

Institut Eurecom
Department

2229, route des Crêtes
B.P. 193

06904 Sophia Antipolis
FRANCE

Research Report RR-07-201

Verifying Self-Organized Storage with Bilinear Pairings
June 15th , 2007

Nouha Oualha, Suna Melek Önen, Yves Roudier1

Tel: (+33) 4 93 00 81 00
Fax: (+33) 4 93 00 82 00

Email: {oualha, onen, roudier}@eurecom.fr

1 Institut Eurecom research is partially supported by its industrial members: BMW Group Research & Technology – BMW Group Company,
Bouygues Telecom, Cisco Systems, France Telecom , Hitachi, SFR, Sharp, STMicroelectronics, Swisscom, Thales

Verifying Self-Organized Storage with Bilinear Pairings

Nouha Oualha, Suna Melek Önen, Yves Roudier2

Abstract
This paper describes a cryptographic protocol for securing self-organized data storage through periodic verifications. Such verifications are
beyond simple integrity checks since a storage node generates a proof that it still keeps the data that were uploaded to it. The proposed
verification protocol is efficient, deterministic, and scalable and successfully prevents most of the security threats to self-organizing storage
verification. In particular, a data owner can prevent data destruction at a specific holder by storing personalized replicas crafted thanks to
the use of bilinear pairings. Furthermore, the protocol also makes it possible for the data owner to delegate the verification operation to
other nodes without revealing any secret information.

Keywords
Secure self-organized storage, proof of knowledge, bilinear pairings, verification delegation, selfishness.

2 This work was also supported by the GET (Groupement des Ecoles de Télécoms) Initiative research program on autonomic and spontaneous
networks, the ACI SI MOSAIC project, and the PACALAB research project.

Verifying Self-Organized Storage with Bilinear Pairings
Nouha Oualha, Suna Melek Önen, Yves Roudier

1 INTRODUCTION

Self-organized data storage is becoming an increasingly important application in distributed systems, especially with the development of
the peer-to-peer paradigm. It however proves far more demanding in terms of security than classical distributed or remote storage
approaches. In particular, no public key infrastructure can be assumed to be available in such a setting, and the nodes participating to a
storage application are constantly joining and leaving on a large scale. P2P file sharing has also brought to light the novel issue of free-
riders, or selfish nodes. Selfishness represents an entire new class of attacks whereby nodes try to optimize their resource consumption at
the expense of other nodes. Attempts at securing file sharing however have essentially focused on eliciting a fair distribution of upload and
download contributions of nodes.

Self-organized data storage goes one step further in trying to ensure data availability on a long term basis. This objective requires
developing appropriate primitives, that is, storage verification protocols, for detecting dishonest nodes free riding on the self-organized
storage infrastructure. Contrary to simple integrity checks, which make sense on a potentially defective yet trusted server, self-organized
storage requires defining efficient primitives for detecting voluntary data destruction by a remote node: in particular verifying the presence
of these data remotely should not require transferring them back in their entirety.

This paper presents such a verification protocol exhibiting a low resource overhead. This protocol was designed with scalability as an
essential objective: it enables generating an unlimited number of verification challenges from the same security metadata; it is also
especially original in allowing third parties to be delegated verification operations, thanks to the bilinear pairing based proof that constitutes
its core. The latter feature proves specifically interesting to ensure the scalability of storage systems built on top of it since verification, and
not only storage, can be distributed in a self-organized manner.

This paper is structured as follows: Section 2 introduces the problem statement by describing the architectural and security
requirements of self-organized storage that the verification protocol must meet. Section 3 describes the bilinear pairing based solution that
we propose to implement an adequate verification protocol. Section 4 finally analyzes the security and performance of the solution outlined
and compares it with related work.

