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Graph Based Analysis of

Mesh Overlay Streaming Systems
Damiano Carra, Renato Lo Cigno, and Ernst W. Biersack

Abstract—This paper studies fundamental properties of

stream-based content distribution services. We assume the

presence of an overlay network (such as those built by

P2P systems) with limited degree of connectivity, and we

develop a mathematical model that captures the essential

features of overlay-based streaming protocols and systems.

The methodology is based on stochastic graph theory,

and models the streaming system as a stochastic process,

whose characteristics are related to the streaming protocol.

The model captures the elementary properties of the

streaming system such as the number of active connections,

the different play-out delay of nodes, and the probability of

not receiving the stream due to nodes failures/misbehavior.

Besides the static properties, the model is able to capture

the transient behavior of the distribution graphs, i.e., the

evolution of the structure over time, for instance in the

initial phase of the distribution process.

Contributions of this paper include a detailed definition

of the methodology, its comparison with other analytical

approaches and with simulative results, and a discussion of

the additional insights enabled by this methodology. Results

D. Carra and R. Lo Cigno are with Dip. di Informatica e Tele-
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show that mesh based architectures are able to provide

bounds on the receiving delay and maintain rate fluctua-

tions due to system dynamics very low. Additionally, given

the tight relationship between the stochastic process and

the properties of the distribution protocol, this methodology

gives basic guidelines for the design of such protocols and

systems.

Index Terms—Modeling, Stochastic processes, Per-

formance analysis, Simulation, Peer-to-Peer, Streaming,

Graph-based protocols

I. I NTRODUCTION

The recent success of streaming based on peer-to-

peer (P2P) applications seems to achieve what tradi-

tional streaming and multicasting applications have never

achieved: distributed video-on-demand and live broad-

casting on the Internet. Tree based systems [1][2][3]

that have been proposed earlier coexist now with more

advanced mesh-based systems [4][5][6] that are more

resilient to node dynamics and bandwidth variations as

seen in the Internet.

In spite of the success of P2P streaming, the funda-

mental properties of such systems have not been investi-

gated in depth (see Sect. I-A for a discussion of existing

works). In particular, we are not aware of any study

concerning the behavior of the streaming distribution

system as a function of the topological properties of

the graph that is built by the P2P application for the
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information transfer.

In this work we develop a mathematical model based

on stochastic graph theory that can be used to analyze

fundamental performance issues of overlay streaming

services. The level of abstraction of the model allows

to study the fundamental behavior under different condi-

tions, yet maintaining a limited complexity. Many studies

analyze astatic graphs that captures the properties of

a snapshot of the network (see [7] and the references

therein). In our work, instead, we study thedynamicsof

the graphs, i.e., the evolution of the structure over time.

We derive the master equations (MEs) that define the

evolution of the streaming system in time. The MEs

take into account the fundamental characteristics of the

streaming protocol as well as the bandwidth available at

nodes for the streaming application. The model allows

assessing the impact of different protocol choices and

of bandwidth heterogeneity on the delivery process and

provides insights in how to improve existing streaming

strategies.

A fast and effective Monte Carlo integration method-

ology is used to solve the mathematical model. The

solution provided by this method is compared with

other modeling techniques to show the flexibility and

computational efficiency of that approach.

The results obtained by the systematic study of dif-

ferent configurations show that performance is mainly

influenced by the policies related to content format

(how much redundant information is sent). Mesh based

architectures are very robust to failures, even in presence

of high churn and the delay experienced by nodes stays

bounded.

A. Related Work

In the last few years many solutions have been pro-

posed for overlay streaming services. Such systems can

be classified according to the basic structure they use to

deliver the content.

Systems such as ALMI [1], NICE [2] and Zigzag

[3] organize the nodes in a tree structure. The stream

is received from a single parent and uploaded to a

set of children (except for the leaves). The differences

among these systems concerns the algorithms used for

adapting the tree in face of the node dynamics. Systems

such as Narada [4], Coolstreaming [5] and PULSE

[6] build a mesh structure. Nodes download from a

set of nodes, called parents, which can change over

time. Problems related to delay and synchronization are

handled according to different heuristics. Other systems

adopt an hybrid approach (e.g., SplitStream [8], PRIME

[9], Multi-tree ESM [10]), where the stream is distributed

using multiple trees obtaining a structured mesh.

The above distribution protocols were not designed

with a performance driven approach as far as delivery

is concerned. Many proposals use heuristic methods to

improve performance, but these heuristics are validated a

posteriori and protocol parameters are tuned according to

these results. Performance analysis of overlay streaming

systems received some attention only recently. Most of

the analytical works focus on tree based structures (e.g.,

[11], [12], [13]) or on a specific system (e.g., [14]), but,

to the best of our knowledge, no study has been done on

modeling general mesh-based streaming systems. Only

[15], [16] and [17] start analyzing such systems, but [15]

and [16] consider fluid analysis, finding the conditions

under which the system can work and [17] adopts a

simulative approach.

