
International Journal of Web Services Research , Vol.X, No.X, 200X

 1

Automating the composition of transactional Web services

Frederic Montagut*°, Refik Molva° and Silvan Tecumseh Golega†

°Institut Eurecom

2229 Route des Cretes
06904 Sophia-Antipolis

France
*SAP Labs France

805, Av. du Dr Donat
06250 Mougins

France
†Hasso-Plattner-Institut

Postfach 900460

D-14440 Potsdam
Germany

ABSTRACT:

Composite applications leveraging the functionalities offered by Web services are today the
underpinnings of enterprise computing. However, current Web services composition systems
make only use of functional requirements in the selection process of component Web services
while transactional consistency is a crucial parameter of most business applications. The
transactional challenges raised by the composition of Web services are twofold: integrating
relaxed atomicity constraints at both design and composition time and coping with the dynamicity
introduced by the service oriented computing paradigm. In this paper, we propose a new process
to automate the design of transactional composite Web services. Our solution for Web services
composition does not take into account functional requirements only but also transactional ones
based on the Acceptable Termination States model. The resulting composite Web service is
compliant with the consistency requirements expressed by business application designers and its
execution can easily be coordinated using the coordination rules provided as an outcome of our
approach. An implementation of our theoretical results augmenting an OWL-S matchmaker is
further detailed as a proof of concept.

KEY WORDS:
Web services, composition, termination states, transactional requirements

1. INTRODUCTION

Web services composition has been gaining momentum over the last years as a means of
leveraging the capabilities of simple operations to offer value-added services. Complex services
such as airline booking systems can be designed as the aggregation of Web services offered by
different organizations. As for all cross-organizational collaborative systems, the execution of
composite services requires transactional properties so that the overall consistency of data
modified during the process is ensured. Yet, existing Web services composition systems appear to
be limited when it comes to integrating at the composition phase, the consistency requirements
defined by designers in addition to functional matchmaking. Composite Web services indeed
require different transactional approaches than the ones developed for usual database systems
(Elmagarmid, 1992), (Greenfield, Fekete et al. 2003). The transactional challenges raised by the
composition of Web services are twofold. First, like classical workflow systems, composite
services raise less stringent requirements for atomicity in that intermediate results produced by
some components may be kept without rollback despite the failure to complete the overall
execution of a composite service. Second, composite services are dynamic in that their
components can be automatically selected at run-time based on specific requests. Existing
approaches only offer means to validate transactional requirements once a composite Web service

International Journal of Web Services Research , Vol.X, No.X, 200X

 2

has been created (Bhiri, Perrin et al. 2005) and do not address the integration of these
requirements into the composite application building process.
In this paper, we propose a systematic procedure to automate the design of transactional
composite Web services. Given an abstract representation of a process wherein instances of
services are not yet assigned to component functional tasks, our solution enables the selection of
Web services not only according to functional needs but also based on transactional requirements.
In this approach, transactional requirements are specified by designers using the Acceptable
Termination States (ATS) model. The resulting composite Web service is compliant with the
defined consistency requirements and its execution can be easily coordinated as our algorithm
also provides coordination rules that can be integrated into a transactional coordination protocol.
Besides, the theoretical results developed in our approach have been implemented as a proof of
concept and integrated into an OWL-S (OWL Services Coalition, 2003) functional matchmaker
providing it with transactional matchmaking capabilities.
The remainder of the paper is organized as follows. Section 2 and 3 introduce the methodology of
our approach and a motivating example, respectively. In section 4, the transactional model
underpinning this work is outlined. In section 5 we provide details on the termination states of a
composite Web service then in section 6 we describe how transactional requirements are formed
based on the properties of the termination states. The transaction-aware composition process
through which transactional composite Web services are designed is detailed in section 7 while
the implementation of our results in an OWL-S based framework is presented in section 8. Finally,
section 9 discusses related work and section 10 presents the conclusion.

2. PRELIMINARY DEFINITIONS AND METHODOLOGY

Consistency is a crucial aspect of composite services execution. In order to meet consistency
requirements at early stages of the service composition process, we need to consider transactional
requirements a concrete parameter determining the choice of the component Web services. In this
section we present a high level definition of the consistency requirements and a methodology
taking into account these requirements during the composition of Web services.

2.1. Consistent composite Web services

A composite Web service sW consists of a set of n Web services () []naas sW ,1∈= whose execution
is managed according to a workflow W which defines the execution order of a set of n tasks

() []naatW ,1∈= performed by these services (for the sake of simplicity, we consider in our
approach that a given service executes only one task). The assignment of services to tasks is
performed by means of composition engines based on functional requirements. Yet, the execution
of a composite service may have to meet transactional requirements aiming at the overall
assurance of consistency. Our goal is to design a service assignment procedure that takes into
account the transactional requirements associated with W in order to obtain a consistent instance

sW of W whose execution can be supported by a transactional protocol defined using these
transactional requirements as depicted in Figure 1. We consider that each Web service component
might fulfill a different set of transactional properties. For instance a service can have the
capability to compensate the effects of a given operation or to re-execute the operation after
failure whereas some other service does not have any of these capabilities. It is thus necessary to
select the appropriate service to execute a task whose execution may be compensated if required.
These transactional properties can be advertised by services in the fashion of their functional
capabilities as part of their WSDL (W3C, 2002) interface or OWL-S profile. The assignment

International Journal of Web Services Research , Vol.X, No.X, 200X

 3

procedure based on transactional requirements follows the same strategy as the one based on
functional requirements. It is a matchmaking procedure between the transactional

Figure 1: Principles

properties offered by services and the transactional requirements associated to each task. Once
assigned, the services () []naas ,1∈ are coordinated with respect to the transactional requirements
during the process execution. The coordination protocol is indeed based on rules deduced from
the transactional requirements. These rules specify the final states of execution or termination
states each service has to reach so that the overall process reaches a consistent termination state.
Two phase-commit (ISO, n.d.) the famous coordination protocol enforces for instance the simple
rule: all tasks performed by different services have to be compensated if one of them fails. The
challenges of the transactional approach are therefore twofold.

• specify a Web service assignment procedure that creates consistent instances of W
according to defined transactional requirements

• specify the coordination rules that can be integrated into a coordination protocol
managing the execution of consistent composite services

2.2. Methodology

In our approach, the candidate services for the execution of sW are selected based on their
transactional properties by means of a matchmaking procedure. We therefore need first to specify
the semantic associated with the transactional properties advertised by transactional services. The
matchmaking procedure is indeed based on this semantic. This semantic is also to be used in
order to define a tool allowing workflow designers to specify their transactional requirements for
a given workflow. Using these transactional requirements, we are able to assign services to
workflow tasks based on rules which are detailed later on. Once the composite service is defined,
we are able to specify the coordination rules that can be used to support the execution of the
composite application according to the transactional requirements specified at the workflow
design phase.

