure 5.7: Comparison of theoretic values and simulations for utilities in the Nash
equilibrium.

than their linear counterparts. However, for a load o < 0.12 and optimum filter!,
it is better to use the first variation of power allocation (5.61) than use MMSE
SIC (5.70). This relation is reversed when o > 0.12. In addition to the theoretical
curves, Monte-Carlo simulations were performed both with random ordering (circles)
and ordering by decreasing total channel energy (crosses), for L = 8 multipaths.
Simulations show that the optimal ordering improves the power efficiency of the
successive interference cancellation filters.

In Fig. 5.10, we investigate the amelioration provided by optimal ordering as a
function of the number of multipaths. The simulations are done for K = 128 users,
in order to be in the “interesting” zone o > 0.12. As expected, as the number of
paths increases, the total channel energy is more and more the same for each channel
and the gain provided by ordering the users decreases. However, when the number
of users is very large and they benefit from automatic ordering, we see that the
utility with the MMSE SIC equilibrium power allocation is the maximal utility that
can be obtained in the non-cooperative setting.

5.2.7 Conclusion

Using tools of random matrices, we have derived the equilibrium power allocation in
a game-theoretic framework applied to asymptotic CDMA with cyclic prefix, under

!The value of « is obtained as solution of the equation «3* Hﬁ_;}*(l - a%) = /8t(1 —
exp(—alfﬁ)).
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frequency-selective fading. Three receivers are considered: matched filter, MMSE
and optimum filter (given by Shannon’s capacity). In addition, distributed ordering
mechanisms are introduced and the successive interference cancellation variants of
the linear filters are studied. For each user, this power allocation depends only on
the total energy of the channel of the user under consideration. For a frequency-
flat channel, the power allocation among users is highly dis-uniform, whereas when
the number of multipaths increases, the power allocation tends more and more to a
uniform one.



136 User Centric Communications

5.3 Channel Inversion Schemes for OFDMA

A novel multi-user diversity scheme for OFDMA is described which alleviates the
need of feedback. Namely, each user knows only the channel coefficients of its N
carriers whereas the scheduler has no channel knowledge.

The algorithm exploits the reciprocity of the channel. A broadcast training
sequence is sent by the base station to all the users at the beginning of the com-
munication. Each user estimates its channel and based on an algorithm detailed
afterwards selects the carriers ensuring the required data rate.

Under mild asymptotic conditions, the algorithm enables each user to send reli-
ably data at a prescribed rate knowing only its channel. For several channel models,
we derive analytical expressions of the cell spectral efficiency in the asymptotic
regime (high number of carriers) for two filter types: matched filter and optimum
filter. This section is based on [BDHAO5].

5.3.1 Model

The scheme considers Time Division Duplex (TDD) mode slotted transmissions.
The channel is assumed to have coherence time T = DN'T, where T is the time
to transmit one information symbol, and NT is the time to transmit one OFDM
symbol with N symbols. At the beginning of a slot, the scheduler sends a broadcast
training sequence to all the users. It is a known sequence of G < D OFDM symbols.
Each user k estimates its N carriers hi(i), i € {1,..., N} and can transmit during
the remaining time (D — G)NT. The spectral efficiency should therefore be reduced
by a factor DTEG. In all the following, we will however suppose that the channel is
perfectly estimated and 25¢ — 1.

Each user has a total power budget PW, where P is the power spectral density
and W is the available bandwidth?. Constrained on its power budget, user k selects
S carriers, where S, depends on the particular realization of the fading. On each

selected carrier i, user k sends the information (i) = Z’;((Zz)), where s (i) is the
transmitted data such as E Usk(z)ﬂ = BV Therefore, the scheduler does not need

to know the channel state information in this “channel inversion scheme” which
alleviates the need of a feedback mechanism.

Each user chooses a set S C {1,...,N} of Sy ( 1 < Sp < N) carriers such as
D s, ﬁ < PW. Thus S is the subset of cardinal Sy of {1,..., N} such that

Sy contains the Sy best carriers that satisfy

1 1
— — < 1. (5.71)
N2 =
N ;Sk | he ()]
Note that in this non-cooperative scenario, for each carrier i, aset M; C {1,..., K'}

of users can select the same frequency carrier i, which introduces interference. As
a consequence, the received signal on carrier ¢ at the base station is given by an

2 . . . . . . . 1%7%4
Note that in this setting the inter-carrier spacing is 3.
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equation similar to (3.21).
y(i) = Y sili) +n(i)
keM;

NoW

where n(i) is a zero mean gaussian noise with variance ~%~.

5.3.2 Spectral Efficiency

Let card(M;) = M;. Note that 32| M; = " | Si. Assuming that each transmitter
simultaneously transmits Gaussian-like signals using a different random code book
(known by the base station), the spectral efficiency of the cell is given by:

e For the optimum filter:

K
1 1 M,P
'70ptimum<K) = N Z Z M 10g2 (1 + NO ) . (572)

k=1 1€Sg

e For the matched filter:

Vmatched (/) = %Z Zlog2 <1 + 7= 1f))P n No) . (5.73)

k=1 i€Sy,

By optimum, we refer to a joint decoding of all the users with separate code
books |CT91] (or successive stripping of the users where the equivalence is shown
in [VG97|). The matched filter corresponds to the case where all the users (except
the user of interest) are considered as background noise. The spectral efficiencies in
(5.72) and (5.73) are expressed in bits/seconds/Hz and are a priori random variables
that depend on the realization of the channels. The rates are achievable if the
transmitters know exactly these rates.

