
IEEE TRANSACTIONS ON MULTIMEDIA 1

PULSE: an Adaptive, Incentive-based,
Unstructured P2P Live Streaming System

Fabio Pianese, Student Member, IEEE, Diego Perino, Joaquín Keller, and Ernst W. Biersack, Member, IEEE

Abstract— Large-scale live media streaming is a challenge for
traditional server-based approaches. To appropriately support
big audiences, broadcasters must be able to allocate huge
bandwidth and computational resources. The costs involved with
such an infrastructure exclude all but the established content
producers from exploiting the Internet as a distribution medium.
Publishers of not-yet-popular content, unless they manage to
properly predict their maximum audience size, will likely fail
to dimension correctly their broadcast infrastructure. Peer-to-
peer systems for live streaming allow the users to support content
distribution by contributing their unused resources: this increases
the scalability of the content distribution while reducing at the
same time the economical burden on the streaming provider. This
paper presents and evaluates PULSE, an unstructured mesh-
based peer-to-peer system designed to support live streaming to
large audiences under the arbitrary resource availability as is
typically the case for the Internet. PULSE is a highly dynamic
system: it constantly optimizes its mesh of data connections
using a feedback-driven peer selection strategy that is based on
pairwise incentives. We evaluate the behavior of PULSE under
realistic scenarios via simulation and emulation, and present the
advantages of our approach, namely a best-effort response to
system-wide resource scarcity, high resilience to node churn, and
good hop-count properties of the average data distribution paths.

Index Terms— Live Streaming, Peer-to-Peer, Unstructured,
Mesh-Based, Incentives

I. INTRODUCTION

PEER-TO-PEER live streaming has been a hot research
topic for the last few years. The implicit constraints of

this application, both on media quality and timeliness of stream
reception, are quite challenging when faced together: different
approaches have been so far proposed, striking in all cases a
trade-off between these two strongly-correlated factors.

The reception timeliness is defined as the delay (also known
as play-out delay) between the generation at the source of
a stream of frames and its reproduction at the receiver. The
fundamental restriction of a generic streaming application is
that the play-out delay, once it is fixed, cannot be increased
or reduced without affecting the media quality. Increasing the
play-out delay amounts to ’freezing’ the media for a while,
while reducing it requires a receiver to skip a segment of
media playback. Live streaming, additionally, requires that

Manuscript received November 15, 2006; revised April 19, 2007 and July
31, 2007. This work was funded by France Telecom R&D.

F. Pianese, D. Perino, and J. Keller are with France Telecom R&D - Orange
Labs, 38-40 Rue du Général Leclerc, 92794 Issy-les-Moulineaux, France (e-
mail: firstname.lastname@orange-ftgroup.com).

E. W. Biersack is with the Corporate Communications Department of the
Institut Eurecom, 2229 route des Crêtes, 06904 Sophia-Antipolis, France (e-
mail: erbi@eurecom.fr).

the maximum play-out delay be reasonably low, ranging from
few seconds to few tens of seconds. The constraint on play-
out delay is more bound to the perception of the user that
she is receiving fresh media data: live streaming deals with
information whose interest to the user would rapidly decay if
it was delayed too much.

Media quality, on the other hand, depends on the com-
pleteness of the data received before its playback deadline.
The qualitative effect of incomplete stream data on the user’s
playback experience depends on several factors, including the
media coding format, the presence of redundant encoding to
protect the stream, the ability of the player application to hide
discontinuities in the media, and the subjective user sensitivity
to visual artifacts. In general, the shorter the play-out delay,
the more difficult it is to retrieve a complete media stream.

PULSE is a peer-to-peer live streaming system designed to
operate in scenarios where the bandwidth resources of nodes
can be highly heterogeneous and variable over time, as is
the case for the Internet. To support such network conditions,
we must carefully think over the quality vs. timeliness trade-
off. Historically, the attention of system designers has been
primarily focused on timeliness. Striving to obtain the lowest
latencies possible often resulted in simple structured system
designs, where tree-based overlays are built following some
optimization criteria: since trees scale well with respect to
maximum path length, and node placement can be optimized
by bandwidth or latency, this approach was (and still is)
quite popular [5][6]. Media quality, however, does suffer when
node instability is present, as it happens when there are rapid
membership variations due to node arrivals or departures [3].

With PULSE, we set out to explore a radically different
approach, which is focused on media quality rather than time-
liness. We thus explicitly require that there be no ’holes’ in the
data sent to the player for media play-out: the stream can be
reproduced only as long as a continuous, uninterrupted data
flow from the original media have been received. No structural
constraints are imposed a priori on the distribution process:
data can be freely exchanged among nodes that associate for
the purpose, creating a system-wide mesh of data connections.
Node associations are driven by pairwise incentives based
on implicit feedback information, such as the amount of data
exchanged in the recent past and the current reception delay
of the stream. The goal of our experiment was to evaluate
the performance of such a mesh-based system, especially in
scenarios where classical tree-based systems reach their limits.
Our results show that, with the peer selection strategies used
in PULSE, the average length in hops of the data paths on
the mesh are comparable to those observed on tree-based

2 IEEE TRANSACTIONS ON MULTIMEDIA

overlays. Moreover, due to the higher number of connections
that compose the mesh, PULSE is more resilient than typical
structured systems against node transience, and is able to
support heterogeneous and asymmetrical node capabilities.

In this paper, we present the insights and the algorithms that
stand behind the design of PULSE, along with a thorough eval-
uation of its performance based both on simulations and actual
experiments. In Section II, we introduce the system design,
its basic concepts and terminology. Section III contains the
algorithms that are executed by all PULSE peers to associate
with each other and to perform data exchange. The core part of
this work is the analysis of simulated and experimental system
traces: in Section IV we describe the simulation methodology,
introduce appropriate metrics to investigate the global behavior
of the peers, and leverage these metrics to understand the
internal system dynamics. Section V analyzes and displays
the experimental results we obtained by running our prototype
node software on the Grid’5000 [22] testbed platform. A
summary of relevant research work in the field is presented in
Section VI. Finally, we draw our conclusions in Section VII.

II. PULSE: SYSTEM OVERVIEW

This section presents the main insights behind PULSE, the
basic terms and concepts, and the details on the structure of
the system and of its components.

A. Design Principles

PULSE is Peer-to-peer: In PULSE, all nodes are identical
except the source, which differs in that it is the first node
to distribute the original stream. Nodes can freely exchange
among themselves short membership messages containing in-
formation on the average stream reception performance. Based
on this knowledge and on current measurements, the nodes
temporarily associate to exchange the data. Over the resulting
mesh of data connections, nodes can perform pairwise buffer
reconciliation and engage in receiver-driven, bi-directional
data exchanges.

PULSE is Mesh-based: The mesh-based approach was cho-
sen for several reasons. First, in contrast with classical single
trees, meshes offer many possible paths that data can traverse
to get to their destination. Also, no nodes are prevented
by structural constraints from contributing bandwidth to the
system, as is the case for the leaf nodes in tree-based systems.
Moreover, nodes can easily change position and timely react
to both membership changes and bandwidth capacity fluctua-
tions: a mesh-based approach gives more flexibility, decreasing
the negative effects of node transience. Finally, because of
its adaptive properties, we found a mesh organization more
adequate to support incentives. The price to pay, compared to
tree-based systems, is an increased local exchange of control
messages to support and coordinate the data reconciliation
process, avoiding unnecessary data duplication.

PULSE is Unstructured: Among the benefits sought by
our mesh-based design is a high resilience to churn, which
could be lost if the mesh itself depended on a structured
substrate. Structured systems have the advantage to offer
geometrical properties, which make their design and analysis

straightforward [2], but especially for an application that does
not require distributed keyword-based search we believe that
the added complexity of an underlying DHT would not justify
the possible small bandwidth saving over routed membership
control traffic. An unstructured, randomized gossip mem-
bership protocol [16] is therefore better suited to distribute
membership information with low overhead.

PULSE is Incentive-based: Incentives to share appear to us
a good choice as local policies for global system optimization,
especially in scenarios where peers may be non-cooperative
either by deliberate will or by inherent lack of resources.
Several papers [19][20] analyze the effects of the tit-for-tat
incentive on BitTorrent [17], concluding that it allows the best
resource contributors to associate and get higher download
performance. This autonomous organization has in turn a
positive effect on the global system performance. Especially
in a live streaming context, we agree with Chu et al. [4]
that placing nodes in the system according to their available
bandwidth is critical to improve the data replication efficiency,
in terms of both reception delay and of media quality.

Insights from these and other sources [13][18] inspired
our decision to combine together two incentive mechanisms:
a primary optimistic tit-for-tat peer selection policy, and an
additional excess-based altruistic incentive. Intuitively, the pri-
mary mechanism should foster cooperation among resourceful
nodes, while the other should both facilitate peer discovery and
allow the richest nodes to contribute more effectively to the
system. Altruism, however, remains optional and must never
undercut the primary incentive-based mechanism.

We want to stress the fact that the fundamental role of
incentives in our system is not to enforce fairness understood
as equality of contribution between nodes. Instead, incentives
are primarily intended to optimize the system structure for
better global performance. For instance, resource-rich nodes
located near the source are able to serve a large number of
neighbors with more recent data: they benefit, in terms of
reduced play-out delay, and the whole system benefits, in terms
of reception performances. If nodes whose resources are scarce
were systematically served recent data, either directly by the
source or indirectly by normal peers, they could slow down or
disrupt the distribution process. Also, since time constraints for
live streaming are quite strict, we believe it is more important
to fully exploit the available resources than to enforce a strict
reciprocal incentive for its own sake1.

