Fou Nl alld 0oV F 1. Past ReCUuLslve Least-ogquales ALZOLLILITLS
Based on Displacement Structure and the FFT

Dirk T.M. Slock Karim Maouche

Institut EURECOM
2229 route des Creétes, B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE

slock@eurecom.fr

Abstract

We present two new fast algorithms for Recursive Least-Squares (RLS) adaptive filtering. These
algorithms are especially suited for adapting very long filters such as in the acoustic echo cancellation
problem. For the FSU RLS, the starting point is to introduce subsampled updating (SU) in the RLS
algorithm. In the SU RLS algorithm, the Kalman gain and the likelihood variable are matrices.
Due to the shift invariance of the adaptive FIR filtering problem, these matrices exhibit a low
displacement rank. This leads to a representation of these quantities in terms of sums of products
of triangular Toeplitz matrices. Finally, the product of these Toeplitz matrices with a vector can
be computed efficiently by using the Fast Fourier Transform (FFT). The second algorithm which is
the FSU FTF apply the same idea to the FTF algorithm. It uses a Schur procedure to compute the
rotation matrix that allows to adapt the filter and use also the FFT. Its computational complexity
is of the same order as the FSU RLS.

1 Introduction

Fast RLS algorithms such as the Fast Transversal Filter (FTF) algorithm [1],[2],[3] and the Fast
Lattice/Fast QR (FLA/FQR) algorithms [4] efficiently exploit the shift invariance structure present in
the RLS approach to the adaptive FIR filtering problem. They reduce the computational complexity
of O(N?) for the conventional RLS algorithm to O(N) operations per sample. In order to further
reduce the computational complexity of these algorithms, it appears that the sampling rate at which
the LS filter estimate is provided has to be reduced from the signal sampling rate to a subsampled
rate with a subsampling factor of L > 1. The approach we pursue here (which should be especially
applicable when I < N) consists of using the same strategy as the RLS algorithm : compute the new
filter estimate and auxiliary quantities from the same quantities that were available L samples before.
We shall call this the Subsampled-Updating RLS (SU RLS) algorithm. We derive a fast version of the
SU RLS algorithm, the FSU RLS algorithm. In a second step, the same idea is applied to the FTF
algorithm, which will give the FSU FTF algorithm.

2 The Subsampled-Updating RLS Algorithm

In order to formulate the RLS adaptive filtering problem and to fix notation, we shall first recall
the RLS algorithm. We shall mostly stick to the notation introduced in [1],[5],[2],[3], except that the
ordering of the rows in data vectors will be reversed (to transform a Hankel data matrix into a Toeplitz
one) and some extra notation will be introduced.

2.1 The RLS Algorithm

An adaptive transversal filter Wy, forms a linear combination of N consecutive input samples
{z(i=n),n=10,...,N—1} to approximate (the negative of) the desired-response signal d(z). The
resulting error signal is given by

N(l|k) = d(i)—I—WNJgXN(= —|— Z Kf;lw Z—) (1)

where Xn(2) = {x“ () a7 (e—=1)---2¥ (i—N—I—l)J 1s the regression vector and superscript ** denotes
Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N transversal filter

coefficients Wy, = |Wx ;- W]]V\fk] are adapted so as to minimize recursively the following LS criterion

k
En(k) = Tglvgl{z N + W X))+ A Wy - WOH?\N}
=1

L (2)
= DN lenlR)IP 4 N W - Woll}
=1

where A € (0,1]is the exponential weighting factor, p > 0, Ay = diag {/\N_l, D 1}, v]|3 = vAv™,
Il = |l-ll;. The second term in the LS criterion represents a priori information. For instance, prior
to measuring the signals, we may assume that Wy is distributed as Wy ~ AN (WO, Ral), Ry = pAAn

(or any other distribution with the same first and second order moments). The particular choice for
Ry will become clear in the discussion of the initialization of the FSU RLS algorithm. Minimization
of the LS criterion leads to the following minimizer