3. MOTIVATING EXAMPLE

In this section we introduce a motivating example that will be used throughout the paper to
illustrate the presented methodology. We consider the simple process 1W of a manufacturing firm

International Journal of Web Services Research , Vol.X, No.X, 200X

 4

1W

TS(W1) Task 1 Task 2 Task 3 Task 4
ts1 completed completed completed completed
ts2 completed completed completed failed
ts3 completed compensated completed failed
ts4 completed compensated compensated failed
ts5 completed completed compensated failed
ts6 compensated compensated compensated failed
ts7 compensated completed compensated failed
ts8 compensated completed completed failed
ts9 compensated compensated completed failed
ts10 completed failed completed aborted
ts11 completed failed compensated aborted
ts12 completed failed canceled aborted
ts13 compensated failed completed aborted
ts14 compensated failed compensated aborted
ts15 compensated failed canceled aborted
ts16 completed completed failed aborted
ts17 completed compensated failed aborted
ts18 completed canceled failed aborted
ts19 compensated completed failed aborted
ts20 compensated compensated failed aborted
ts21 compensated canceled failed aborted
ts22 failed aborted aborted aborted

Figure 2: Production line process

involving four steps as depicted in Figure 2. A first service, order handling service is in charge of
receiving orders from clients. These orders are then handled by the production line (step 2) and in
the meantime an invoice is forwarded to a payment platform (step 3). Once the ordered item has
been manufactured and the payment validated, the item is finally delivered to the client (step 4).
Of course in this simple scenario, a transactional approach is required to support the process
execution so that it can reach consistent outcomes as for instance the manufacturing firm would
like to have the opportunity to stop the production of an item is the payment platform used by a
customer is not a reliable one. On the other hand, it may no longer be required to care about
canceling the production if the payment platform claims it is reliable and not prone to transaction
errors. Likewise, customers may expect that their payment platform offer refunding options in
case the delivery of the item they ordered is not successful.
Those possible outcomes mostly define the transactional requirements for the execution of this
simple process and also specify what actions need to be taken to make sure that the final state of
the process execution is deemed consistent by the involved parties. This example although simple
perfectly meets our illustration needs within this paper as it demonstrates the fact that based on
the specified transactional requirements a clever selection of the business process participants has
to be performed prior to the process instantiation since for instance the selection of both a
payment platform that do not offer any refunding options and an unreliable delivery means may
result in a disappointed customer. It should be noted that the focus of this example is not the trust
relationship between the different entities and we therefore assume the trustworthiness of each of
them yet we are rather interested in the transactional characteristics offered by each participant.

4. TRANSACTIONAL MODEL

In this section, we define the semantic specifying the transactional properties offered by services
before specifying the consistency evaluation tool associated to this semantic. Our semantic model
is based on the “transactional Web service description” defined in (Bhiri, Perrin et al. 2005).

International Journal of Web Services Research , Vol.X, No.X, 200X

 5

Figure 3: Service state diagram

4.1. Transactional Properties of Services

In (Bhiri, Perrin et al. 2005) a model specifying semantically the transactional properties of Web
services is presented. This model is based on the classification of computational tasks made in
(Mehrotra, Rastogi et al. 1992), (Schuldt, Alonso et al. 1999) which considers three different
types of transactional properties. An operation and by extension a Web service executing this task
can be:

• compensatable: the results produced by the task can be rolled back
• retriable: the task is sure to complete successfully after a finite number of tries
• pivot: the task is neither compensatable nor retriable

These transactional properties allow us to define four types of transactional services: retriable (r),
compensatable (c), retriable and compensatable (rc) and pivot (p). In order to properly understand
this transactional model and the defined transactional properties, we can map the state diagram of
transactional services with the state of data during the execution of computational tasks
performed by these transactional services. This mapping is depicted in Figure 3. Basically, data
can be in three different states: initial (0), unknown (x), completed (1). In the state (0), either the
task execution has not yet started initial, the execution has been stopped, aborted before starting,
or the execution has been properly completed and the modifications have been rolled back,
compensated. In state (1) the task execution has been properly completed. In state (x) either the
task execution is not yet finished active, the execution has been stopped, canceled before
completion, or the execution has failed. Particularly, the states aborted, compensated, completed,
canceled, and failed are the possible final states of execution of these tasks. Figure 4 details the
transition diagram for the four types of transactional services. We distinguish within this model:

• the inherent termination states: failed and completed which result from the normal course
of a task execution

• the forced termination states: compensated, aborted and canceled which result from a
coordination message received during a coordination protocol instance and forcing a task
execution to either stop or rollback

In the state diagrams of Figure 3 and Figure 4 plain and dashed lines represent the inherent
transitions leading to inherent states and the forced transitions leading to forced states,
respectively. In this model, the transactional properties of services are only differentiated by the
states failed and compensated which indeed respectively specify the retriability and
compesatability properties.

International Journal of Web Services Research , Vol.X, No.X, 200X

 6

Initial

Active

Completed

CompensatedAborted

Failed Cancelled

Initial

Active

Completed

Aborted

Failed Cancelled

Initial

Active

Completed

CompensatedAborted

Failed Cancelled

Initial

Active

Completed

Aborted

Failed

Retriable/Compensatable Retriable Compensatable Pivot

Cancelled

Figure 4: Transactional Properties of services

Definition 4-1: We have for a service s:
• failed is not a termination state of s ⇔ s is retriable
• compensated is a termination state of s ⇔ s is compensatable

From the state transition diagram, we can also derive some simple rules:

• The states failed, completed and canceled can only be reached if the service is in the state
active.

• The state compensated can only be reached if the service is in the state completed. The
state aborted can only be reached if the service is in the state initial.

4.2. Termination states

The crucial point of the transactional model specifying the transactional properties of services is
the analysis of their possible termination states. The ultimate goal is indeed to be able to define
consistent termination states for a workflow i.e. determining for each component service
executing a workflow task which termination states it is allowed to reach.

