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he last ten years have witnessed the transition of multiple-input multi-
ple-output (MIMO) communication from a theoretical concept to a
practical technique for enhancing performance of wireless networks
[1]. Point-to-point (single-user) MIMO communication promises large
gains for both channel capacity and reliability, essentially via the use of
space-time codes (diversity gain oriented) combined with stream multiplexed
transmission (rate maximization oriented). In such a traditional single-user view
of MIMO systems, the extra spatial degrees of freedom (DoF) brought by the use of

i _ multiple antennas are exploited to expand the dimensions available for signal pro-
From Slngle user cessing and detection, thus acting mainly as a physical (PHY) layer performance
.to m Ultl user booster. In this approach, the link layer protocols for multiple access (uplink and

downlink) indirectly reap the performance benefits of MIMO antennas in the form
of greater per-user rates or more reliable channel quality despite not requiring full
awareness of the MIMO capability.

The situation with multiuser MIMO (MU-MIMO) techniques is radically differ-
ent as these techniques imply the use of spatial sharing of the channel by the
users, thus deeply affecting the design of the multiple access protocol. In spatial
multiple access, the resulting multiuser interference is handled by the multiple
antennas, which, in addition to providing per-link diversity, also give the DoF nec-
essary for spatial separation of the users (see e.g. [1] Part IV). In practice, MU-
MIMO schemes with good complexity/performance tradeoffs can be implemented
to realize these ideas. On the uplink or multiple access channel (MAC), the devel-
opment of MU-MIMO techniques appears as a generalization of known single-user

communications
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MIMO (SU-MIMO) concepts to the multiuser case. As usual in
information theory, the downlink or broadcast channel (BC)
case is by far the most challenging one. Information theory
reveals that the optimum transmit strategy for the MU-MIMO
BC involves a theoretical preinterference cancellation technique
known as dirty paper coding (DPC) combined with an implicit
user scheduling and power loading algorithm. In that respect,
the role played by seminal papers such as [2] was fundamental.
In turn, several practical strategies have recently been proposed
to approach the rates promised in the MU-MIMO channel
involving concepts such as linear and nonlinear channel-aware
precoding, channel state feedback, and multiuser receivers. A
number of corresponding scheduling and user selection algo-
rithms have also been proposed, leveraging features of different
MU-MIMO strategies.

MU-MIMO techniques and performance have begun to be
intensely investigated because of several key advantages over
SU-MIMO communications.

m MU-MIMO schemes allow for a direct gain in multiple access

capacity [proportional to the number of base station (BS)

antennas] thanks to so-called multiuser multiplexing schemes.

m MU-MIMO appears more immune to most of propagation

limitations plaguing SU-MIMO communications such as

channel rank loss or antenna correlation. Although increased

correlation still affects per-user diversity, this may not be a

major issue if multiuser diversity [3] can be extracted by the

scheduler instead. Additionally, line-of-sight propagation,
which causes severe degradation in single-user spatial multi-
plexing schemes, is no longer a problem in multiuser setting.

m MU-MIMO allows the spatial multiplexing gain at the BS to

be obtained without the need for multiple antenna terminals,

thereby allowing the development of small and cheap terminals
while intelligence and cost is kept on the infrastructure side.

The advantages above unfortunately come at a price. Perhaps
the most substantial cost is due to the fact that MU-MIMO
requires (although benefits from) channel state information at
transmitter (CSIT) to properly serve the spatially multiplexed
users. CSIT, while not essential in SU-MIMO communication
channels, is of critical importance to most downlink multiuser
precoding techniques. The need for CSIT feedback places a sig-
nificant burden on uplink capacity in most systems, exacerbated
in systems with wideband [e.g. orthogonal frequency division
multiplexing (OFDM)] communication or high mobility (such
as 3GPP-LTE [4], WiMax [5], etc.). Finally, another challenge
related to MU-MIMO cross-layer design lies in the complexity of
the scheduling procedure associated with the selection of a
group of users that will be served simultaneously. Optimal
scheduling involves exhaustive search whose complexity is expo-
nential in the group size and depends on the choice of precod-
ing, decoding, and channel state feedback technique.

Inspection of recent literature reveals several different
schools of thought on the MU-MIMO downlink, each advocating
a different combination of precoding, feedback, and scheduling
strategies. Precoding strategies include linear minimum mean
square error (MMSE) or zero-forcing (ZF) techniques and non-

linear approaches. Examples of the latter are vector perturba-
tion, DPC techniques, and Tomlinson-Harashima precoding
(THP) (a number of references are listed below). Many different
feedback strategies have been suggested, including vector quan-
tization, dimension reduction, adaptive feedback, statistical
feedback, and opportunistic spatial division multiple access
(SDMA). Finally, a number of scheduling disciplines have been
suggested, including max-rate techniques, greedy user selection,
and random user selection.