B. About the Media Stream

The stream is a continuous flow of media data generated at
the streaming source. In the following, we assume that the bit-
rate of the stream (SBR) is constant. The source first splits the
stream into a series of chunks of fixed size. At this stage, the
source may also apply to the data a fixed-rate error correction
code, such as FEC [11], to achieve a better resilience to chunk
loss. Chunks are then numbered and marked with their original
timestamp (we call this time reference the media clock) to
allow peers to correctly rebuild the original data stream and

1Appropriate bandwidth limiting at the application level by the user is a
more than adequate solution to avoid unwanted resource overconsumption.

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 3

Lag (T)

Zone of Interest Sliding Window TD

TV

TQ
Source
TB = 0()

Trading Window

inst
TB

Buffer Edge

//
Most Recent Chunk Oldest ChunkBuffer Delay Range

Fig. 1. The data buffer of a PULSE node

help them estimate their own play-out delay. Chunks are then
made available to the nodes at a constant rate, i.e. always
maintaining a proportional relationship between chunk IDs and
the media clock2. This choice allows nodes to estimate delays
based on chunk IDs and to predict chunk IDs given delay
values in a straightforward way.

C. Lag Reference System

In Figure 1 we illustrate the fundamental concepts and
variables used throughout this paper. The horizontal axis
represents the lag, which is defined as the age of a chunk
with respect to the current media clock. The “newest” chunks
are on the left, while the “oldest” ones are on the very right.
The lag value of a given chunk grows over time, as new data
are encoded at the source and present data become older.

We chose this reference system because it eases the repre-
sentation of the buffer dynamics. For instance, since the play-
out rate is constant, the chunk a node should be playing at
any given moment is described by a fixed lag value, which we
will call TV . This reference system also allows us to define
the range of chunks a node is both interested in receiving
and capable to provide at some point in time by two values:
the average lag of the chunks the node is requesting, TBavg

,
and the lag of the chunk a node is going to discard from
its buffer, TD. We will better define the meaning of TBavg

later, in Section II-D.1. From now on, we will call the interval
[TBavg

, TD] the buffer delay range of a node.
The knowledge of the buffer delay range of a remote node

is mainly useful in the phase of peer discovery, when it is
important to find nodes that are able to provide useful chunks.
We can imagine that, when the system is in a steady state,
nodes tend to settle on constant average reception delays. In
this situation, in order to discover a potential partner, it is
sufficient to compare at any time the buffer delay ranges of
the nodes. This can eliminate the need of continuously sending
and requesting updated buffer information on a chunk-by-
chunk basis. On the other hand, when the system is not in
steady state, buffer delay ranges can fluctuate. However, the
information on the buffer delay range is still much less volatile
than the information on single chunks or chunk ranges: in
normal operating conditions (i.e. while most nodes manage
to retrieve chunks at a sufficient rate on a regular basis), a
node’s reception delay will typically change quite slowly over
time. It is thus still possible to use the buffer delay ranges,
within a reasonable time frame after their computation, as an

2In the general case involving variable-bit-rate media streams, we still keep
the rate of chunk generation fixed to conserve the time-ID relationship. Chunk
size is then no longer fixed, but typically fluctuates around an average value.

approximate and concise representation of the current buffer
content at the remote node.

D. Peer Structure
A PULSE peer is an application that interfaces with the

network to steadily retrieve data chunks and control messages.
Its goal is to reconstruct the original stream of media data and
to pass it on to the player software. Its main components are
1) the data buffer, where chunks are stored before playback, 2)
the knowledge record, where information is kept about remote
peers’ presence, data content, past relationships, and current
local node associations, and 3) the trading logic, whose role is
to request chunks from neighbors and to choose and schedule
the ones that are to be sent.

1) Data Buffer: Each node has a buffer to collect and store
data chunks prior to playback (Figure 1).

Definitions: The buffer uses a sliding window to regulate
the stream reception. The sliding window is W chunks wide.
Its goal is to output a stream of chunks with a desired
maximum loss ratio. We call buffer edge the leftmost end of
the sliding window. A second window, called zone of interest,
lies on the left of the buffer edge and covers the chunks that
will soon be needed as the sliding window moves. We refer
to the sequence of chunks covered by these two windows as
the trading window of the peer, since it contains all chunks
the peer is trying to obtain through exchanges with neighbors.

We define as instantaneous position of a node in the system,
referred to as TBinst

, the lag value of its buffer edge from
the source. This value can fluctuate quickly, so nodes keep
a running average of their instantaneous position, previously
referred to as TBavg

, to filter the short-term position variation
due to the unpredictable delays of the data exchange process.

Operation: A parameter S, called sliding tolerance,
defines the minimal amount of chunks that have to be present
inside the sliding window before it can move forward. The
maximum chunk loss rate tolerated during normal peer op-
eration is thus bound by LR = 1 − S

W
. The system-wide

parameter LRmax is equal to the amount of redundant coding
performed by the source. The value of S at any peer must
be set so that LR ≤ LRmax to ensure the complete recovery
of the original stream. If less than S chunks are available,
the sliding window cannot move. The lag of all the chunks
contained in the window increases as time passes and as new
chunks are generated. In this situation, the window keeps
drifting on the lag axis (to the right in Fig. 1) and TBinst

grows
over time at constant speed. Only when at least S chunks over
W have been collected, the window is allowed to slide and to
reduce its TBinst

(to the left in Fig. 1). The window will then
keep sliding as long as it contains at least S chunks.

4 IEEE TRANSACTIONS ON MULTIMEDIA

Fig. 2. A PULSE peer and its exchange sets (MISSING and FORWARD)

Initialization: After a node joins the system, it begins
requesting chunks in the [0 + δ, W + δ] fixed delay interval3.
As chunks are retrieved, they are put into the buffer: in this
initial phase, the sliding window is not yet enabled, and chunks
are requested with the goal of forming a nearly-contiguous
block. At t0, when at least W

2
over W contiguous chunks

have been collected, the sliding window mechanism is first
enabled around that block of chunks, and the initial buffering
lag TBINIT

≡ TBinst
(t0) value is set to the current buffer edge.

Subsequently, the buffer keeps operating as described above.
The play-out delay TV is determined after time t0, when the
node buffer at least contains a continuous sequence of TQINIT

chunks. Only at time t1 > t0, when TBINIT
− TBinst

(t1) =
TQINIT

, the media play-out is allowed to begin. TV is then
set at time t1 to be equal to TBinst

(t1) + TQINIT
+ W .

Reaction to Chunk Shortage: We define TQ as the inter-
val of chunks ranging from the rightmost end of the sliding
window to the chunk being currently played. TQ(t) contains
the chunks that are ready for play-out at time t. During play-
out, as TBinst

is free to change and since TV must remain
constant, TQ(t) is always equal to TV − (TBinst

(t) + W).
TQ may drop to zero due to reception shortage (i.e. when
TBinst

+W = TV): this means that there is no more data that
can be copied from the buffer to the player without disrupting
the integrity of the stream. If the shortage persists, TBinst

may grow up to TD, at which point a node is forced to
reset its TBinst

value and repeat the initialization procedure
detailed above. The visible impact for the user is a temporary
interruption of playback.

The role of the TQ interval is twofold: it grants a safety
margin against variations of TBinst

over time, and the changes
in its size can be used by peers to evaluate their own data
reception stability. For instance, the rapid decrease of TQ is
the typical consequence of an impending reception shortage:
nodes can leverage this information to preemptively react to
avoid playback disruption.

2) Knowledge Record: The strict timing constraints on the
data retrieval process emphasize the central importance of the
concept of node buffer delay range. In PULSE, the position
(in terms of lag) of a node buffer carries two pieces of

3The δ parameter introduces an offset in the initial lag interval where
incoming nodes request their first chunks. Requesting chunks with higher
δ may increase the speed of node initialization (when resources are available)
as older chunks are usually better replicated in the system. We currently use
a fixed value of δ =

3

8
W .

information: an explicit one, that is the range of chunks a node
is able to serve, and an implicit one, which is an estimate of the
peer’s trading capabilities related to the incentive mechanisms.
Intuitively, cooperating peers will be able to receive new
chunks faster than selfish ones, and thus will find themselves
nearer to the source, i.e. have lower TBavg

values.
Node decisions are based on the currently available local

knowledge, which includes:
• direct measurements of network parameters (RTT , data

throughput per connection)
• information about the network address and buffer delay

range [TBavg
, TD] of the other peers. This information is

exchanged among all peers using a gossip/epidemic pro-
tocol such as SCAMP [16]. Nodes known with this level
of detail can be chosen as partners for data exchange.

• detailed accounts of the exact buffer content of the remote
peers that are currently engaged in data exchange with the
local peer. This information comprises the instantaneous
node position TBinst

, TD, a bitmap summarizing the
chunks present in the trading window, and (optionally)
explicit request bitmaps for chunks in that range. Usu-
ally, nodes known with this level of detail are currently
engaged in data exchange with the local peer.

• local records of previous trading interactions, in the form
of a cumulative history score H .