2 PROBLEM STATEMENT

This section briefly describes the architectural requirements for storage verification and how the protocol operates. It then goes on to
describe the security threats that have to be addressed by the verification protocol. We consider a cooperative storage application in which a
node, called the data owner, replicates its data by storing them at several nodes, called data holders. The latter nodes agree to keep data for
a predefined period of time negotiated with the former one. In an open and self-organized environment like peer-to-peer or ad hoc
networks, the correct operation of the storage application depends on the cooperation of user nodes: in particular, holders that have
promised to keep data for owners must fulfill their pledge.

Such a behavior might be evaluated through the adoption of a routine check through which the holder should be periodically prompted
to respond to a time-variant challenge as a proof that it holds its promise. That interactive check may be formulated as a proof of
knowledge [1] in which the holder attempts to convince a verifier that it possesses some data: this is demonstrated by correctly responding
to queries that requires the knowledge of the very data. However, the data corresponding to the secret in a traditional proof of knowledge
protocol is very large while the proof must be much significantly smaller in order to achieve a reasonable performance. The proof in the
verification protocol must therefore, at least, not entirely reveal the data itself. This paper exhibits a solution answering such requirements.

2.1 Architectural Requirements

Data storage involves highly dynamic scenarios, as illustrated in [2] for instance: these often require the holder to delegate data storage
evaluation to third parties because the owner might not remain in touch with holders (see Figure 1). Other rationales for distributing the
verification function include scalability, which in particular require balancing verification costs among several entities, as well as fault
tolerance, notably preventing the system from presenting any single point of failure.

Data Replication is another element that ensures a high availability in dynamic self-organized storage system. However, the level of
data replication, hence its availability, can only be maintained if it is possible to detect storage defection, which can be done through
periodic verifications, provided they are not too expensive to perform.

We describe the actors of the system using the following notations:
- the owner is denoted by O stores data at different holders;
- holders: the set of m holders of data X is denoted {Hi}1≤i≤m, ;

- verifiers: each holder Hi is monitored by a set of n verifiers denoted {Vi,j}1≤j≤n (the owner may participate in the verification
process).

We assume that all information related to storage or its verification, such as the storage duration agreed, the number of verifiers, and the
frequency of their verifications, etc. are negotiated in a preliminary phase between the owner and each holder.

While cooperation incentives are not inherent to the verification protocol, they are useful for achieving better storage results. Such
mechanisms involve the use of either reputation or remuneration. The investigation of such mechanisms is however far beyond the scope of
this paper.

The verification must be efficient in terms of resource usage, and most importantly secure. The following section examines security
threats that must be addressed to satisfy the latter requirement.

2.2 Security Threats

The verification protocol must address or at least mitigate the following threats:

- Data destruction. The destruction of data stored at a holder must be detected as soon as possible. It may be due to:
- Data corruption: data may be altered by a faulty or malicious data holder;
- Holder selfishness: the holder may destroy data in order to optimize its storage resources thereby taking unfair advantage of

the storage application;
- Colluding holders: one holder may store a unique instance of the data for several other holders of the same data replica,

thereby defeating the purpose of replication to their sole profit, i.e., reducing data storage footprint.
- Denial-of-Service (DoS). DoS attacks aim at indirectly disrupting the storage application through attacks against the storage

verification:
- Flooding attack: the holder may be flooded by verification requests from malicious verifiers, or from attackers that have not

been selected as verifiers by the owner. Verifiers may also be subject to a similar attack.
- Replay attack: a valid challenge or response message is maliciously or fraudulently repeated so as to disrupt the verification.
- Collusion between a holder and its verifier: a verifier that is in collusion with the holder claims positive verification results

in order to boost the trust that the owner puts into this holder
- Verifier selfishness: a verifier claims a random verification result without contacting the holder in order to optimize its

resource usage by not sending messages.

The following section introduces a verification protocol that addresses the security threats and architecture requirements presented above.
This protocol in particular introduces the delegation capability through the use of bilinear pairing cryptography.

3 A NEW VERIFICATION PROTOCOL

This section first introduces the security primitives that are used in our protocol. It then completely describes the verification protocol for
proving data possession.