PROMISES AND CHALLENGES OF MU-MIMO NETWORKS

LESSONS LEARNED FROM MULTIUSER
INFORMATION THEORY

SYSTEM AND SIGNAL MODEL
Progress in the field of multiuser information theory has been
instrumental in understanding the fundamental nature and lim-
its of the gains associated with exploiting multiple antennas in
wireless networks, often also suggesting ideas for actual algo-
rithms. We now review some aspects of MU-MIMO information
theory with an eye for the key lessons learned from this field
towards practical system design. A complete study of MU-MIMO
information theoretic progress is beyond the scope of this article.
Good references on the topic include [6] and [1, Ch. 18 and 19].
We focus on the communication between a BS or an access
point equipped with V antennas, and U active terminals, where
each active user & is equipped with M} antennas. Among all ter-
minals, the set of active users is roughly defined by the set of
users simultaneously downloading or uploading packets during
one given scheduling window. The length of the window is arbi-
trary but should not exceed the maximum latency expected by the
application (likely as small as a few tens of milliseconds to several
hundred milliseconds). By all means the active users over one
given window will be a small subset of the connected users, them-
selves forming a small subset of the subscribers. We consider both
the uplink and downlink but will emphasize on the challenges
associated with the downlink for several reasons explained later.
In the uplink, the received signal at the BS can be written as

U
y= ZHZxk—}-n, (@))
k=1

where x; is the My x 1 user signal vector, possibly encom-
passing power-controlled, linearly combined, constellation
symbols. Hp € CMN represents the flat-fading channel
matrix and n is the independent and identically distributed
(i.i.d.), unit-variance, additive Gaussian noise vector at the
BS. We assume that the receiver & has perfect and instanta-
neous knowledge of the channel Hi. We focus on the flat-fad-
ing model here for the sake of exposition. Wideband models,
using OFDM for example, can be accommodated by using a
dependency on a frequency index. The transpose operator is
simply used by convention for consistence with the downlink
notation and does not presume a reciprocal link.
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In the downlink illustrated in Figure 1, the received signal at
the kth receiver can be written as
yr = Hpx + ng for k=1,...,U, 2)
where Hy € CY<N yepresents the downlink channel and
n; € CMex1 s the additive Gaussian noise at receiver k. We
assume that each receiver also has perfect and instantaneous
knowledge of its own channel Hy. The transmitted signal x is a
function of the multiple users’ information data, an example of
which takes the superposition form x = ", x; where X is the sig-
nal carrying, possibly nonlinearly encoded, user A’s message, with
covariance Q = ]E(xkka ), with [E(-) the expectation operator.
The power allocated to user & is therefore given by Py = Tr(Qy),
where Tr is the trace operator. Under a sum power constraint at
the BS, the power allocation needs to maintain ) ", P < P.
Assuming a unit variance for the noise, it is now known that
the capacity region for a given matrix channel realization can be
written as [7]:

Cpe = U
PL.Pyst Y., Pe=P
det [1+ Hi( . Q)HY |

(Ry, ..Rp) € ?7{+U, R; <logy s
det [1 + H,'(Zj>l~Qj)Hﬂ

where the expression should in turn be optimized over each pos-
sible user ordering. Although difficult to realize in practice, the
computation of the region above is facilitated by exploiting the
so-called duality results between the BC and the much simple to
obtain MAC capacity region, which stipulate that the BC region
can be calculated through the union of regions of the dual MAC
with all uplink power allocation vectors meeting the sum power
constraint P [8], [9].

The fundamental role played by the multiple antennas at
either the BS or the users in expanding the channel capacity is
best apprehended by examining how the sum rate (the point
yielded by the maximum )" Ry in the capacity region) scales
with the number of active users.

' . My
Base Station S X
(N Antennas) YN User U
MU
U Users (User k Has
My Antennas)

[FIG1] Downlink of a multiuser MIMO network. A BS
communicates simultaneously with several multiple antenna
terminals.

Assuming a block fading channel model and an homoge-
neous network where all users have the same signal-to-noise
ratio (SNR), the scaling law of the sum rate capacity of MIMO
Gaussian BC, denoted as RPFC for My = M, fixed N and P, and
large U is given by [10]

) E (RDPC)
M N oglog(ih — © @

The result in (4) indicates that, with full CSIT, the system can
enjoy a multiplexing gain of N, obtained by the BS sending data
to IV carefully selected users out of U. Since each user exhibits
M independent fading coefficients, the total number of DoF for
multiuser diversity is UM, thus giving the extra gain
loglog(UM).

In contrast with (4), the capacity obtained in a situation
where the BS is deprived from the users’ channel information is
reduced to (in the high SNR regime)

E(RNOCSIT) ~ min(M, N) log SNR. ®)

