
Exploiting KAD: Possible Uses and Misuses

Moritz Steiner, Ernst W. Biersack, Taoufik En-Najjary
Institut Eurecom, Sophia–Antipolis, France

{steiner, erbi, ennajjar}@eurecom.fr

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
Authors take full responsibility for this article’s technical content.

Comments can be posted through CCR Online.

ABSTRACT
Peer-to-peer systems have seen a tremendous growth in the last few
years and peer-to-peer traffic makes a major fraction of the total
traffic seen in the Internet. The dominating application forpeer-
to-peer is file sharing. Some of the most popular peer-to-peer sys-
tems for file sharing have been Napster, FastTrack, BitTorrent, and
eDonkey, each one counting a million or more users at their peak
time.

We got interested inKAD , since it is the only DHT that has been
part of very popular peer-to-peer system with several million simul-
taneous users. As we have been studyingKAD over the course of
the last 18 months we have been both, fascinated and frightened by
the possibilitiesKAD offers. Mounting a Sybil attack is very easy
in KAD and allows to compromise the privacy ofKAD users, to
compromise the correct operation of the key lookup, and to mount
DDOS with very little resources.

In this paper, we will relate some of our findings and point out
how KAD can be used and misused.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL ]: Sys-
tems and Software – Distributed systems

General Terms
Algorithms, Security

Keywords
Distributed Hash Table, Sybil attack, peer-to-peer system.

1. INTRODUCTION TO KAD
KAD is a Kademlia-based [15] peer-to-peerDHT routing proto-

col implemented by several peer-to-peerapplications suchas Over-
net [18], eMule [11], and aMule [1]. The two open–source projects
eMule and aMule have the largest number of simultaneously con-
nected users since these clients connect to the eDonkey network,
which is a very popular peer-to-peersystem for file sharing.Recent
versions of these clients implement theKAD protocol.

As in other DHTs, eachKAD node has a global identifier, re-
ferred to as KAD ID, which is a 128 bit randomly generated identi-
fier. The KAD ID is generated when the client application is started
for the first time and is then permanently stored with that client.
The KAD ID stays unchanged on subsequent join and leaves of the
peer, until the user deletes the application or its preferences file.

However, as we show [26] there are quite a few peers that do not
follow this rule and change their KAD ID very frequently.

1.1 Routing Lookup
Routing inKAD is based on prefix matching: Nodea forwards

a query, destined to a nodeb, to the node in his routing table that
has the smallest XOR-distance. The XOR-distanced(a, b) between
nodesa andb is d(a, b) = a ⊕ b. It is calculated bitwise on the
KAD IDs of the two nodes, e.g. the distance betweena = 1011
andb = 0111 is d(a, b) = 1011 ⊕ 0111 = 1100. For details of
the implementation see [27]. The entries in the routing table of a
peerP point to peers that are a various distances fromP : A peer
P stores only a few contacts to peers that are far away in the ID
space and increasingly more contacts to peers as we get closer P .
For details of the implementation see [27].

Routing to a given KAD ID is done in aniterative way. To im-
prove robustness against node churn that can result in stalerouting
table entries and to improve and look-up speed, the requesting peer
P runs three parallelrouting lookups for a given key at the same
time: A peerP first consults his routing table to determine the
three peers closest to the KAD ID. P sendsroute requests
to these three peers, which may or may not return toP route
responses containing new peers even closer to the KAD ID,
which are queried byP in the next step. The routing lookup termi-
nates when the returned peers are further away from the KAD ID
than the peer returning them.

While iterative routing experiences a slightly higher delay than
recursive routing, it offers increased robustness againstmessage
loss and it greatly simplifies crawling theKAD network. InKAD , a
routing lookup will be performed in a first step by both, the publish
and the search module.

1.2 Publishing and Searching
A key in a peer-to-peer system is an identifier used to retrieve

information. In many peer-to-peer systems a key is typically pub-
lished on a single peer that is numerically closest to that key. In
KAD , to deal with node churn, a key is publishedon ten different
peers whoseKAD ID agrees at least in the first 8-bits with the key.
This range of KAD IDs around a key that agree in the first 8-bits
with the key is called thetolerance zone. Note that the key is not
published on the ten peersclosestto the key, but simply on peers
whose KAD IDs are in the tolerance zone. To assure persistence
of the information stored, the owner periodically republishes the
information every 5 or 24 hours, depending on the type of informa-
tion.