The peers a node P is trading data with fall into two groups,
MISSING and FORWARD (Figure 2). Peers in the MISSING set
are selected to favor reciprocal data exchanges, and in a way to
insure that both parties have chunks the other one needs. The
FORWARD peer set helps introduce a component of altruism
in the system and, at the same time, allows resourceful nodes
to contribute more of their upload capacity to the system. The
details of data exchange will be explained in Section III.

3) Trading Logic: The trading logic controls all the aspects
of chunk request, selection, and scheduling. It processes the
information coming from both the local buffer and the knowl-
edge logic to decide which chunk will be requested/sent, and
from/to which neighbor.

III. ALGORITHMS

The algorithms presented in this section make up the core
of the PULSE system. They determine how each node chooses
its partners for data exchange, how chunks to be sent are
chosen and scheduled, and which chunks are to be requested
from each neighbor. The following algorithms are all based
on the assumption that peers (i) have some knowledge of
the other peers in the system, acquired from the underlying
membership information protocol, (ii) can determine their
position in the stream with respect to the media clock (in
our implementation we use a loose, distributed NTP-like
synchronization mechanism for this purpose), and (iii) know
or can estimate the maximum upload bandwidth they will be
able to provide.

A. Peer Selection

Peer selection is periodically performed by each node, its
time period is called EPOCH and is constant. PULSE uses

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 5

two peer selection algorithms: an optimistic tit-for-tat selection
based on the total amount of data received during the previous
EPOCH (similar to BitTorrent) and a lag-constrained selection
based on a cumulative trust score. The two algorithms are
executed at the start of each EPOCH, and give as a result two
lists of peers, the MISSING and the FORWARD list. During
the next EPOCH, the local node attempts to associate and
exchange data preferentially with the peers in these lists: chunk
requests received from peers in the MISSING list are honored
with higher priority, followed by peers in the FORWARD list,
and finally by requests from other nodes.

Optimistic Tit-for-Tat: This policy aims to identify which
peers, among all those about which a node has knowledge, are
currently interested and able to provide data in the short term.
Two pieces of information are then relevant to this choice: the
fact that a peer has provided data in the recent past and may
be expecting a short-term compensation to continue to do so,
and the presence of a shared interest in the same window of
the stream which may lead to fruitful future exchanges.

The selection policy we employ in PULSE uses a tit-for-tat
choice based on information about the amount of data received
during the previous EPOCH to fill the MISSING list. At least
one place in the list is reserved for an optimistic selection,
leading to the choice of a known node with the largest trading
window overlap (network latency can be taken into account to
bias this selection toward peers ’in the vicinity’).

History Score: Every node maintains a record of the pre-
vious interactions with every other peer as a numeric value,
which we refer to as the history score. This mechanism
enables a peer to use data on past behavior of its fellow peers
to make informed choices when selecting future candidates
for FORWARD exchanges. The history score is computed as
follows: each time a previously unknown peer is encountered,
it is given an initial positive score. The score is incremented
by a fixed value whenever useful chunks are received from a
node while it does not belong to the MISSING/FORWARD lists.
The score is decreased by some fixed quantity whenever it is
chosen as FORWARD partner and receives one or more chunks
from the local peer during that EPOCH.

As it is currently defined, the history mechanism can appear
rather simplistic, but it proved effective to evenly distribute
altruistic contributions among the peers. We believe that the
original incentive model proposed by GnuNet [18] could
eventually be applied to our system, further improving the
strength of the relationships among resourceful nodes.

B. Bandwidth Allocation

At any given moment, each peer must maintain several
connections for sending and receiving data. To simplify the
problem of bandwidth allocation, PULSE peers try to establish
a fixed number of outbound connections for data exchange,
but do not limit the number of incoming ones. As node
bandwidth is typically asymmetric, with the upload bandwidth
being much smaller than the download bandwidth, it is mainly
important to control the number of outbound connections.

The biggest challenge for the bandwidth allocation mecha-
nism is the need to support upload bandwidth heterogeneity:

especially in a live streaming application, it is critical to make
all nodes contribute, since unused upload bandwidth reduces
overall system capacity. Opening multiple connections has two
benefits: a node is able to provide service to several peers, and
it obtains more information to support its future exchanges.
However, the more connections, the higher is the control
message overhead for each node. Also, when the upload
bandwidth can vary widely, it is difficult to set a fixed ’number
of connections’ parameter that works for all the nodes in
the system. In PULSE, we approach the bandwidth allocation
problem in a practical way: to avoid relying on a dynamical
solution, which would greatly increase the complexity of the
system response, we instead split the set of connections into
two lists, MISSING and FORWARD, and use a single common
set of parameters on all peers.

We believe that a large number of MISSING connections
can reduce the effectiveness of the tit-for-tat selection4: we
must in fact remember that at steady state, for a rate-limited
application such as live streaming, no more than SBR bytes per
second will be received on average by each node. To clarify
this point, let us suppose that MISSING connections alone are
sufficient to sustain the reception by a peer of the full stream,
and that each peer opens exactly n MISSING connections to
other nodes: each node will be selected on average by n

peers as MISSING partner. Intuitively, a large n means a lower
expected throughput from (and to) each MISSING connection:
as the contribution threshold required to gain a place in the
MISSING list of the remote node becomes lower, associations
become more random and less related to the actual resource
availability at the nodes, and system performance may suffer
because of repeated sub-optimal choices. For this reason, we
decided to use a small number of connections (e.g. four) to
MISSING partners, so that each peer can expect a meaningful
theoretical throughput on each connection (e.g. SBR/4).

On the other hand, especially for the richer nodes, opening
more connections could improve the odds of finding useful
chunks and fully exploiting their capacity. To take this fact
into account, a variable number of connections can then be
assigned to FORWARD exchanges, depending on the available
outgoing bandwidth. We remember that having an open con-
nection to some node does not imply that it will be used for
data exchange, as that is determined by the chunk schedul-
ing mechanism: however, these connections allow resourceful
peers to donate their excess bandwidth to the system by
providing a large number of other peers with recent chunks.

1) MISSING List: All the peers that sent us data during
the last EPOCH are ordered by the number of non-duplicate
chunks we received from them. A configurable quota (cur-
rently 3) of MISSING exchange connections is then established
to the highest-ranked nodes. One connection slot is reserved
for the optimistic choice: the known node with the largest
trading window overlap5 to ours is selected. If one or more

4The problem of defining the optimal number of connections under a “tit-
for-tat peer selection” consumption game (in the rate-limited application case)
is an interesting issue that we leave open for future work.

5In the optimistic selection, link latency can be introduced as a delay bias
that is subtracted from buffer overlap. Our preliminary observations suggest
that biasing choices by latency improves the awareness of the system to
network locality.

6 IEEE TRANSACTIONS ON MULTIMEDIA

tit-for-tat MISSING connection slots remain available, they are
allocated a) to nodes with overlapping trading windows, in
decreasing overlap order, and b) to randomly selected known
nodes. Random selection is mainly used during bootstrap.

2) FORWARD List: Peers are ordered by decreasing history
score, and selected only if their trading window is not over-
lapping with the local trading window (i.e., the remote node is
currently “farther” from the source than the local peer). Nodes
already belonging to the MISSING list are ignored.

3) About the Source: The source differs from the other
peers since it doesn’t need to engage in exchanges to get
data chunks. It always has a complete sliding window, and
its lag value is zero by definition. As a consequence, the peer
selection algorithm at the source also needs to be different.

Moreover, the source lacks the data exchange feedback
mechanism, and could be exploited by malicious nodes that try
to retrieve all chunks directly. The attackers could then avoid
contributing to the system and may even put in danger the
entire distribution process, if the upload bandwidth available
at the source is small. To mitigate this danger, the source has
to change the subset of nodes it serves at each EPOCH, and
must not send groups of contiguous chunks to the same peer.

The peer selection algorithm at the source is similar to the
one used by seeds in the latest BitTorrent software versions
[19]. At the beginning of each EPOCH, the source prepares
a list of known peers that have a TBavg

value smaller than a
fixed threshold. It then chooses randomly a subset to which it
sends chunks during that EPOCH.

C. Chunk Selection: Sending

A good chunk selection strategy is one that distributes the
chunks in an uniform way across the nodes to avoid situations
where some chunks are much less replicated system-wide
than others. It should also ensure that the buffer content of
nearby nodes is different enough that they can engage in
mutual transactions and concurrently exploit their multiple
connections. Finally, it should prevent that several neighbors
concurrently send duplicate chunks to the same node.

The chunks to be sent over a connection, regardless if
MISSING or FORWARD, are selected comparing the requests
received from each peer to the chunks currently held in the
local buffer. Requested chunks that are available are then
sorted using appropriate ordering criteria, and the first one
is chosen for sending. The criterion we are currently using for
ordering chunks at the sender is a “Least Sent First, Random”
strategy. Each peer keeps a counter of how many times it has
sent each requested chunk. The one that has been sent the least
number of times is chosen to be sent first. In case of a tie,
the chunk is selected randomly. It is indeed possible to queue
several chunk uploads toward the same peer to benefit from
the effects of transfer pipelining.

This scheduling strategy shows encouraging results, since
the newest (and thus rarest, from the point of view of the
sender) chunks to be received are among the first that are
sent. Breaking ties with a random choice, instead of e.g.
selecting the chunk whose lag is lowest, aims to avoid the
preferential replication of a same single chunk which may

happen in situations where several peers have their trading
windows synchronized.