DESIGN LESSONS
Information theory highlights several fundamental aspects
of MU-MIMO systems, which are in contrast much with the
conventional SU-MIMO setting. First, the results above
advocate for serving multiple users simultaneously in a
SDMA fashion, with a suitably chosen precoding scheme at
the transmitter. Although the multiplexing gain is limited by
the number of transmit antennas, the number of simultane-
ously served users is, in principle, arbitrary. How many and
which users should effectively be served with nonzero power
at any given instant is the problem addressed by the
resource allocation algorithm. Unlike in the single-user set-
ting, the spatial multiplexing of different data streams can
be done while users are equipped with single antenna
receivers, thus enabling the capacity gains of MIMO while
maintaining a low cost for user terminals. Having multiple
antennas at the terminal can thus be viewed as optional
equipment allowing extra diversity gain for certain users or
giving the flexibility toward interference canceling and mul-
tiplexing of several data streams to such users (but reducing
the number of other users served simultaneously). In addi-
tion to yielding MIMO multiplexing gains without the need
for MIMO user terminals, the multiuser setup presents the
advantage of being immune with respect to the possible ill-
behavior of the propagation channel, which often plagues
SU-MIMO communications, i.e., rank loss due to small spac-
ing and/or the presence of strong line-of-sight component
thanks to the wide physical separation between the users.
Finally, also in contrast with the conventional SU-MIMO set-
ting, the multiplexing factor V in the downlink comes at the
condition of channel knowledge at the transmitter. In the uplink
this multiplexing gain is more easily extracted because the BS
can be safely assumed to have uplink channel knowledge and
simply implements a classical multiuser receiver to separate the
contributions of the selected users in (1).
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In the downlink, in the absence of CSIT, user multiplex-
ing is generally not possible, as the BS just does not know in
which direction to form spatial beams. Thus, the complete
lack of channel state information (CSI) knowledge reduces
the multiplexing gain to unity [11]. The exception lies in
scenarios with terminal devices having enough antennas to
remove costream interference at the
receiver (M > N). In the latter case,
the base may decide to either multi-
plex several streams to a single user
or spread the streams over multiple
users, achieving an equivalent mul-
tiplexing gain in both cases. This is
conditioned however on the individ-
ual user channels to be full rank.
Hence, the advantage of having CSIT
in MU-MIMO lies in the possibility of not only serving single
antenna users but also relaxing the dependence on single-
user channel full rank.

MU-MIMO AND RESOURCE ALLOCATION

One of the fundamental lessons learned from information
theoretic studies is that resource allocation techniques help
to exploit the gains of MU-MIMO systems. From a multiuser
information theoretic perspective, the capacity region
boundary is achieved by serving all U active users simultane-
ously, where U is possibly a large number. The resource that
should be allocated to each one, in the form of, e.g., P, is
surely dependent on the instantaneous channel conditions
and may vary greatly from user to user. The fact that the
multiplexing gain is limited to NV also suggests that the
number of users effectively served with nonzero P at any
given instant of time is directly related to the number of
antennas at the BS, which is considerably less than the
number of active cell users. Studies show in fact that the
optimal number of users with nonzero allocated power for
any given realization of the channel is upper bounded by N2
[12]. In the remainder of the article we shall refer to this
subset of users as the selected users. When restricting to lin-
ear precoding techniques such as ZF, the number of served
users is directly limited by the number of DoF at the BS, N.
This motivates the need to pick a good set of users, which is
the aim of the resource allocation algorithm. In particular,
the scheduler selects among all possible active users, for
each channel realization, an optimal subgroup of terminals
and respective power levels within the subgroup, so as to
maximize a given performance metric. Such a metric can be
the sum rate or the realization of per-user rate targets while
minimizing transmit power. To maximize the sum rate, the
scheduler algorithm looks for users that exhibit a compro-
mise between a high level of instantaneous SNR (to maxi-
mize multiuser diversity [3]) and a good separability of their
spatial signatures to facilitate user multiplexing. Practical
and low complexity algorithms to solve the user scheduling
problem are presented later in this article.

THE ADVANTAGES OF
MU-MIMO TECHNIQUES
AND PERFORMANCE OVER
SU-MIMO COMMUNICATIONS
UNFORTUNATELY COME
AT A PRICE.

MU-MIMO SCHEMES WITH PERFECT CHANNEL
KNOWLEDGE AT THE TRANSMITTER

LINEAR PRECODING

Linear precoding is a generalization of traditional SDMA, where
users are assigned different precoding matrices at the transmit-
ter. The precoders are designed jointly
based on CSI of all the users based on
any number of designs, including ZF
and MMSE.

From a practical point of view, the
relevant criteria are error probability,
sum rate, signal-to-interference-plus-
noise ratio (SINR), etc. The difficulty
of designing capacity-optimal down-
link precoding, mainly due to the cou-
pling between power and beamforming and the user ordering,
has lead to several different approaches ranging from transmit
power minimization while maintaining individual SINR con-
straints to worst case SINR maximization under a power con-
straint. Duality and iterative algorithms are often used to
provide solutions [13].

Consider the transmitted signal for user & given by Wysg,
where Wy denotes the precoding matrix for the Ath user and s
is the symbol vector. We assume that service will be provided to
a set of K selected users (among all active ones). Scheduling
algorithms as discussed in the sequel can be applied to perform
this selection across possible subsets. The received signal vector
at the kth user is

K
Ve =HWisg +He Y Wys;+n. (6)
=TIk

We assume that each user has M; antennas and will decode
the Sy < M} streams that constitute its data. The goal of lin-
ear precoding is to design {Wk}ff:1 based on the channel
matrix knowledge, so a given performance metric is maxi-
mized for each stream.