Some recent studies on graph theory analyze the

properties of growing networks [7][18], but the way the

graph structure can grow is not constrained by protocol

rules, thus resulting of little use in the analysis of

highly structured systems. Our model considers also the
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properties of the overlay graph as well as the access

bandwidth variability, and the protocol rules that drive

the graph evolution. In this sense our approach extends

the general concepts of these theoretical studies to the

specific problem considered.

In the preliminary version of this paper presented

in [19] we carried out an initial analysis of overlay

streaming systems. Compared to that paper, this work

presents the theory and methodology of the analytical

model and it explains in details how the Markov process

describes the evolution of the system over time. More-

over, we implement an overlay streaming protocol using

the PeerSim P2P simulator [27], validating the analytical

results with the simulative ones.

II. M ESH-BASED OVERLAY STREAMING SYSTEMS

We do not consider here any specific system, but we

identify common basic characteristicsof recent propos-

als, focusing on hybrid approaches, such as [5][9][10],

where the mesh is built as superposition of trees, ob-

taining astructured mesh. Consider an overlay network

built by a P2P application. Once the overlay layer is

built, paths between the source and the destinations are

created following the rules of the distribution protocol.

At each hop, nodes both receive the stream and con-

tribute uploading it to other nodes, i.e., they work as

content relay. Since nodes in such networks can appear

or disappear frequently, the set of nodes from which a

node is downloading changes over time.

A. System parameters

The content is distributed usingR different stripes.

Each stripe contains part of the stream (coded, for

instance, using MDC techniques [20]). A node needs

R′ < R out of R stripes to achieve a target quality,

while the remainingR − R′ stripes contain redundant

information. We assume that each node downloads a

specific stripeRi from a single node. Downloading the

same stripe from multiple parents does not increase the

quality of the received stream. Moreover, each node

downloads only a single stripe from a given parent, even

if the parent could provide multiple stripes, which limits

the impact of a parent that leaves.

Even if the structure is a mesh, looking at the system at

a specific instantt, it is possible to identify sub-structures

inside the mesh. If we consider the graph at timet and

we consider the nodes that are downloading stripeRi, it

is possible to construct a tree that connects these nodes.

We call such a tree “diffusion tree.” The whole mesh

can be seen as a set of overlapping diffusion trees [17],

which change over time.

The evolution of the network is subject to two main

events: node arrivals and departures. We assume that

arrivals and departures are exponentially distributed ac-

cording to ratesλ(t) and µ(t) respectively. The de-

pendence on time makes the model more flexible: for

instance, different arrival patterns, such as flash crowds

or more smooth arrivals, can be described. LetTstr be

the duration of the stream andN the mean number of

nodes receiving the stream at steady state. We consider a

situation where a fraction of the nodes joins the stream at

time zero, and there is anarrival interval during which

λ(t) > µ(t) until steady state is reached. Fig. 1 shows a

sample arrival pattern.

The departure rateµ(t) is the inverse of the mean time

spent in the system (sojourn time).λ(t) at steady state

compensates departures. For a given time intervalT , the

ratio between the cumulative number of nodes that left

and the mean number of active nodes duringT is defined

as thechurn of the system. A 100% churn means that

during T the number of the departed nodes is equal to

the mean number of nodes in the system, i.e., there is
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Fig. 1. Sample arrival pattern of nodes joining a stream.

on average a complete change of the nodes duringT .

Nodes are divided into different classes according to

their bandwidth. Each classj has an upload bandwidth

b
(j)
u and a download bandwidthb(j)

d , which can be

either symmetric, asymmetric or correlated, e.g.,bu
i + bd

i

constant, as in a shared medium access. The bandwidths

are random variables described by a probability density

function (pdf) that is known (e.g., derived from measure-

ment studies).

The rate of the streaming isrstr. We suppose that

all nodes have a download bandwidth at least equal

to the streaming rate. Each stripe has a rate equal

to rstr/R′, and we assume that the server is able to

upload all theR stripes, i.e., it has a bandwidth greater

thanRrstr/R′. Each node has a constraint on maximum

and minimum number of active uploads that limit the

possible outdegree of the node:kmax is the maximum

outdegreeand andkmin is theminimum outdegree.

Each node hasB overlay neighbors. Among its neigh-

bors the node selects itsparent nodes, i.e., those from

which it downloads.R′ parents are calledactive; the

remaining are calledstandby, since they are used as a

backup in case of an active parent failure1.

1We borrowed the concept of grouping active and standby parents

from [21].

B. Join, Update and Leave Procedures

Nodes belonging to the initial set start building a

diffusion tree for each stripe. The number of nodes in

each diffusion tree depends on the characteristics of the

nodes involved such as the bandwidth. Each node is

involved in multiple diffusion trees.

When a new node arrives, it randomly chooses an

active node as first contact and then builds its neighbor

list with the help of this node. From the neighbor list,

the node selects its parents and connects to them.

