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ABSTRACT

We consider the downlink of a multiuser MIMO channel, cor-
responding to a single cell with an Nt-antenna base station
and K single-antenna mobile terminals (MTs). It is known
that when full channel state information (CSI) is available at
the transmitter (full CSIT) the capacity of the system scales as
Nt log( P

Nt
log K), under a total power constraint P [1]. While,

when the transmitter has no CSI, scaling reduces to that of a
TDMA system. This paper examines the more realistic case of
having an intermediate state of CSI. The key idea is based on a
split of the allotted feedback between two stages: A first stage
devoted to scheduling followed by a second stage for precoder
design for the selected users. Based on an approximation of the
achievable sum rate, we introduce a method for determining the
splitting of the feedback rate so as to maximize performance
and provide intuitions. We illustrate the gains of the 2-stage
approach via Monte Carlo simulations.

I. INTRODUCTION

Integration of multiple antennas at the transmitter and receiver
leads to enhanced capacity through spatial diversity and mul-
tiplexing gains. In multiuser configurations, a further capacity
increase due to multiuser diversity (MUD) is attainable through
judicious scheduling [2].

While in the single-user case CSIT contributes little to
achieving the multiplexing gain it is crucial for multiuser
MIMO (MU-MIMO). However, CSIT is usually gained at the
expense of feedback overhead. A lot of recent research has fo-
cused on systems with partial CSIT (limited feedback) so as to
circumvent this problem (see [3] and references therein).

Most approaches to MU-MIMO transmission under partial
CSI have centered on linear precoding, which is much sim-
pler than nonlinear processing (required for implementing the
optimal dirty-paper coding (DPC) scheme, for example), this
simplicity coming at the cost of tolerable performance loss
[4]. These approaches fall under two categories: orthogonal
random beamforming (ORBF) and zero-forcing beamforming
(ZFBF).

ORBF, introduced in [1], maintains the same throughput
scaling with the number of users as the DPC approach: it con-
sists of generating a number of random orthonormal beams and
transmitting on each of them to the user with the correspond-
ing highest signal to interference and noise ratios (SINR); thus,
each user need only feed back its SINR and the index of the
optimal beam instead of its entire channel information. How-
ever, this approach is only efficient when the number of users
is large. Several publications have been devoted to improving
RBF for cases where the number of users is finite, as well as

to analyzing the effect of assigning a finite number of bits to
quantizing the SINR information.

When ZFBF is used, the fed-back CSI is used to design a
zero-forcing (ZF) precoding channel matrix, which eliminates
inter-user interference when perfect CSI is available. In the
latter case this scheme also exhibits the same scaling as the
optimal strategy. However, when the feedback rate is fixed, the
scaling is only maintained if the feedback rate is linearly scaled
with SNR in dB [5, 6, 7].

One can also categorize limited feedback approaches accord-
ing to whether all [6, 7, 8] or only a subset [9, 10, 11] of the
users feed back their CSI. In the latter case, for a given maxi-
mum feedback rate, criteria are established so that the number
of users that feedback their quantized channel is kept limited.

In all the approaches considered so far, the feedback resource
exploited to provide CSIT was used at once for both purposes
of user selection (or scheduling) and precoding matrix design
to serve the selected users. The key idea behind this paper is
two-fold: (i) It is the scheduling stage of MU-MIMO which
consumes most of the feedback as information for a potentially
large number K of users must be gathered, while the final pre-
coding concerns at most Nt users, with typically Nt << K.
(ii) While the final precoder design relies on accurate channel
information to allow for a fine spatial separation of the selected
users (so as to maintain spatial multiplexing gain), the schedul-
ing algorithm might get away with a poorer representation of
the channel. From these two observations, we propose that the
allotted feedback bits be split among two tasks (scheduling fol-
lowed by precoder design) so as to maximize the attainable sum
rate under a fixed total feedback constraint. An analysis is pre-
sented in this paper that leads to an algorithm for choosing the
feedback split factor. The value of the proposed ideas is further
confirmed by simulations.