D. Chunk Selection: Requesting

The algorithm for chunk requests is similar to the heuristic
used in DONet/CoolStreaming [8]. Its purpose is to request
the rarest chunks among those that are locally available, and
to distribute the requests across different possible providers.

Using the local knowledge gathered from the current neigh-
bor set, chunks that are rarest across the neighborhood are re-
quested with higher priority than more common ones. Chunks
with an equal number of providers are preferentially requested
to the MISSING neighbors that can provide them. To limit the
load on any single peer, the maximum number of per-node
requests is bounded.

IV. SIMULATION RESULTS

We extensively evaluated the effectiveness of the algorithms
in PULSE through simulation and limited deployment of a
PULSE node prototype. The main purpose of this section is
to support our previous claims with experimental data and real
measurements, compensating for the current lack of satisfac-
tory theoretical models. Because of space constraints, the fol-
lowing pages present only the most interesting results we have
managed to obtain. We evaluated PULSE for different network
sizes, access bandwidth distributions, buffer parameters, and
node arrival patterns. We mainly concentrate our attention
on the worst-case bandwidth availability and heterogeneity
scenarios, which provide particularly meaningful insights that
are representative of the whole result set.

The simulator: Our simulations are performed using a
simple round-based simulator. The simulated network has a
single-stub topology. Nodes are connected to the stub through
access links whose bandwidths are configurable. Bandwidth
allocation is performed using a slot-based mechanism: each
slot allows the transmission of one data chunk between two
nodes during one round. Network latencies are not taken
into account: control information is propagated without delay,
while only data transfers are affected by latency. While up-
dated knowledge about current buffer delay ranges is available
to everyone, the detailed content of the data buffer of a peer
P is only known to nodes that have P in their MISSING or
FORWARD exchange lists, or that received data from P during
the current EPOCH.

The scenarios: In all the simulation scenarios, the source
has a 4*SBR upload bandwidth. SBR is fixed at 16 chunks per
second. The size of the sliding window is W = 32 chunks (2
seconds of stream data). The trading window is 2W chunks
wide. The FEC rate LRmax is set to 20%. The number of
MISSING connections is always 4. The duration of an EPOCH
is set to 2 seconds. There are up to one thousand nodes in each
simulation, and their access bandwidth distribution scenarios
are the following:

HH-LB (high heterogeneity, low bandwidth) scenario - four
bandwidth classes: 4% of VERY RICH peers, with 4*SBR
upload and 4*SBR download bandwidth; 20% of RICH peers,
with 2*SBR upload and 2*SBR download bandwidth; 21%

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 7

of NORMAL peers, with SBR upload and 2*SBR download
bandwidth; and 55% of POOR peers, with SBR/2 upload
and 2*SBR download bandwidth. This amounts to a per-peer
average upload bandwidth of 1.045*SBR.
This scenario aims to show the behavior of the system
when bandwidth resources are scarce and asymmetrically dis-
tributed throughout the population. The total upload capacity
is only 4% higher than the total download bandwidth required
to provide every peer with a complete stream.

HH-HB (high heterogeneity, high bandwidth) scenario -
four bandwidth classes: 4% of VERY RICH peers, with
10*SBR upload and 10*SBR download bandwidth; 20% of
RICH peers, with 3*SBR upload and 3*SBR download band-
width; 21% of NORMAL peers, with SBR upload and 2*SBR
download bandwidth; and 55% of POOR peers, with SBR/2
upload and 2*SBR download bandwidth. This amounts to a
per-peer average upload bandwidth of 1.485*SBR.
Here we noticeably increase the upload capacity of the two
richest bandwidth classes. As a consequence, the total avail-
able bandwidth exceeds the minimum amount required for the
complete stream distribution by 50%. The resulting scenario
aims to approximate the heterogeneous bandwidth distribution
observed by recent studies [15] on resource availability in
peer-to-peer file-sharing networks.

Common observations about all simulation runs include:
• The simulator parameters and bandwidth distribution

ranges have been chosen to model the diffusion of a 1
Mbps FEC-protected stream.

• Only the evolution of the sliding window of the node
buffer is actually tracked: simulated nodes do not actually
set a play-out instant (TV).

• The TD value is large enough to be considered a thresh-
old for irreversible receiver starvation, after which it is
necessary to reset the buffer, which will result in the loss
of a short media segment. Proactive shortage detection
and recovery based on TQ are not simulated to reduce
complexity. We remember that, by performing simple
estimates based on TQ, as suggested in Section II-D.1, it
is possible to increase the responsiveness of the system,
reducing the time during which play-out is disrupted at
a node as a consequence of a buffer reset event.

• In the initial phase, as well as under massive instanta-
neous arrivals, the simulated system often shows some
instability. This is mainly an artifact due to the random-
ness associated with the simultaneous arrival process and
the oracle-like knowledge model used in the simulator.
Nodes that cannot connect at their first attempt have to
wait up to TD and then reset their buffer before retrying.
This phase however rarely lasts more than 50 seconds,
and the subsequent steady-state behavior is not affected.

A. Global Impact of Tit-for-Tat Peer Selection

Our first task will be to evaluate the effect of a simple tit-
for-tat peer selection policy on the whole network structure.
To do so, we set to zero the number of FORWARD connections,
allowing nodes to only establish the four “base” MISSING
connections. In Figure 3 we plot of the evolution over time

of the average value by class of TBavg
for a simulated system

under the HH-LB scenario, with 1000 nodes, simultaneous
arrivals at t = 0, and no departures.

Figure 3a shows the evolution of the average class lag
with no FORWARD connections. As we can see, the effect of
tit-for-tat peer selection based on the bandwidth received in
the previous EPOCH is quite interesting: few EPOCHs are
indeed required for nodes to find a stable set of neighbor
peers with sufficient resources to guarantee a steady supply
of data chunks. In this case, for example, the system reaches
this stable state for the first time after 50 seconds.

We will study how this convergence process works in more
detail later in this section. For the moment, we observe in Fig.
3a that the different bandwidth classes appear to settle around
different values of TBavg

, with richer classes being nearer to
the source than poorer ones. This is in agreement with our
initial intuition that the coordinated effect of incentive-based
(tit-for-tat) and performance-based (chunk interest range) peer
selection would allow the generation of clusters of peers with
similar resource availability.

A noticeable aspect of Fig. 3a is that the equilibrium reached
by the system is quite unstable: between t = 120s and t =
200s the average lag suddenly increases for all classes, to
the point that most nodes are forced to reconnect. The same
thing appears to be happening after t = 270s. An accurate
observation of the bandwidth usage plots (not included here)
reveals that the available upload capacity is not completely
exploited, chunk losses are quite high, and most nodes must
rely on FEC to recover the original stream.

B. Tit-for-Tat vs. Tit-for-Tat+History

Inspecting the bandwidth traces, we notice that especially
the rich peers are often contributing less than what they could
actually offer to the system. To address this issue, we now
evaluate the effect of enabling the second selection mecha-
nism. We introduce FORWARD connections with the double
goal of fostering altruism and reinforcing the main incentive:
the history-based peer selection policy biases the altruism
toward those nodes that contributed the most during the past
interactions, but does not exclude poorer nodes and free riders.
Simulations show that, by introducing connections to peers
that otherwise would not qualify for tit-for-tat selection, the
overall system performance and stability improve dramatically.

In Fig. 3b and 3c we see how the addition of (respectively)
four and eight FORWARD connections impacts the performance
of the previous scenario. The presence of only a few FORWARD
connections has a strong stabilizing effect on the whole
system, greatly reducing the variance of the three richest
classes’ lag. In Fig. 3b the poorest class is the only one to
suffer from starvation, with periodic re-connections of a part
of its population. It is interesting to notice that the subsequent
re-connections of these poor nodes do not affect significantly
the performance of the remaining classes. In Fig. 3c we see
that in the case of eight FORWARD connections all classes
manage to stabilize around a small lag value of about 30
chunks (i.e. about 2 seconds) with a low, constant variance.
Bandwidth usage plots (again not included here) confirm a

8 IEEE TRANSACTIONS ON MULTIMEDIA

NO FWD 4 FWD 8 FWD
Scenario VR R N P VR R N P VR R N P
HH-HB 0 0 23 181 0 0 0 0 0 0 0 0
HH-LB 13 53 59 242 0 0 4 183 0 0 0 0

TABLE I
BUFFER RESET STATISTICS: UNSTABLE PEERS BY CLASS AT STEADY STATE

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

Average / Std. Dev. of TBavg by Class

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) No FORWARD

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

Average / Std. Dev. of TBavg by Class

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(b) 4 FORWARD

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

Average / Std. Dev. of TBavg by Class

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(c) 8 FORWARD

Fig. 3. HH-LB Scenario: Average Class Lag vs. Number of FORWARD Connections

higher bandwidth consumption by the richest classes, and
show a significant reduction of chunk losses, which almost
disappear with eight FORWARD connections. The effects of
the improved bandwidth allocation are evident on the amount
of “unstable” peers in the system, that either periodically reset
their lag target or get stuck in initialization phase (Table I).