Definition 4-2: We define the operator termination state ts(x) which specifies the possible
termination states of the element x. This element x can be:

• a service s and { }dcompensatecompletedfailedcanceledabortedxts ,,,,)(∈
• a workflow task t and { }dcompensatecompletedfailedcanceledabortedtts ,,,,)(∈
• a workflow composed of n tasks () []naatW ,1∈= and ())(),....,(),()(21 nttsttsttsWts =

• a composite service sW of W composed of n services () []naas sW ,1∈= and

())(),....,(),()(21 ns stsstsstsWts =

The operator TS(x) represents the finite set of all possible termination states of the element x,
() []jkk xtsxTS ,1)()(∈= . We have especially,)()(WTSWTS s ∈ since the set)(sWTS represents the

actual termination states that can be reached by sW according to the transactional properties of
the services assigned to workflow tasks. We also define for x workflow or composite service and

[]na ,1∈ :
•),(atxts : the value of ts(ta) in ts(x)

• tscomp(x): the termination state of x such that [] completedtxtsna a =∈∀),(,1

For the remainder of the paper, () []naatW ,1∈= represents a workflow of n tasks and

() []naas sW ,1∈= a composite service of W.

International Journal of Web Services Research , Vol.X, No.X, 200X

 7

Task 1 s11 yes no
s12 no yes
s13 yes yes

Task 2 s21 yes no
s22 no yes

Task 3 s31 yes no
s32 no yes

Task 4 s41 no no

Available
Services

Retriable Compensatable

Task 1 Task 2 Task 3 Task 4
ats1 ts1 completed completed completed completed
ats2 ts6 compensated compensated compensated failed
ats3 ts14 compensated failed compensated aborted
ats4 ts15 compensated failed canceled aborted
ats5 ts20 compensated compensated failed aborted
ats6 ts21 compensated canceled failed aborted

ATS1(W1)

Task 1 Task 2 Task 3 Task 4
ats1 ts1 completed completed completed completed
ats2 ts17 completed compensated failed aborted
ats3 ts11 completed failed compensated aborted
ats4 ts5 completed completed compensated failed
ats5 ts18 completed canceled failed aborted
ats6 ts12 completed failed canceled aborted

ATS2(W1)

Figure 5: Acceptable termination states of W1 and available services

4.3. Transactional consistency tool

We use the Acceptable Termination States (ATS) (Rusinkiewicz and Sheth 1995) model as the
consistency evaluation tool for our workflow. ATS defines the termination states a workflow is
allowed to reach so that its execution is deemed consistent.

Definition 4-3: ATS(W) is the subset of TS(W) whose elements are deemed consistent by
workflow designers. A consistent termination state of W is called an acceptable termination state
atsk(W) and we note () []ikk WatsWATS ,1)()(∈= the set of Acceptable Termination States of W i.e.
the transactional requirements of W.

ATS(W) and TS(W) can be represented by a table which defines for each termination state the
tuple of termination states reached by the workflow task as depicted in Figure 4 and Figure 5. As
mentioned in the definition, the specification of the set ATS(W) is done at the workflow designing
phase. ATS(W) is mainly used as a decision table for a coordination protocol so that sW can reach
an acceptable termination state knowing the termination state of a set of tasks. The role of a
coordination protocol indeed consists in sending messages to component services in order to
reach a consistent termination state given the current state of the workflow execution. The
coordination decision, i.e. the termination state that has to be reached, made given a state of the
workflow execution has to be unique; this is the main characteristic of a coordination protocol. In
order to cope with this requirement, ATS(W) which is used as input for the coordination decision-
making process has therefore to verify some properties that we detail later on.

5. ANALYSIS OF TS(W)

Since)()(WTSWATS ⊆ , ATS(W) inherits the characteristics of TS(W) and we logically need to
analyze TS(W) first. In this section, we first make precise some basic properties of TS(W) derived
from inherent execution rules of a workflow W before examining TS(W) from a coordination
perspective.

5.1. Inherent properties of TS(W)

International Journal of Web Services Research , Vol.X, No.X, 200X

 8

We state here some basic properties relevant to the elements of TS(W) and derived from the
transactional model presented above. TS(W) is the set of all possible termination states of W based
on the termination states model we chose for services. Yet, within a composite service execution,
it is not possible to reach all the combinations represented by a n-tuple ())(),....,(),(21 nttsttstts

assuming [] { }dcompensatecompletedfailedcanceledabortedttsna a ,,,,)(,1 ∈∈∀ . The
first restriction is introduced by the sequential aspect of a workflow:

(P1) A task becomes activated ⇔ all the tasks executed beforehand according to the
execution plan of W have reached the state completed

(P1) simply states that to start the execution of a workflow task, it is required to have properly
completed all the workflow tasks required to be executed beforehand. Second, we consider in our
model that only one single task can fail at a time and that the states aborted, compensated and
canceled can only be reached by a task in a given tsk(W) if one of the services executing a task of
W has failed. This means that the coordination protocol is allowed to force the abortion, the
compensation or the cancellation only in case of failure of a service. We get (P2):

(P2) if [] []jnka ,1,1, ×∈∃ such that { }⇒∈ dcompensatecanceledabortedtWts ak ,,),(

∃ ! []nl ,1∈ such that failedtWts lk =),(

5.2. Classification within TS(W)

As we explained above the unicity of the coordination decision during the execution of a
coordination protocol is a major requirement. We try here to identify the elements of TS(W) that
correspond to different coordination decisions given the same state of a workflow execution. The
goal is to use this classification to specify rules to build ATS(W). Using the properties (P1) and
(P2), a simple analysis of the state transition model reveals that there are two situations whereby
a coordination protocol can make different coordination decisions given the state of a workflow
task. Let []nba ,1, ∈ and assume that the task tb has failed:

• the task ta is in the state completed and either it remains in this state or it is compensated
• the task ta is in the state active and either it is canceled or the coordinator lets it reach the

state completed

From those two statements, we define the incompatibility from a coordination perspective and the
flexibility notions.

Definition 5-1: Let []jlk ,1, ∈ . tsk(W) and tsl(W) are said to be incompatible from a coordination
perspective [] failedtWtstWtscompletedtWtsthatsuchnba blbkak ===∈∃⇔),(),(,),(,1,
and dcompensatetWts al =),(. Otherwise, tsk(W) and tsl(W) are said compatible from a
coordination perspective. The value in { }dcompensatecompleted , reached by a task ta in a
termination state tsk(W) whereby failedtWts bk =),(is called recovery strategy of ta against tb
in tsk(W). By extension, we can consider the recovery strategy of a set of tasks against a given
task.