II. SYSTEM MODEL

We consider a multiuser MIMO channel, where a transmit-
ter equipped with Nt antennas communicates with K ≥ Nt

single-antenna receivers. The latter are assumed to have per-
fect channel knowledge. The received signal at user k, denoted
yk ∈ C can be written as:

yk = hkx + nk (1)

where x ∈ C
Nt×1 is the transmitted signal vector, hk ∈ C

1×Nt

and and nk ∈ C represent the channel vector and the noise at
the kth user, respectively. We assume perfect channel knowl-
edge at the receiver (CSIR), and that both the channel vector
entries and the noise are independent identically distributed
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(i.i.d.) zero mean unit variance complex Gaussian random vari-
ables (r.v.’s), CN(0, 1). x is subjected to a total power con-
straint P such that E[xHx] = P . Furthermore, we assume a
block-fading channel and focus on the ergodic sum rate as sys-
tem performance measure.

III. MU-MIMO PRECODING WITH FULL CSIT
(ZERO-FORCING)

Since capacity-achieving DPC is quite complex, we restrict
ourselves to a suboptimal but simple linear precoding scheme,
namely ZF beamforming, which is known to achieve optimal
performance for large K [4]. Under full CSIT, the transmitted
signal x is given by:

x =
√

PWZF s (2)

where WZF � H†
A/
√

tr((HAHH
A)−1) is the designed ZF

precoding matrix, HA ∈ C
Nt×Nt � [hT

A1
. . .hT

ANt
]T being

the aggregate channel of the group A of Nt selected users and
s = [s1, . . . , sNt

] ∈ C
Nt×1 is the vector of independent trans-

mit symbols such that E[sHs] = INt
.

The ZF process effectively transforms the MIMO channel
into Nt parallel subchannels with equal power gain. Conse-
quently, for each k ∈ A, the received signal (1) becomes:

yk =

√
P

tr((HAHH
A)−1)

sk + nk (3)

The achievable sum rate for a given A is thus equal to:

SRZF –CSIT = Nt log2

(
1 +

P

tr((HAHH
A)−1)

)
(4)

And the scheduling rule that maximizes (4) is:

Aopt = arg max
A⊂{1,...,K},|A|=Nt

1
tr((HAHH

A)−1)
(5)

IV. MU-MIMO WITH 2-STAGE FEEDBACK

The two steps of scheduling (finding the optimal set A) and
precoding matrix design are mapped into two feedback stages.
In the first stage, each of the K receivers feeds back a ”coarse”
quantized version of its channel vector, ĥ1,k, k = 1, . . . ,K; a
group of users, denoted by Â, is selected as in (5), but with the
real channels replaced by their quantized versions. Thus,

Â = arg max
A⊂{1,...,K},|A|=Nt

1
tr((Ĥ1,AĤH

1,A)−1)
(6)

In the second stage, users in Â send back refinements of their
channels (e.g. quantized versions of hk−ĥ1,k). The new chan-
nel estimates ĥ2,k are used to design the ZF precoding matrix
ŴZF :

ŴZF =
Ĥ†

2,Â√
tr((Ĥ2,ÂĤH

2,Â
)−1)

(7)

Due to quantization error, interference will not be entirely elim-
inated by the ZF-precoder. Thus the received signal vector will
be given by:

y =
√

PHÂ

Ĥ†
2,Â√

tr((Ĥ2,ÂĤH
2,Â

)−1)
s + n (8)

Rewriting HÂ as the sum of the quantized channel and an error
term, HÂ = Ĥ2,Â + E2,Â, (8) becomes:

y =
√

P√
tr((Ĥ2,ÂĤH

2,Â
)−1)

s +

√
PE2,ÂĤ†

2,Â√
tr((Ĥ2,ÂĤH

2,Â
)−1)

s + n

(9)
Since the second term in (9) corresponds to the deviation from
the scaled identity matrix obtained when ZF is perfect (cf. (3)),
we use the following performance metric to approximate the
achieved sum-rate:

SRZF –Q2 =
Nt∑
i=1

log2(1 + SINRÂi
) (10)

where

SINRÂi
=

P

tr((Ĥ2,ÂĤH
2,Â

)−1) + P‖(E2,ÂĤ†
2,Â

)i‖2
(11)

where (.)i denotes the ith row of a given matrix.

V. ANALYSIS

A. Feedback Rate Splitting Formalization

Let Btotal denote the total number of bits available for feed-
back (the total feedback “rate” across all users), and α ∈ [0, 1]
the splitting factor between the two stages of our scheme. Thus
B1 = αBtotal and B2 = (1 − α)Btotal bits will be dedicated
to the scheduling and precoding matrix design stages, respec-
tively.