In the following, we will consider the channel in the asymptotic regime (high
number of carriers N) and show that under some assumptions on the channel statis-
tics, the transmitters can send reliably data at a predictable rate irrespective of a
particular realization of the interfering channels. Let N% = snr; for M > 1 we define
the single-user capacities

1
/yggtimum(M) = M 10g2 (1 + M snr) s (574)
ST
matched (M) = 1ogy | 1 : 5.75
Vmatched( ) 089 ( + (M _ 1) Snf—i—l) ( )

Using the fact that snr = fyggﬁmum(M)f;—g (respectively snr = villlatched(M)%)

in these expressions, the single-user capacities are solutions of implicit equations.
Concerning the single-user optimum capacity (5.74), we remark that if M > 1,

T = Mg imum(M) is the solution of an implicit equation that does not depend on
M.

E
z = log, <1 + xﬁ) : (5.76)
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x is known as the Gaussian single user bound in an AWGN single user transmis-
sion. The total spectral efficiencies from (5.72) and (5.73) can then be calculated
as

’7optimum Z Z ’yoptlmum (577)

]f 148k

'Vmatched Z Z ,ymatched (578)

k 148k
Egs. (5.77) and (5.78) can be equivalently written

")/optimum N Z M; fyoptlmum ) (579)
Vmatched N Z M’Ymatched ) (580)

5.3.3 Gaussian Case

Let us first analyze the case of a Gaussian (no fading) uplink multiple access network.
The results are useful for comparison purposes with the fading case of Sec. 5.3.4.
For each user k and each carrier 4, hi(i) = 1. Therefore, Sy = {1,..., N} in the
setting of the model. Eqgs. (5.77) and (5.78) reduce to:

/yoptimum(K) K’yoptlmum(K) =,
“Vmatched (K) KﬂYmatched (K) :

In the case of the optimum receiver (for which the complexity increases with
the number of users as joint processing is performed), the cell spectral efficiency is
independent of the number of users and is equal to the gaussian single user bound.
However, for the matched filter, the spectral efficiency is a decreasing function of K,
as

snr 1
lim Ymatchea(K) = lim K1 1 = :
Koo Tmatch a(K) K 1082 < + (K —1)snr —i—l) In(2)

To increase the matched filter spectral efficiency of the system, suppose that only
a certain proportion [ of the carriers is to be used. In this setting, S, C {1,..., N}
is a set of Sy = BN carriers chosen at random for each user. Since the carriers are

chosen at random, the distribution of M; (number of users transmitting on carrier i
with 1 < M; < K) is binomial with parameter (3.

P(M; = M) = (ﬁ) gM (1 — )M (5.81)

Using (5.81), (5.79) and (5.80) can be written as
(K
Yoptimum(K) = D (M) BY (1= B) N M (M)
M=1

. (1 —(1- ﬁ)K> (5.82)
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and
5K
’Ymatched(K) = Z (M) ﬂM (1 - ﬁ)K_M M rsr?atched(M>' (583)
M=1

Relation (5.82) shows that 5 = 1 is optimum for the optimum receiver. Moreover,
the cell spectral efficiency is an increasing function of the number of users K that
tends to the single user bound when K — oo, whatever the value of (3, at the expense
of a decoding complexity.

For the matched filter, for a given value of ﬁ—é’ and number of users K, there is
an optimum value of 3 as shown in Fig. 5.11. The reduction in interference achieved
by optimizing (3 can more than double the spectral efficiency, as shown in Fig. 5.12.

5.3.4 Fading Case
Independent Fading

In this section, we consider that the fading coefficients h (i) are i.i.d. complex ran-
dom variables, such as the probability distribution function of |h4(i)|* is f(u). This
can be the case, for example if subcarriers are grouped in clusters [BZ06]. In the
asymptotic regime, under the assumption that the users know the channel statistics
and the total number of users K, we have the following proposition.

Proposition 18 As N — oo, the mean spectral efficiency with optimum filter has
the following asymptotic expression:

Yoptimum(K) = i (][\f[)pM (1- p)K_M MV;Ztimum(M) =z (1 —(1- p)K> i

M=1

(5.84)

As N — oo, the mean spectral efficiency with matched filter has the following
asymptotic erpression:

K
K - SU
’Ymatched(K) = Z <M>pM (1 - p)K M Mfymatched(M)' (585)
M=1
The parameter p is given by:

+o0
p= f(u)du (5.86)

where u* is solution of

/ W g, (5.87)