If two termination states are compatible, they correspond to the same recovery strategy against a
given task. In fact, we have two cases for the compatibility of two termination states tsk(W) and
tsl(W). Given two tasks ta and tb such that failedtWtstWts blbk ==),(),(:

International Journal of Web Services Research , Vol.X, No.X, 200X

 9

•),(),(alak tWtstWts =
• { }completeddcompensatetWts ak ,),(∈ and { }canceledabortedtWts al ,),(∈

The second case is only possible to reach if ta is executed in parallel with tb. Intuitively, the
failure of the service assigned to tb occurs at different instants in tsk(W) and tsl(W).

Definition 5-2: Let []nba ,1, ∈ . A task ta is said to be flexible against tb

[] failedtWtsthatsuchjk bk =∈∃),(,1 and canceledtWts ak =),(. Such a termination state is
said to be flexible to ta against tb. The set of termination states of W flexible to ta against tb is
denoted FTS(ta, tb).

This definition simply means that a task which is flexible against another can be canceled when
the latter fails.

From these definitions, we now examine the termination states of W according to the
compatibility and flexibility criteria in order to identify the termination states that follow a
common strategy of coordination.

Definition 5-3: Let []na ,1∈ . A termination state of W tsk(W) is called generator of ta ⇔

failedtWts ak =),(and []nb ,1∈∀ such that tb is executed before or in parallel with ta,
{ }completeddcompensatetWts bk ,),(∈ . The set of termination states of W compatible with

tsk(W) generator of ta is denoted CTS(tsk(W), ta).

A termination state generator of a task ta is thus a termination state wherein ta is in the state failed
while other tasks are in the state compensated or completed if executed prior or in parallel with ta ,
in the state aborted otherwise.

The set CTS(tsk(W),ta) specifies all the termination states of W that follow the same recovery
strategy as tsk(W) against ta.

Definition 5-4: Let)()(WTSWtsk ∈ be a generator of ta. Coordinating an instance sW of W in
case of the failure of ta consists in choosing the recovery strategy of each task of W against ta and
the nza < tasks []ai ziat ,1)(∈ flexible to ta whose execution is not canceled when ta fails. We call

coordination strategy of sW against ta the set:

[]),()),((),)(),(,(
1

,1 aa

z

i
akaziaks ttFTStWtsCTSttWtsWCS

i

a

ai U
=

∈ −= .

If the service sa assigned to ta is retriable then [] ∅=∈),)(),(,(,1 aziaks ttWtsWCS
ai

. sW is said to

be coordinated according to []),)(),(,(,1 aziaks ttWtsWCS
ai ∈ if in case of the failure of ta, sW

reaches a termination state in []),)(),(,(,1 aziaks ttWtsWCS
ai ∈ . Of course, it assumes that the

transactional properties of sW are sufficient to reach)(Wtsk . The coordination strategy only
specifies the set of termination states that should be reached by a composite service when the
latter is coordinated by means of a transactional protocol.

From these definitions, we can deduce a set of theorems.

International Journal of Web Services Research , Vol.X, No.X, 200X

 10

Theorem 5-5: sW can only be coordinated according to a unique coordination strategy at a time.
Proof: Let []na ,1∈ . Two termination states)(Wtsk and)(Wtsl both generator of ta are
incompatible.

Theorem 5-6: Let [] []jnka ,1,1, ×∈ such that failedtWts ak =),(but not generator of ta. If

[]jlWTSWts sk ,1)()(∈∃⇒∈ such that)()(sl WTSWts ∈ is a generator of ta compatible with

)(Wtsk . This theorem states that if a composite service is able to reach a given termination state
wherein a task ta fails, it is also able to reach a termination state generator compatible with the
latter.
Proof: We define)(Wtsl by: ,),(failedtWts al = [] { }),(),(,1 ikil tWtstWtsani =−∈∀ if

{ } completedtWtsaborteddcompensatecompletedtWts ilik =∈),(,,,),(otherwise.

Given a task ta the idea is to classify the elements of TS(W) using the sets of termination states
compatible with the generators of ta. Using this approach, we can identify the different recovery
strategies and the coordination strategies associated with the failure of ta as we decide which tasks
can be canceled.

6. FORMING ATS(W)

Defining ATS(W) is deciding at design time the termination states of W that are consistent. ATS(W)
is to be input to a coordination protocol in order to provide it with a set of rules which leads to a
unique coordination decision in any cases. According to the definitions and properties we
introduce above, we can now make explicit some rules on ATS(W) so that the unicity requirement
of coordination decisions is respected.

Definition 6-1: Let [] []jnka ,1,1, ×∈ such that failedtWts ak =),(and)()(WATSWtsk ∈ .
ATS(W) is valid ⇔ []jl ,1! ∈∃ such that)(Wtsl generator of ta compatible with)(Wtsk and

)(),()),((
1

WATSttFTStWtsCTS aa

z

i
al i

a

⊂−
=
U for a set of tasks []ai ziat ,1)(∈ flexible to ta.

The unicity of the termination state generator of a given task comes from the incompatibility
definition and the unicity of the coordination strategy. A valid ATS(W) therefore contains for all

)(Wtsk in which a task fails a unique coordination strategy associated with this failure and the
termination states contained in this coordination strategy are compatible with)(Wtsk . In Figure 5,
an example of possible ATS is presented for the simple workflow W1 of the motivating example.
It just consists of selecting the termination states of the table TS(W1) that we consider consistent
and respect the validity rule for the created ATS(W1). Of course for the same workflow it is
possible to build different sets of acceptable termination states depending on the transactional
requirements of the business application. For instance in ATS1(W1) designers specify that the
production task performed at step 2 has to be compensated intuitively meaning that the
manufactured products have to be reprocessed whenever the delivery task fails while in ATS2(W1)
they allow these same products to remain intact.

International Journal of Web Services Research , Vol.X, No.X, 200X

 11

7. DERIVING COMPOSITE SERVICES FROM ATS

In this section, we introduce a new type of service assignment procedure: the transaction-aware
service assignment procedure which aims at assigning n services to the n tasks ta in order to
create an instance of W acceptable with respect to a valid ATS(W). The goal of this procedure is to
integrate within the instantiation process of workflows a systematic method ensuring the
transactional consistency of the obtained composite service. We first define a validity criteria for
the instance sW of W with respect to ATS(W), the service assignment algorithm is then detailed.
Finally, we specify the coordination strategy associated to the instance created from our
assignment scheme and discuss the complexity of our approach.

7.1. Acceptability of Ws with respect to ATS(W)

Definition 7-1: sW is an acceptable instance of W with respect to ATS(W) ⇔

)()(WATSWTS s ⊆ .