With rate λup nodes periodically search among their

neighbors for new connections in order to increase their

indegree. For standby parents, the bandwidth is not

reserved, so the total number of parents can exceed the

ratio between the stripe rate and the node download

bandwidth.

When a node leaves, all the inbound and outbound

connections are canceled. Orphan nodes try to replace

the parent that has left. If the parent that has left was in

the standby set, the node does not react (it simply loses

a backup parent). If the parent that has left was in the

active set, the node tries to switch the state of a standby

parent, i.e., it starts downloading from the standby parent

that has enough available upload bandwidth. If a node

has no backup parents, there will be a temporary loss of

quality whose extent depends on the time necessary to

search for a new parent. The node can either try to look

for a new active parent immediately or wait for the next

Updateprocedure. In order to keep the model simple,

we consider only the latter case. In Sect. VI we analyze

with simulations the difference between these two cases.

III. SYSTEM MODEL

The network of contacts among users of a P2P net-

works can be modeled as a graph, where nodes represent

the users and edges the neighborhood relationship. When
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the users start exchanging data (in our case, they start

receiving and distributing the stream) they use a subset

of the available outgoing/incoming edges. The number

of neighbors that are uploading to a node, for instance,

represents the number of parents from which the node

downloads the content, and it can be considered as a met-

ric to measure the total rate received, and consequently

the quality of the streaming. The focus of our analysis is

the characteristics of thedistribution graph(see Fig. 2),

i.e., the subgraph of the overlay graph, where edges are

the connections effectively used by nodes.

Overlay Layer

Distribution Layer

Fig. 2. Overlay and distribution graphs

In general, the distribution graph is time varying, i.e.,

nodes and edges can appear or disappear in time. The

evolution of the graph can be seen as a stochastic process

with Markovian properties, since the graph at timet+dt

depends only on the graph at timet and the event (join

or leave of a node) occurred duringdt.

A. Formal Description of the System

Considering the system at a specific instantt, we can

identify for each node two types of relationship: parents

(or, equivalently, children) and neighbors. For parents

we can associate an identifier of the stripe exchanged

— different identifiers are selected in case of active or

standby stripe.

Let αk andσk be the identifier of stripek, when it is

active and standby respectively. Letη be the identifier

that indicates that two nodes are neighbors in the overlay.

The overlay graph and the distribution graph can thus

be described by the connectivity matrixS, where each

elementsij describes the relationship between nodei

and nodej:

sij =














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


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
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


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






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











0 nodesi andj are not neighbors

η nodesi andj are neighbors and

do not exchange stripes

αk nodesi andj are neighbors andi is

activeparent ofj with stripek

σk nodesi andj are neighbors andi is

standbyparent ofj with stripek
(1)

Since each parent can upload only asingle stripe to

a node,sij can assume only the above values. Along

with the connectivity matrix, each node has a upload

bandwidth that can be represented, for a given stripe

rate, as the maximum number of active children a node

can have.

State transitions are determined by the events join,

leave, and update described in Sect. II. We assume that

the rates of these events are exponentially distributed

with parametersλ, µ andλup respectively. For each event

it is possible to find the transition probabilities from a

stateS to a stateS′ that describes the new connectivity

matrix. We will see that each event corresponds to a

set of operations. As a consequence, the corresponding

transition is not simple and more than one element in

the connectivity matrix may change.

Join and Update

The join procedure is composed by two steps: node

arrival and connection to stripes, with the latest being

equivalent to an update procedure.

In the arrival procedure the arriving nodeb builds the

neighbor set. The number of initial neighbors is equal to
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B. Since neighbors are randomly chosen, the new state

will have a new row and a new column filled withη for

each neighbor relationship. The possible transitions are

given by the combination ofB elements out ofN total

nodes with equal probability.

In the update step, a node receives from each neighbor

i a vectorVi,b containing the (active) stripes the neighbor

can provide. The vector hasR elements and element

k contains the value ofαk if the neighbor has the

stripe, otherwise it contains zero. Within each of the

vectors received, the node selects randomly one of the

available stripes, independently (and asynchronously) for

each parent. Given the vectors, it is possible to build

all the possible combinations of stripes downloadable

from the whole neighbors’ set (the possible combina-

tions include the different order of arrival and selection

of parents). Since the selection is random and done

independently neighbor by neighbor, each combination

has equal probability. In the Appendix A we give the

procedure that finds all the possible combinations. In the

following we present a small example withR = R′ = 3,

αk = α1, α2, α3 and a network with 5 nodes. Assume

that node 5 has just arrived and built its neighbor set:

the overlay and the diffusion trees are the ones depicted

in Fig. 3.

25
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b) stripe b) stripe b) stripea) neighbor relationships

Fig. 3. Neighbor relationships and diffusion trees of the example

when node 5 joins the stream.

The connectivity matrix built upon node 5 joining the

stream is represented in Fig. 4, where column 5 identifies

that node 5 is still not receiving any stripe.