The Gaussian channel of Sec. 5.3.3 is actually a particular type of uncorrelated
fading channel with probability distribution function é(u — 1), which gives p = 1.
We observe that (5.84) and (5.85) are similar to (5.82) and (5.83) with parameter
G = p: in the asymptotic regime, the uncorrelated fading channel is equivalent to
the Gaussian channel with a proportion § = p of carriers used.
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Proof We use the ergodicity of hy(i), i = 1...N, to show that sums involving
hi (i) tend asymptotically to fized values. As N — oo, the sum of inverse of square
norms of the complex random variables hy (i) tends to an integral with respect to the
distribution of |hy,(i)|°. Namely, for some u*,

1 1 T f(u)
— N —Zdu. 5.88
Nie% | (3)] /u w (588)

Injecting (5.88) in (5.71), we obtain (5.87). Using the fact that

1 1 N +oo
v card(Se) = & Zl Linepsury = /u e du

and .
p= A}me N card(Sy),

we obtain p as in (5.86). According to this analysis, asymptotically it is as if each
user chose a set of pN carriers at random. The distribution of M 1is therefore given
by a binomial distribution (5.81) with parameter p and we obtain (5.84) and (5.85)
from (5.79) and (5.80) as in Sec. 5.3.3.

For example, in the particular case when hx(i) have a Gaussian distribution
N(0,1), then the distribution of |h4(i)|* is Chi-squared with 2 degrees of freedom
and (5.86) reduces to

+oo
p= / e “du = exp (— Ei; '(1)),
E

it (1)

where Ei; is the exponential integral defined by: Eii(t) = [ <—~du. Given the
channel model, p is therefore a known parameter and is approximately equal to
0.7674.

Fig. 5.13 shows the mean spectral efficiency of the matched filter and the opti-
mum filter for various number of users K. Realistic Monte-Carlo simulations have
also been performed for N = 256. The theoretical curves and the simulated curves
for both filters match. In other words, in a finite system, a user is able to send data
without knowing the interference generated by other users. It also appears clearly
that for the matched filter, the optimum number of users in the cell to be considered
is one, result already proved in the downlink case in [JLO3].

As far as the optimum filter is concerned, the spectral efficiency increase is sub-
stantial and reaches the Gaussian single user bound. Note that one can increase
the spectral efficiency of the matched filter by choosing an optimized subset of the
carriers as in the Gaussian case of Sec. 5.3.3.

Totally Correlated Fading

If the fading is totally correlated on all carriers of each user, then for all i, hy(i) = hy,
and Sy is a random variable distributed as a rounded version of N |hk|2, which has
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known distribution % f ( ) More specifically,

N
£+1
14 (41 ~
0<tsN-LBS=0=F(g<hl<) = [T swi
N N L
+o00
P(Se=N)=P(|h)*>1) = f(u)du.
1
From the distribution of the Sy, it is possible to determine the distribution of M via
the relations

N N
P(My=M)=> - P(My=M|S =01,...,5c=Llg)P(Sy =) P(Sk =
41=1 lr=1

and

P(My=M|Si=0,....Sx=t)= > ]I %’“ 1T (1-%’“).

M; C{1,....,K} keM; k&M,
card(M;)=M

The expectation of the spectral efficiency can then be obtained from (5.79) or
(5.80).

Effect of the Number of Paths

In order to assess the effect of channel correlation on the cell spectral efficiency, we
consider the case of a multipath channel, as in (3.5). Under the assumption that
the number of paths from user k to the base station is given by L, the model of the
channel is given by

L—1
() = Zﬁkﬂﬂ(T — The)-
(=0

where we assume that the channel is invariant during the time considered. In order
to compare channels at the same signal to noise ratio, we constrain the distribution
of the i.i.d. fading coefficients 7, such as:

E [nke] = 0 and E [|nl?] = %

Usually, fading coefficients 7, are supposed to be independent with decreasing
variance as the delay increases. In all cases, p is the average power of the channel,
such as E [|ck(7')|2] = KL:’“(;IIE [|77kg|2} = p, for all channels considered. For each
user k, let hg(i) be the Discrete Fourier Transform of the fading process ¢k (7). The
frequency response of the channel at the receiver is given by:

Ly—1

hi(f) = mree > W (f)

£=0

where we assume that the transmit filter ¥(f) and the receive filter U*(— f) are such
that, given the bandwidth W,

wﬁ:{lﬁ‘%gfg%

0 otherwise.
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Sampling at the various frequencies f; = —=-,
—% + %W, we obtain the coefficients hy(i), 1 <7 < N, as

Ly—1

hk(l) — E nkée—jQTFNWTkge]ﬂ’WT}d‘
=0

Note that E W%kﬂ = 0.
For simplicity sake, the delays are supposed to be uniformly distributed according
to the bandwidth

In figure 5.14, the spectral efficiency has been plotted versus the number of users
at 10 dB for 2 and 16 paths, for fading coefficients having a Gaussian distribution
N (O, %) Interestingly, for the optimum filter, the spectral efficiency decreases with
correlation whereas for the matched filter, the results are completely opposite. As
the number of users increases, the difference tends however to disappear.