One of the simplest approaches for finding the precoder is
to premultiply the transmitted signal by a suitably normal-
ized ZF or MMSE inverse of the multiuser matrix channel
[14], [15]. In this case, it can be assumed for simplification
that My = Sy = 1. Thus, H; = hy is a row vector and Wy (the
precoding vector for the kth user) is chosen as the kth col-
umn of the right pseudoinverse (or MMSE inverse) of the
composite channel [th hZT, ... hIT(] T In the case when the
selected users are not sufficiently separable, this approach
may result in inefficient use of transmit power, causing a
large rate loss with respect to the optimum sum capacity
solution. This problem, however, is shown to be fixed by the
scheduler when the number of active users to choose from is
large enough so near-orthogonal users with good SNR condi-
tions can be found. An additional disadvantage is that this
approach does not readily extend to multiple receive anten-
nas or streams without further degradation.
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A generalization of the ZF or MMSE beamforming is to
combine linear beamforming with a suitable power control pol-
icy to maximize the sum rate or realize individual SINR
requirements for each user. Several approaches have been pro-
posed, including maximizing the jointly achievable SINR mar-
gin under a total power constraint and minimizing the total
transmission power while satisfying a set of SINR constraints
[13]. Another generalization of ZF beamforming (ZFBF) is pro-
vided by block diagonalization (BD), which assumes
My =S >1and Zle My = N. The idea is to choose Wy such
that H;Wy = 0, VI # k,thus precanceling the interference in (6)
so that y; = HWjs; + n. If we define Hy as

~ T
i = [H]- -0 1T HE] (7)

then any suitable Wy lies in the null space of ﬁk. Let the singu-
lar value decomposition (SVD) of H; be Hy= U;D;
[V}fbv;fo)] . where U, and Dy are the left singular vector matrix
and the matrix of singular values of flk, respectively, and \7}{1)
and \7;{0) denote the right singular matrices, each corresponding
to nonzero singular values and zero singular values, respective-
ly. Any precoder Wy that is a linear combination of the columns
of \7;{0) will satisfy the null constraint. Assuming that flk is full
rank, the transmitter requires that the number of transmit
antennas is at least the sum of all users’ receive antennas to sat-
isfy the dimensionality constraint required to cancel interfer-
ence for each user [16]. Under the BD constraint, Wy can be
further optimized based on waterfilling. If excess antennas are
available, eigenmode selection or antenna subset selection can
be used to further improve performance [17].

A disadvantage of BD is that it requires My = Sj. This can be
solved by including the receive processing in the problem for-
mulation. For example, with a linear receive combining matrix
V. for user , the received signal can be expressed as

K
Vi = Vi HiWgsg + Vi He Y Wis; + Vi ()]
=11tk

The design problem then becomes selecting {Wy, Vk}f:1 jointly
such that VEH,, i 1,12k Wy = 0, Vk. This is difficult to solve in
closed form, thus several iterative solutions have been proposed,
including, e.g., [18], [19]. In such approaches, the transmitter gen-
erally computes a new effective channel for each user & using the
initial receive combining vector. Using this new effective channel,
the transmitter recomputes the transmit filter Wy to enforce a
zero interference condition, and the receive filter V. for each user.
The algorithm repeats this process until satisfying a convergence
criterion. To extend this algorithm to multiple data streams for
each user, the matrix of right singular vectors is used based on the
number of data streams and is used to calculate the effective chan-
nel matrix [18]-[20]. To avoid the use of extra feedback between
the users and the BS, the computation of all filters (transmit and
receive) normally takes place at the BS. After this computation,
either the users must acquire the effective combined channel or
information about the transmit filters must be sent [19].

NONLINEAR PRECODING

Linear precoding provides reasonable performance but may
remain far from DPC-like precoding strategies when the avail-
able set of active users to choose from is small. Nonlinear pre-
coding involves additional transmit signal processing to
improve error rate performance. In this section, we discuss two
representative methods, one based on perturbation [21], the
other based on a spatial extension of THP [22].

Vector perturbation uses a modulo operation at the transmit-
ter to perturb the transmitted signal vector to avoid the trans-
mit power enhancement incurred by ZF methods [21]. Finding
the optimal perturbation involves solving a minimum distance
type problem and thus can be implemented using sphere encod-
ing or full search-based algorithms.

Let H denote a K x N multiuser composite channel, assum-
ing each user has a single receive antenna. The idea of perturba-
tion is to find a perturbing vector p from an extended
constellation to minimize the transmit power. The perturbation
p is found by solving

p=arg min [G(s+p)|? 9)
p'eACZX

where G is a some transmit matrix such that Tr(G/G) < P, s is
a modulated transmitted signal vector, and the scalar A is cho-
sen depending on the original constellation size (e.g., A=2
for QPSK), and CZX is the K-dimensional complex lattice. ZF
or MMSE precoder can be used for the transmit matrix G. A set
of points is used to represent symbols that are congruent to
the symbol in the fundamental region. After predistortion
using ZF or MMSE precoder, the resulting constellation region
also becomes distorted and thus it takes more power to trans-
mit the original point than before distortion. Among the
equivalent points, if the transmitter sends the point that is the
one closest to the origin to minimize transmit power, the
receiver finds its equivalent image inside the fundamental con-
stellation region using a modulo operation. This problem can
be regarded as K-dimensional integer-lattice least squares
problem and thus search based algorithms can be implement-
ed. There are other methods to simplify the search based
methods [23].