WN,k = _P]{T{kRJ_\flk (3)

where

Bye = Zk: MTXN(OXN () + A Ay

= NRwaos + Xn(XE(L). R = Ro = jAhx
Pyp = zkj A= X () d" (i) — A ANl

= Z/\:;Njg—l + Xn(k)d" (k) , Pxo = —RoWH

are the sample second order statistics. Substituting the time recursions for Ry ; and Py from (4)
into (3) and using the matrix inversion lemma for Ry, we obtain the RLS algorithm:

Cnpe = —XN(WATRY, (5)
N (k) = 1= CnpXn(k) (6)
RJ_\T}k = ’_IRJ_\T}k—l - éﬁ,ﬂN(k)éN,k (7)
(k) = en(klk=1) = d(k)+ W s X (k) (8)
en(k) = en(klk) = ey(k)yn(k) (9)
Wyr = Wit +en(kF)Cng (10)

where €y (k) and en(k) are the a priori and a posteriori error signals (resp. predicted and filtered
errors in the Kalman filtering terminology) and one can verify (or see [1]) that they are related by the
likelihood variable vy (k) as in (9).

Equations (8)-(10) constitute the joint-process or filtering part of the RLS algorithm. Its computa-
tional complexity is 2N +1. The role of the prediction part (5)-(7) is to produce the Kalman gain C~'N7k
and the likelihood variable yn(k) for the joint-process part. In the conventional RLS algorithm, this is
done via the Riccati equation (7) which requires O(N?) computations. Fast RLS algorithms (FTF and
FLA/FQR) exploit a certain shift invariance structure in X (k) which is inherited by Ry and Py g,
to avoid the Riccati equation in the prediction part and reduce its computational complexity to O(N)
(the FLA/FQR algorithms also provide €y (k) but replace Wy ; by a transformed set of parameters
as in the square-root Kalman filtering/RLS algorithms). We now investigate an alternative way to
reduce the computational complexity of the RLS algorithm.

2.2 The SU RLS Algorithm

In what follows, we shall often assume for simplicity that L is a power of two and that M = N/L is an
integer, though more general cases can be considered equally well. We shall introduce the following

dH (k—L+1) e (k—L+1) XE(k—L+1)
drr = : STk = : s XN, Lk = : =2k T k—N+1]
d" (k) (k) X{ (k)
(11)
where Xy 1% is a Toeplitz data matrix. We can now obtain the following multi-step updates from (4)

Pyp = MNPyvaor + X]@I,L,kALdL,k , Rny = MNRyjop + Xﬁ7L7kALXN,L,k . (12)

If we plug in these recursions into the solution (3), then we get similarly to the derivation of the RLS
algorithm the following recursion

QN,k = _XN,L,k/_LR]_V}k_L (13)
) = AL = XnnaC (14)
Ry, = AERYL - Oy (Bng (1)
NLp = dpg+ XNoaWH e (16)
In () eniy = g (17)
Wig = Wip-r+ enriCnp (18)

p
where EN.LE and ey r are vectors of a priori and a posteriori errors respectively:

N(k—L+1k—1) N(k—L+1]k)

P _ _
ENLE , EN,Lk =

e (k|k—L) e (K|k)
While the Subsampled-Updating RLS algorithm thus obtained constitutes a valid algorithm to provide
the filter solution Wiy ;. every L samples, it does not represent much computational gain w.r.t. the
original RLS algorithm (L = 1). We now consider a first instance of exploiting the FF'T technique to

reduce the computational complexity in equation (16) by a factor O (log]; L)'

2.3 Fast Computation of the Filtering Errors using the FFT

Consider a partitioning of the filter coefficients vector in M = N/L subvectors of length L: Wy =
E}\% = E%k . Now consider the vector of (block) a priori filtering errors

M

NLE = dL7k+XN7L7kW]{TI,k—L = dL,k+ZXL,L,k—(j—1)Lm§§%—L . (20)
J=1

In other words, we have essentially M times the product of a L x L Toeplitz matrix with a vector
of length L. Such a product can be efficiently computed in basically two different ways. One way is
to use fast convolution algorithms [6], which are interesting for moderate values of L. Another way
is to use the overlap-save method. We can embed the L x L Toeplitz matrix Xy, 1 ; into a 2L x 2L
circulant matrix, viz.