5.3.5 Conclusion

An OFDMA scheme making use of the reciprocity of the channel to alleviate the
need for feedback has been proposed and its performances analyzed. Surprisingly,
we show that in a non-cooperative environment with channel fading, a user can send
reliable data at a prescribed rate knowing only his channel. The result is based on
the predictability of the interference as the number of carriers increases. Moreover,
in the case of the matched filter, we show that a judicious choice of the number of
carriers can dramatically increase the rate (in comparison with the full use of all the
carriers). These results put forward the gain achieved by non-cooperative reciprocal
transmissions. In order to assess the performance with respect to fully centralized
transmissions, the effect of channel estimation and time-variations should be taken
into account.
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Chapter 6

Conclusions and Further Work

6.1 Summary and Conclusions

We have investigated network centric communications, restricted to the case of
CDMA cellular networks.

In the case of downlink CDMA, results are provided in the asymptotic regime
for an infinite cellular deployment. We show that the increase in throughput is not
linear with the cell size, so that packing base stations is not necessarily optimal. In
real life situations, the cost relative to adding additional base stations must also be
taken into account to determine the optimal distance. Depending on the severity of
the path loss (exponential or polynomial), communications are more or less affected
by inter-cell interference. However, the path loss represents only a minor part of the
problem, since it does not destroy orthogonality; the main effort should be put on
alleviating the orthogonality-destroying effect of frequency-selective fading.

In the case of uplink CDMA, several settings are investigated. In contrast to
previous works that consider only random codes for the uplink, the case of orthogonal
codes is considered in the single-cell setting. It is shown that the synchronization of
the users provides a non-negligible enhancement in the throughput when considering
flat-fading. However, as the number of multipaths increases, the advantage becomes
limited. As in the downlink case, reducing the orthogonality-destroying effect of
frequency-selective fading is a priority.

In the infinite cellular deployment, both random and orthogonal codes are con-
sidered. It is shown that orthogonal codes are useful only to combat intra-cell
interference. Hence, the amelioration provided by synchronizing the users is depen-
dent on the severity of the path loss, which determines the importance of inter-cell
interference with respect to intra-cell interference.

When using random codes, we also show the potential gain in cellular environ-
ments of optimum intra-cell processing with respect to linear receivers, as well as
the gain of joint multi-cell processing.

These works represent a testimony of the amazing powers of random matrix the-
ory. The averaging effect enables to determine explicit formulas for relevant measures
of performance and single out elegantly the parameters of interest. What’s more,
even if these results are derived in the asymptotic regime, they provide accurate pre-
dictions for the finite size case. We derived results in the case of an infinite cellular
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deployment. They can also be useful in the case of finite size networks, with a fixed
number of cells.

The objective of the network centric approach was to obtain bounds on the
performance of cellular multiuser systems.

We have investigated user centric communications, restricted to the case of three
protocols: ALOHA /CDMA /OFDMA.

In the context of ALOHA, we studied non-cooperative interactions between mo-
biles in two game theoretical frameworks: evolutionary games and correlated games.
As far as we know, we have been the first to introduce these subfields of game the-
ory in the context of networking. Both are especially interesting, since they provide
additional insight on possible amelioration of future user centric schemes of trans-
mission. This represents a clear demonstration of the usefulness of game theory in
a network context.

We have investigated power allocation games for CDMA in frequency-selective
fading. Introducting non-atomic games has enabled to obtain explicit expressions
for the resource allocation of the users, needing only local information. Distributed
means of ordering the users are introduced, in order to use more efficient successive
interference cancellation filters. In addition to linear filters, the resource allocation
for optimal and SIC filtering is derived, and the gain provided by those filters is
analyzed.

As far as OFDMA is concerned, a novel power allocation scheme is investigated,
where the base station needs not have any knowledge of the system. The scheme
is based on the reciprocity of the channel. We show that users can communicate
reliably at a prescribed rate, knowing only their own channel.

In conclusion, we provided elements of analysis of both network centric and
user centric communications. We have tackled the problem of where to put the
intelligence in the network. When there are lots of users, it is legitimate to put the
intelligence at the hands of the users. Therefore, scenarios where intelligence is given
to users were investigated. As the title of the thesis states, both conceptions are not
opposed, but complementary. One could think about protocols that, depending on
the state of the system, impose the choice of resource allocation to the mobiles or on
the contrary let the users determine themselves their best option according to their
(limited) knowledge of the system.

6.2 Perspectives

Other filters for the orthogonal uplink CDMA case. At the moment, we have no
explicit expressions for the MMSE filter in the CDMA uplink case. An analogue of
Girko’s Theorem [Gir90| (see Th. 2) needs to be found in the case of unitary random
matrices.

Comparison between CDMA and OFDMA. In OFDMA, carriers are flat fading.
The interesting feature of OFDMA is that carriers can be chosen and the transmis-
sion can occur independently at different power for each carrier. However, fading
is correlated over adjacent carriers. A way to alleviate this correlation is to group
carriers together.
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Nash equilibrium and Pareto equilibrium. Pareto equilibrium, when it is not
possible to increase the gain of one user without decreasing the gain of another
one, are often difficult to characterize. Answers are starting to emerge. A recent
paper, which the authors were kind enough to provide us a preliminar version of,
investigates the efficiency of the Nash equilibrium relative to the Pareto equilibrium
in the context of resource allocation games [BP97|. In particular, it is shown that
under some conditions, the Nash equilibrium coincides with the Pareto equilibrium
for underloaded systems, while the difference is barely noticeable for overloaded
systems. However, this question is still unanswered in general.