Several algorithms have also been proposed based on varia-
tions of THP [22], [24]. THP was originally proposed for use
with Z point one-dimension pulse amplitude modulation
(PAM) signal as a temporal equalization. For this constella-
tion, THP is the same as the inverse channel filter except that
an offset-free modulo 27 adder is used. If the result of the
summation is greater than Z, 27 is subtracted until the final
result is smaller than Z. Similarly, if the result of the summa-
tion is less than —Z, 27 is added until satisfying the peak con-
straint. While in the original THP, a single channel is
equalized with respect to time, spatial equalization is required
for MIMO channels.

So far, we reviewed linear and nonlinear MU-MIMO solu-
tions to approximate the sum capacity. In Figure 2, we compare
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sum capacity and achievable sum rates for DPC, coordinated
beamforming [19], time sharing single-user closed loop MIMO
(choosing only one user having the best channel quality and
applying the SVD), and ZFBF with the dimensionality con-
straint [25]. In this case, no scheduling algorithm is required
for DPC, coordinated beamforming, and ZFBF. We investigate
scheduling issues below. Note that for the (7,1, T') scenario
(i.e., the user has only one receive
antenna while the BS has T transmit
antennas and there are 7T active
users in the network), there is a big
gap between DPC and ZFBF, but this
gap is decreased when the receivers
have multiple antennas. For addi-
tional tradeoff analysis between lin-
ear and nonlinear precoding strategies, see also [26].

In the following section, we consider the problem of
choosing a subset of users for transmission in the MIMO BC.
A brute-force complete search over all possible combinations
of users guarantees maximizing the throughput, but the
computational complexity is prohibitive when the number of
users is large. Due to the complexity of the search process,
both optimal and suboptimal approaches are considered. A
key idea for low-complexity multiuser scheduling is that of
greedy search.

OPTIMAL SCHEDULING FOR THE MU-MIMO DOWNLINK
The previous theoretical capacity results illustrate that, in
general, the MIMO BC results in transmission to more than
one user at a time. The problem of selecting a subset of users
for transmission is a user scheduling problem, and the gain is
achieved in a form of multiuser diversity. In this section we
summarize some scheduling algorithms for different MU-
MIMO solutions.

Linear beamforming can achieve the sum capacity when the
number of active users in the system is large [10], [25], [27]. In
[25], the users are equipped with only one receive antenna, and
ZFBF is performed at the transmitter. Analogous to BD, this
full search-based user selection algorithm can be extended to
the multiple stream scenario. For simplicity, in this section, we
assume that the number of receive antennas is equal to the
number of data streams, where the postcoder V is not needed,
and thus BD can be implemented.

Suppose U = {1,2,---, U} is the set of all users, and Ay
one possible subset of selected users in U. Let A be the set
including all possible A;, i.e., A = {A;, A2, ---}. Then total
achievable rate with BD is given by

RBD\Ak(HAk,P,GZ) =
H; W; Qjo{HJH

max Z log [T+ - . (10)

Zje.Ak Tr(Qj )SPj€Ak

where Q; = E(x;x;) is the input covariance matrix for the user
J» W; is the precoding matrix earlier defined, and the same noise

RESOURCE ALLOCATION
TECHNIQUES HELP TO
EXPLOIT THE GAINS OF

MU-MIMO SYSTEMS.

variance o2 is assumed at all users. Therefore, the maximum total

sum rate with BD is given by Rpp(Hi .y, P.o%) =
max 4,e A Rppja,(Ha,, P, o2). Denote S as the maximum num-
ber of users to be supported. For the case of BD, S < N. Thus, the
cardinality of A is Z;Szl C},, where (% is the combination of a
choosing b. Hence, it is clear that the exhaustive search over all
possible combinations is computationally prohibitive when the
number of users in the system is
increased, and thus low-complexity
user selection algorithm is desired.

GREEDY AND ITERATIVE
METHODS FOR USER GROUPING
The complexity of the optimal schedul-
ing is high, thus there has been several
suboptimal algorithms that were proposed to reduce the com-
putational complexity for user group selection [25], [27]-[29].