As for the publishing, the search procedure uses the routinglookup



to find the peer(s) closest to the key searched for. To increase
the robustness of the search in case of stale routing table entries,
three searches are launched in parallel. If the first arriving route
response contains peers that are closer to the destination, imme-
diately newroute requests are sent. The four most important
message types are:

• hello: to check if the other peer is still alive and to inform
the other peer about one’s existence and the KAD ID and IP
address.

• route request/response(kid): To find peers that
are closer to the KAD ID kid.

• publish request/response: to publish information.

• search request/response(key): to search for in-
formation whose hash iskey.

2. EXPLORING KAD
We have developed our own crawler forKAD , with the aim to

crawl KAD frequently and over a duration of several months. Our
crawler runs on a local machine and uses a simple breadth first
search issuingroute requests to find the peers currently par-
ticipating in KAD . The speed of our crawler allows us to crawl
the entireKAD system (entire KAD ID space) in about 8 minutes,
which was never done before. During a full crawl, we found be-
tween 3 and 4.3 million different peers. Between 1.5 and 2 million
peers are not located behind NATs or firewalls and can bedirectly
contactedby our crawler.

However, to limit the network load and the data volume, we de-
cided to crawl only a part of the KAD ID space by carrying out a
zone crawl on a 8-bit zone, where we try to find all active peers
whose KAD IDs have the same 8 high-order bits. A zone crawl
explores one 256-th of the entire KAD ID space and takes less than
2.5 seconds. Forslightly less than 6 monthswe crawled the same
zone every 5 minutes. The detailed results of our crawl are reported
in [24, 26].

We made some surprising findings such as (i) several thousand
KAD clients that all had the same KAD ID and (ii) several hun-
dred peers with the same sub-net IP addresses and KAD IDs that
all agreed in a large number of least significant bits. The last
case seems to indicate aSybil attack, which was first defined by
J. Douceur [10] as “the forging of multiple identities”.KAD , as are
all the other peer-to-peer systems, is vulnerable to Sybil attacks. In
the following, we will discuss how Sybil attacks can be exploited
in KAD for various purposes.

3. SYBIL ATTACKS IN KAD
The main idea of theSybil attack [10] is to introduce malicious

peers, thesybils, which are all controlled by one entity. Positioned
in a strategic way, thesybils allow to gain control over a fraction
of the peer-to-peer network or even over the whole network. The
sybils can monitor the traffic (behavior of the other peers) or abuse
of the protocol in other ways. Routing requests may be forwarded
to the wrong end-hosts or rerouted to othersybil entities.

3.1 Spying on Publish and Search Traffic
Assume that we want to find out in the least intrusive way what

type of content is published and searched for in a zoneZ of the
KAD network. For this, one needs to introducesybils in the zoneZ

and to make them known, so that their presence is reflected in the
routing tables of theregular, i.e. non-sybil peers.

We have developed a light-weight implementation of such a “spy”
that is able to create thousands ofsybils on one single physical ma-
chine as they do not keep any state about the interactions with the
regular peers [25].

When we spy on a 8-bit zone, we introduce216 sybils: the first
8 bit are defined by the zone we spy on, the following 16 bits are
different for eachsybil. The spy works as follows:

• First, crawl a zoneZ of the KAD ID space using our crawler
to to learn about the peersP currently online whose KAD

IDs are inZ.

• Then, sendhello requests to the peersP in order to
“poison” their routing tables with entries that point to our
sybils. The peers that receive ahello request will add
thesybil to their routing table if the corresponding bucket of
the routing table is not filled.

• Later, when aroute request(kid) initiated by regular
peerP reaches asybil that request will be answered with a
set ofsybils whose KAD IDs are closer to the target in case
thekid falls into the zoneZ and ignored otherwise.

This way, P has the impression of approaching the target.
OnceP is “close enough” to the target KAD ID, it will ini-
tiate apublish request or search request also
destined to one of oursybilpeers. Therefore, for anyroute
request that reaches one of oursybil peers we can be
sure that the follow-uppublish request or search
request will also end-up on the samesybil.

• Store the content of all the requests received in a database for
later evaluation.

As described in Section 1, a key is published ten times and fora
search three parallel search requests are issued. For our spy scheme
to work as intended, the optimum would be to attract exactly one
copy of every search or publish request. This way, publish and
search request would also “terminate” on regular peers thatwould
correctly execute them, avoiding any disruption ofKAD due to our
spy. There are two parameters to control the level of intrusiveness:
The number ofsybils placed in a zone and the rate at whichsybils
are announced to regular peers.