To an analogue of the price of anarchy? The price of anarchy is a customary
concept in routing |[Rou05|. The price of anarchy is equal to the ratio of the utility
obtained by selfish users to the utility they would obtain by (cooperative) optimal
routing. As such, it measures the loss suffered by the users when they are left to
fend off for themselves, compared to the case where there is a central controller.
How can an analogue be designed at the protocol level, involving the ratio between
utility achieved in Nash and Pareto equilibrium? The study of its behavior can be
used to measure the impact of selfish users on the efficiency of communications.

Protocols adapted to high mobility. While most of the time, static networks
and static attenuations are considered, actually communications occur in dynamic
conditions. How to take into account a fast varying network topology? Centralized
attribution of resources may need a lot of feedback and computation, hence time
to adapt to changing conditions. Similarly, most distributed protocols are iterative
versions of centralized ones and need time to converge. Power allocation games are
a first step towards an answer to this question.

Fair comparison between the protocols in function of mobility. Intuitively, there is
clearly a tradeoff between centralization and mobility. From which moment is there
a gain in letting the users adopt a selfish behavior and how can this be determined
in a fast and efficient way?

To an information theory for protocols? Information theory for protocols rep-
resents a very general and broad goal. It would enable to measure the impact of
acquisition of information and redundancy on the performance of protocols, and
compare different communication protocols in a fair manner.
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Chapter 7

Appendix

7.1 Proofs for Chapter 4

Proof of Prop. 1
Term S*: Let us focus on the term S* of (4.3). As N — oo, (4.3) becomes:

2

N
. 2 . .
5" = Py(z;) ‘WHHHHPJWPj} = Py(z;) Z‘hpj(l)’2 ]ij(z)|2
i=1
N
:Z ’ij ‘ +22‘hm ’ij )|2’hpj(l)‘2‘ij(l)|2-
=1 =1 [I=1
I#14

Using (2.5) and (2.6), it is rather straightforward to show that

S*_’Pp(xj)]\}lm Z’ pi ( N—i—l ZZ‘hm | | hups (1 ‘

=1 =1
£33

(7.1)
in the mean square sense. The first term in the limit in (7.1) tends to 0. Therefore,

S* E} By(z5) (% /_; ‘hpj(f)|2df> : (7.2)

(7.2) stems from the fact that as N — oo, the eigenvalues |h,;(i)|> of H'H,,
correspond to the squared frequency response of the channel in the case of a Toeplitz
structure of H,; (see [Gra06]).

Term [;: Let us now derive the term I; of (4.4). It can be shown that (since w,,
is independent of W, see proof in [DHLACO03b])

1
wiHIH, W, WIHIH W, — Ntrace(Wqu HIH,HIH,) —0. (7.3)
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Therefore, each term [ in the sum in (4.4) can be calculated as:
I =wliH!H,,W,WI/HIH,w,

— —trace(W W/H!H,HH,;)

ZZ (D) g (D) fwgr (D)

Using (2.4), it is rather straightforward to show that

I 1
= Jim, 3 2 2 i (O s (OF
in the mean square sense. Therefore,
w
. aa [2
L~ w /. [P () 1y (f)df.
d/N—« —

Term I5: Finally, let us derive the asymptotic expression of I5 in (4.5). The proof

follows here a different procedure as wy,; is not independent of W](fj ), However, one
can show that

s s H
I, = Py(z;)wlHIH, W W) " HIH

pj Wpj
K 2
= Pp(xj)z (ngngjwpk)
22

Z (Z | Fups () ij ' wp’ﬂ@))
FEAIDD

klzl

Z‘hm | | (1 | Wy (1) wp (D wpr () wpr (1)
1=1

and using (2.6) and (2.7), it can be shown that I, converges in the mean square
sense to

Pz )zélglooNN%-l ;Zz:|pj - ;;;“Lm ||hm |
k) 15

Therefore,

w w 2
B B o | [ g = [ ()P
W w w _

d/N—a -3



7.1 Proofs for Chapter 4 151

Proof of Prop. 3

Note that as L, — oo,

Lg—1 Ly—1

Z |nq€| —E Z |77qé|

_ 2

el e = (Z !774|2> +ZZ\W| [ne]” — (ZW )
2 =0

=0 4/#

—E [Jh'] - (B [In])".

E (],

L-1

=0

and E@/;ﬁe NeNe Nge Nger — 0.
The rest of the proof is mainly an application of Prop. 1 where we consider

a path loss of the form Pe™(#=9) (v is a decaying factor) between the user z

r € |—2 21) and base station ¢ (¢ € Z) with coordinates m, = ga. In this case,
272 q

the inter-cell interference has an explicit form:

Z Pq( - p Z e—'y\x qar| __ = Pe % Z e 99T | Pe® Z e 4T — M COSh(")/.’L')‘

970 g=—00
Proof of Equation (4.16)
Differentiating (4.13) with respect to a, we obtain

oC(a) 1 « Pe% (E [|n[*])°
B _EC(G) + Elog2 (1 + 1(2)+ 0E Uhﬂ )