In the capacity-based greedy user selection algorithm, the
transmitter chooses the first user with the highest channel
capacity. Then, it finds the next user that provides the maximum
sum rate from the remaining unselected users. The algorithm is
repeated until K users are selected. Clearly, the complexity of
the capacity-based greedy user selection is no more than U x K
user sets, which greatly reduces the complexity compared to the
exhaustive search method explained in the previous section.
Note that the full search method needs to consider roughly
O(UX) possible user sets. The sum rate can be obtained under a
number of transmit schemes, including optimal nonlinear
precoders. Scheduling for the nonlinear precoders mentioned
previously is an ongoing topic of research, though few results
have appeared, including a greedy user selection for ZF DPC
(ZFDPC), which has been proposed in [27].

o4 SNR=10 dB
—e—D'PC(T,T,T)' ' '
22 || ——Coordinated BF (T,T,T) [+ v v,
~&— Time Sharing SU CL-MIMO (T,T,T) :
20 || —<€—DPC (T,1,T)
.~ —6— Zero Forcing BF (T,1,T)
E 18. ........
7]
Q
2,
(0]
T
o
£
>
n

[FIG2] Ergodic sum capacity and achievable sum rate as a
function of the number of users, the number of transmit/receive
antennas. (T4, T, T3) denotes the number of transmit antennas at
the BS, the number of receive antennas at the user, and the
number of active users in the network, respectively. Coordinated
BF refers to the method presented in [19].
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LIVING WITH PARTIAL CHANNEL
KNOWLEDGE AT THE TRANSMITTER

QUANTIZATION-BASED TECHNIQUES

Quantization is the first idea that comes to mind when dealing
with source compression, in this case, the random channel
matrix or the corresponding precoders
being the possible sources. The
amount of feedback depends on the
frequency of feedback (generally a frac-
tion of the coherence time), the num-
ber of parameters being quantized, and
the resolution of the quantizer. Most
research focuses on reducing the num-
ber of parameters and the required resolution. The feedback
problem has been solved in SU-MIMO communication systems
using a concept known as limited feedback precoding [30]. The
key idea of this line of research has been to quantize the pre-
coder for a MIMO channel and not simply the channel coeffi-
cients. The challenge of extending this work to the multiuser
channel is that the transmit precoder depends on the channels
of the other users in the system.

Other methods for reducing feedback in MU-MIMO chan-
nels assume a single receive antenna at the mobile—exten-
sions to multiple receive antennas is an ongoing research
topic. Some of the main results on this subject are due to [31],
[32], where the random codebook and Grassmannian quantiza-
tion ideas are used to quantize the direction of each user’s
channel hy. The main observation in [31] is that the feedback
requirements scale linearly both as the number of transmit
antennas grows and as a function of the SNR (in dB), unlike
the single-user case. The reason is that quantization error
introduces an SINR floor since it prohibits perfect inter-user
cancellation. Thus, this error must diminish for higher SNRs
to allow for a balancing between the noise and the residual
interference due to channel quantizing. An improvement can
be obtained by quantizing the channel vector and a certain
received SINR upper bound that is a function of the error
between the true and quantized channel [33]. This increases
the performance of the system and helps in user selection.
Thresholds based on sum rate constraints on the feedback
channel can also be used to reduce required feedback yet
maintain capacity scaling [34].

DIMENSION REDUCTION AND PROJECTION TECHNIQUES
In addition to quantization-based approaches where the
channel metric is discretized, dimension reduction tech-
niques can be used that involve projecting the matrix chan-
nel onto one or more basis vectors known to the
transmitter and receiver. In that way, the CSI matrix of size
M x N is mapped into a p-dimensional vector with
1 < p <M x N, thus reducing the dimensionality of the CSI
to p complex scalars (which in turn may be quantized).
Once the projection is carried out, the receiver feeds back a
metric ¢ = f(Hg), which is typically related to the square

CHANNEL QUALITY
METRIC DESIGN IS ONE
OF THE LARGELY OPEN

CHALLENGES IN MU-MIMO.

magnitude of the projected signal. Antenna selection meth-
ods fall into this category. In this case, the projection is car-
ried out by the terminal itself. Alternatively, the projection
can be the result of using a particular precoder at the BS. A
good example of this approach is given by a class of algo-
rithms using unitary precoders. We now review this
approach when My =1 and the BS
serves N users. In this case, the kth
user channel is a 1 x N row vector
denoted by hi. The BS designs an
arbitrary unitary precoder Q of size
N x N, further scaled for power
constraint. Each terminal identifies
the projection of its vector channel
onto the precoder by h; Q, and reports an index and a scalar
metric expressing the SINR measured under an optimal
beamforming vector selection.
R [y q;1°
1<i<N o2 + Zj;é[ |hkCIj|27

23 (11)

where q; denotes the ith column of Q. The scheduling algo-
rithm then consists in opportunistically assigning to each beam-
former q; the user that has selected it and has reported the
highest SINR.

When the unitary precoder must be designed without any
form of CSIT a priori, a scaled identity matrix can be used. In
this case, the algorithm falls back to assigning a different
selected user to each base antenna. In the small number of
user case, the performance of such scheme is plagued by inter-
user interference. Fortunately, interference tends to decrease
as the number of users to choose in the cell becomes high.