—H * XH
X7, - lXi‘ka Lf,k] = e (o)) (21)

where C(c?) is a right shift circulant matrix with ¢/ as first row. Then we get for the matrix-vector
product

O] . (22)

o H H
X pp—(-1yp W g, = o Opxr] € (%L,k—(]‘—nL) [Wﬁv}{g .

The product of a circulant matrix C(¢”) with a vector v where ¢ and v are of length m can be computed
efficiently as follows. Let F, be the Discrete Fourier Transform matrix for a DFT of length m. Then

unllls viit plupelly tilat 4 LilLulallt 1llatlla Lall Do Ulagvilall4atld vid o olillilality LvidallolUllildaulivil Witll 4

DFT matrix, we get
1 1
C(eyv = —C(™FIF,v = = FI diag! (F,, ¢) F,v (23)
m m

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So the
computation of the vector in (22) requires the padding of mﬁ\fi—L with L zeros, the DFT of the
resulting vector, the DFT of @31, _(;—1)L, the product of the two bFTs, and the (scaled) IDFT of this
product. When the FFT is used to perform the DFTs, this leads to a computationally more efficient
procedure than the straightforward matrix-vector product which would require L? multiplications.
Note that at time £, only the FF'T of 251, , needs to be computed; the FFTsof zop, 4p—j1,7 =1,...,M -1
have been computed at previous time instants. Remark also that we need to apply the inverse DFT
(and the scaling by %) only once, after having summed up the M products in the frequency domain.
The above procedure reduces the N computations per sample for 6?\77L7k to

FFT(2L) 2] N ,FFT(2L) (24)

N | =/ =
[LQ +L L

computations per sample (FFT(L) signifies the computational complexity associated with a FFT of
length L) or basically O (N %) operations.

2.4 Relation Between the Filtering Errors and Kalman Gains in Block Mode and
in Sequential Mode

Remark that in the SU RLS algorithm, we find filtering errors that are not just predicted one step
ahead, but several steps. This results from the fact that the filter Wy ; gets updated only once every
L samples. The learning curve for the SU RLS algorithm would be the variance of the filtering errors
obtained from ey 1, 5 and hence would be piecewise constant, coinciding with the learning curve for
the RLS algorithm at times that are integer multiples of L, and remaining constant for L—1 samples
after those instants. However, it turns out to be fairly simple to recover the a priori filtering errors of
the conventional RLS algorithm from those of the SU RLS algorithm.
Let us introduce the following notation

A (k=L+1) R (k—L+1|k—1)
N = : = : (25)
e (k) R (klk—1)
Nk = diag{yn(k—L+1),...,yn(k)} (26)
Dnry = A, nNipk (27)

where €, is a vector of L a priori errors of the RLS algorithm. Then one can show that

H H
G?V,L,klN(k)G?\T,L,k = é)\f,k DN,L,kE?V,k- (28)

Now consider the Upper Diagonal Lower (UDL) triangular factorization of the L x L matrix v, (k),
then we get
In(F) = Unpk DnoiUN Ly (29)

where Upn 1, is upper triangular with unit diagonal, and the diagonal factor is indeed the Dy
introduced in (27). One can show that there exists a unit-diagonal triangular relation between €y ; ,
and €y, and hence from (28) and (29), this triangular factor must be Un 1, viz.