C. But What’s Going On? Capturing Class Relationships

To better understand the behavior of the PULSE system,
it is necessary to take into account its dynamic nature: the
associations between nodes are quite volatile, determined at
the same time by shared interest in a particular stream data
range, by the knowledge of current local chunk availability,
and by past exchange performance. Rather than studying the
system from the point of view of the single node and its
relationships to its neighbors, we will instead concentrate
our attention on the global relationships between bandwidth
classes. This will allow us to draw a statistical picture of
the effects of our two peer selection mechanisms and to get
insights into the evolution of the system over time.

We will introduce two metrics to describe the likelihood for
a node from one class to choose an exchange partner from any
other class. The first one, Class Affinity, depends on choices
made while selecting MISSING partners, while the second,
Class Friendliness, describes FORWARD peer selection.

1) Class Affinity: The choice of nodes for MISSING data
exchanges is critical to the good performance of the system, as
MISSING partnerships convey the largest share of stream data
to most resourceful nodes. It is thus very important to select
resourceful nodes that have a common data interest range,
to maximize the reciprocal benefit that both peers can obtain
from the relationship. We thus define the concept of “Class
Affinity” between classes α and β as:

CA(α, β)(t) =

∑

n∈α ‖n’s MISSING links to β‖
∑

n∈α ‖n’s total MISSING links‖
(1)

The cohesion among nodes from a same class can be cap-
tured by its Self-Affinity value CA(α, α). Intuitively, its value
will be higher when nodes from one class have many con-
nections to nodes of the same class, which indicates a strong
generalized reliance of a certain node class on neighbors with
similar bandwidth capacity. Affinities toward other classes,
richer or poorer, are also interesting to analyze to understand
how nodes from different classes manage to cooperate and
obtain chunks under different bandwidth scenarios.

2) Class Friendliness: Likewise, we define the concept of
“Class Friendliness” as:

CF (α, β)(t) =

∑

n∈α ‖n’s active FWD links to β‖
∑

n∈α ‖n’s total active FWD links‖
(2)

Class Friendliness is similar to Class Affinity in that it
describes the likelihood of an interaction among different node
classes. However, unlike Affinity, the FORWARD interactions
do not directly depend on bandwidth received from the target
node: other factors, which are rather difficult to control, like
instantaneous lag difference and cumulative exchange history,
have a greater impact on this metric.

Results: We computed Affinity and Friendliness values for
the previous simulation scenarios and provide a sample of the
results in Fig. 4. We start by observing the evolution over
time of Class Affinity in the HH-LB scenario with a) no
FORWARD connections and b) 8 FORWARD connections. The
plots suggest that there is a correlation between the system’s
convergence status and the value of the Affinity metric: when
instability is present, as in Fig. 4a, the Affinity values tend
to widely fluctuate, especially when node reconnections take
place. For this reason, we will articulate our analysis in two

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from VERY RICH

Self-Affinity
to RICH

to NORMAL
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from RICH

to VERY RICH
Self-Affinity

to NORMAL
to POOR

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from NORMAL

to VERY RICH
to RICH

Self-Affinity
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from POOR

to VERY RICH
to RICH

to NORMAL
Self-Affinity

(a) Class Affinity, no FORWARD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from VERY RICH

Self-Affinity
to RICH

to NORMAL
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from RICH

to VERY RICH
Self-Affinity

to NORMAL
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from NORMAL

to VERY RICH
to RICH

Self-Affinity
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from POOR

to VERY RICH
to RICH

to NORMAL
Self-Affinity

(b) Class Affinity, 8 FORWARD

Fig. 4. HH-LB Scenario: Class Affinity vs. Number of FORWARD Connections

parts, examining separately the behavior of the system in its
transitory phase and at steady state.

Comparing Figure 4a and 4b, we see that only the Affinity
values for the two richest classes show meaningful differences
during the convergence phase (from t = 0 to t = 70s):
Self-Affinity for the the VERY RICH (VR) class is roughly
two times higher when FORWARD connections are present,
peaking at CA(V R, V R) = 0.55 versus a peak value of
0.32 without FORWARD, while Self-Affinity for the RICH (R)
class peaks at CA(R, R) = 0.57 compared to 0.41 without
FORWARD. We also remark that richer classes show lower
Affinity scores to poorer ones when the system converges
if FORWARD connections are enabled: the Affinity of Very
Rich and Rich classes toward the POOR (P) class is much
lower and reaches a minimum at about t = 50s, where
CA(V R, P) = 0.02 (against a minimum CA value of about
0.31 without FORWARD connections) and CA(R, P) = 0.09
(against a minimum of 0.23).

On the other hand, at steady state (after t = 70s) we can
notice that the differences in Affinity values are globally less
meaningful. The only exception is the Affinity value between
Poor and Very Rich peers CA(P, V R), which is halved
in presence of FORWARD connections (from 0.19 to 0.10),
probably meaning that Poor nodes obtain less chunks directly
from Very Rich nodes and thus tend to reciprocate less often.
Relationships between the other classes do not seem to be
affected by the presence of FORWARD connections: MISSING
connections are established by richer classes toward poorer
ones roughly with the same probability in both scenarios.

The fact that Self-Affinity for the richest class is initially
much higher when FORWARD connections are allowed is a
side effect of the interaction between altruism and tit-for-tat
selection, which improves the relationships among peers with
extra resources. In fact, data contributed over the FORWARD
connections is also taken into account for the tit-for-tat se-
lection at the receiver: this increases the likelihood that the
receiver will choose to reciprocate and establish a MISSING

connection on the following EPOCH. As richer peers have
more spare resources, they can rapidly gain more MISSING
relationships. Friendliness results (not shown) give additional
insights: in both scenarios, the Self-Friendliness value for each
class is the highest, meaning that nodes with a similar level
of contribution tend to help each other out by establishing
FORWARD connections. The fact that CA(P, V R) is lower
when FORWARD connections are enabled is a further hint that
the altruistic mechanism produces a stricter organization of the
nodes by decreasing upload availability. We can thus conclude
that the FORWARD exchanges do no interfere negatively on the
outcomes of the tit-for-tat selection, but rather help the richest
nodes to exploit their bandwidth potential.

Understanding System Stability: We can now get back to
Figure 3 to understand the effect of additional FORWARD con-
nections on system stability. The fundamental consequence of
tit-for-tat during the convergence phase is to foster cooperation
among nodes that can contribute data. Rich nodes with recent
data will spread the data to many neighbors, often gaining
MISSING connections in return. At the end of the convergence
process, the system under a pure tit-for-tat selection can be
described as strongly polarized: rich nodes tend to select other
rich nodes, while the poor mostly associate among themselves.

Massive disconnections, as seen in Figure 3a, can then be
explained by the policy used at the source to distribute new
chunks to the system. We notice how these disconnections
mostly happen when the entire node population is concentrated
in a small lag range: in this situation, as receivers are randomly
selected by the source among the nodes with low average lag,
all nodes in the system are equally likely to receive chunks
from the source. When too many chunks are sent to poor
peers, rich peers begin to starve: since the poor do not replicate
chunks fast enough, the rich cannot get enough useful chunks
to fill their sliding window. At the same time, rich nodes start
to be abandoned by their rich neighbors, whose sliding window
is also blocked. Meanwhile, the poor nodes that received the
recent chunks, once the rich nodes fall behind, cannot manage

10 IEEE TRANSACTIONS ON MULTIMEDIA

Tree Analysis

 0
 4
 8

 12
 16
 20

 0 200 400 600 800 1000M
ax

 D
ep

th
 [h

op
s]

Chunk ID

HH-LB
HH-HB

 0
 100
 200
 300
 400
 500
 600

 0 2 4 6 8 10A
vg

 W
id

th
 [n

od
es

]

Layer

HH-LB
HH-HB

Fig. 5. Comparison of Maximum Depths and Average Widths of Distribution
Trees (1000 nodes, 8 FORWARD)

to keep up with the data reception (because their upload alone
is not sufficient to sustain them) and also begin to starve, in
a chain reaction. Recovering from this situation requires that
rich nodes reset their buffer and begin to receive fresh data
again, getting back to their previous position.

Amazingly, massive disconnections can happen even if the
total upload bandwidth is sufficient for a complete stream
replication: the spare system capacity is left unused because of
the content bottleneck caused by poor peers, i.e. the reduction
of bandwidth utilization due to the absence of useful chunks at
the rich nodes. In general, more data connections allow nodes
to find missing chunks faster, as the average network diameter
becomes smaller. We believe that breaking the strict tit-for-tat
incentive by establishing “less optimized” connections allows
rich nodes to associate more often to the poorer nodes: as
we saw in Figures 3b and 3c, FORWARD connections have
indeed the ability to effectively reduce the lag difference and
performance skew between the rich and the poor.

D. Class Relationships and Distribution Trees

We will now analyze how differences in overall bandwidth
availability and in its distribution among nodes impact the
performance of the PULSE system. We will use other indirect
metrics to evaluate the consequences of the node association
process, namely the maximum length in hops and the average
node degree of the distribution trees relative to each single
chunk. These metrics express the characteristics of the paths
that chunks traverse inside the system to reach all the nodes.

Even if PULSE is a mesh-based system, each data chunk
follows a tree-shaped path on the overlay mesh. These trees
will differ from chunk to chunk, depending on the current
shape of the overlay: as the overlay connections are continu-
ously renegotiated by each node in an independent way, one
could expect that the properties of the different trees will vary
a lot across different chunks. Actually, this is not the case: Fig.
5a shows the maximum tree depth for the first 1000 chunks. It
can be easily noted that subsequent trees have similar depth,

and - more importantly - that tree depths tend to decrease over
time, settling around an asymptotic minimum value.