B. Quantization Model

For user k, entries in the channel vector hk are i.i.d. CN(0, 1)
r.v.’s. To model their quantization we adopt an ideal model
from rate-distortion theory [12], corresponding to the succes-
sive refinement of a Gaussian with mean squared-error as dis-
tortion measure1. The resulting achievable distortions per vec-
tor entry at each stage in terms of α and Btotal, are:

σ2
e1

= 2−αBtotal/(K×Nt) (12)

σ2
e2

= 2−
Btotal

Nt
( α

K + 1−α
Nt

), (13)

Furthermore, entries in the first and second stage quantized
channel vectors, ĥ1,k and ĥ2,k respectively, are i.i.d. and re-

1This may not be the optimal distortion measure [13] but this model serves
our purposes quite well.
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lated to each other and to the true CSIT by the following distri-
butions (where j = 1, . . . , Nt):

ĥ1,k,j ∼ CN(0, 1 − σ2
e1

) (14)

ĥ2,k,j |ĥ1,k,j ∼ CN(ĥ1,k,j , σ
2
e1

− σ2
e2

) (15)

hk,j |ĥ2,k,j ∼ CN(ĥ2,k,j , σ
2
e2

). (16)

C. Extreme cases

Before tackling the optimum splitting factor and the resulting
performance estimation, we analyze the extreme cases of α be-
ing either 0 or 1. Their comparison serves as justification for
the adopted rate splitting approach.
Both cases correspond to having a single quantization stage,
but differ in the following manner:

• α = 0: Nt randomly selected users feed back their chan-
nels to enable the design of the precoding matrix.

• α = 1: all users feed back their channels; scheduling and
precoding matrix design are done based on the quantized
channel. Quantization model aside, this is equivalent to
the strategy in [6] and most existing work.

To compare performance as a function of feedback rate in
both schemes, we estimate the ergodic sum rate by averaging
(10) over the quantized channel of the selected users and the
corresponding quantization error statistics (we drop the 2 from
SRZF –Q2 since we only have a single stage). Taking the expec-
tation over the quantization error statistics first, we are able to
bound SRZF –Q � EĤÂ,EÂ

SRZF –Q as shown in (17), where

eE1(x) � exE1(x), E1(.) being the exponential integral, de-
fined as E1(x) =

∫∞
x

e−t

t dt. A sketch of the derivation of
these bounds is provided in Appendix I.
But SRZF –Q and its bounds will differ for the two α’s since:

• σ2
e,α=0 ≤ σ2

e,α=1 (since K ≥ Nt)

• The statistics of the quantized channels of users in Â are
different, because of differences in both quantization error
and scheduling schemes.

1. α = 0: since users are selected randomly, the entries of
ĤÂ are all i.i.d. CN(0, 1 − σ2

e). Consequently (using
results in [14]), bounds on SRZF –Q (cf. (17)) are given
by (19), where

c0 =
1 − σ2

e

1 + Pσ2
e

(18)

and γEM is the Euler-Mascheroni constant.

Lemma 1. For fixed σ2
e , the given scheme has a multi-

plexing gain of 0.

Proof. For fixed σ2
e , Pc0 → 1−σ2

e

σ2
e

as P → ∞: both up-
per and lower bound will tend to constants confirming the
lemma.

Theorem 1. A necessary and sufficient condition for the
given scheme to maintain the multiplexing gain of Nt un-
der quantization error is to have σ2

e = O(1/P ).
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Figure 1: Sum capacities for M = 2,K = 20, Btotal = 80
bits.

Proof. This can be shown by calculating the limit defining
the multiplexing gain. Omitted due to space limitations.
Note that a similar condition is obtained in [5].

Remark 1. Comparing upper and lower bounds in (19),
c0 can be identified as a scaling factor which quantifies
power loss with respect to perfect channel knowledge.

2. α = 1: We lower bound λmin’s cumulative distribution
function (cdf) by that of the maximum of N1 �

(
K
Nt

)
i.i.d.

exponentially distributed r.v.s of mean (1−σ2
e)/Nt (effec-

tively ignoring the dependencies between the N1 possible
sets of scheduled users). Similarly, we upper bound it by

that of choosing the maximum out of N2 �
⌊

K
Nt

⌋
with

the same distribution (only considering disjoint groups).
Thus(

1 − e
− Ntx

1−σ2
e

)N1

≤ Fλmin(x) ≤
(

1 − e
− Ntx

1−σ2
e

)N2

(20)

Using these cdfs and applying Jensen’s inequality to the
upper bound (concavity of the log) (cf. (17)), SRZF –Q is
bounded as shown in (21), where HN1 denotes the N1-th
harmonic number.