3.1 Bilinear Maps

Let G1 be a cyclic additive group generated by P, whose order is a prime q, and G2 be a cyclic multiplicative group with the same order q.
Let e: G1×G1 → G2 be a map with the following properties:

 Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q, R ∈ G1 and a, b ∈ ℤq;
 Non-degeneracy: there exists P, Q ∈ G1 such that e(P, Q) ≠ 1, in other words, the map does not send all pairs in G1×G1 to the

identity in G2;
 Computability: there is an efficient algorithm to compute e(P, Q) for all P, Q ∈ G1.

Such maps are considered as admissible bilinear maps.

3.2 The Elliptic Curve Discrete Logarithm Problem

The security of our protocol is based on the following problem that is defined as the Elliptic Curve Discrete Logarithm problem and
denoted by DLP.

Consider G1 an additive cyclic group of prime order q and P a generator of G1. The Discrete Logarithm Problem (DLP) in G1 consists
in finding an integer n ∈ ℤq

*, such that, given two group elements P and Q, Q = nP whenever such an integer exists.

(a) Storage

O Delegation

Dele
ga

tio
n

V21

V24

V23

V22
De

le
ga

tio
n

Delegation

V31

V34

V33

V32

De
le

ga
tio

n

De
le

ga
tio

n

De
le

ga
tio

n

V11

V14 V13

V12

Delegation

Delegation

D
el

eg
at

io
n

Delegation

D
el

eg
at

io
n

H1

H2H3

(b) Delegation

(c) Verification

Figure 1. System Architecture: (a) the owner O stores data at holders H1, H2, and H3; (b) O delegates the verification of data to 4
verifiers per holder; (c) the verifiers assigned to H1 periodically check storage at H1.

3.3 Verification Protocol

The verification protocol consists of three phases: storage, delegation, and verification. In the storage phase, the owner sends each holder a
replica that is personalized to prevent potential collusions between holders. In the delegation phase, the owner generates credentials for a
set of chosen verifiers that are thereby authorized to proceed to the verification phase. Thanks to the use of a bilinear scheme, the owner
does not need to share any secret with the verifiers, which therefore do not need to be particularly trusted. The verification phase is the most
important part of the protocol since it corresponds to the computation of the data possession proof by the holder.

Storage
O Hi

knows X
1) generate a random number si ∈ ℤq
2) compute Xi=siX
3) send m1 , σm1 where m1=Xi
5) compute e(Xi, P)

Xi, σm1

4) receive Xi, σm1
6) verify σm1
7) store Xi

Delegation
knows e(Xi, P)
1) generate a session key Kij

2) compute E
iHPK
(Kij) and E

jiVPK
(Kij)

3) generate Certi,j= Sign
OSK

(IDO, IDVi,j, IDHi, validity,

E
i

4) send m
HPK

(Kij), cTh)

2 , σm2 where m2 = e(Xi, P), IDHi, Certi,j,
E (K

iHPK ij), E
jiVPK

(Kij)

e(Xi, P), IDHi, Certi,j,
E

iHPK
(Kij), E

jiVPK
(Kij), σm2

5) receive e(Xi, P), IDHi, Certi,j, E
iHPK
(Kij), E

jiVPK
(Kij),

σm2
6) verify σm2
7) initialize a counter c = 0
8) store e(Xi, P) , Kij, Certi,j

Verification
Vi,j Hi

knows e(Xi, P) knows Xi
1) generate a nonce nk

2) generate a random number rk ∈ ℤq
3) compute Qk=rkP
4) IF c = 0 THEN
4-a) send m3 , σm3 where m3 = Certi,j, E

iHPK
(Kij), Qk,

nk

 ELSE
4-a') send EKij(m’3), MAC(Kij, m’3) where m’3 = Qk, nk

ENDIF

7) receive EKij(b̃, nk), MAC(Kij, b̃ | nk)
9) verify MAC(Kij, b̃ | nk)
10) verify nk
11) c ++