We can indeed explain this observation with the aggregation
process among resourceful nodes, as described in the previous
pages. Through subsequent iterations of the MISSING peer
selection, nodes with excess bandwidth associate more often
and manage to get more data than poorer nodes. The presence
of FORWARD connections speeds up the discovery process and
increases the amount of data that rich nodes will exchange. As
a consequence:

1) richer nodes tend to attain a lower lag value,
2) rich nodes tend to further associate with rich nodes,
3) as the stream source tends to give chunks to nodes with

lower lag values, the rich nodes will often end up closer
to the root of subsequent chunk distribution trees.

As a last consequence, we expect that rich nodes close to
the root will give origin to larger, shorter trees. The traces
in Figure 5 compare the properties of distribution trees under
our two bandwidth distribution scenarios. We observe that,
according to our expectations, the trees obtained for the same
population size with the HH-HB scenario do converge faster,
are usually shorter, and have top layers that are wider on
average than those from the HH-LB scenario. We argue that
this result can be ascribed to the incentive-based peer selection.

E. How Fair is Fair? Introducing a ’Soft’ Fairness Metric

Finally, we introduce one last metric to characterize the
internal system organization. We believe that relevant infor-
mation can be found looking at the correlation between the lag
experienced by nodes and their bandwidth resources. As we
focus our attention on the average class performance, we are
especially interested in the relative lag performance between
nodes from different bandwidth classes. Intuitively, we will say
that it is fair that a node with a higher bandwidth contribution
is rewarded with a lower average lag. This concept is different
from the usual idea of fairness, in the sense that it does not
consist in “equality of resource contribution among nodes”.

We will thus call Soft Fairness the property of a PULSE
system where nodes from a richer bandwidth class obtain, on
average, a lower node lag than nodes from a poorer class.
Our definition of Soft Fairness between two classes α and β,
whose upload bandwidth (UB) is UB(α) > UB(β), will be:

SF (α, β)(t) =

∑

n∈α

∑

m∈β I(TB(n)(t) ≤ TB(m)(t))

‖α‖ ‖β‖
(3)

where the indicator function I(x) is defined as I(x) =
{

1 if x is true
0 otherwise and TB(n)(t) is the lag of node n mea-

sured at time t.
To include the relationships between classes with higher-to-

lower UB, we will extend the Soft Fairness metric to support
the evaluation of the “reverse” fairness:

SF ′(α, β)(t) =

{

SF (α, β)(t) if UB(α) > UB(β)
1 − SF (α, β)(t) otherwise

(4)

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 11

Soft Fairness takes values between zero and one, with higher
SF values indicating a higher degree of soft fairness. In this
case, nodes that contribute more to the system get a stead-
ier incoming bandwidth than less-contributing ones, allowing
them to settle on a lower lag value than poorer classes. On
the other hand, values of SF near zero indicate that the system
is unfair, since those who contribute less can systematically
get in return the needed data chunks, resulting in a better lag
performance. Intermediate values could suggest that there is
no strong correlation between the upload bandwidth provided
by a node class and the lag it manages to obtain.

We wish to point out that the purpose of this metric is
only to evaluate the correlation between node contribution
and its position in the system. Soft Fairness, unlike other
quantitative metrics, is not a desirable property of a PULSE
system. Systems with a high value of Soft Fairness are not
guaranteed to show a better performance in terms of node lag,
which mainly depends on the total bandwidth availability.

In Table II we compare the Soft Fairness results from the
HH-LB scenario, sampled at steady state every 3 seconds and
averaged over the 90 seconds, with those from an HH-HB
simulation, with and without FORWARD connections. The dif-
ferences in the Soft Fairness values between the two scenarios
when FORWARD connections are allowed are quite impressive:
we see that, under global bandwidth excess, the Soft Fairness
of the two poorer classes is low with respect to all other
classes. This means that, more often than not, NORMAL and
POOR nodes obtain a slightly lower lag than their richer coun-
terparts. We argue that, when resources abound, the tit-for-tat
incentive mechanism becomes less relevant and is preempted
by the altruism present in the peer selection algorithms.

To further investigate the issue, we turn to the results
obtained when FORWARD connections are disabled. We notice
that there is a much smaller deviation in Soft Fairness values
between the two scenarios. We believe that this is due to
the lack of FORWARD connections, the primary altruistic
mechanism. Also, some degree of unfairness is present in
both cases, for all classes except VERY RICH, probably as
a consequence of the altruistic discovery mechanism used by
MISSING peer selection. Finally, we can appreciate how the
presence of FORWARD connections enhances the clustering
effect of the tit-for-tat incentive, especially when the total
available bandwidth is scarce (Table II, values in bold).

F. Response to Perturbations

We performed additional experiments of the PULSE sys-
tem under various different arrival and departure patterns.
We experimented with flash-crowd, uniform, and spike node
arrivals, and with exponential and burst node disconnections.
In general, we found that the effects of node transience on
the behavior of PULSE are usually minor, sometimes barely
noticeable, and their extent depends mostly on the availability
of excess bandwidth. We also observe that the evaluation of
bursty node arrivals suffers a bit from the simplified, oracle-
like knowledge model used by the simulator.

In Fig. 6 we see three sample lag traces of the reaction of the
system to node transience. In these plots, nodes can establish

up to eight FORWARD connections. We first present the effect
of an instantaneous spike arrival on our usual bandwidth
scenarios. With this arrival pattern, 750 nodes join the network
at t = 120s, when the initial 250 nodes should have reached
steady state. In Fig. 6a, we show an HH-LB scenario absorbing
a spike of arrivals: it can be noticed that most nodes from
all the classes (including the richest ones) are affected and
forced to reconnect, but the perturbation lasts for a very short
time. By t = 150s, in fact, all the classes have reached again
convergence. If we increase the available bandwidth, however,
the impact of the spike is much reduced. This is the case of Fig.
6b, where the HH-HB scenario is shown. Here we can notice
that all classes temporarily increase their average lag, but there
are no disconnections. The lag increases up to 80 chunks on
average but is absorbed very rapidly (in about ten seconds).
In this case, the nodes’ media play-out is not affected.

Figure 6c shows the effect on a HH-LB scenario of the
simultaneous departure at t = 120s of 50% of the nodes,
chosen at random. We see that the impact of node departures
on the system performance is even lower, as long as there
is enough serving capacity in the system. Results under
exponential departures after t = 120s, which we will not
present here, did also show a strong resilience of the system
against widespread and subsequent node departures.

V. EXPERIMENTAL RESULTS

We implemented a full prototype of the PULSE node and
tested its behavior on the French Grid’5000 [22] testbed, which
offers similar functionalities as Emulab [21]. The features
provided by Grid’5000, namely a closed network environment
where hosts can be reserved, give us a relatively controlled
environment for testing our application. The high-speed links
of Grid’5000 assure the absence of bandwidth bottlenecks
between nodes and low latencies.

Our experiments are performed by artificially limiting the
outbound bandwidth used by the application. A first experi-
ment was performed to validate a simple symmetric scenario
(where all peers have 2*SBR upload bandwidth) in order to
make sure that the system behaved consistently in case of
excess bandwidth. We have then reproduced the two hetero-
geneous scenarios described in Section IV, in order to compare
the results with those from the simulator. The number of peers
used for this experimental evaluation is 800.

In all these experiments, at the beginning the peers join
sequentially with arrival intervals of around half a second. At
the end of the experiments, all the peers leave at the same
time. The SBR is set to 16 chunks/s with a chunk size of 4
KB. The size of the sliding window is again 32 chunks, while
the trading window size is 64 chunks wide. Every peer can
select 4 other peers for MISSING exchanges and 8 other peers
for FORWARD exchanges. The PULSE prototype uses UDP
for the control messages and TCP for data exchanges. Control
messages are issued to neighbors at a minimum fixed rate,
which becomes self-clocking with data exchange and cannot
exceed on any connection the chunk rate. Request/response
messages use a bitmap of the buffer to encode the requests,
so that more than one chunk can be requested with a single

12 IEEE TRANSACTIONS ON MULTIMEDIA

Soft Fairness between Different Bandwidth Classes (rows to columns)

HH-LB, 8 FWD HH-HB, 8 FWD HH-LB, NO FWD HH-HB, NO FWD

VR R N P VR R N P VR R N P VR R N P

VR = 0.81 0.81 0.80 = 0.75 0.66 0.36 = 0.82 0.76 0.64 = 0.86 0.67 0.53 VR

R 0.63 = 0.65 0.71 0.55 = 0.51 0.23 0.76 = 0.42 0.41 0.81 = 0.25 0.35 R

N 0.69 0.53 = 0.65 0.46 0.30 = 0.30 0.68 0.34 = 0.48 0.56 0.20 = 0.45 N

P 0.74 0.64 0.58 = 0.21 0.12 0.16 = 0.55 0.32 0.38 = 0.46 0.34 0.38 = P

TABLE II
SOFT FAIRNESS: COMPARING HH-LB AND HH-HB SCENARIOS (8 AND NO FORWARD)

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

Average / Std. Dev. of TBavg by Class

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) Spike arrivals (t=120s), HH-LB Scenario

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

Average / Std. Dev. of TBavg by Class

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(b) Spike arrivals (t=120s), HH-HB Scenario

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

Average / Std. Dev. of TBavg by Class

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(c) Burst departures (t=120s), HH-LB Sce-
nario

Fig. 6. Effects of Node Transience on Global Lag Performances (8 FORWARD)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB Avg. and Std. Deviation by Class over Time (HH-LB)

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) HH-LB Scenario: Avg. Class Lag vs. Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Average lag (TB
avg

)

CDF of TB
avg

 at 150 s

POOR
NORMAL

RICH
VERY RICH

(b) HH-LB Scenario: Class Lag CDF at t=150s

Fig. 7. Results for the Node Lag from Experiments on Grid’5000 (HH-LB)

message. The limit on outstanding requests between two nodes
is currently set to 2, and request timeouts are set to 0.5s.