B Pe (B [Ib]) " %5
aln2 J, (I(z) + o°E “hm) <I(x) + o2F [|h’ | + Pe= (E [|h|2b2>

dz. (7.4)

Let v — 0 in (4.13). In this case,

_2 [t P(1 = + 5a?) (E [|h[])° ;
cw =" [ 1os (” 1) 1 oE [|A[] )dﬁo(’”

where

I(z) = aaP (E [|h[])° 2_€_W

B 2P

+aaP (E [|h'] - (E[|n))*) +O()
(E [InP]) + aap (E [I2*] - 2 (E [|A]))") + O()
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since —2— = 2 — 1+ O(y). We have therefore:

eva—1 ya

1 1

- vy B E[Wﬂ _ o’ 2
" 2ap (& 1)) <1 ”( ((Enhmf Q)HQPEW)WW )>
= L (1-9B)+0(?").

0P (E [10P])

N

Hence,

P (E [|nf])7) ) l=9B) 3
(HI(WW)_10g2(1+(1 s 2t WoIBY L o

which gives

1. .y a E[n'] 3 o 1 3
AW =500 (1 —7 (2 ((E 12])? 2) T aPE [11?] 4@)> +007),

(7.5)
The second term in (7.4) is treated in the same way to obtain a similar expression
as (7.5)

g, <1 LPA(E Uhﬂf)

1(2) + o2E [|h|?]

a( E[n'] o2 1 5
= 2a?n2 <1—’7 <§ (m - 1) +m - E)) +0(y”). (7.6)

It means that the difference of (7.5) and (7.6) reduces to a term —J—ﬁz + O(7?).
Concerning the third term in (7.4),

ol(z) 1 )~ od 91\ 2  2ye ¢
) L) - o (8 ) T2

= aP (E[In'] =2 ( [|1])") + O().

5 cosh(yx)
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and
1

I(x) + 0°E [|h*] + Pe—= (R [|1f*])

2 e 001 (100 (¢ (i =) + s + ) +007)
:

" or & [ (1 o (
)

_ v (11—
2P (E [|h]])

Hence,

% Pe= (E [|n[2))* 22

am”A<H@+ﬂEWﬂNﬂw+ﬂEmm+pew@UWDﬁ
A (B [1n7])* aP (E 4] ~2 (& 1)) 1°

aln2 (20P (B Uh|2])2)2

o (EQR 3
=1 ((E [|h|2])2 2) +O(y°).

We conclude
oc P E [|n|'] 3 X
&g 3) o

Remark: 2-D Network

dx

dz + O(y*)

In the case of a 2-D network, the expression for the general SINR (4.6) from Prop. 1
is still valid, if we admit that z; = (le,xf) represents the coordinates of the user
considered, d is the density of users per square meter and a = |C| is the surface of
the cell C. We assume a regular partitionning of the plane, for example in hexagonal
cells. The expression (4.9) for the spectral efficiency from Prop. 2 can be immediately
rewritten with a double integration over the surface of the cell:

w
2

2

Pt a®) (g [ 2w [R(H)Pdf

C(a):gEh //10g2 1+ " m)(Wfi,V’ v ) detdx?|. (7.7)
‘ ¢ I(z',2%) + 5 [ [R()df

e = 23 Pata®) [ PR

q#0 2

+ TPt a?) / "I~ ( / W |h(f)|2df)

2

with a € [0, £].
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Appendix for uplink single-cell orthogonal CDMA

We give here an intuitive proof that the two terms |gfg;| and g/! <G(,k)G£k)> g5

in the expression of the SINR (4.30) for the Matched Filter converge in expectation
to obtain Prop. 10. Namely,

N
&l gn| = P(x) Z ik iwikPNng(xk)f(xk), (7.8)

gt (GwG{y) g = Py ;P Ty) thkhzéwzsze Njoop(xk) (v(@k) — () -
(7.9)
Note that (7.8) is immediate:
Z [ i ] N Z [hiel* —— — &(x)-
Using the fact that (see Sec. 2.2.4)
E [Juwa? |wiel?] = ~b—\ £> 1
ik 14 N(N + 1) ) )
E [wiwiewipwi,] = TNV (>1,1#1,
N 2
the expression [E,, [ Yoy Rl hiowlwie 1 is equal to:
N N ] N
; ; hixhiehieh B [Wiwicwiwy,] = m Z [l [Piel” (7.10)
NAE ) Z > hihughihy,.  (7.11)

zll#z

When N becomes large, the terms (7.10) and (7.11) tend respectively to

1 1
7 | )P b

and

1

1 1
N—f—l/0 h*(u,xk)h(u,xg)du/o h(v, zg)h* (v, z)dv.

Note that absolute convergence can be proven using Lemma 2.25 from [Pea05].
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Derivation of (4.33) and (4.34). As far as the term v(zy) is concerned,

v(ay) = / ) / \h(f,ark)IQIh*(f,y)\2dfdy

E;ék m,n,p,q=0

= — Z Z ’nkm| Z |7]Zp‘ + Z nkngnnépnzq

E;ék m=0 m—n-+p—q=0

where the underlined sum is taken over all 4-tuples (m,n,p,q) € {0,...,L — 1}*
suchas m—n+p—q=0, m#n, p# q. The expectation of the underlined sum is
obviously 0, hence we obtain (4.33).