S =























0 α1 α1 η η

η 0 α2 α2 0

α3 η 0 α3 η

α2 α3 η 0 η

η 0 η η 0























Fig. 4. State reached after node 5 has joined the overlay.

From the definitions in (1), rowb represents the

children of nodeb, while columnb represents the parents

of node b. Node 5 now receives from its neighbors

the following vectors:V1,5 = [0, α2, α3] from node 1,

V3,5 = [α1, α2, 0] from node 3, andV4,5 = [0, α2, α3]

from node 4. Table I reports in the first row the three

vectorsVi,5 received by node 5 from its neighbors 1,

3, and 4. The following rows in Table I are the four

possible combinations (see Appendix A for details) of

downloadable stripes.

The selection strategy depends on the protocol. Here

for the sake of simplicity we assume that the node

b selects randomly the stripe within the vectorVi,b

immediately upon receiving it, so the combinations are

all equal likely.

TABLE I

STRIPES NODE5 CAN SELECT

[0, α2, α3] [α1, α2, 0] [0, α2, α3]

from node 1 from node 3 from node 4

α2 α1 α3

α3 α1 α2

α3 α2 0

0 α2 α3

Supposing that node 5 selects the last row of Table I,

[0, α2, α3] (i.e., node 5 will download the stripeα2 from
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node 3 and the stripeα3 from node 4) then the following

state will beS
′ represented in Fig. 5.

S
′ =























0 α1 α1 η η

η 0 α2 α2 0

α3 η 0 α3 α2

α2 α3 η 0 α3

η 0 η η 0























Fig. 5. State reached after node 5 has selected the stripes.

The transition probability isP (S, S′) = 1
4 . Defining

the other 3 possible states is trivial. The last row ofS
′,

without αk or σk identifies 5 as a leaf node, a state

(of the node) that can be left only as a consequence of

update procedures of other nodes.

Leave

The leave procedure involves multiple interactions of

several nodes. When nodeb leaves the stream it dis-

appears from all neighbors: the connectivity matrixS
′

will have all zeros in row and columnb.

Each nodei that was receiving an active stripek from

the node that has left tries to switch to a standby parent

j (that has stripeh): the corresponding value of the

connectivity matrix will change fromσh to αh. This

is done if the standby nodej can upload more stripes.

Otherwise the corresponding value is switched fromσh

to zero. The identifiersαk or σk of the disappeared

stripe will be set to zero wherever it appears in row

i. The grandchildren of the node that has left will then

try to switch standby parents too. At the end of this

composition of steps, the connectivity matrix reaches a

stable state that is the final transition. Note that each

step is independent, so the final transition probability is

easily computed.

B. Applicability of the Model

The system described in Sect. II is not meant as a

proposal for a new P2P streaming protocol, but it is

an abstract representation of the key features of many

protocols like [5][9][10]. In fact all these system share a

common idea of “striping” the distribution and building a

structured mesh composed of the distribution trees of the

single stripes. Moreover, the choice of the neighborhood

and of the parents is, up to a certain degree, random,

so that considering a purely random choice captures

the common behavior and represents (most probably) a

lower bound of performances.

The description of the overlay graph through the

connectivity matrix is able to capture the essential fea-

tures of overlay streaming protocols. The details of a

protocol may influence different aspects of the model:

(i) a protocol may impose different constraints on the

structure (e.g., maximum number of neighbors, i.e. max-

imum number of non null elements per row); (ii) it

may influence, given a state, the possible states that

can be reached; (iii) it may change the transition rates.

Nevertheless, the basic structure of the proposed model,

the connectivity matrix and its evolution according to

the protocol policies, remains unchanged. By properly

translating the protocol policies and constraints into the

connectivity matrix properties and transition rates, the

methodology is able to provide insights into the funda-

mental performances that can be obtained by different

overlay protocols.

C. Master Equations

The evolution of the graph that describes the overlay

streaming systems is a Markov process with state space

and transitions defined above. The temporal behavior can

be described using the differential form of the Chapman-

Kolmogorov equations, known asMaster Equations
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(MEs) [7].

Let P (Si, t) be the probability to be in stateSi at

time t. The variation of the probabilityP (Si, t) in time

can be expressed as

∂

∂t
P (Si, t) =

∑

Sj

wSj ,Si
(t)P (Sj , t) (2)

where wSj ,Si
(t) represents the transition rates from

the stateSj to the stateSi at time t. The general

formulation of the Master Equations must be specialized

for our problem: the transition rates are closely related

to the streaming protocol policies and can be found as

described in the previous section.

D. Distribution Graph Properties

The information given by the MEs are relative to the

whole overlay and distribution graph. In order to analyze

the system independently from the size of the network, it

is useful to reorganize the information contained in state

S. We consider the distribution of two main performance

indexes that summarize the structural characteristics of a

distribution graph: the degree distribution and the delay

distribution [7].