Now we express the condition)()(WATSWTS s ⊆ in terms of coordination strategies. The
termination state generator of ta present in ATS(W) is noted)(Wts

ak . The set of tasks whose

execution is not canceled when ta fails is noted []ai ziat ,1)(∈ .

Theorem 7-2: [] [])(),)(),(,(,1)()(,1 WATSttWtsWCSnaWATSWTS aziakss aia

⊂∈∀⇔⊆ ∈
Proof: straightforward derivation from 5-6 and 6-1.

An instance sW of W is therefore an acceptable one ⇔ it is coordinated according to a set of n
coordination strategies contained in ATS(W). It should be noted that if),(atWATSfailed∉
where),(atWATS represents the acceptable termination states of the task ta in ATS(W) then

[] ∅=∈),)(),(,(,1 aziaks ttWtsWCS
aia

. From 5-6 and 7-1, we can derive the existence condition of
an acceptable instance of W with respect to a valid ATS(W).

Theorem 7-3: Let [] []jnka ,1,1, ×∈ such that failedtWts ak =),(and)()(WATSWtsk ∈ .

sW∃ acceptable instance of W with respect to ATS(W) such that)()(sk WTSWts ∈ ⇔

[]jl ,1! ∈∃ such that)()(sl WTSWts ∈ is a generator of ta compatible with)(Wtsk in ATS(W).

This theorem only states that an ATS(W) allowing the failure of a given task can be used to
coordinate a composite service also allowing the failure of the same task ⇔ ATS(W) contains a
complete coordination strategy associated to this task, i.e. it is valid.

7.2. Transaction-aware assignment procedure

In this section, we present the procedure that is used to assign services to tasks based on
transactional requirements. This algorithm uses ATS(W) as a set of requirements during the
service assignment procedure and thus identifies from a pool of available services those whose
transactional properties match the transactional requirements associated to workflow tasks

International Journal of Web Services Research , Vol.X, No.X, 200X

 12

defined in ATS(W) in terms of acceptable termination states. The assignment procedure is an
iterative process, services are assigned to tasks one after the other. The assignment procedure
therefore creates at each step i a partial instance of W noted i

sW . We can define as well the set

)(i
sWTS which represents the termination states of W that the transactional properties of the i

services already assigned allow to reach. Intuitively the acceptable termination states refer to the
degree of flexibility offered when choosing the services with respect to the different coordination
strategies verified in ATS(W). This degree of flexibility is influenced by two parameters:

• The list of acceptable termination states for each workflow task. This list can be
determined using ATS(W). This is a direct requirement which specifies the termination
states allowed for each task and therefore introduces requirements on the service’s
transactional properties to be assigned to a given task: this service can only reach the
states defined in ATS(W) for the considered task.

• The assignment process is iterative and therefore, as we assign new services to tasks,
)(i

sWTS changes and the transactional properties required to the assignment of further
services too. For instance, we are sure to no longer reach the termination states
CTS(tsk(W),ta) allowing the failure of the task ta in ATS(W) when we assign a service (r)
to ta. In this specific case, we no longer care about the states reached by other tasks in
CTS(tsk(W),ta) and therefore there is no transactional requirements introduced for the
tasks to which services have not already been assigned.

We therefore need to define first the transactional requirements for the assignment of a service
after i steps in the assignment procedure.

7.2.1. Extraction of transactional requirements

From the two requirements above, we define for a task ta :

•),(atWATS : Set of acceptable termination states of ta which is derived from ATS(W)

•),(i
sa WtDIS : This is the set of transactional requirements that the service assigned to ta

must meet based on the previous assignments. This set is determined based on the
following reasoning:

• (DIS1): the service must be compensatable ⇔),(i

sa WtDISdcompensate ∈

• (DIS2): the service must be retriable ⇔),(i
sa WtDISfailed∉

Using these two sets, we are able to compute),(),(),,(i

saa
i

saaTP WtDIStWATSWtsMIN I=
which defines the transactional properties a service sa has at least to comply with in order to be
assigned to the task ta at the i+1 assignment step. We simply check the retriability and
compensatability properties for the set),,(i

saaTP WtsMIN :

•),,(i
saaTP WtsMINfailed∉ ⇔ sa has to verify the retriability property

•),,(i
saaTP WtsMINdcompensate ∈ ⇔ sa has to verify the compensatability property

The set),(atWATS is easily derived from ATS(W). We need now to compute),(i

sa WtDIS . We
assume that we are at the i+1 step of an assignment procedure, i.e. the current partial instance of

International Journal of Web Services Research , Vol.X, No.X, 200X

 13

W is i
sW . Computing),(i

sa WtDIS means determining if (DIS1) and (DIS2) are true. From these
two statements we can derive three properties:

1. (DIS1) implies that state compensated can definitely be reached by ta
2. (DIS2) implies that ta can not fail
3. (DIS2) implies that ta can not be canceled

The two first properties can be directly derived from (DIS1) and (DIS2). The third one is derived
from the fact that if a task can not be canceled when a task fails, then it has to finish its execution
and reach at least the state completed. In this case, if a service can not be canceled then it can not
fail, which is the third property. In order to verify whether 1., 2. and 3. are true, we introduce the
set of theorems 7-4, 7-5 and 7-6.

Theorem 7-4: Let []na ,1∈ . The state compensated can definitely be reached by ta ⇔

[] { }anb −∈∃ ,1 verifying (7-4b): sb not retriable is assigned to tb and)()(WATSWtsk ∈∃

generator of tb such that dcompensatetWts ak =),(.
Proof: ⇐ : Since the service sb is not retriable, it can fail and)()(WATSWtsk ∈ generator of tb
such that dcompensatetWts ak =),(is in)(sWTS .
⇒ : Derived from (P2) and 5-6.

This theorem states that the execution of a composite service may lead a task ta to the state
compensated if:

• there exists a termination state part of)(WATS wherein a task tb fails and ta is
compensated and

• tb has been assigned to a service that is not retriable.

The two following theorems are proved similarly:

Theorem 7-5: Let []na ,1∈ . ta can not fail ⇔ [] { }anb −∈∃ ,1 verifying (7-5b): (sb not

compensatable is assigned to tb and)()(WATSWtsk ∈∃ generator of ta such that

dcompensatetWts bk =),() or (tb is flexible to ta and sb not retriable is assigned to tb and

)()(WATSWtsk ∈∀ such that failedtWts ak =),(, canceledtWts bk ≠),().