12) compute e(Xi, P) kr

13) verify e(Xi, P) ≟ b̃ kr

 13-a) e(Xi, P) = b̃ → ACCEPT kr

 13-b) e(Xi, P) ≠ b̃ → REJECT kr

Certi,j, E

iHPK (Kij), Qk, nk, σm3

EKij(Qk, nk), MAC(Kij, Qk | nk)

EKij(b̃, nk), MAC(Kij, b̃ | nk)

4-b) receive Certi,j, E

iHPK
(Kij), Qk, nk, σm3

4-c) verify Certi,j
4-d) verify σm3
4-e) initialize cj = 0
4-f) store Kij

4-b') receive EKij(Qk, nk)
4-c') verify MAC(Kij, Qk | nk)
4-d') decrypt EKij(Qk, nk)
4-e') IF cj > cTh THEN STOP
 ENDIF

5) compute b̃ = e(Xi, Qk)
6) send EKij(m4), MAC(Kij, m4) where m4 = b̃, nk

8) cj ++

Figure 2. The bilinear pairing based verification protocol

We also assume the existence of a preliminary discovery phase of the public keys of participant nodes, which are then used
for signature generation. Every node N participating to the cooperative storage application possesses a pair of public and private
signature keys designated by {PKN, SKN}. We furthermore assume that each node N is uniquely identified by IDN (for instance,
IDN might simply be PKN). We denote by SignSK(m) the signature of a message m computed with secret key SK: we also denote
this signature in an abbreviated form as σm. Finally, EK(m) represents the encryption of m using key K. Based on these notations,
the detailed protocol phases are as follows (see also Figure 2):

 Storage phase: Let X denote the data that the owner O wishes to store at holder Hi. In order to prevent a collusion
between the holders, O generates a random number si ∈ ℤq that is kept secret and that is used to personalize the replica
stored at Hi. O computes such a personalized replica in the form of Xi=siX. Finally, O sends Xi to Hi for storage.

 Delegation phase: O generates a credential Certi,j to assert that it delegates the verification of X to a verifier Vi,j, that it
selected. O also generates a session key Kij intended to secure the communication that will be held between a verifier Vi,j
and its assigned holder Hi. This key is encrypted for Vi,j and Hi. O needs to send Vi,j adequate metadata for performing
subsequent verifications: these consist of the encrypted challenge e(Xi,P), which the verifier can use to generate time-
variant challenges on Hi's replica of X, together with the credential and the session key cryptographic envelopes.

 Verification phase: This phase is carried out between a holder Hi and one of its appointed verifiers Vi,j. The verifier
first challenges the holder by sending Qk=rkP ∈ G1 which is generated using a random number rk ∈ ℤq. In order to
prevent a denial of service through the replay of the challenge message, Vi,j sends a nonce nk with every such message.
If it is the first time that Vi,j checks the data stored at Hi, Vi,j sends Hi a signed challenge message including the credential
Certij concatenated to Qk, nk, and the encrypted session key E

i
(K

HPK ij). Upon reception of this message (see 4-b in

), HFigure 2 i initializes a new quota counter cj to zero (a similar counter is also kept at the verifier). Imposing a quota
on the number of verifications allowed prevents a malicious verifier from flooding the holder with challenge messages.
Hi also stores the session key Kij that will be used as a key for ensuring entity authentication in subsequent verifications
(see 4-b' in): as such, it replaces the public key signature. The session also makes it possible for VFigure 2 i,j not to send
the credential again. In the case where cj is less than the quota of verification operations allowed cTh, Hi computes b̃ =

e(Xi, Qk), which it sends Vi,j together with nk, the whole being encrypted with Kij. Vi,j compares b̃ to e(Xi, P) : if b̃ =

e(X

kr

i, P) , then thanks to the bilinearity property of map e, Vkr
i,j is sure that Xi is still stored at Hi. Indeed, e(Xi, P) =

e(X
kr

i,rkP) =e(Xi,Qk). Whenever the quota counter cj (and c) exceeds threshold cTh, the verifier is not allowed to challenge
the holder anymore during the current timeframe.

4 PROTOCOL EVALUATION

This section assesses the proposed verification protocol from security and performance perspectives.