As for p(xy),

1 2
/0 W(f, )l () df

L—1 L—1 2

1
SN g, / ¢ =)f cim(o=a) g
0

=0 q:O

P
1 K L—1 L—1
2 2 * *
=N > ( [l [menl” + anpnkqmqmp)

p=0 p=0 g#p

The expectation of the second sum is obviously 0, hence we obtain (4.34).

Appendix for uplink multi-cell orthogonal CDMA

We give here an intuitive proof that the terms g/ (GZG ) gr in the expression of
the SINR (4.36) for the Matched Filter converge in expectation to obtain Prop. 11.
Namely,

(+1)K 2

g (GIG/") gr = P(ax) Y Play)
(=IK+1

a(lata/2) 1
2 2
P [ [ Pw P G el g (312

Using the fact that w;; and w;, are elements from two independant Haar dis-
tributed unitary matrices, so that

N
* *
E hihigw;gwie

=1

Uwzk| ’wzf| ] N27 £> 1

E [wiwiewpwy] =0, £>1, i #1,

2
the expression E,, “Zf;l R hiowiwie } is equal to:

N N
DO b hihihi B [whawewaw] = N22|hzk| |ie]

=1 =1
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Note that absolute convergence can be proven using Lemma 2.25 from [Pea05].

7.2 Proofs for Chapter 5

Proof of Prop. 14

Notice that when 02 — oo, COFPT = 0, CMMSE — () and MMSE(z) = B(x) = 0. Thus
we only have to prove that the derivatives of either side of (5.42) are equal.
Using p(f,z) = P(x)|h(f,z)[*, (5.35) can be rewritten

B(x) = 7.13
( ) /() 9 fa pl‘i%)Qd)y ( )

From (2.3), fol p(f, x)u(f, —o?)df satisfies the same implicit equation (7.13) as

B(x) and thus
1
u(fa _0-2) I o(f.y)dy (714)

0 1+8(y) +o

Using (7.13) and (7.14), we can rewrite

e

1+B

a pfw)
:/ 0 1+ﬁ(:c)dx if
0 02< @ plhy)dy | )
0 1+4P8(y)

_ /a iowy [1 plf.a)df
0

o2 a p(f.y)dy 2
0 Jo Tisw TO

s,
= /002(1+5(x))d'

Thus from (5.40)

pcort ° B
* - 1og2(e)/0 el (7.15)

Differentiating (5.37) with respect to o2, we obtain

8CMMSE_ e’ 1 aﬁ
e = orale) [ e (716

Let 7(x) From (7.15) and (7.16), we obtain

_ 1
- o (14B8(z))"

HCOPT 5O MMSE a 9
902 902 ——logg(e)/o <5(9L’)+ 8062( )) m(z)dz. (7.17)
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From (5.35), we have

| gt m_/ /ﬂ+ka2?ﬁ<m£Z@“

> o(f, x)agz( )dx
0 1+fo fry)m(y)dy

19 [ a
_hgﬂaaﬁzzb&(1+l Mﬁwwwmiyﬁ

Observing that

/Oa (ﬁ( )+ o? %( )) () + 02B(x >§;( )z = %/Oam(x)ﬂ(x)dx,

we obtain (5.42) from Prop. 14.

Influence of Other Players’ Strategies

We want to prove that asymptotically, in the game {S%,S, (ug)pegx }, the strategy
of a single player does not have any influence on the payoff of the other players. In
other words, for all k # i € S&, for all p= (P,,..., Px) € S¥, for all P/ €S,

k(D) — u(PL, p( )| = 0, as N — oo.
Remember that u, = %ﬁ:), and v is at least C2. Let (B, ...,Bx) be the SINRs

associated with the power allocation p and (f, ..., 3%) the SINRs associated with
the power allocation (P}, p(—i)). Then a simple Taylor expansion of v in 3, gives

Y(Br) = v(Br) + (B — ﬁk) (ﬁk) +o(Br — Br)- (7.18)

B

According to (7.18), it is sufficient to show that

B — Bk

2 — 0, as N — o0. (7.19)

Matched Filter For the matched filter, the inequality is obtained directly from
(5.33). The denominator of (5.33) is always greater than "WQ SN |hakl®. Hence,

Py (P = P) % S sl |
Pk0'4

B — Br
Py,

max

04N

Pmaxh2
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MMSE Filter For the MMSE filter, the inequality is obtained from (5.34), Lemma
1 from [ET00] and Lemma 2.1 from [BS07|, which we both reproduce below for
convenience.

Lemma 2 [ET00] Let C be a N x N complex matriz with uniformely bounded spec-
tral radius for all N: supy(|C|) < oo. Let w = \/Lﬁ[wl, oo, wn) T where {w; b1 N
are i.1.d. complex random variables with zero mean, unit variance and finite eighth

moment. Then:
4

C

E N2

1
‘ HCW—NtrC

where C 1is a constant that does not depend on N or C.