The degree distributionPb(d, t) is the probability that

node b has d connections at the distribution layer at

time t. We can identify both indegree and outdegree

distributions (Pb(di, t) and Pb(do, t) respectively, with

di + do = d), that represent the number of children

and the number of parents of nodeb. The outdegree

(indegree) distribution of a nodeb is derived from the

correspondent row (column)b of the connectivity matrix

S. We can also determine the total degree distribution

defined as

P (d, t) =
1

N(t)

N(t)
∑

b=1

Pb(d, t) (3)

where N(t) is the number of nodes attached to the

stream at timet.

The delay distribution represents the distance of the

node from the source of the stream considering all the

active stripes the node is receiving. We definePb(ℓ, t)

as the probability that nodeb is ℓ hops away from the

source at timet, where ℓ is the maximum among all

the stripes. Similarly to the degree distribution, we can

derive the total delay distribution

P (ℓ, t) =
1

N(t)

N(t)
∑

b=1

Pb(ℓ, t) . (4)

The probabilityPb(ℓ, t) can be obtained fromS in the

following way: given a nodeb and a stripek, we can

recursively find the parent that is providing the stripe

(throughσk or αk), counting the number of recursions,

until we reach the root. In Appendix A we give the

procedure that can be used to obtain the number of steps

from S.

E. Rate Equations

The MEs fully determine the evolution in time of

the stochastic system. Considering the degree and delay

distributions, it is also useful to have the equations for the

average value. The correspondent equations are called

Rate Equations(REs):

∂

∂t
d =

∂

∂t

∑

d

dP (d, t) (5)

The REs express deterministically the behavior of the

system, since they are a set of differential equations

describing the evolution of the mean properties. Figure 6

shows the relationship between the results of the MEs

and the result of the REs for a given observed random

variable. REs are a fluid approximation of the system.

As the time goes to infinity, MEs converge to the steady

state distribution if it exists, otherwise yield the transient

over any given interval. REs converge to the mean value

if steady state exists, otherwise they are meaningless.
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Fig. 6. Results of the Master Equations and the Rate Equations

The methodology we propose provides the solution

for the MEs, and hence the complete system characteri-

zation.

IV. M ONTE CARLO INTEGRATION OF THEMASTER

EQUATIONS

The set of MEs that describe the distribution process

cannot in general be solved in closed form. However,

the structure of the transition matrix that describes

the stochastic process is very well suited for an effi-

cient numerical solution based on Monte Carlo tech-

niques [22][23][24]2, i.e., for a solution based on process

simulation.

Monte Carlo integration is basically a random walk in

the state space of the process. The convenience of the

methodology is given by the fact that it is very simple to

build a random walk following the graph building rules

given in Sect. II and the same rules define a transition

matrix with good local properties, i.e., given a state there

are few states where the process can evolve and, from

the reward point of view, they are similar one another,

so that there are not “diverging paths” that may lead to

instabilities in the solution.

Samples obtained via Monte Carlo techniques are

2In physical and chemical sciences this technique is often called

Stochastic Simulation Algorithmor Gillespie Algorithm, but we prefer

to stick to the term ‘Monte Carlo’ normally used in computer science.

i.i.d. by construction, so that confidence intervals can

be estimated on the whole probability distribution.

The key strength of the methodology is not only its ef-

ficient numerical solution: indeed, this method provides

great flexibility in the system description and specifica-

tion. On the one hand, this is like a generic simulation

approach, but, being based on formal definitions, avoids

the risk of incomplete or bugged specifications; on the

other hand, assumptions made in fluid models can be

avoided, since we can describe the system behavior in

full detail. The implementation of the Monte Carlo inte-

gration of the model presented in this paper is available

at [26].

A. Comparison with Fluid Models

We consider a very simple case in order to show

the differences between ME and RE based approaches.

Consider the case where a node updates its indegree

only during update events. We assume infinite upload

and download bandwidths and no constraints on the

maximum outdegree. Ifdi(t) is the indegree at timet, at

every update event the node will addR− di(t) parents.

In fact, under these assumptions the probability to find

all the necessary parents to obtain all the stripes is 1,

since there is always a node that is able to provide a

connection. The differential equation that describes the

evolution can be written as

d

dt
di(t) = λup(R − di(t)) − di(t)µ (6)

The second term considers the fact that thedi(t) parents

can leave with rateµ each. Actually, not only parents

can leave, but any ancestor of the node may disappear,

thus the rateµ should consider also this aspect. Since

we are looking for a simple closed form solution to

this example, we assume that each node is able to

build any stripek starting from the set of stripes it is
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receiving. This assumption is unrealistic, but it simplifies

the example since the failure of a node has impact only

on children, not on the whole subtree. Eq.(6) describes

the evolution of the indegree for this system. We have

also modified our numerical solution including the same

hypothesis in order to compare the results.

Considering the initial conditiondi(0) = 1 (we

suppose that all nodes are present at the beginning with

exactly one parent each) the solution of (6) is

di(t) =
λupR

λup + µ

(

1 − e−(λup+µ)t
)

+ e−(λup+µ)t (7)
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Fig. 7. Solution of the differential equation and the Rate Equation.