These bounds can be used to reach conclusions about the
scaling and power loss with respect to the perfect CSIT
case that are similar to those made when α = 0.

Comparing both cases, in order to maintain the same ap-
proximate power loss with respect to perfect CSIT for a fixed
P , α = 1 would necessitate K/Nt times higher feedback rate
than α = 0, the rate for the former being however greater due
to MUD. Fig. 1 shows for the same Btotal, the achievable sum
rates in both cases. At low SNR, the accuracy of the quantiza-
tion for α = 1 is sufficient to achieve some of the MUD gains.
This no longer holds at higher SNR, as the system becomes
interference-limited. Thus the simple binary scheme of switch-
ing between α = 0 and α = 1 depending on M and K would
lead to better performance than either separately. Further im-
provement would be expected from letting α vary within [0, 1].
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NtEλmin log
(

1 +
λmin

Nt(1/P + σ2
e)

)
< SRZF –Q < NtEλmin

[
log
(
1 + P [λmin + σ2

e ]
)]− NteE1

(
1

Pσ2
e

)
(17)

NteE1

(
N2

t

Pc0

)
< SRZF –Q < Nt

[
log(1 + Pσ2

e) + eE1

(
Nt

Pc0

)
−eE1

(
1

Pσ2
e

)]
< Nt

[
eE1

(
Nt

Pc0

)
+ γEM

]
(19)

D. Optimal α

The optimal α, αopt is defined as :

αopt = arg max
α

SRZF –Q2 (22)

where SRZF –Q2 � EĤ1,Ĥ2,Â,E2,Â
[SRZF –Q2] (cf. (10)). Sim-

ilarly to (29), this expectation can be rewritten as:

NtEΛ̂2,Â,E2,Â
log
(
1 +

1∑
λ−1

2,Â,j
( 1

P + |E2,Â,i,j |2)
)
, (23)

where Λ̂2,Â is the diagonal matrix of eigenvalues of

Ĥ2,ÂĤH
2,Â

, denoted λ2,Â,j , j = 1, . . . , Nt, the joint distribu-

tion of which depends on that of Ĥ1 and Ĥ2,Â, alternatively on

Ĥ1 and Ê12,Â � Ĥ2,Â−Ĥ1,Â. Letting λ2,min be the minimum

eigenvalue of Ĥ2,ÂĤH
2,Â

, we can bound SRZF –Q2 (cf. (17)) as
shown in (24).

NtEλ2,min log
(

1 +
Pλ2,min

Nt(1 + Pσ2
e2

)

)
< SRZF –Q2

< Nt

[
γEM + Eλ2,min log

(
1 +

Pλ2,min

1 + Pσ2
e2

)]
(24)

Unfortunately we are unable to bound the distribution of
λ2,min. Instead we approximate the achievable sum rate by its
upper bound obtained from applying Jensen’s inequality, i.e.
by bringing the expectation in (24) inside the logarithm.

Further noting that

EĤ1,Â,Ê12,Â
tr
(
(Ĥ1 + Ê12)(Ĥ1 + Ê12)H

)
= EĤ1,Â

tr
(
Ĥ1ĤH

1

)
+ N2

t (σ2
e1

− σ2
e2

) (25)

and recalling that the trace is the sum of the eigenvalues, we
are intuitively lead to approximate the desired expectation by:

EĤ1,Â,Ê12,Â
λ2,min ≈ EĤ1,Â

λ1,min + c(σ2
e1

− σ2
e2

) (26)

for some finite c.
Guided by the results of the discussion of the two extreme

cases and our knowledge of the perfect CSIT case, approxi-
mating the expectation of (26) leads us to define the following
power loss factor with respect to the ideal case:

PL �
1 − σ2

e1

1 + Pσ2
e2

+
σ2

e1
− σ2

e2

log K(1 + Pσ2
e2

)
, (27)

where log K is the expected MUD gain. The first term in the
summation is the loss due to the first stage quantization while
the second term is that caused by the second stage.