UJIQI,L,k €§?\T,L,k = é)\f,k' (30)

This relation allows us to compute the a priori filtering errors €, of the RLS algorithm from the a
priori filtering errors e, ; , in the SU RLS algorithm. The necessary triangular factorization (29) can

Cdplly Lo llldautc padall UL Lic HIVELsIUVIL UL yN \fv} 1L il O Vo vl Alguiduiiidil. AJLE LAall UV dAldi) ©Adlly SUW

I pr = Unpihe, No(k) U Ly ENLLE : (31)
N——

a priori SURLS errors

% . @ priori RLS errors

en, @ posteriori RLS errors

ev s @ posteriori SURLS errors

Similarly, there exists a relation between the Kalman gain in the SU RLS algorithm and L con-
secutive Kalman gains of the RLS algorithm. One can show that

6N,k—L-I—1
U]{T{L,kQN,k = Ap! : . (32)
CN i
Let un 1 be the last column of Uy r . Then (32) leads in particular to
UEJ QN,k = AN MO (33)
u%,L,k QN,k = Cnu - (34)

ur,; being the L X 1 vector with 1 at the ¢th position and zeros elsewhere.

3 Displacement Structure of the SU RLS Kalman Gain Quantities

Consider the displacement structure of a matrix R:
§
ViR = R-AZRZ" = > uo? (35)
=1

where 6, called displacement rank, is the rank of R — A Z R ZH | Z is the lower shift matrix (ones on
the first subdiagonal and zeros elsewhere), and the vectors u;, v; are called the generators of R for the
following reason. By solving the Lyapunov equation (35), it is straightforward to obtain the following
representation for R:

§ §

R = V;l (Z(S:uZ UZH) = Zi N 77 uivzH (ZH)j = Z ,C(ui)/KﬁH(vi) (36)

where A = diag {1, A, A%,...} and L(u) is a lower triangular Toeplitz matrix with u as first column.
We shall exploit this representation for QN,k and 1]_\71(]6) to reduce the computational complexity of
the SU RLS algorithm. Considering the definition of these quantities, we see that we first have to
consider RJ_\T}k

3.1 Displacement Structure of the Inverse Sample Covariance Matrix

In [7], the following displacement structure was derived
Ry, 0 _ _ ~ H ~
Y [Nk 0] = AR joq () Ax s — BRGS0 Brs + A0 One] an(B) [0 O] (37)

where Ay and By are forward and backward prediction filters and ay(k) and fn(k) are forward
and backward prediction error variances (see [1]).

Do i A1 pldaLiiiiviiv Jtluatbul © UL vilv 1adlilliall aatit

Let X, ; , and r% ; , be respectively the vectors of forward and backward a priori prediction errors

defined by

p _ H
ENLEk = XN+1,Lk AN k-1, (38)

H
™ok = XN+1Lk BNjg-r - (39)

The displacement structure of the SURLS Kalman gain turns out to be

A% [QM 0] = —eR A o (h=L) AN jor + R ATEBY (k= L) By i
— (N — up) A E N (k=1) [0 éN,k—L] (40)
where
- H
IN,Lk = XN41,L,k [0 CN,k—L] . (41)

By using (33), the L X 1 vector nn 1 introduced above can also be expressed in terms of the Kalman
gain at time k—1 as

~ " H B ~H
vk = AT XN [0 QN,JH] upy = A TXN L1 Cy oL (42)

which leads to
NN, LE = Pt (Ail — l]_vl(k—l)) UL - (43)

3.3 Displacement Structure of the Likelihood Variable

Consider now the displacement structure of the likelihood variable l]_\fl(k)

VA (k) = Va AL+ A0 Y (XN7L7kR]_V}k_LXﬁ7L7k) . (44)

By using the displacement structure of the Kalman gain given in (40), the displacement structure of
the likelihood variable becomes

Vi l]_vl(k) = e?V,L,k’_La]_\fl(k_L)eij\fi,k - T%,L,kA_Lﬂﬁl(k—L)T%i,k
+ (g, np — un,) A N (k=1) (g, —)™ (45)