In Fig. 7 we compare the analytical solution of this

very simple case with the solution of the Rate Equations

(5) derived from our model. We setR = 10 stripes,µ =

1/Tstr and λup = 5
Tstr

, 3
Tstr

and 2
Tstr

. We normalize the

time with respect toTstr. The numerical solution follows

closely the analytical one. But the results obtained from

our model give more insight. In fact, we can observe

how thefull indegree distribution changes over time.

Fig 8 shows for instance the distribution of the number

of parents (indegree) at timeTstr/2 for different values

of λup.

Notice that there is a non-null probability that a

node remains without parent, thus being disconnected

entirely from the distribution process, a phenomenon that

a fluid approach analyzing the means entirely disregards,
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Fig. 8. Indegree distribution at timeTstr/2 obtained from the solution

of the MEs.

while in most cases it is one of the most important

performance.

V. A PPLICATION OF THEMETHODOLOGY

A. System Description

We use a configuration withN = 104 nodes, but

we have also checked some configurations with105

nodes obtaining similar results. We use the input band-

width distribution reported in Table II; bandwidths are

expressed as a multiple of the streaming raterstr. The

streaming rate is divided intoR′ stripes and the source

generatesR stripes. Results are obtained forR = 12 and

R′ = 3, 6, 9.

TABLE II

UPLOAD BANDWIDTH DISTRIBUTIONS(NORMALIZED W.R.T. rSTR)

Bandwidth % nodes

1 20%

2 40%

5 40%

We consider an observation time equal toTstr (stream

length). We consider two arrival patterns, with an initial

number of nodes equal toN10 and N
2 respectively; the

remaining nodes arrive withinTstr/5. The mean sojourn

time is set to0.5Tstr, Tstr, and2Tstr.
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Each node can have up to 60 neighbors in the overlay

graph (the actual number of neighbors depends on dy-

namics of the nodes); among these relationships, while

uploading a node can have a maximum outdegree that is

limited only by its bandwidth3.

The stream is chunk based (e.g., few video frames

or a slice of a few tens of milliseconds of sound) and

we normalize the dimension of the chunk,U , such that

U
rstr

= 1 unit. A node can upload the content after a

delay equal to the download time of a single chunk. So

the delay can be considered as the “distance” (relative

delay) of the node from the source of the stream. The

length of the stream,Tstr, is set to10000 U
rstr

= 10000

units.

Besides degree and delay properties, we consider also

the quality of the mesh: when a node remains orphan of

an active parent, it switches to one of its standby parents:

if they have enough bandwidth to help the node, the node

has no service disruption; if no standby parent is able to

help the node, it must search for a new parent, with a

possible service disruption. We measure the quality of

the mesh as the percentage of nodes that successfully

switch to standby parents.

Due to space constraints, we report only some sam-

ple results that show the potentiality of the analytical

framework. For an extended set of results refer to [25].

B. Analysis of the Indegree

Analyzing the indegree we examine whether the sub-

division in stripes helps the distribution process or not.

On the one hand, more stripes means that each stripe has

a lower rate, so the loss of a single stripe has less impact.

On the other hand, each node must maintain more active

3The bandwidth is not necessarily the physical bandwidth, but can

be the amount of resources willingly shared with the stream.

connections and the probability that any one of these

connections fails increases.

Figure 9(a) shows the indegree distribution of the

nodes at timet = Tstr, computed with Eq. (3). In this

case we have an initial number of nodes equal toN/10

and mean sojourn timeTstr. The distribution tends to

peak aroundR independently fromR′. This means that

all the nodes in the network are able to receive the full

quality, since the degree is always greater or equal to

R′. Note that withR′ = 9 there is a fraction of the

nodes with exactly 9 parents: this means that, in case of

one parent that has left, the quality received by the node

may be temporarily affected. For smaller values ofR′

all nodes always receive at least one redundant stripe,

which makes them less vulnerable to disruptions.
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Fig. 9. Solution of the MEs for the indegree (initial number of nodes:

N/10; sojourn time:Tstr).
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The temporal behavior of the indegree can be analyzed

looking at the results of the rate equations (Fig. 9(b))

computed with Eq. (5). A stable value is reached quickly

with the only exception ofR′ = 3: this means that

the structure, even in presence of high churn is able to

maintain a high quality of the stream.

C. Analysis of the Delay

The delay, expressed as time units, represents the

number of hops from the source. We plot the probability

density function of the delay. We considerR′ = 6 and we

set different sojourn times (µ). Fig. 10(a) shows the case

of initial number of nodes equal toN/2. The distribution

is not affected by the different values ofµ. Similar results

are obtained with the other configurations.
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Fig. 10. Distribution of the delay (initial number of nodes:N/2).

In Fig. 10(b) we show the impact ofR′ on the delay.