4.1 Security Analysis

This section first proves that the proposed verification protocol is a proof of knowledge and then discusses in which respect it
addresses the security threats described in Section 2.2.

In order to validate the correctness of the proposed protocol, we analyze its completeness and soundness that are the two
essential properties of a proof of knowledge protocol [1]: a protocol is complete if, given an honest claimant and an honest
verifier, the protocol succeeds with overwhelming probability, i.e., the verifier accepts the claimant’s proof; a protocol is sound if,
given a dishonest claimant, the protocol fails, i.e., the claimant’s proof is rejected by the verifier, except with a small probability.

Theorem 1- The proposed protocol is complete if the verifier and the holder correctly follow the proposed protocol, the verifier
always accepts the proof as valid.
Proof: Thanks to the bilinearity property of map e, we have:

e(Xi , rkP) = e(Xi ,P) kr

Theorem 2- The proposed protocol is sound if the claimant does not store the data Xi , then the verifier will not accept the proof
as valid.

Proof: If Hi does not keep Xi , it can only generate a correct response to a challenge rkP, by retrieving rk and computing e(Xi,P) .
However finding r

kr

k given rkP is equivalent to solving the DLP and is thus considered as NP-hard. This proves the soundness of
the proposed protocol.

Thanks to the correctness of the protocol, if a holder does not provide correct responses to the challenges generated by a
certain verifier, the verifier will immediately detect that some data has been corrupted or destroyed at this specific holder.

7

Regarding threat coverage, collusion between holders may still imply data destruction in some of them. However, such

attacks are prevented in the proposed protocol since each holder stores a personalized replica and this cannot collude with another
holder in order to correctly finalize the verification phase. This shows that the proposed protocol globally prevents data
destruction.

As shown in the previous section, at each step of the protocol, messages are authenticated with common signature algorithms
such as RSA. Thanks to this preliminary authentication phase, a holder cannot store bogus data. Since the stored data are assumed
to be dense, the cost of storage is assumed to be much more expensive than the cost of verifying a digital signature. Thus, this
additional mechanism inherently mitigates external denial-of-service (DoS) attacks whereby intruders perform flooding attacks
against holders.

In addition to external DoS attacks, authorized verifiers might also perform flooding attacks against holders. In this particular
case the computational and communication overhead are reduced thanks to the use of MAC; however, authentication is enough to
prevent such attacks since verifiers are authorized to participate in the communication. We thus first propose to limit the number
of verifiers that can send request to a given holder. This number can be predefined in the storage phase between the owner and the
holder by considering the capacity of the holder. We also propose to define a threshold value for requests originating from a
verifier. Thanks to these mechanisms, DoS attacks originating from authorized verifiers are mitigated.

In addition to flooding attacks originating from either intruders or authorized verifiers, simple replay attacks can also
constitute a serious threat against the proposed framework and should thus be taken into consideration. In the proposed protocol,
replay attacks are prevented thanks to the use of nonces in the verification phase. Such attacks can also be prevented by a
preliminary protocol based on the exchange of cookies. However, such solutions may not be fully adapted for wireless
communications.

Another potential attack that does not compromise the storage verification, but rather the locality of storage, is the proxying
attack. In this attack, a holder can pretend to be storing data while in fact proxying requests and responses in front of another data
holder. the random-read protocol presented in [3] can provide a solution to this attack: both parties establish a data verification
session using a commitment protocol. Distance-bounding protocols [4] may provide an alternative solution for ad hoc or sensor
networks but should be integrated into the verification process to detect proxying attempts. The latter solution also assumes that it
is possible to estimate the distance of the queried node.

The owner automatically detects selfish verifiers thanks to the absence of a valid signature originating from a holder.
However, the collusion of a verifier with one of the holders it is assigned is harder to prevent since the verifier may provide the
holder with a correct verification result that the holder can sign without storing the data. Such attacks can be mitigated with
quorum or vote based approaches, whereby several verifiers are requested to assess the behavior of the same holder.