The spy has already allowed us to make a number of interest-
ing observations concerning the frequency of the keywords used
in the publish and the search requests. Spying on 8-bit zone for
one day, we see 1.4 million distinct files being published, using
42,000 different keyword hashes, by 1.5 million distinct users. Per
minute, about 1000 search requests, 10,000 publish requests and
25,000 route requests hit oursybils, which amounts to a load of ap-
prox. 400 KByte/sec for the incoming and approx. 200 KByte/sec
for the outgoing traffic.

We also measured the total traffic due to the different types of
requests and were very surprised to see that the “publish traffic”
by far outweighs the “search traffic”. In fact, the “publish traffic” is
one order of magnitude larger – in terms of the number of messages
– andtwo orders of magnitude larger– in terms of the total number
of bytes transmitted than the “search traffic” [25]. This observa-
tion lead us to design an improved publish scheme that maintains
the same degree of availability for the information published while
reducing the amount of traffic by one order of magnitude [4].



3.2 Eclipsing Content
A special form of sybil attack is theeclipseattack [22] that aims

to separate a part of the peer-to-peer network from the rest.The
way we perform an eclipse attack resembles very much that of the
sybil attack described above, except that the KAD ID space covered
is much smaller.

To eclipse a particular keywordK, we position a certain num-
ber of sybils closely aroundK, i.e. the KAD IDs of thesybils are
closer to the hash value ofK than the KAD IDs of any real peer.
We then need to announce thesesybils to the regular peers in or-
der to “poison” the regular peers routing tables and to attract all
theroute requests for keywordK. Our experiments showed
that as few as eightsybil peers are sufficient to make sure that all
search requests for K will terminate on one of thesybils.

Note that even if the keywordK can not be found anymore using
the search algorithm employed inKAD , it does still exist on the
regular peers where it was originally published.

Depending on the popularity of the content to be eclipsed, the
resource consumption varies as we can see in table 1. This data was
collected using 32sybils all running on the same physical machine.
We see that it is possible to eclipse content using a very limited
amount of resources.

message type keyword
(messages per min) the dreirad
route 41801 818
hello 1091 433
publish 12360 290
search 704 49

Total incoming band-
width (KByte/sec)

186 32

Table 1: Traffic seen by thesybils that eclipse the keywordsthe
and dreirad.

3.3 DDOS Attacks
A sybil attack can also be used to launch aDDOS attack that

enlists a large number of peers that participate inKAD . As the
previous two attacks, we need to placesybil peers. However, in
difference to the eclipse attack where incoming search queries have
been dropped by thesybil peer, thesybil peer now replies to the
request and includes in his response the IP address of the “target”
to be attacked.

Depending on the number ofsybils and their placement in zones
that receive more or less search traffic, the amount of attacktraffic
can be controlled. We have tried such an attack against some of our
own machines that were hit by an incoming traffic in the order of
several Mbits/sec.

These kinds of attacks are already happening in the Internet. A
news release from earlier this year by Prolexic reports [19]that
DDOS attacks using peer-to-peersystems that involve more than
300,000 peers have recently been observed.

4. KAD AS AN EXPERIMENTAL PLATFORM
In the previous section, we have seen the vulnerabilities ofKAD ,

which are also common to other DHTs. However, we feel that
KAD also has quite some potential as an experimental platform for
research in distributed systems. Let us just outline a few possible
uses.

KAD as a Public DHT

Experimental platforms such as Planetlab find intensive usein the
research community and various services have been implemented
on top Planetlab such as CoDeeN, Coral, or OpenDHT [7, 13, 17].

KAD is one of the largest distributed peer-to-peer applications
with several million active peers at any point of time. Usingthe
KAD primitives for routing, publishing and searching, one can uti-
lize KAD as a “public DHT”. In a such realistic setting with high
node churn, large geographical diversity and many low bandwidth
connections, one can investigate alternative routing lookup policies
(varying the degree of parallelism), or different publishing strate-
gies (varying the replication factor or the content refreshintervals).

DDOS Defense Research

As we have seen, peers inKAD can be easily tricked in participating
in a DDOS attack by making them connect to any machine on the
Internet that is the target of the attack.

Researchers that work on DDOS defense could useKAD to test
the effectiveness of their defense system by subjecting their system
to an attack. These experiments, as we have seen in Section 3.3,
can be carried out in a very controlled way and as soon we stop our
sybils from returning the IP address of the target, the attack will
stop.