Figure 7a shows the evolution of the average node lag over
time in the HH-LB scenario. We can notice that peers from all
the classes are able to reach very quickly a constant average
lag, which remains largely stable afterward. Peers belonging
to the VERY RICH class experiment the lowest average lag
value, followed by peers belonging to the RICH class, to the
NORMAL class and, finally, by the peers from the POOR
class. These results validate the simulation and confirm the

formation of clusters among peers with the same resource
availability. The variance of the average lag value indicates
a higher instability of the poorest peers compared to the other
classes. In the above experiment, 104 buffer reset events were
observed during the five minutes: 100 involved POOR peers,
2 NORMAL peers, and 2 RICH peers.

Figure 7b displays a snapshot at steady state of the cu-
mulative distribution function (CDF) of average node lag by
class in the HH-LB scenario. We can see that, while all the
nodes that contribute at least as much as they receive obtain

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 13

TB Avg. and Std. Deviation by Class over Time under Churn

 0

 20

 40

 60

 80

 100

 0 40 80 120 160

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

SPIKE

P
N
R

VR

 0

 20

 40

 60

 80

 100

 0 40 80 120 160
Time [s]

SQUIT

P
N
R

VR

Fig. 8. Response to Massive Node Churn on Grid’5000 (HH-LB)

a lag lower than 50 chunks (about 12 seconds), more than
90% of the P nodes manage to obtain a stable streaming rate
with a slightly higher lag. Only a small fraction of the P class
is actually suffering shortage, with less than 5% of P nodes
that risk playback disruption because of an upcoming buffer
reset. Examining the data distribution trees for this scenario,
we could observe that the maximum tree depth is on average
12 (it fluctuates between 11 and 14 hops) and that trees are
usually fairly large near the source, with a rapid growth of
layer population in the first few layers (3, 11, 27, 53, 83, 104
nodes on average) and a sharp drop after the 10th layer.

Finally, we tested the response to churn of the emulated
PULSE system. In Figure 8 we apply the same membership
patterns we used in our simulations to an emulated LH-LB
scenario, with the churn event scheduled at t = 40s. We
can observe how, in the instantaneous arrival scenario (Figure
8, SPIKE), all the resource-rich classes do not suffer any
instability upon the arrival of 600 peers, but quickly adapt
to the new situation and settle on a slightly higher lag value.
The POOR class needs a longer time to find a new stable
configuration, but its lag fluctuates gracefully. On the other
hand, it is fairly hard to notice the immediate effect on
the system of the sudden departure of 400 peers (Figure 8,
SQUIT). The only visual cue is a small increase in the lag
of the POOR class, which lasts for less than ten seconds:
afterward, we can see a slow decrease in the average lag for
every class, as the system converges to a new steady state with
a halved node population.

We have been conducting experiments also on PlanetLab
[23] in order to evaluate the behavior of the PULSE pro-
totype in a less controlled network environment. In fact, on
PlanetLab, latencies are on average higher and more widely
spread compared to Grid’5000, while link bandwidths are
lower. Moreover, the resource availability of PlanetLab hosts
is very unpredictable, and their CPU load is often so high that
it becomes hard to obtain meaningful traces (the node software
execution is slowed down and the peers become unresponsive).
Despite this difficult environment, our preliminary results so
far largely confirm the observations performed in testbed

conditions. We leave a thorough evaluation of PULSE on the
PlanetLab environment as future work.

A. Remarks on the Results

It is interesting to compare the results obtained on the
testbed to the simulated ones: in general, experimental results
show higher average lag values and bigger variances than the
simulations. This fact can be explained by the differences in
the control information exchange between the real and the
simulated system: over a real network, control information is
spread via messages, which suffer from link delay and can
be lost: as peers depend on these messages for making their
decisions, they are less responsive and efficient than in the
simulations. Apart from these differences, which were indeed
expected, we want to emphasize that the properties of the
PULSE algorithms match reasonably well across simulated
and experimental environments.

We have observed in our extensive simulations that the
PULSE system scales well to fairly large user populations:
leaving the value of all the parameters unchanged, we managed
to simulate systems with populations of up to ten thousand
nodes for the different scenarios. The results show a system-
wide average lag that grows logarithmically with the popula-
tion size and whose slope depends on the amount and distribu-
tion of bandwidth resources. These observations corroborate
our results on the properties of the PULSE mesh and of the
chunk distribution trees and also suggest that PULSE may
scale upward as well as tree-based systems, in terms of node
lag and path length.

VI. RELATED WORK

Several recent papers describe peer-to-peer networks that
support live streaming. They can be categorized into structured
or unstructured, referring to the way control information and
knowledge are propagated, and mesh-based or tree-based,
based on the way data are exchanged by the nodes. Table III
summarizes the design choices adopted by the most relevant
systems that have been proposed to date.

The first tree-based approaches to p2p streaming derive from
early research on application-level overlays [5][6]. The main
motivation was to provide the benefits of an easily deployable
multicast infrastructure when no native support for IP multicast
was available: to this end, an unique overlay tree was used to
convey data. NICE [5] organized the nodes in a hierarchical,
cluster-based single tree overlay, trying to optimize the average
delay through appropriate node management policies and
cluster-head selection criteria. ZIGZAG [6] improves on this
design by adding redundancy to the cluster management mech-
anisms to better cope with node churn. End System Multicast
[4] is the first large-scale video distribution system based on a
single-tree multicast infrastructure to have been deployed and
for which measurements have been collected. The fundamental
shortcoming of all tree-based systems is due to the limitations
imposed by the tree structure. Single trees artificially limit the
available service capacity, as the leaf nodes, which constitute
a preponderant share of the population, are prevented from
contributing bandwidth to the system. Moreover, each internal

14 IEEE TRANSACTIONS ON MULTIMEDIA

Control Plan & Data Plan
Knowledge Mgmt. Tree-Based Mesh-Based

Implicit NICE, ZIGZAG, ESM =
Structured Splitstream (DHT) Bullet (Tree)

Unstructured Chunkyspread DONet, Chainsaw, PULSE

TABLE III
SUMMARY OF MAIN APPROACHES TO LIVE STREAMING

node is a possible bandwidth bottleneck for the sub-tree it
serves, and packet losses do accumulate while descending the
tree. Finally, the maintenance, optimization, and recovery of
failed overlay tree links can become a daunting task under
heavy churn. Data loss during the tree repair process can be
partially masked by buffering and recovery mechanisms, but
eventually it will severely disrupt the play-out quality.

Multiple-tree based overlays have been proposed as a
solution to the above problems. By encoding the stream
as independent MDC stripes [12] and streaming them over
several trees, these systems overcome the most important
among the above limitations. Splitstream [3], for instance,
does create multiple interior-node-disjoint trees. Every peer
is an interior node in at most one tree, thus mitigating the
bottleneck data loss problem (a single failure results in the
interruption of at most one stripe, which is not critical and can
be masked by the encoding method), and the capacity limiting
problem (each node is likely to be an interior node in at least
one tree). On the other hand, the control overhead is clearly
higher than in the single-tree case: in general, multiple-tree
systems often rely on an underlying DHT substrate for tree-
building and maintenance purposes. The fact of combining two
structured systems with different goals and purposes – low-
latency and high-bandwidth data distribution versus efficient
lookup and resilient connectivity – has raised unexpected
issues: Splitstream has been shown [9] to suffer from churn
and bandwidth heterogeneity, as it tends to create non-DHT
links that increase the system complexity. Moreover, the tree-
building criterion used by Splitstream prevents the exploitation
of node heterogeneity and the use of incentive-based neighbor
selection. Chunkyspread [10], a recent multiple-tree based
unstructured system, removes the requirement for a DHT
substrate by adopting a non-hierarchical approach to tree-
building. Using a gossip protocol, nodes exchange the list of
the data stripes they currently receive along with a compact
Bloom filter representation of the list of their ancestors for
each stripe. Bloom filters are used to constrain peer selection
and assure that the resulting stripe distribution paths will be
free of loops. Peer selection is based on the load advertised by
the neighbors and on their latency in receiving specific stripes.