This last equation exhibits the Hermitian structure inherited from l]_\fl(k)'

Because of the shift invariance of the adaptive filtering problem, the Kalman gain and the likelihood
variable have a low displacement rank of 3; that is, these matrices have a structure close to the Toeplitz
one and can be replaced by their representation as in (36). The appearence of Toeplitz matrices in
this representation allows for an efficient computation of the product of the Kalman gain matrix with
an a posteriori error vector by using the FF'T. Also, the inversion of the likelihood variable matrix can
be done efficiently by using the generalized Schur algorithm. Furthermore, instead of updating QN,k
and 7' (k) by using the SU RLS equations (13), (14), it suffices to update the filters Ay, By x and

[0 C~'N7k], and to compute the filter outputs i, ; ,, 1% ; . and nn 1, from their definitions (38), (39)
and (41), using the data available at the time instant k.

4 The FSU RLS Algorithm

We can rewrite equation (18) in the form
Wik 01 = [Wip—r 0]+ €N 11 [QN,k 0] : (46)

The reason why we add the zeros is that for the FSU RLS algorithm, it will turn out to be more

convenient to assume that M = % is an integer. The a posteriori filtering error vector ey i is

Table I: FSU RLS Algorithm

Computation Cost per L samples
1 oop = dex+ Xvprze Was-z 07 (2+ SEHFFT(2L) + 2(N + 1)
2 e = Xnpioe BNj_z (1+ SELFFT(2L) + 2(N + 1)
~ H
3 NN, Lk = XN+1,L,k [0 CN,k—L] 1+ %)FFT(?L)-I—?(N-I—I)
H H
en(k—L+1) Xnt1,0.6 AN p—1
4 = i (14 SLFFT(2L) + 3N
ezlg\f,L,k+1 XJI\?+1(k+1)A%,k—L+1
o
5 eﬁv,L,k = — NN,Lk e%(k—L—l—l) L
(R p41)
N,Lk+1/1:.1,—1
_ -1 L -1 H
6 lNl(k) = Vjy {ezlg\f,L,k)‘ aN (k_L)eif,L,k
—L p—1 H
_T%,L,k)‘ By (k_L)TiT,L,k
+(vzk — L) ATy (k=L) (v .k —uza)”)
T | Lvrox GNk L%,L,k = 1;71 (k) Generalized Schur algorithm : 212
8 LHuNyLyk = ur,L Backsubstitution : 0.51.2
9 |2y (R lewzge rvne enrpr] = [, % €] 312
10 [QNk 0] = V;1 {_engk)‘_LaXfl(k_L)AN,k—L
+riy L g AT AR (k= L) B k-
—(nw,zk — ur) Ay (k—1) [0 éN,k—L]}
11 Byk = Byg—1 +7T8 1k [QNk 0] (3+ SELFFT(2L) 4+ 6(N + 1) + 10L
12 Bn(k) = AN Bn(k—L) + ¥ xmh 1 4 L+1
13 [@W 0] = un i [QNk 0] (3+ SEL)FFT(2L) + 6(N + 1) + 10L
14 (k) = (Gyzn)p g
15 Avarr = Avposr + el [Cu 0] 28 | 4 SEOFFTEL) + 6N +1) + 101
16 ezjgv(k‘i'l) = ezjgvi,k+1uN,L,k L
17 en(k+1) = X (k+1)vn (k) 1
18 ANyk = AN7k+1 —eN(k—l—l) [0 éNyk] N
19 ay(k+1) =)\LaN(k—L—l—l)+e%7L7k+1e§\,yLyk+1 L+1
20 an(k) = X7 (an(k+1) — en(k+1)eh " (k+1)) 2
21 Wap 0] = [Wrp—r 0]+ enps {QNk 0} (6 + SEL)FFT(2L) + 6(N + 1) + 10L