α is thus selected based on the following heuristic:

αheur = arg max
α

PL (28)

VI. SIMULATION RESULTS

Simulations were run to investigate the performance of our
heuristic algorithm. 2

Fig. 2 compares the performance for a 30-user system for
different values of α. As can be seen, our scheme effectively
provides a smooth transition between the two extreme cases,
and comparing to the αopt case (found by exhaustive search)
the loss due to the non-optimality of the heuristic is reasonable.

Other simulations were aimed at checking how performance
varies with the total feedback rate. Results are omitted due
to space constraints, but these confirm conclusions from our
analysis: when Btotal is too small, only the multiplexing gain
can be achieved at higher SNR, while for increasing Btotal an
increasing part of the MUD gain is achieved; for α = 0 in-
creasing the number of bits beyond that necessary to achieving
multiplexing gain is no longer useful, and for α = 1 satura-
tion still occurs at higher SNR (although later with increasing
Btotal, as expected).
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Figure 2: Sum capacities for M = 2, K = 30, Btotal = 120
bits, and different schemes. αheur provides a smooth transition
between extreme α’s, with tolerable loss with respect to αopt.

VII. CONCLUSION

A two-stage resource allocation scheme was proposed for the
multiuser MIMO broadcast channel under feedback rate con-
straint: the available feedback rate is split between the schedul-
ing phase where all receivers feed back a coarse quantization

2As scheduling according to (6) is too computationally intensive, we resort
to the semiorthogonal user selection (SUS) algorithm of [4] instead.
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Nt

N2∑
k=1

(−1)k+1

(
N2

k

)
eE1

(
kN2

t

Pc0

)
< SRZF –Q < Nt

[
γEM + log

(
1 + P

c0

Nt
HN1

)]
(21)

of their channel state information (CSIT), and the precoding
phase where the selected receivers feed back refined versions
of their CSI for precoding matrix design. The optimum split-
ting of the available feedback rate between the two stages was
investigated in a Rayleigh fading channel, and a heuristic algo-
rithm was derived and tested.
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APPENDIX I

The expectation SRZF –Q can be reformulated as shown in
equation (29) below,

SRZF –Q = EĤÂ,EÂ

Nt∑
i=1

log2(1 + SINRÂi
)

= NtEĤÂ,EÂ
log

(
1 +

1
tr((ĤÂĤH

Â
)−1)

P + ‖(EÂĤ†
Â
)i‖2

)

(a)
= NtEΛ̂Â,Û,EÂ

log

(
1 +

1
tr(Λ̂−1

Â
)

P + EÂ,iÛΛ̂−1

Â
ÛHEH

Â,i

)

(b)
= NtEΛ̂Â,EÂ

log
(
1 +

1∑Nt

j=1 λ−1

Â,j
( 1

P + |EÂ,i,j |2)
)
, (29)

where in (a) ĤÂ is replaced by its eigenvalue decomposition
(Λ̂Â is the diagonal matrix containing the eigenvalues {λÂ,j}
of ĤÂĤH

Â
; Û is unitary), and (b) is obtained by noting that

EÂ,iÛ has the same statistics as EÂ,i
3.

D �
∑Nt

j=1 λ−1

Â,j
(1/P + |EÂ,i,j |2) in (29) may be bounded

as [15]:

1/P + |EÂ,i,jmin
|2

λmin
< D <

∑Nt

j=1(1/P + |EÂ,i,j |2)
λmin

, (30)

where λmin is the smallest eigenvalue in the summation and
jmin the index of the corresponding entry in the EÂ,i vector.

SRZF –Q is thus bounded as in equation (31). The sum of Nt

squared norms of i.i.d. CN(0, σ2
e) r.v.’s in the lower bound’s

denominator, and |EÂ,i,j |2 in the upper bound are replaced by a
Gamma(Nt, σ

2
e) distributed r.v., γNt

and a Gamma(1, σ2
e) dis-

tributed r.v., γ1, respectively. Once these changes of variable
made, applying Jensen’s inequality to the lower bound, and av-
eraging over γ1 in the upper bound, then upper bounding the
result, yields (17).

3EÂ,i corresponds to the error vector associated with the quantization of

user i’s channel, user i being an arbitrary user in Â

Eλmin,EÂ
log

(
1 +

λmin∑Nt

j=1(
1
P + |EÂ,i,j |2)

)
<

SRZF –Q

Nt

< Eλmin,EÂ
log

(
1 +

λmin
1
P + |EÂ,i,jmin

|2
)

(31)
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