To summarize, while the proposed protocol fully prevents data destruction attacks thanks to its correctness and thanks to the
use of personalized replicas, DoS attacks can only be mitigated, thanks to the introduction of an additional authentication phase
and to the definition of bounds on the number of verifiers and on the number of verification requests. This mitigation should
however cover most situations arising in the verification process.

4.2 Performance Analysis

Signature algorithms used for node authentication may be RSA or ECDSA [5]. [6] and [7] provide some elements of comparison:
for example, a 163-bit ECDSA offers the same level of protection as 1,024-bit modulus RSA with a significant reduction of
computational overhead; both produce 320-bits signatures. Moreover, the protocol limits the penalty performance of such
signatures to only once per established session.
The first two phases being performed only occasionally compared with the challenge-response, the protocol performance however
essentially depends on the verification phase. In the proposed protocol, challenges with bilinear properties are computed using
elliptic curve cryptography. The verification protocol requires the verifier to store only an elliptic pairing-based proof of
knowledge. This proof allows producing on demand challenges for the verification. Finally, the verification of a response message
relies on one exponentiation over the proof, the exponent being a random number chosen by the verifier. Compared with solutions
that use the RSA encryption ([8] and [9], see next Section), our solution in intrinsically less expensive. The exponentiation
operation used in the RSA solution makes use of the whole data as an exponent; in our solution the exponent is a much smaller
random number.

4.3 Related Work

Efforts for storage verification mainly focus on two types of applications: backup and file system. For the former, the data to be
verified is still kept by the owner that plays as well the verifier role. For the latter, data is not stored anymore at the owner.
Additionally verification approaches that allow checking the presence of the whole data should be distinguished from approaches
that rely on probabilistic checking (portion of data).

In the cooperative Internet backup scheme described in [3], each peer periodically challenges its partners by requesting a block
out of the stored data. The response is checked by comparing it with the valid block stored at the verifier’s disk space. A similar
approach is proposed in [10] where the prover has to send the MAC of data as the response to the challenge message. The data
originator sends a fresh nonce (a unique and randomly chosen value) as the key for the message authentication code: this is to

8

prevent the holder node from storing only the hash value of the data. Another probabilistic verification approach based on the
algebraic signatures of data blocks was proposed in [11]: it relies on the homomorphic properties of such signatures with respect
to the parity. Compared to [3] and [10], the verifier does not need to store any information for verification. However, if the parity
blocks do not match, it is difficult (depending on the number of parity blocks used) and computationally expensive to recognize
the faulty holder. In contrast, our solution ensures the identification of misbehaving holders.

[8] describes two different approaches: the first one requires pre-computed results of challenges to be stored at the verifier,
where a challenge corresponds to requesting a fingerprint of the data concatenated with a random number. Compared with [3],
[10], and [11], the protocol requires less verification metadata storage at the verifier, yet it allows only a fixed number of
challenges to be performed. The second solution relies on an RSA-based proof: the public key is the data itself, whereas the
homomorphic properties inherent to RSA make it possible to use the inverse of this data as the secret key. This solution does not
require the verifier to store the whole data. It also makes it possible to generate an unlimited number of challenges, similarly to
our protocol. A similar RSA-based solution is described by Filho and Barreto in [9]. However,. Contrary to these solutions, our
protocol provides a secure delegation primitive that does not necessitate revealing the owner's secret key to the verifier.

The main characteristics of the existing verification protocols seen in this section are summarized in Table 1.