When the dynamics of the system are limited (low mobil-
ity), the use of a fixed set of precoders may result in severe
unfairness between the users. This problem can be alleviated
by the randomization of the beamforming vectors. The so-
called opportunistic random beamforming (ORBF) was ini-
tially proposed for single-user setting [35] and later
generalized in [36]. The performance of these methods is
illustrated below. The idea of [36] can be recast in the con-
text above, assuming this time that Q is randomly generated
at each scheduling period according to an isotropic distribu-
tion while preserving the unitary constraint. The intuition
behind that scheme is that the columns q;, 7 =1, ..., NN, are
like orthogonal beams, and if there are enough users in the
cell, each beam will be aligned with a given user’s channel
while simultaneously being nearly orthogonal to the other
selected users’ channels. With this scheme, it is possible to
spatially multiplex N users with a level of feedback given by
one scalar and one index. In the case of a large number of
active users, opportunistic multibeam schemes are shown to
yield an optimal capacity growth of Nloglog U for fixed N,
which is precisely the scaling obtained with full CSIT, as
shown in (4).
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DEALING WITH SPARSE NETWORKS
A limitation of fixed or random opportunistic beamforming
approaches is that the optimal capacity scaling emerges for a
large, sometimes impractical, number
of simultaneously active users in the

which can be used to infer knowledge on mean user separabil-
ity. Clearly however, in fading channels, the CDI ought to be
complemented with some form of instantaneous channel
quality information (CQI) to extract
multiuser diversity gain. Combining

cell. The performance degrades with a INFORMATION THEORY CDI and CQI can yield partial CSIT,
d . HIGHLIGHTS SEVERAL L . .
ecreasing number of users (sparse which is very well suited to solving
FUNDAMENTAL ASPECTS OF

networks), and this degradation is
amplified when the number of trans-
mit antennas increases, as intuition
also reveals. The lack of robustness of
these approaches in cases with small to moderate number of
users is a serious problem that can be resolved by modifying the
random beams for a better matching with the actual users’
channels. This can be done at little or no extra feedback cost by
one of several means. In one approach, the unitary constraint is
relaxed by introducing a power control across the beams. The
SINR feedback is used to adjust the power allocated to each
beam [37] or simply to turn off certain beams [38], thus reduc-
ing interuser interference when the random beams are not well
aligned with users’ channels. In Figure 3, we compare the
robustness of the single-beam ORBF [35] and multibeam ORBF
[36], both with SINR feedback with respect to the number of
active users in the cell. With four antennas at the BS, at 10 dB
SNR, simulations suggest that at least 12 simultaneously active
users are required for the multibeam gains to kick in. Whether
this condition is met in practice or not is an interesting open
research problem whose solution is likely to depend on the con-
sidered traffic, operational scenario, and delay constraint. With
less users, the lack of CSIT destroys the benefits of user multi-
plexing. Interestingly, a strategy allowing for beam power con-
trol in multibeam ORBF [37] allows for a smooth transition
between TDMA and SDMA regions, as shown in the figure.

Yet another approach is to exploit the second-order statistics
of the channel, either in the temporal or in the spatial domain.
The time domain approach consists in exploiting the natural
temporal correlation of the channel to help refine the beams
over time [39], [40]. In the spatial domain, statistics give infor-
mation about spatial separability, which is instrumental to a
proper beamforming design. Such aspect is described below.

USE OF SPATIAL STATISTICAL FEEDBACK

In practical, especially outdoor, networks, the i.i.d. channel
model used so far does not hold, and each user tends to exhib-
it different channel statistics. The advantage of statistical CSI
is its long coherence time compared with that of the fading
channel. Several forms of statistical CSI are even reciprocal
(i.e., holds for both uplink and downlink frequency) such as
second-order correlation matrix, power of Ricean component,
etc., and do not necessitate any feedback. Overall, spatial
channel statistics reveal a great deal of information on the
macroscopic nature of the underlying channel, including the
multipath’s mean angle of arrival/departure and its angular
spread. More generally, a substantial amount of channel dis-
tribution information (CDI) is revealed by channel statistics,

MU-MIMO SYSTEMS.

the scheduling stage of the MU-
MIMO problem. It is an open topic
for research, but some leads are pre-
sented below.

Consider the downlink of a network with single antenna
mobiles, where the BS exhibits correlated transmit antennas.
The channel is modeled as correlated Ricean fading, i.e., the
channel vector of kth user satisfies hy ~ CA/(hy, Ry), where
hz € CV*V and Ry € C¥*V are the mean value and transmit
covariance matrix, respectively, known to the BS. A general
form of CQI is

2, (12)