Theorem 7-6: Let []nba ,1, ∈ such that ta is flexible to tb. ta is not canceled when tb fails ⇔
(7-6b): sb not retriable is assigned to tb and)()(WATSWtsk ∈∀ such that failedtWts bk =),(,

canceledtWts ak ≠),(.

According to the theorems 7-4, 7-5 and 7-6, in order to compute),(i

sa WtDIS , we have to
compare ta with each of the i tasks { }ab tWt −∈ to which a service sb has been already assigned.
This is an iterative procedure and at the initialization phase, since no task has been yet compared
to ta, sa can be of type (p): { }failedWtDIS i

sa =),(.

1. if tb verifies (7-4b) ⇒),(i
sa WtDISdcompensate ∈

2. if tb verifies (7-5b) ⇒),(i
sa WtDISfailed∉

International Journal of Web Services Research , Vol.X, No.X, 200X

 14

3. if tb is flexible to ta and verifies (7-6b) ⇒),(i
sa WtDISfailed∉

The verification stops if),(i

sa WtDISfailed∉ and),(i
sa WtDISdcompensate ∈ . With

),,(i
saaTP WtsMIN , we are able to select the appropriate service to be assigned to a given task

according to transactional requirements.

7.2.2. Service assignment process

Services are assigned to each workflow task based on an iterative process. Depending on the
transactional requirements and the transactional properties of the services available for each task,
different scenarios can occur:

(i) services of type (rc) are available for the task. It is not necessary to compute
transactional requirements as such services match all transactional requirements.

(ii) only one service is available for the task. We need to compute the transactional
requirements associated to the task and either the only available service is sufficient or
there is no solution.

(iii) services of types (r) and (c) but none of type (rc) are available for the task. We need to
compute the transactional requirements associated to the task and we have three cases.
First, (retriability and compensatability) is required in which case there is no solution.
Second, retriability (resp. compensatability) is required and we assign a service of type
(r) (resp. (c)) to the task. Third, there is no requirement.

The idea is therefore to assign first services to the tasks verifying (i) and (ii) since there is no
flexibility in the choice of the service. Tasks verifying (iii) are finally analyzed. Based on the
transactional requirements raised by the remaining tasks, we first assign services to tasks with a
non-empty transactional requirement. We then handle the assignment for tasks with an empty
transactional requirement. Note that the transactional requirements of all the tasks to which
services are not yet assigned are also affected (updated) as a result of the current service
assignment. If no task has transactional requirements then we assign the services of type (r) to
assure the completion of the remaining tasks’ execution.

Theorem 7-7: The service assignment procedure creates an instance of W that is acceptable with
respect to a valid ATS(W).
Proof: Let sW be an instance of W resulting from the service assignment procedure and a service
sa assigned to a task ta in sW . The definition 7-1 has to be verified and we therefore consider (A)
and (B) (keeping the notations of theorem 7-2):

(A) [] [])(),)(),(,(),(,,1 ,1 WATSttWtsWCStWATSfailedna aziaksa aia
⊂⇒∈∈∀ ∈

(B) [] [])(),)(),(,(),(,,1 ,1 WATSttWtsWCStWATSfailedna aziaksa aia
⊂⇒∉∈∀ ∈

(A): We suppose that),(atWATSfailed∈ then we have two possibilities:

• sa is retriable and [])(),)(),(,(,1 WATSttWtsWCS aziaks aia
⊂∅=∈ .

• sa can fail and with 1., 2. and 3. we get)()(sk WTSWts
a

∈ and therefore

[])(),)(),(,(,1 WATSttWtsWCS aziaks aia
⊂∈ since ATS(W) is valid.

(B): We suppose that),(atWATSfailed∉ then),,(i
saaTP WtsMINfailed∉ and sa is retriable.

Therefore, [])(),)(),(,(,1 WATSttWtsWCS aziaks aia
⊂∅=∈ .

International Journal of Web Services Research , Vol.X, No.X, 200X

 15

Finally, we get [])(),)(),(,(,1 WATSttWtsWCS aziaks aia

⊂∈ and sW is an acceptable instance of
W with respect to ATS(W).

7.3. Coordination of Ws

Now, using (A) and (B) defined in the proof of 7-7 and keeping the same notations, we are able to
specify the coordination strategy of sW against each workflow task. We get indeed the following
theorem.

Theorem 7-8: Let sW be an acceptable instance of W with respect to ATS(W). We note []ri niat ,1)(∈
the set of tasks to which no retriable services have been assigned. We get:

 { } U UU
r

iji

a

iia

n

i
aa

z

j
akss ttFTStWtsCTSWtscompWTS

1 1

),()),(()()(
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

Having computed)(sWTS , we obtain the list of the possible termination states that can be
reached by the instance sW and thus that defines the coordination rules associated with the
execution of sW .)(sWTS is indeed derived from ATS(W) which contains for all tasks at most a
single coordination strategy as specified in 6-1. As a result, whenever the failure of a task ta is
detected, a transactional protocol in charge of coordinating an instance sW resulting from our

approach reacts as follows. The coordination strategy []),)(),(,(,1 aziaks ttWtsWCS
aia ∈

corresponding to ta is identified and a unique termination state belonging to
[]),)(),(,(,1 aziaks ttWtsWCS

aia ∈ can be reached given the current state of the workflow execution.

7.3. Discussion

The operations that are relevant from the complexity point of view are twofold: the definition of
transactional requirements by means of the acceptable termination states model and the execution
of the transaction-aware service assignment procedure.

One can argue that building an ATS table specifying the transactional requirements of a business
process W consists of computing the whole TS(W) table, yet this is not the case. Building a
ATS(W) set in fact only requires for designers to identify the tasks of W that they allow to fail as
part of the process execution and to select the termination state generator associated with each of
those tasks that meet their requirements in terms of failure atomicity. Once this phase is complete,
designers only need to select the tasks whose execution can be canceled when the former tasks
may fail and complete the associated coordination strategy.

The second aspect concerns the complexity of the transaction aware assignment procedure that
we presented in section 6 and 7.

Theorem 7-9: Let () []naatW ,1∈= a workflow. The complexity of the transaction-aware
assignment procedure is O(n3).
Proof: We can show that the number of operations necessary to compute the step i of the
assignment procedure for a task at is bounded by in××4 . Computing the step i indeed consists

International Journal of Web Services Research , Vol.X, No.X, 200X

 16

of verifying the theorems 7-4, 7-5 and 7-6 and determining),(atWATS . On the one hand,
performing the operations part of theorems 7-4 (one comparison), 7-5 (two comparisons) and 7-6
(one comparison) requires at most 4 comparisons. On the other hand, building),(atWATS
requires at most n operations (there is at most n generators in a ATS(W) set). Therefore, we can
derive that the number of operations that needs to be performed in order to compute the n steps of

the assignment procedure for a workflow composed of n tasks is bounded by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×× ∑

=

n

j

jn
1

4

which is equivalent to n3 as ∞→n .