Table 1: Comparison of existing verification protocols

Resource usage Verification
protocols Security Verification

metadata
Communication overhead Computation overhead at verifier (response message)

Lillibridge et al. [3] data data block linear comparison with original data probabilistic
Caronni and

Waldvogel [10]
data hash of data hash computation deterministic

Deswarte et al. [8]: pre-computed
challenges

hash of data linear comparison with hash of data deterministic
hash solution

Deswarte et al. [8]: data hash hash of data RSA exponentiation with data as the
exponent

deterministic
RSA solution

Filho and Barreto
[9]

data hash hash of data RSA exponentiation with data as the
exponent

deterministic

Schwarz and Miller
[11]

nothing block signatures + parity signature computation probabilistic

Our protocol Elliptic curve point
(G2 element)

Elliptic curve point bilinear pairing exponentiation with a
small random number as the exponent

deterministic

5 CONCLUSION

We proposed in this paper a verification protocol that allows checking the integrity and availability of storage in a cooperative
storage application. We showed that our protocol satisfies high security requirements with low resource consumption compared
with existing verification protocols. This verification exploits the bilinearity properties available in some elliptic curve
cryptography pairings to enable an efficient storage verification that additionally can be delegated to third parties.

Assessing the actual state of storage in such an application represents the first step towards efficient reaction to misbehavior:
active replication strategies can be built based on such evaluations; we are also actively working on the construction of
cooperation incentives using this protocol as an observation primitive.

6 REFERENCES

[1] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, “Handbook of Applied Cryptography”, CRC Press, 1996.
[2] N. Oualha, Y. Roudier, "Securing Ad Hoc Storage through Probabilistic Cooperation Assessment", In Proceedings of the 3rd

Workshop on Cryptography for Ad Hoc Networks, Wroclaw, Poland, 2007.
[3] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A Cooperative Internet Backup Scheme”, In Proceedings

of the 2003 Usenix Annual Technical Conference (General Track), pp. 29-41, San Antonio, Texas, June 2003.
[4] Stefan Brands and David Chaum, “Distance-Bounding Protocols”, In Workshop on the theory and application of

cryptographic techniques on Advances in cryptology — CRYPTO 1994, volume 839 of Lecture Notes in Computer Science,
pages 344–359. Springer-Verlag, August 1994.

[5] D.J. Johnson, A.J. Menezes, S.A. Vanstone, “The Elliptic Curve Digital Signature Algorithm (ECDSA)”, International
Journal of Information Security, Vol. 1, pp. 36-63, 2001

[6] N. R. Potlapally, S. Ravi, A. Raghunathan and N. K. Jha, “A Study of the Energy Consumption Characteristics of
Cryptographic Algorithms and Security Protocols”, In IEEE Transactions in Mobile Computing, vol. 5, no. 2, pp. 128-143,
February 2006.

9

[7] V. Gupta, S. Gupta, S. Chang, and D. Stebila, “Performance Analysis of Elliptic Curve Cryptography for SSL,” Proc. ACM
Workshop Wireless Security, pp. 87-94, Sept. 2002.

[8] Y. Deswarte, J.-J. Quisquater, and A. Saïdane, “Remote Integrity Checking”, In Proceedings of Sixth Working Conference
on Integrity and Internal Control in Information Systems (IICIS), 2004.

[9] D. G. Filho and P. S. L. M. Barreto, “Demonstrating data possession and uncheatable data transfer”, In IACR Cryptology
ePrint Archive, 2006.

[10] G. Caronni and M. Waldvogel, “Establishing Trust in Distributed Storage Providers”, In Third IEEE P2P Conference,
Linkoping 03, 2003.

[11] T. Schwarz, and E. L. Miller, “Store, forget, and check: Using algebraic signatures to check remotely administered storage”,
In Proceedings of the IEEE Int'l Conference on Distributed Computing Systems (ICDCS '06), July 2006.

[12] P. Druschel and A. Rowstron, “PAST: A large-scale, persistent peer-to-peer storage utility”, In Proceedings of HotOS VIII,
May 2001.

10

	
	
	
	1 INTRODUCTION
	2 PROBLEM STATEMENT
	2.1 Architectural Requirements
	2.2 Security Threats
	3 A NEW VERIFICATION PROTOCOL
	3.1 Bilinear Maps
	3.2 The Elliptic Curve Discrete Logarithm Problem
	3.3 Verification Protocol

	4 PROTOCOL EVALUATION
	4.1 Security Analysis
	4.2 Performance Analysis
	4.3 Related Work

	
	5 CONCLUSION
	6 REFERENCES