Vi = | heQg|

where Q € CN*L is a training matrix containing L orthonor-
mal vectors {qk,-}le. Conditioned on the CQI feedback, a coarse
estimate of the instantaneous channel realization and channel
correlation at the transmitter can be calculated as the condi-
tional expectations

b =Eylve  Re=E(hfhyl), (13)
which can be used to provide an MMSE estimate of the instanta-

neous SINR [41]. Note that with Q; =1, (12) falls back to a
channel norm feedback.
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[FIG3] The sum rate is compared for random beamforming
schemes with SINR feedback. Multibeam (SDMA) random
beamforming outperforms the single-beam (TDMA) when the
number of active users is sufficient. Power control over the
random beams allows for a smooth transition between TDMA
and SDMA. TDMA with full CSIT outperforms partial feedback
schemes for a small number of users but fails to provide
multiplexing gain when this number increases.
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Similarly, a maximum-likelihood (ML) estimation framework
maximizing the log-likelihood function of the probability densi-
ty function (pdf) of h; under the scalar constraint (12) can be
formulated [42]. Let L = 1, hy ~ CN(0, Ry) and CQI feedback
vi = |hxq k|2- The solution to the ML problem

n;laxhkRkth st hyqel? = v (14)
'3

is given by the (dominant) generalized eigenvector associated
with the largest positive generalized eigenvalue of the
Hermitian matrix pair (R, qkqf). Once the coarse channel
estimation is performed by the BS, it can be used to select up
to NV users according to any number
of previously described performance
metric based on CSIT. As a second
stage, more complete CSIT may be
requested by the BS only to the
small set of selected users for a more
accurate precoding design. The per-
formance exceeds that of random
beamforming but depends on the
level of antenna correlation, i.e., angle spread oy, as is shown
in Figure 4. Certain techniques above are suited to specific
deployments scenarios. For instance, opportunistic schemes
are suited to densely populated networks. Schemes using
temporal statistics are better suited to low mobility (indoor)
setting, while the exploitation of spatial statistics would be
more effective in outdoor cases where the elevation of the BS
above the clutter decreases the angle spread of multipath and
gives rise to Ricean models.

SYSTEM ISSUES

Although it is now widely recognized that MIMO techniques,
in their generality, will be a key element in the evolution of
broadband wireless access systems, applications of MU-MIMO
solutions have yet to emerge. While spatial diversity and

10 T
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[FIGA] Sum rate as a function of the angle spread o, at the BS,

where the number of transmit antennas is 2, the average SNR =
10 dB, and the number of active users in the cell is 50.

THE IMPACT AND DESIGN OF
AN OPTIMAL FORM OF CSIT
UNDER FINITE RATE FEEDBACK
IS STILL AN OPEN AND
EXCITING PROBLEM.

basic SU-MIMO techniques are available in several products
and standards, adaptive antenna solutions, including MU-
MIMO, are mostly considered for time division duplex (TDD)
systems in low and moderate mobility where CSI can be
obtained from estimation in the uplink. We believe, however,
that the promise is such that these techniques will be eventu-
ally available in most systems.

Note that codebook based precoding schemes for SU- and
MU-MIMO are emerging in existing and future standards [4].
MU-MIMO systems may have the potential to achieve the spec-
trum efficiency requirements set by operators for the next gen-
eration of mobile communication systems [43]. Practical
MU-MIMO applications are still chal-
lenging however, and further studies
seem needed to get a deeper under-
standing of the related tradeoffs and
system gains (number of antennas,
choice of algorithm, etc.).

When it comes to the crucial
CSIT issue, one problem with
designing feedback metrics is that
the SINR measurement depends, among other things, on
the number of other terminals being simultaneously sched-
uled along with the user making the measurement. Certain
metrics (such as those in, e.g., [33], [36]) assume a fixed
number of scheduled SDMA users. However, in practice,
methods allowing fast transitions between TDMA and SDMA
modes will be required. In such cases, the number of simul-
taneous users and the available power for each of them will
generally be unknown at the terminal. Channel quality met-
ric design in this scenario is one of the largely open chal-
lenges in MU-MIMO.

Also, opportunistic scheduling in MU-MIMO not only
requires feedback for CSIT but also signaling of scheduling
decisions to the terminal. The feedback and control loop in
MU-MIMO introduces a nonnegligible overhead and latency in
the system, which must carefully be weighed against the
capacity gains expected from such techniques. Certain scenar-
ios look promising (e.g., broadband best-effort internet
access); others are more questionable, such as Voice over
Internet Protocol (VoIP), where small packets are to be deliv-
ered with tight delay constraints. In addition, a poorly
designed feedback channel can suffer from delays and cause
the reported channel quality metrics to the transmitter to be
outdated, bringing further degradations [44].

Another fundamental aspect is the impact of realistic
traffic models and system loads, especially on schemes rely-
ing on high user loads (e.g., random beamforming). In
recent wireless systems based on MIMO-OFDMA [5], oppor-
tunistic scheduling can be performed in up to three dimen-
sions, namely, time, frequency, and space. Different types of
traffic are likely to have different constraints with respect to
the available DoF for the scheduler. For example, real-time
services typically have tight delay constraints and limit the
flexibility of the scheduler in the time domain. One may
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then wonder how many effective users are available for
selection by the scheduler in each of these dimensions and
how to take advantage of the different DoF to satisfy the QoS
constraints for different types of traffic?

DISCUSSION
MU-MIMO networks reveal the unique opportunities arising
from a joint optimization of antenna combining techniques
with resource allocation protocols. Furthermore, it brings
robustness with respect to multipath richness, allowing for
compact antenna spacing at the BS and, crucially, yielding
the diversity and multiplexing gains
without the need for multiple antenna
user terminals. To realize these gains,

MU-MIMO NETWORKS
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