Total cost per sample

(20 + 8 AL FFTCL) | gy N 4 5 51,

VPLAllITl Dy 1oULVILS LT b)yesttlll UL Y UALIVLDL \ll} vid uilc stlitlallZd Jullul AlgULIVHELE. LV DIVY, 1L WE
replace [Q]Wg 0] in (46) by its expression given in terms of its displacement vectors (via (36) and

(40)), the joint-process update equation takes the form

3
Wi 0] = [Wnp—r O]+ enr x> diTi p ALGE v (47)

=1

where d;, ’TﬁL and g}i’N_H are respectively scalars, L X L lower and L X (N 4 1) upper triangular
Toeplitz matrices. The last term in equation (47) can be computed in the following manner. For
v = 1,2,3 do:

e mutiply d; by en 11 to obtain p}m = G%Lkdi.
e use the circular embedding and FFT technique to compute the product p%ﬂ» = p}:7i’fjf7L.
e multiply p%ﬂ» with the diagonal matrix Ar. This gives a 1 X L vector, say p?iﬂ» = p%J]XL.

e use again the circular embedding and FFT technique to compute the product p4L7Z» = piﬂﬁNH

in 2 portions of length L (see section 2.3).

Finally, add the three vectors p4L7Z» and obtain G%L i Z?:l diTLi,L AL g}i’N_H by applying the inverse
FFT to the sum 37, Pl

The RLS Kalman gain can be updated by using (34) and the representation of QN,k in terms of
its generators. The updating of the prediction filters is similar to the updating of Wy ;. A minor
complication arises in the update of the forward prediction filter, the details of which can be found in
[8]. The resulting FSU RLS algorithm can be found in Table I.

5 The FSU FTF Algorithm

5.1 The Fast Transversal Filter Algorithm

The Fast Transversal Filter exploit efficiently the shift invariance structure of the adaptive FIR filtering
problem. Its computational complexity is 7/N. This algorithm can be formalized as follows:

[6’]\771g 0] [0 éN,k—l]
Nk - 9, AN k-1
Bn BN -1
[Wh k0] (W k-1 0]
any (k) = dan(k=1)+ en (k)ely (k)
Bn (k) = ABn (k=1) +ry (k) riy (k)
v (k) = N8y (k) Jan (k) (48)
where Oy, is a (4 X 4) rotation matrix
0 = 0} 0} 0} 0} (49)
and the four (4 x 4) matrices ©% i = 1,2,3,4 are given by
[1 000 [I 000
- 0 100) 0 100
O = 0 010 % = rv(k) 0 1 0
(k) 0 0 1 0 001
i i (k i el (k)
1 N 1 X
O Snie—n ° an (i) 00
0] = 0 1 0 0 0} = en (k) 1 0 0 (50)
0 0 1 0 0 0 1 0
00 0 1 0 0 0 1

111 U1IUcCl o 11lavoc L1lTdse llld;bll(,t:b, V1T 111ustu (,UlllPleC vlilc a PllUll CL1IVULS CN \f\/) [} 'IN \f\/) alil\u tN \f\/) ywillitovll
are the outputs of the filters Anr_1, By g—1 and Wy p—1. We can also constuct these matrices by
using the Schur algorithm as we will see in the next section.

5.2 Schur Algorithm for the Fast Transversal Filter

Let us introduce

A% (k) = d(k) =& (k) (51)
dn (k) = d(k) —ex (k) (52)
Consider the following product
[[0 éN,k—L] 1 [UJI;TI,L,k]
p H
AN k- . EN,L.k
Fr (k) = XNy1oe = : (53)
p H
By -1 "N.L.k
L [Wn k-1 0] | I —J]@gk |
The first column of Fy, (k) is
-1 p p TP T
Fi(k) upy = [L=95" (k=) e} (k=L+1) R (k=L+1) —df (k—L+1)] . (54)

So, with the recursions for ay (k—L+1) and Sy (k—L41) that are

ay (k—L+1) = Xany(k—L)+4 e (k—L+1)yn (k—L) el (k—L+1)
By (k—L+1) ANON (k=L) + i (k= L+1)yn (k= L+1) v (k—L+1) (55)