Another, more questionable use could be DDOS attack retalia-
tion. The victim of DDOS attack could useKAD to counterattack
the machines that originate the attack.

5. HOW TO PREVENT SYBIL ATTACKS
Sybil attacks pose a serious threat to the security of peer-to-peer

systems. While there have been various attempts to address this
issue, we feel that the solutions proposed are not practicable since
they, for instance, impose heavy constraints on the structure of the
routing table or require auditing procedures that are difficult to im-
plement.

We feel that there is a great need for solutions that are technically
feasible and easy to put into place. Basically, we need to prevent
a peer (i) from choosing the KAD ID he will use and (ii) from
obtaining a large number of KAD IDs. We will sketch out acen-
tralized solution that makes it impossible for an attacker to obtain
arbitrary KAD IDs. While centralized solutions have their obvi-
ous disadvantages such as single point of failure, they haveproven
in practice often to be quite satisfactory. Just take the example of
BitTorrent with the tracker as centralized component. At first sight
such a tracker seems to be an easy target for a denial of service at-
tack. More recent implementation have therefore started toreplace
the tracker by a DHT. However, when we compare the vulnerabil-
ities of DHTs as discussed in this paper for the case ofKAD we
may well conclude that using a tracker-based approach is subject to
fewer vulnerabilities than a DHT.

The central idea of our proposal is to tie the possibility of ob-
taining a KAD ID to the possession of a cell phone number. The
protocol is as follows:

There is acentral agent (CA) responsible for generating KAD

IDs. The CA needs to have a pair of public and private keysKpub
andKpriv.

A client R that needs a KAD ID sends a request containing his
cell phone numberphone , the IP addressIP@ of the peer that will
run KAD , and a desired expiration timeTo to the central agent.

When the CA receives the request, it will



• concatenate (IP@, To , pad) into a stringST, wherepad
is a padding sequence that assures thatST has the required
length

• encryptST with the private keyKpriv to obtain the re-
quested KAD ID id.

• Send an SMS (short message) to the cell phone numberphone
of the requester and either communicateid or another shorter
string (password) that then allows to obtain theid via the In-
ternet.

If the public keyKpub is known to all peers, any peer can ver-
ify if a given KAD ID is valid by decrypting the KAD ID using
Kpub and comparing the IP address contained with the one of the
originator of the message.

If the CA keeps lists of all (phone, To) and (IP@, To) pairs, it
can assure that it will not issue another KAD ID to the same cell
phone number and for the same IP address before the previous one
has expired.

The scheme just presented has two main drawbacks. Whenever
a peer changes his IP address, it needs to obtain a new KAD ID.
Many access providers change the IP address of their end-users at a
regular basis. However, if we do not tie the IP address to the KAD

ID there is no way to prevent clients from either “giving away”
their KAD ID or to prevent fraudulent clients from “stealing” the
KAD IDs of other peers.

Another obstacle to the deployment of the scheme may be the
need for the CA to send a large number SMS per day. However,
companies like Google already do so, for instance to inform users
about the newly installed e-mail account or about an appointment
in their agenda that is due. Alternatively, we may replace the use
of SMS by a “Reverse Turing Test” using e.g. a CAPTCHA [3].
However, in this case the effort to obtain multiple KAD IDs will be
reduced if we assume that is it easier to solve multiple CAPTCHA
than to obtain an equivalent number of different cell phone num-
bers.

In any case, it will never possible to prevent an attacker with a lot
of resources from obtaining multiple (random) KAD IDs. For this
reason, it may be worthwhile to explore techniques that makethe
routing lookup in peer-to-peer systems more robust againstSybil
attacks as has been proposed in [8, 9]. Nevertheless, in a peer-to-
peer system of the size ofKAD , which has several Million simulta-
neous peers, an attacker will probably need to introduce thousands
of sybils in order to disturb the system.

6. RELATED WORK
There has been a small body of work that addresses the issue of

DDOS attacks using peer-to-peer systems. Naoumov et al. [16]
discuss attacks for the case of the now defunct Overnet system.
Since routing in Overnet resembles closely routing inKAD , their
findings are very relevant toKAD . Two types of attacks are iden-
tified: Index poisoning attacks where bogus records are inserted
into the overlay in order to direct peers searching for content to a
target host that will become the victim of the DDOS attack.Rout-
ing poisoning attacks where many peers are tricked into adding
the target host into their routing table. As a consequence the target
host will receive a lot of signaling (query, publish and maintenance)
traffic.