Mesh-based designs aim to further reduce the structural
constraints in live media streaming systems to improve their
resilience against churn and node transience. In this case, the
stream is always broken up in a series of chunks, which are
distributed by the source to few nodes in the system. Nodes
must exchange chunks to retrieve a sufficiently complete
stream before the play-out deadline. Bullet [14] is an early
approach that combines a single-tree and a mesh: the tree

is used to convey both data chunks and control information,
while the mesh is created independently by the nodes based
on the control information. An advantage of this scheme is
that the control protocol running on the tree can have a very
low overhead. On the other hand, no mechanism to encourage
bandwidth contribution has been implemented in the system.
Chainsaw [7] is a proof-of-concept example of a simple mesh-
only system, which uses randomized peer- and chunk-selection
algorithms. However, it has not been tested on scenarios with
asymmetrical bandwidth availability. Coolstreaming/DONet
[8] introduced a better chunk scheduling algorithm that takes
into account the individual chunk deadlines for play-out. While
each node performs a periodical long-term optimization of
the mesh by replacing the least contributing neighbors, the
system is not meant to address the combined effects of upload
bandwidth heterogeneity under global shortage and high churn
rates. User experiences with the Coolstreaming application
seem to indicate that it suffers from a high play-out latency,
probably due to conservative data buffering. PULSE does
improve with respect to these systems as its dynamically
optimized mesh supports high bandwidth heterogeneity and
churn, while its buffering requirements are typically low even
under a moderate shortage of global serving capacity.

It is challenging to perform a comparison of PULSE against
other systems in the literature, as different architectures have
been evaluated using purpose-built metrics and often rely on
incompatible assumptions. Even if we restrain the comparison
to unstructured mesh-based systems only, we have to acknowl-
edge a widespread lack of published evaluation results6. We
believe that a thorough comparison of the performance of
different live streaming systems is a very interesting subject
by itself, which will be a fundamental part of our future work.

VII. CONCLUSIONS

We have presented and evaluated PULSE, an unstructured,
mesh-based peer-to-peer system for the distribution of live
media. We showed that the tit-for-tat peer selection policy can
be successfully adapted to the requirements of live stream-
ing: PULSE uses an incentive-driven feedback loop, based
upon bandwidth measurements of the application data and
subsequent evaluations of node lag differences that is a robust
and lightweight mechanism to estimate the service capacity of
neighboring peers and effectively guides future node associa-
tions. PULSE demonstrates that a mesh-based architecture is
a perfectly viable approach to live streaming that can flexibly

6The only relevant term of comparison is a mention in [8] about an average
chunk hop count of about 7 for a Coolstreaming system with 200 nodes.

PIANESE et al.: PULSE: AN ADAPTIVE, INCENTIVE-BASED, UNSTRUCTURED P2P LIVE STREAMING SYSTEM 15

accommodate heterogeneous populations under high churn,
while still providing low play-out latency.

Moreover, we studied the effects of the local incentive
policy on the global system behavior through simulations and
experiments, and defined novel metrics - such as affinity,
friendliness, and soft fairness - to evaluate the behavior of
PULSE. We showed that, when resources are globally scarce,
incentives allow resource-rich peers to retrieve the complete
stream with low delay, while the least-contributing peers
may suffer starvation. The tit-for-tat selection favors syn-
chronization between peers with similar upload and rewards
contributors offering an upload capacity greater or equal than
the stream rate. Conversely, lesser contributors may obtain
discontinuous service and eventually be forced to reconnect.
When the available resources exceed the demand, on the other
hand, the altruistic allocation mechanism tends to prevail on
tit-for-tat, but still produces systems with short distribution
trees. Node performances become then almost homogeneous,
regardless of individual bandwidth contribution. The presence
of altruism guarantees in all cases an efficient utilization of
resources at the richest nodes.

As far as we know, PULSE is the only live streaming system
that currently implements pairwise incentives as the short-term
peer selection policy. As a part of the future work, we plan to
perform additional experiments to study the impact of network
latency. Also, we expect to widely deploy an optimized version
of our node software, to evaluate the response of PULSE to
realistic applicative workloads and typical usage patterns.

Finally, we believe that “local pairwise incentives based
on measurements” could become a new paradigm to address
problems of uneven resource distribution in generic distributed
systems. To apply this paradigm in other contexts, however,
we argue that four base assumptions should still hold in the
target application: 1) most nodes should be free to associate
(low structural constraints), 2) the role of nodes should be
symmetrical (common interest of the entire population in a
specific resource), 3) node interactions should be repeated
frequently (peers engaged in an iterated prisoner dilemma),
and 4) node contributions should be implicitly measurable
(quantitative feedback evaluation should be possible). Finding
appropriate applications, or adapting them to fit into the above
guidelines, will surely be an interesting challenge.

REFERENCES

[1] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-
sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points”, in Proc. of ACM SIGCOMM ’04

[2] M. Castro, M. Costa, and A. Rowstron, “Peer-to-peer overlays: struc-
tured, unstructured, or both?”, Tech. Report MSR-TR-2004-73, Microsoft
Research, Cambridge, UK, July 2004

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Cooperative
Environments”, in Proc. of ACM SOSP ’03, October 2003

[4] Y. Chu, A. Ganjam, T. S. E. Ng, S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, “ Early Experience with an Internet Broadcast System
Based on Overlay Multicast”, in Proc. of USENIX ’04, June 2004

[5] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast” in Proc. of ACM SIGCOMM ’02

[6] D. A. Tran, K. A. Hua, and T. T. Do, “A Peer-to-Peer Architecture for
Media Streaming”, in IEEE JSAC, vol. 22, no. 1, January 2004

[7] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating Trees from Overlay Multicast”, in Proc. of the
4th International Workshop on Peer-to-Peer Systems, February 2005

[8] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
Data-driven Overlay Network for Peer-to-Peer Live Media Streaming”,
in Proc. of IEEE INFOCOM ’05, March 2005

[9] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Seshan, and H.
Zhang, “The Impact of Heterogeneous Bandwidth Constraints on DHT-
Based Multicast Protocols”, in Proc. of the 4th International Workshop
on Peer-to-Peer Systems, February 2005

[10] V. Venkataraman, K. Yoshida, P. Francis, “Chunkyspread: Heteroge-
neous Unstructured End System Multicast”, in Proc. of the 14th IEEE
ICNP, November 2006

[11] T. Nguyen, and A. Zakhor, “Distributed Video Streaming with Forward
Error Correction”, in Proc. of Packet Video Workshop, April 2002

[12] V. K. Goyal, “Multiple description coding: Compression meets the
network”, in IEEE Signal Process. Mag., September 2001

[13] Y.-H. Chu and H. Zhang, "Considering Altruism in Peer-to-Peer Internet
Streaming Broadcast", in Proc. of 14th IEEE NOSSDAV, June 2004

[14] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh”, in ACM SOSP
’03, October 2003

[15] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems”, in Proc. of Multimedia Computing
and Networking, 2002

[16] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Peer-to-peer
membership management for gossip-based protocols”, in IEEE Trans.
Comput., Vol. 52, No. 2, February 2003

[17] B. Cohen, “Incentives Build Robustness in BitTorrent”, in Proc. of
Workshop on the Economics of P2P Systems, 2003

[18] C. Grothoff, “An Excess-Based Economic Model for Resource Alloca-
tion in Peer-to-Peer Networks”, in Wirtschaftsinformatik, June 2003

[19] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding Bit-
Torrent: An Experimental Perspective”, Tech. Report inria-00000156,
INRIA, Sophia Antipolis, November 2005

[20] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and Choke
Algorithms Are Enough”, in Proc. of IMC ’06, October 2006

[21] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks”, in Proc. of OSDI
’02, December 2002

[22] Grid’5000 - Grid platform testbed - http://www.grid5000.org [WWW]
[23] PlanetLab - http://www.planet-lab.org/ [WWW]

Fabio Pianese received his B.S. degree in Electronic Engineering from
Politecnico di Torino, Turin, Italy, and his M.S. degree in Computer Science
from Université de Nice - Sophia Antipolis (UNSA), France. He also obtained
a degree in Telecommunications from the Institut Eurecom. He has been work-
ing toward his Ph.D. degree in Computer Science at UNSA since November
2004. His research focuses on peer-to-peer systems and applications. He is
funded and supported in his research by France Telecom R&D - Orange Labs.

Diego Perino graduated in Networking Engineering at Politecnico di Torino,
Turin, Italy, and at the Institut Eurecom, Sophia-Antipolis, France, in Septem-
ber 2006. He also received a Master degree from Université de Nice-Sophia
Antipolis (France) in September 2006. Since November 2006 he is a Ph.D.
student at Orange Labs Paris (France). His current research interests are peer-
to-peer systems, interaction between overlays and underlay, and (in)validation
of theoretical models of Internet protocols.

Joaquín Keller obtained a Master degree in Mathematical Logic from
Jussieu University (Paris VII), France, and a Ph.D. on Distributed Systems
from University of Versailles, France. He is a senior researcher at France
Telecom R&D in Paris and his current interests include peer-to-peer networks,
distributed algorithms, and multimedia communication. He is the designer of
Solipsis, a serverless virtual world, and Maay, a personalized distributed search
system.

Ernst W. Biersack received his M.S. and Ph.D. degrees in Computer
Science from the Technische Universität München, Munich, Germany and
his habilitation from the University of Nice, France. Since March 1992 he
has been a Professor in Telecommunications at Institut Eurecom, in Sophia
Antipolis, France. His current research is on Peer-to-Peer Systems, Network
Tomography, and LAS Scheduling in Edge Routers. Among other awards,
he has received (together with J. Nonnenmacher and D. Towsley) the 1999
W. R. Bennet Award of the IEEE for the best paper published in the year of
1998 in the ACM/IEEE Transactions on Networking.