Lemma 3 [BS07] Let 0* > 0, A and B N x N with B Hermitian nonnegative
definite, and q € CN. Then

[A]]

5 -

tr((B+o" )" = (B+aq" +0°) 1) A) < =

In Lemma 3, ||A]| is the spectral norm of A, i.e., the square root of the largest
singular value of A.
From (7), we can write

-1
O = PkaHHkH (G(,k)Gfik) + O‘QIN) Hywy,
-1
ﬁk PkaHHk (G /GH +0’2IN> Hka

where
/
G x'G{lyy = GGy + (P = P)(h; © wy)(h; © wy)T
-1
A corollary of Lemma, 2 is that for either matrix C = H,cH (G(_k)Gf{k) + O'QIN> H;

-1
or matrix C = HY <G(_k)'G(Ifk)/ + O'QIN) H,, we obtain [ET00]

1
’WkHka — NtrC‘ — 0, as N — oo.

Matrix B = G GI{ (_) is Hermitian nonnegative definite, as for all w € C¥,
w G G LW = HG( kWH > 0. Diagonal matrix A = HkHH has spectral

norm HHkHHH < hZ,.. Using Lemmas 2 and 3, as N — oo, we obtain

B — Bk

Py,

>

— 0, as N — oc.

Optimum and Successive Interference Cancellation Filters The analog of
the SINR derived for the optimum filter stems from the MMSE filter with SIC. The
SINR for SIC filters have similar expressions with less interfering users appearing in
the denominator. Hence the result is immediate.
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Proof of Prop. 16

Given C*, we can use (5.42) to obtain a Nash equilibrium power allocation in the
following way. We rewrite (5.42) assuming that the target SINR for the MMSE filter

is BT.
+
146+
1 ¢ 2 .
+ log, (1 + m/o P(y) [h(y)] dy) = alog, (1+5%). (7.20)
In the left-hand side of (7.20), P(y) is given by a MMSE power allocation similar

to the one given by (5.50). Hence, the term 5 P(y) |h(y)|* dy in (7.20) does not
depend on the actual realizations of the channels. Replacing 5* by 47 in (5.49), we
obtain that [* P(y) \hy)|? dy = 1:3‘2@, which gives us (5.52). Replacing 5* by

1+67F

S in (5.50), we obtain the power allocation (5.51).

alog, (1 + ﬁ+) — alog,(e)

Expectation of the random variable (5.55)

For each user j, there are L > 1 paths with respective attenuations hy (%) , L=
1,..., L, which are i.i.d. complex random variables with mean zero and even distri-
butions of the real and 1mag1nary parts. The Fourier transform of those attenua-
tions is hp; = h (N, L) = S he (£) e ™~ The total energy of the paths is

Ej—Zezl‘hf (N)‘ ' 2
We want to show that the expectation of the random variable % ZJKZI |hg;‘ is

equal to 1. By expanding the expression of h,,;, this is equivalent to showing that
the expectation of the random variable

he (%) he (%)

E.

J

is equal to 0. Denoting by p(-) the distribution of hy, = hy (%), this expectation is
equal to the L-dimensional integral of

hghgl
p (he) p (he) p(he)
el + e |* + D ktee [ k;lé_flzf

which is an odd function of h,. Its integral is therefore 0, which proves the desired
result.

Proof of (5.67) and (5.68)

Denote my = Pg_i |hix—g|. From (5.64), with flat fading, the sequence {mk}kesK

satisfies mg = 302 and mys1 = o2+ 2 E _om;. Using the fact that E ( ) =

(k+1

p +1)’ it is immediate to prove by recurrence that

* - k 1 *J * 1 * "
:602jzo<j)ﬁ5 :602<1+Nﬁ).



160 Appendix

Hence formula (5.67). The demonstration is exactly similar for (5.68) from the

*
. k
recursion mg = (3*0? and my,; = $*0? + (1—&—67)1\/ D im0 M-

Optimal Ordering of Users

We determine the ordering that makes use of the least total power for equilibrium
power allocation (5.67) (the case is similar for (5.68), (5.69) and (5.70)). Let the
ordering of the users be such as |hy|* < --- < |hg|>. Let m be any permutation of
{1,...,K}. Let ag; = (1+ 489" 7" = (1+ Lp*)" 7.

Then showing that the optimal ordering is such as |hy|* < --- < |hg|* is equiva-
lent to showing that for any =

Ko

> k) > 0. (7.21)

2
k=1 |hk|

Consider first a cyclic permutation. By the definition of a;;, the sum of the az )

is equal to zero: 22{:1 apr(k) = 0. The first coefficient a;.(1) is positive. It is affected
coefficient ﬁ, which is the greatest coefficient in the sum in (7.21). Hence the sum
in (7.21) is positive in this case.

Permutation 7 can be decomposed as a product of disjoint permutation cy-
cles. Each cycle determines a subset of indexes k, these subsets form a partition
of {1,..., K}. With a similar reasoning as precedently, replacing index 1 with the
smallest index in the cycle, the sum over the indexes k pertaining to a cycle of
ﬁakm(;ﬁ) is positive. Hence the global sum of (7.21) is also positive.

It can be proven in a similar way that the same ordering maximizes the sum of
inverse powers of the users.
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