El-Defrawy et al. [12] have investigated index poisoning attacks
in BitTorrent and Athanasopoulos et al. [2] discuss how to launch

DDOS attacks in Guntella, an unstructured peer-to-peer fileshar-
ing system.

There exist quite a few proposals in the literature to improve the
security of DHTs.

DHT-based overlay systems are susceptible to various attacks
launched by malicious peers that may corrupt data, deny response
to lookup queries, or impersonate other peers so that data objects
may be stored on rogue peers.

In DHTs-based systems, each node has a global identifier ID,
which is generated when the client application is started for the
first time. If an attacker controls a fraction, even small, ofnodes
with smartly chosen IDs, it can ”eclipse” correct nodes and prevent
correct overly operation. The malicious nodes may be different
entities or the same entity with many identities (IDs).

Sit et al. [23] provide a clear description of security considera-
tions that involve peers that do not follow the protocol correctly:
routing deficiencies due to corrupted routing lookup nd updates;
vulnerability to partitioning when new peer joins and contacts ma-
licious peers; lookup and storage attacks; inconsistent behaviors
of peers; denial of service attacks; and unsolicited responses to
a lookup query. They argue that the peer’s identifier assignment
must be done in a verifiable way, and that the identifier must not
be chosen by the node itself. However, they mention that a central
identification authority is not desirable in all situations.

Douceur [10] was the first to consider the problem of multiple
identities in the context of DHT-based peer-to-peer systems (The
Sybil attack). He showed that without the use of a centralized au-
thority that certifies all nodes, it is impossible to preventthis attack.

Castro et al. [5] presented a design and analysis of techniques for
secure peer joining. They propose to certify the node IDs by aset
of trusted certification authorities (CAs). Node ID certificates are
signed by the CAs, which use a public key that must be known by
all network nodes. To prevent an attacker from obtaining certifi-
cates, they propose to bind the ID to peer’s IP address, or require
paying money for certificate.

Rowaihy et al. [20] propose an admission control system that
mitigates Sybil attacks by adaptively constructing a hierarchy of
cooperative admission control nodes. This creates a tree struc-
ture with static root. A node wishing to join the network is se-
rially challenged using a hash puzzle by the nodes from the leaf
to the root. Each challenger node creates a cryptographic puzzle
based on a hash function and the solver has to invert the hash.As
hash-functions are non-invertible, the solver must use brute force
to find the solution, which will require a large number of attempts.
This solution relies on the limitation of computational power of the
joining node, however, it may still allow a resourceful attacker to
launch a substantial attack, especially if the potential for damage is
disproportionate to the fraction of the system that is compromised.

Yu et al. [28] propose SybilGuard, a protocol for limiting the
corruptive influence of the Sybil attack. SybilGuard is based on
social network among user identities, when an edge between two
identities indicates a human-establish trust relationship. Malicious
users can create many identities but will have only few trustrela-
tionships. The deployment of SybilGuard requires the existence
of a well-connected social network, which not the case of todays
DHT-based peer-to-peer systems.

While a successful Sybil attack can be used to mount an Eclipse
attack, Eclipse attacks are possible even in the presence ofan ef-
fective defense against Sybil attacks. To defend against eclipse at-
tacks, Castro et al. [5] proposed the use of Constrained Routing Ta-



bles (CRT), where a node’s neighbor set contains nodes with iden-
tifiers closest to well-defined points in the identifier space, which
leaves no flexibility in neighbor selection and therefore prevents
optimizations like proximity neighbor selection, an important and
widely used technique to improve overlay efficiency [6, 14].In ad-
dition to CRT, Singh et al. [21, 22] propose to bound the in- and
out-degree of overlay nodes, and present a defense strategybased
on anonymous auditing of nodes’ neighbor sets. If a node has sig-
nificantly more links than the average, it might be a malicious node,
and then it can be removed from the neighbor sets of the correct
nodes.

7. CONCLUSION
Distributed systems for content sharing are presumably believed

to be more robust against attacks as centralized systems that have
a single point of failure. However, in practice this may not be the
case as long as the Sybil attack is possible. We have discussed the
implications of the Sybil attack in the case ofKAD , which is the
largest DHT currently deployed:
The privacy of the end-users can easily be compromised,KAD itself
can be arbitrary disrupted, and the peers that participate in KAD can
be enlisted against their will to participate in a DDOS attack. Any
of these attacks can be launched from a single PC connected tothe
Internet via a broadband connection. For all these reasons,it is
urgent to implement practical solutions that prevent sybilattacks.