Increasing the number of stripes has a price: since each

node needs all theR′ stripes to correctly play the stream,

the absolute delay is given by maximum delay among

the stripes. By increasing the number of stripes, the

probability to have higher delays increases, since we

have to compute the maximum among an increased

number of stripes.

D. Analysis of the Quality

Aggregate results for the indegree and the delay are

not able to capture all the aspects related to the quality

of the received stream by a generic nodei. In Table III

we summarize other results that can be obtained from

the solution of the MEs. The value of thechurn is

computed according to the arrival pattern: arrivals and

departures are Poisson processes with rateλ(t) andµ(t)

respectively, so we can calculate the cumulative number

nodes that have left at timeTstr and consequently the

value of churn.

TABLE III

OTHER STATISTICS.

R′ 1/µ % Churn %Switch

6 0.5Tstr 186.8% 99.6%

6 Tstr 93.5% 99.7%

6 2Tstr 46.8% 99.8%

9 0.5Tstr 187.3% 94.7%

9 Tstr 93.2% 97.9%

9 2Tstr 46.7% 99.1%

One of the performance index monitored is the prob-

ability to switch to a standby parent if an active parent

leaves. This is given byp(ki, t) with ki < R′. Integrating

over timet we are able to compute the switch probability

(see last column of Table III). With a smallR′, the

percentage of switches is very close to 1, i.e., the

received stream is stable. On the other hand, withR′
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near toR, with high churn, if the number of parents of

a noden drops belowR′, the probability to switch to

a standby parent is94%. This means that the quality

temporarily decreases, as expected looking at degree

distribution (Fig. 9(a)).

VI. COMPARISON WITH SIMULATIONS

In order to validate our analytic model and our as-

sumptions — mainly exponential distributed times — we

implement a simple overlay streaming protocol on top

of the PeerSim P2P network simulator [27]. PeerSim is a

Java based simulator that consists of many configurable

components: it has two types of engines, cycle-based

and event-driven, and different modules that manage the

overlay building process and the transport characteristics.

For a more detailed description of PeerSim simulator the

interested reader is referred to [27].

A. Protocol Description and Simulation Set Up

We implemented the overlay streaming protocol using

the event-driven engine. The protocol does not contain

all the features of a real system, but it captures the

essential behavior of the management of the distribution

structure. The implementation is available at [28].

In the following we give a high level view of the

protocol messages, leaving out details about the man-

agement of all the situations. The basic control messages

exchanged by nodes are:

• Join: when a node joins the network, it obtains a

list of neighbors from arendevouz serverand it

sends messages to a subset of the received list of

neighbors asking for stripes; with this message, a

node asks to its neighbors to attach to a stripe.

• Leave: when a node decides to leave, it informs its

neighbors; the messages are sent out after a random

interval (different for each neighbor). This behavior

is equivalent to have neighbors that periodically

send to the node ping messages in order to check

if it is still online.

• Switch: when a node remains orphan of an active

parent, it sends a message to its standby parents

asking to switch the status.

After receiving message, a node processes it deter-

mining, for instance, the availability of the bandwidth

or the delay from the source, and replies with a mes-

sage containing the requested parameters. Besides these

procedures, a node periodically schedules anUpdate

where it sendsJoin messages in order to increase its

connectivity.

When a node joins the network, it selects a lifetime

uniformly distributed between zero and twice the sojourn

time used in the model, i.e. with a mean equal to the

sojourn time used in the model. This distribution is used

to check the impact of the hypothesis of exponentially

distributed sojourn times we made in the model. At the

transport layer, each message experiences an end-to-end

delay that is uniformly distributed between a minimal

and maximal value. The other constraints concerning the

minimum and maximum number of children, number of

stripes, or initial number of nodes are the same as in the

model.

B. Simulation Results

We consider the impact of the number of stripes on

the connectivity, i.e., how many stripes a node is able

to receive when stripes have different sizes. Figure 11(a)

shows the probability density function of the indegree at

the end of the stream, compared with the results obtained

with the model. We observe that results are very close,

i.e., the impact of the assumption we made in the model

is low.
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Fig. 11. Results obtained by simulation for the indegree (initial

number of nodes:N/10).

Looking at the evolution in time of the outdegree,

in Fig. 11(b) we compare the mean number of parents

obtained from the model and the number of parents of a

realization obtained from a simulation. As we can see,

the model is able to closely predict the behavior of the

system.

We then consider the distribution of the delays, i.e.,

the distance of the nodes from the source. Figure 12

shows the distribution of the delay for different values

of R′: continuous lines are the results predicted by the

model, while dashed lines with points are the results of

simulations. It is possible to see that the behavior of the

system remains the same.

For all the experiments, we check also configurations
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Fig. 12. Distribution of the delay obtained by simulation with PeerSim

(initial number of nodes:N/2; R′ = 6).

where we add a delay in the message transfer uniformly

distributed between 0 and 1 (1 unit is the time necessary

to transfer a single chunk). This delay (results not shown

here) does not have an impact on the final performance.