7.4. Example

Back to our motivating example, we consider the workflow W1 of Figure 2. Designers have
defined ATS2(W1) as the transactional requirements for the considered business application and
the set of available services for each task of W1 is specified in Figure 5. The goal is to assign
services to workflow tasks so that the instance of W1 is valid with respect to ATS2(W1) and we
apply the assignment procedure presented in section 7.2. We first start to assign the services of
type (rc) for which it is not necessary to compute any transactional requirements. s13 which is
available for task 1 is therefore assigned without any computation. We then consider the tasks for
which only one service is available. This is the case for task 4 for which only one service of type
(p) is available. We therefore verify whether s41 can be assigned to task 4. We compute

),(),(),,(1
14412

1
14 ssaTP WtDIStWATSWtsMIN I= . { }failedcompletedtWATS ,),(412 = and

{ }failedWtDIS s =),(1
14 as s13 the only service already assigned is of type (rc) and the theorems

7-4, 7-5 and 7-6 are not verified, none the conditions required within these theorems are indeed
verified by the service s13. Thus { }failedWtsMIN saTP =),,(1

14 and s41 can be assigned to task 4
as it matches the transactional requirements. Now we compute the transactional requirements of
task 2 for which services of type (r) and (c) are available and we get

{ }failedWtsMIN saTP =),,(2
12 . As described in the assignment procedure we do not assign any

service to this task as it does not introduce at this step of the procedure any transactional
requirements to make a decision on the candidate service to choose. We therefore compute the
transactional requirements of task 3 and we get { }dcompensatefailedWtsMIN saTP ,),,(2

13 =
as theorem 7-4 is verified with the service s41 that is indeed not retriable. The service s32 which is
of type (c) can thus be assigned to task 3 as it matches the computed transactional requirements.
We come back now to task 2 and compute the transactional requirements once again and we get

{ }dcompensatefailedWtsMIN saTP ,),,(3
12 = as theorem 7-4 is now verified with the service

s32 which is indeed not retriable. It should be noted that at this step, the transactional requirements
associated to task 2 have been modified because of the assignment of the service s32 to task 3. As
the device s22 matches the transactional requirements it can be assigned to the task.

8. AUGMENTING AN OWL-S MATCHMAKER WITH OUR
RESULTS

To implement the above presented work we augmented an existing functional OWL-S
matchmaker (Tang, Liebetruth et al. 2003), with transactional matchmaking capabilities. In order

International Journal of Web Services Research , Vol.X, No.X, 200X

 17

to achieve our goal, the matchmaking procedure has been split into two phases. First, the
functional

Figure 6: Transactional Web services composition system

matchmaking based on OWL-S semantic matching is performed in order to identify subsets of the
available services that meet the functional requirements for each workflow task. Second, the
implementation of the transaction-aware service assignment procedure is run against the selected
sets of services in order to build an acceptable instance fulfilling defined transactional
requirements.

The structure of the matchmaker consists of several components whose dependencies are
displayed in Figure 6. The composition manager manages the process of matchmaking and
provides a Java API that can be invoked to start the composition. It gets as input an abstract
process description specifying the functional requirements for the candidate services and a table
of acceptable termination states. The registry stores OWL-S profiles of services that are available.
Those OWL-S profiles have been augmented with the transactional properties offered by services.
This has been done by adding to the non-functional information of the OWL-S profiles a new
element called transactionalproperties that specifies two Booleans attributes retriable and
compensatable as shown in the sample listing below:

<tp:transactionalproperties retriable="true" compensatable="true"/>

In the first phase of the composition procedure, the service manager is invoked with a set of
OWL-S profiles that specify the functional requirements for each workflow task. The service
manager gets access to the registry where all published profiles are available and to the functional
matchmaker provided by (Tang, Liebetruth et al. 2003) and that is used to match the available
profiles against the functional requirements specified in the workflow. For each workflow task,
the service manager then returns a set of functionally matching profiles along with their
transactional properties. The composition manager then initiates the second phase, passing these
sets along with the process description, and the table of acceptable termination states to the
transactional composer. The transactional composer starts the transaction-aware service

International Journal of Web Services Research , Vol.X, No.X, 200X

 18

assignment procedure using the transactional matchmaker by classifying first those sets into five
groups:

• sets including only services of type (p)
• sets including only services of type (r)
• sets including only services of type (c)
• sets including services of types (r) and (c)
• sets including services of type (rc)

Once those sets are formed, the iterative transactional composition process is performed as
specified above based on the table of acceptable termination states defined for the process. Of
course depending on the set of available services and the specified acceptable termination states,
the algorithm execution may end without yielding a solution. The implementation work we have
performed reveals that the execution overhead introduced by our transaction-aware assignment
procedure within the complete service composition procedure is in fact negligible with respect to
the time required to parse OWL-S documents and execute the functional match-making procedure.

9. RELATED WORK

Transactional consistency of workflows and database systems has been an active research topic
over the last 15 years yet it is still an open issue in the area of Web services (Curbera, Khalaf et al.
2003), (Gudgin, 2004), (Little, 2003) and especially composite Web services. Composite Web
services indeed introduce new requirements for transactional systems such as dynamicity,
semantic description and relaxed atomicity. Existing transactional models for advanced
applications (Elmagarmid, 1992) lack flexibility to integrate these requirements [Alonso, Agrawal
et al. 1996] as for instance they are not designed to support the execution of dynamically
generated composite services. Our solution allows the specification of transactional requirements
supporting relaxed atomicity for an abstract workflow specification and the selection of a
semantically described service set meeting the transactional requirements defined at the workflow
design stage.
Our work is based on (Bhiri, Perrin et al. 2005) which presents the first approach specifying
relaxed atomicity requirements for composite Web services based on the ATS tool and a
transactional semantic. Despite a solid contribution, this work appears to be limited if we consider
the possible integration into automatic Web services composition systems. It indeed only details
transactional rules to validate a given composite service with respect to defined transactional
requirements. In this approach, transactional requirements do not play any role in the component
services selection process which may result in several attempts for designers to determine a valid
composition of services. On the contrary, our solution provides a systematic procedure enabling
the automatic design of transactional composite Web services. Besides, our contribution also
defines the mathematical foundations to specify valid ATS for workflows based on the concept of
coordination strategy.
Finally, our solution can be used to augment recent standardization efforts in the area of
transactional coordination of Web services (Abbott, 2005), (Langworthy, 2005). Our approach
indeed provides adaptive coordination specifications based on the transactional properties of the
component services instantiating a given workflow. Existing Web services coordination
specifications (Langworthy, 2005) are indeed not flexible enough as they do not neither allow
workflow designers to specify their transactional requirements nor take into account the
transactional properties offered by Web services.