On the positive side, we have also seen thatKAD can be used as
an Open DHT providing a realistic test-bed for research in peer-to-
peer systems.

8. REFERENCES
[1] A-Mule. http://www.amule.org/.
[2] E. Athanasopoulos, K. G. Anagnostakis, and E. P. Markatos.

Misusing unstructured p2p systems to perform dos attacks:
The network that never forgets. InProc. of ACNS 2006, June
2006.

[3] CAPTCHA.
http://en.wikipedia.org/wiki/CAPTCHA.

[4] D. Carra and E. Biersack. Building a reliable p2p system out
of unreliable p2p clients: The case of kad. Technical report,
Institut Eurecom, July 2007. Submitted to Conext 2007.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure routing for structured peer-to-peer
overlay networks. InProceedings of OSDI’02, Boston, USA,
Dec. 2002.

[6] M. Castro, P. D. Y. C. Hu, and A. Rowstron. Exploiting
network proximity in peer-to-peer overlay networks.
Technical Report MSR-TR-2002-82, Microsoft Research,
2002.

[7] CoDeeN.http://codeen.cs.princeton.edu/.
[8] T. Condie, V. Kacholia, S. Sankararaman, J. Hellerstein, and

P. Maniatis. Induced churn as shelter from routingtable
poisoning. InProc. 13th Annual Network and Distributed
System Security Symposium (NDSS), 2006.

[9] G. Danezis, C. L. Laas, F. M. Kaashoek, and R. Anderson.
Sybil-Resistant DHT Routing. InESORICS, pages 305–318,
Sept. 2005.

[10] J. R. Douceur. The Sybil attack. InProceedings of the 1st

International Workshop on Peer-to-Peer Systems (IPTPS),

LNCS, pages 251–260, March 2002.
[11] E-Mule.http://www.emule-project.net/.
[12] K. El-Defrawy, M. Gjoka, and A. Markopoulou. BotTorrent:

Misusing BitTorrent to Launch DDoS Attack. InProc.
USENIX SRUTI, June 2007.

[13] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing content publication with coral. InProc. 1st
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI ’04), Mar. 2004.

[14] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of dht routing geometry
on resilience and proximity. InSIGCOMM ’03, 2003.

[15] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer
informatiion system based on the XOR metric. In
Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS), pages 53–65, Mar. 2002.

[16] N. Naoumov and K. Ross. Exploiting p2p systems for ddos
attacks. InInternational Workshop on Peer-to-Peer
Information Management, May 2006.

[17] OpenDHT.http://opendht.org/.
[18] Overnet.http://www.overnet.org/.
[19] Prolexic. Prolexic Distributed Denial of Service Attack

Alert, May 2007.
http://www.prolexic.com/news/20070514-alert.php.

[20] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta.
Limiting sybil attacks in structured p2p networks. In26th
IEEE International Conference on Computer
Communications (INFOCOM), pages 2596–2600, 2007.

[21] A. Singh, M. Castro, P. Druschel, and A. Rowstron.
Defending against eclipse attacks on overlay networks. In
ACM SIGOPS 2004, 2004.

[22] A. Singh et al. Eclipse attacks on overlay networks: Threats
and defenses. InProc. Infocom 06, Apr. 2006.

[23] E. Sit and R. Morris. Security considerations for peer-to-peer
distributed hash tables. InProceedings of IPTPS’02,
Cambridge, MA, Mar. 2002.

[24] M. Steiner, E. W. Biersack, and T. En-Najjary. Actively
Monitoring Peers in Kad. InProceedings of the6th

International Workshop on Peer-to-Peer Systems
(IPTPS’07), 2007.

[25] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack.
Load reduction in the kad peer-to-peer system. InFifth
International Workshop on Databases, Information Systems
and Peer-to-Peer Computing (DBISP2P 2007), 2007.

[26] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global
View of KAD. In Proceedings of the Internet Measurement
Conference (IMC), 2007.

[27] D. Stutzbach and R. Rejaie. Improving lookup performance
over a widely-deployed DHT. InProc. Infocom 06, Apr.
2006.

[28] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
Sybilguard: Defending against sybil attacks via social
networks. InSIGCOMM, 2006.