Moreover, we consider different scenarios where a node

reacts in different ways in case of an active parent leaves

and the node has no standby parents. In this case, the

node, instead of waiting for the nextUpdateevent, can

look for new parents. Results (not reported here, see [25]

for details) shows that the distribution of the number of

parents peaks around the maximum number of parents,

and the overall quality increases. Nevertheless, the num-

ber of additional messages represents an overhead for

the network. From the comparison between simulation

and analytic results we can conclude that our analytic

model is able to capture the essential performance char-

acteristics of the overlay streaming systems.

VII. D ISCUSSION ANDCONCLUSIONS

The contribution of this paper is the introduction of a

novel methodology for the high-level representation of

overlay streaming systems. The proposed methodology

does not represent only a model for a specific protocol.

Actually, the general definition of the structure is flexible

and can be adapted to ageneric overlay streaming

protocol that builds structured mesh.
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Based on the use of Master Equations, the solution of

the model yields the entire probability distribution and

not only the mean, of the metrics of interest (node degree

or delay) as well as the temporal (transient) dynamics.

We have modeled some systems proposed recently ob-

taining novel insights in the dynamics of self-organizing

systems for streaming distribution. In the following we

summarize the main findings that can help in designing

better P2P streaming systems.

• Redundant stripes play a fundamental role in

obtaining good performances. Recent proposals

[5][10] consider only a small fraction of redundant

information so, in case of node departures, the

streaming is vulnerable to disruptions.

• The delay is influenced by stripe ‘size’: the greater

R′ (smaller stripes) the higher the delay. The num-

ber of necessary stripesR′ should be kept low to

keep a low delay. The delay remains low indepen-

dently from the dynamics of the network.

• Under medium to high churn, nodes may experi-

ence a poor quality. Only stable nodes can prevent

this behavior. This performance measure cannot be

computed with any methodology that only yields

averages.

The model can be extended in different ways in order

to study different scenarios. For instance, we can con-

siderbandwidth fluctuations, that model the unstable be-

havior of nodes. When the bandwidth decreases, a node

simply drops some of the stripes. When the bandwidth

increases, the node can accept new children when other

nodes perform the update procedure. Another interesting

extension is considering different policies for selecting

the stripes from neighbors: instead of choosing randomly

neighbor by neighbor, a node may collect all the stripes

a set of nodes can give, selecting the combination of

nodes that maximize the number of received stripes.

APPENDIX A

PROCEDURES

This appendix contains the formal definition of the

procedures used to find the transitions between a state

S and a new stateS′ in case ofJoin or Updateevent,

as well as the procedure to find the delay of a nodeb

given a connectivity matrixS.

Join and Update

A node receives the vectors containing the stripes

of its neighbors. The output of the decision process is

a vector ofR elements (R is the number of stripes),

where elementk contains the neighbor from which the

node download stripek (the first R′ will be active, the

remaining standby).

In order to find all the possible combinations of

neighbors that can provide the stripes, we use as a basic

building block the procedure that is able to find all the

permutations ofR objects taken from a set ofB objects,

where B is the number of neighbors. The number of

available permutations is(B)R = B!/(B − R)!, so the

output is a matrixE with (B)R rows andR columns.

Each elementeij contains the neighbor that will provide

stripe j in the combinationi. If, looking at the vector

provided by neighboreij , we found a zero at positionj,

then the elementeij is set to NULL. After this operation

we obtain a new matrixM ′.

The matrixM ′ is then reduced eliminating all the rows

that areequivalentor containedin other rows. Rowa is

equivalentto row b if they have exactly the same non-

null elements in the same positions. Rowa is contained

in row b if row b has the same non null elements of row

a (in the same positions) and one or more other non null

elements that rowa does not have.
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The final matrixM ′′ contains all the possible com-

binations neighbor-stripe that the node can select. Note

that, with the Monte Carlo integration methodology we

use, it is not necessary to compute the entire matrix

M ′′ (it would be computationally expensive): since we

perform a realization of the process, it is sufficient to

generate a random row of the matrix for each realiza-

tion4.

Computing the Delay

In order to find the delay, in terms of number

of steps from the root, we start from the connectiv-

ity matrix S. Given a nodei the procedure to find

the delay is described in Algorithm 1. The procedure

“find stripes(stripeid, column index)” returns the row

index where the stripe is. The source node has index

zero, so when we reach the source the procedure stops.

This procedure is done for all nodes except the source.

Algorithm 1 Procedure for finding the number of steps
input: connectivity matrix S, initial nodei;

output: number of steps from root;

#steps = 0;

#parents = 0;

for αk = α1, α2, ..., αR do

j = find stripe(αk , i);

while j ≥ 0 do

#parents++;

i = j;

j = find stripe(αk , i);

end while

#steps =max(#steps, #parents);

end for

return(#steps);

4Consider the equivalent problem of generating all the possible

permutations of a set ofB elements, compared to the cost of generating

a random permutation.
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