International Journal of Web Services Research , Vol.X, No.X, 200X

 19

10. CONCLUSION

We presented a systematic procedure to automate the design of transactional composite Web
services. Our solution enables the selection of component Web services not only according to
functional requirements but also to transactional ones. Transactional requirements are defined by
designers and serve as an input to define both reliable composite Web services and coordination
protocols used to ensure the consistency of their execution. On the one hand this service
assignment approach can be used to augment existing Web services composition systems
(Agarwal, Dasgupta, et al. 2005) as it can be fully integrated in existing functional matchmaking
procedures. On the other hand, our approach defines adaptive coordination rules that can be
deployed on Web services coordination specifications (Langworthy, 2005) in order to increase
their flexibility. Besides, the theoretical results presented in this paper have been integrated into
an OWL-S matchmaker as a proof of concept.
Our future work will be twofold. On the one hand, we would like to leverage the transactional
model introduced in this paper to define transactional templates for BPEL (Thatte, 2003)
processes. On the other hand, we plan to apply this approach in the field of cross-organizational
business processes.

ACKNOWLEGMENT

This work has been partially sponsored by EU IST Directorate General as a part of FP6 IST
projects MOSQUITO and R4eGov and by SAP Labs France S.A.S.

REFERENCES

Abbott, M. (2005), Business transaction protocol.

Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., Srivastava, B. (2005), A service
creation environment based on end to end composition of web services, Proceedings of the WWW
conference, May 10-14, 2005, in Chiba, Japan, 128-137.

Alonso, G., Agrawal, D., Abbadi, A. E., Kamath, M., Gnthr, R., Mohan, C. (1996), Advanced transaction
models in workflow contexts, Proceedings of the 12th International Conference on Data Engineering, New
Orleans, 574-581.

Bhiri, S., Perrin, O., Godart, C. (2005), Ensuring required failure atomicity of composite web services,
Proceedings of the WWW conference, May 10-14, 2005, in Chiba, Japan, 138 - 147.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S. (2003), The next step in web services,
Communications of the ACM, 46(10), 29 - 34.

Elmagarmid, A. K. (1992), Database Transaction Models for Advanced Applications, Morgan Kaufmann.

Greenfield, P., Fekete, A., Jang, J., Kuo, D. (2003), Compensation is not enough, Proceedings of the 7th
International Enterprise Distributed Object Computing Conference (EDOC’03), 232, 16-19 September
2003, Brisbane, Australia.

Gudgin, M. (2004), Secure, reliable, transacted; innovation in web services architecture, Proceedings of the
ACM International Conference on Management of Data, Paris, France; June 15-17, 2004, 879 - 880.

Langworthy, D. (2005), WS-AtomicTransaction.

Langworthy, D. (2005), WS-BusinessActivity.

Langworthy, D. (2005), WS-Coordination.

Little, M. (2003), Transactions and web services, Communications of the, 46(10), 49–54.

International Journal of Web Services Research , Vol.X, No.X, 200X

 20

Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H. (1992), A transaction model for multidatabase
systems, Proceedings of the 12th IEEE International Conference on Distributed Computing Systems
(ICDCS92), June 9-12, 1992, Yokohama, Japan, 56-63.

OWL Services Coalition. (2003), OWL-S: Semantic Markup for Web Services.

Rusinkiewicz, M., Sheth, A. (1995), Specification and execution of transactional workflows, Modern
database systems: the object model, interoperability, and beyond, 592 - 620.

Schuldt, H., Alonso, G., Schek, H. (1999) Concurrency control and recovery in transactional process
management, Proceedings of the Conference on Principles of Database Systems, Philadelphia,
Pennsylvania May 31 - June 2, 1999, 316 - 326.

Tang, S. Liebetruth, C., Jaeger, M. C. (2003) The OWL-S matcher software, http://flp.cs.tu-berlin.de/

Thatte, S. (2003), Business Process Execution Language for Web Services Version 1.1 (BPEL).

W3C. (2002), Web Services Description Language (WSDL).

ISO. (n.d.), Open System Interconnection- Distributed Transaction Processing (OSI-TP) Model, ISO IS
100261

ABOUT THE AUTHORS

Frederic MONTAGUT is a PhD candidate at SAP Research in Sophia Antipolis, France. Frederic obtained
his engineering diploma from Telecom INT, France and the Diploma of Advanced Studies (M.Sc.) in
Network and Distributed Systems from Nice – Sophia Antipolis University, France in 2004. He joined SAP
Research in October 2004 working under the supervision of Pr Refik MOLVA, Eurecom Institute. Frederic
is involved in different research projects in the field of pervasive computing and e-government. His current
research interests ranges from decentralized workflow management systems, transactional coordination of
workflows to workflow security.

Refik Molva is a full professor and the head of the Computer Communications Department at Eurecom
Institute in Sophia Antipolis, France. His current research interests are in security protocols for self-
organizing systems and privacy. He has been responsible for research projects on multicast and mobile
network security, anonymity and intrusion detection. Beside security, he worked on distributed multimedia
applications over high speed networks and on network interconnection. Prior to joining Eurecom, he
worked as a Research Staff Member in the Zurich Research Laboratory of IBM where he was one of the
key designers of the KryptoKnight security system. He also worked as a network security consultant in the
IBM Consulting Group in 1997. Refik Molva has a Ph.D. in Computer Science from the Paul Sabatier
University in Toulouse (1986) and a B.Sc. in Computer Science (1981) from Joseph Fourier University,
Grenoble, France.

Silvan Tecumseh Golega is a master student at the Hasso-Platner-Institut of the Universität Potsdam,
Germany. Silvan received a B.Sc. from the Hasso-Platner-Institut in 2006 after spending one year at the
Universidad Rey Juan Carlos in Madrid, Spain. Silvan performed the practical work of his master thesis
under the supervision of Frederic Montagut at SAP Research, France on the topic “Composition and
Coordination of Transactional Business Processes”. He contributed to the work presented in this paper
during his stay at SAP Research.