(plus possibly an alternative calculation for vy (k—1L)), it is possible to construct @4_r41 and then

goes on the recursions of the FTF.
Now, if we rotate with ©,_z11 on both sides of (53), then we have

[[6N,k—L+1 0| | ”J];VI,L—Lk *
AN,k—L-H EN (k_L—I_l) e?\fﬁ—l,k
X]{TI+1,L,k = H - (56)
BN,k—L-l—l N (k_L—I_l) T%,L—l,k
= Sp H
L (WNk—2+1 0] | I —dn (k—L+1) —dNT -1k |

By shifting to the right the first row of the right hand side of (56) and take the three vectors
e?V,L—l,k’ 7‘%7L_17k and —J]@E_Lk, we obtain F7,_q (k) and hence can do the same operations to obtain
the next rotation matrices. So by using the well known Schur algorithm working on the four vectors
given by the matrix I, (k), it is possible to obtain the successive rotation matrices from time k— L +1
to time k.

5.3 The FSU FTF Algorithm

In a subsampled updating strategy, one need to obtain the adapted filter at time & from the one at
time k— L. In the case of the TF algorithm, this will be done by using the Schur procedure described
previously but without computing the different filters at each iteration.

To have a polynomial formulation of the problem, let’s define

ék (Z) [6’]\771g 0] 31

Ap(2) | _ An, z

Bp(z) | B]]X: : : (57)
Wy (Z) [VVNJg 0] N

A11TLILC \‘—tO) Lall DT WwililtitTll as

Ci(2) 21 Ci-1(2)
A (z 1 Ap_1 (2
O |, Ek; - 1 32_18 (58)
Wi (2) 1 W k-1 (2)
Let .
Or(z) = O b (59)
1

Cr(2) Crer (2)
s | = 0 | 5o 0
Wk (Z) WN,k—L (Z)

where

O 1, (Z) = 0, (Z) Or_1 (Z)"‘@k—L-H (Z) . (61)

The successive matrices appearing in (61) can be obtained as it was shown, by using the Schur
algorithm applied to the rows of Fp, (k). The computationnal complexity associated with the Schur
procedure is 2.5L? multiplications. It appears from (60) that the filter can be adapted at times
multiples of L in a equivalent manner as the FTF algorithm by computing the (4 x 4) polynomial
matrix Oz, (#). The accumulation of the successive matrices ©; (z) takes 7.5L% multiplications since
there are five non trivial entries in a matrix Q; (2).

Remark that O 1, (2) has the following structure

@kJJ (Z) = (62)

* X ¥ ¥
* X ¥ ¥
* X ¥ ¥
— o O O

where the stars stand for polynomials of degree at most L. Hence, the product in (60) represents 12
convolutions of polynomials of order L and N. These convolutions can be done using fast convolution
techniques. In the present case where the length of the filter is relatively large, we will choose the
FFT technique. In that case the complexity is 3(1 + 22 FFT (2L)+ 2 (N + 1)) multiplications and
6 (N + 1) additions for each filter. The product (53) which gives F7, (k) is also computed with the
FFT and hence, we have to compute the FFTs of the filters just one time.

The FSU FTF algorithm is given in the table II.

5.4 Concluding Remarks

The complexity of the FSU RLS and the FSU FTF are respectively (’)(8%%£2 + 34% +5.51)

and (’)(E%%%ﬁl + 32% +10L) operations per sample. This can be very interesting for long filters.
For example, for the FSU RLS when (N, L) = (4095,256); (8191,256) and the FFT is done via the
split radix (F'FT(2m) = mlogz(2m) real multiplications for real signals) the multiplicative complexity
is respectively 0.8V and 0.6 N per sample. With the FSU FTF, for the same parameters N and L, the
multiplicative complexity is respectively 1.1V and 0.74N, compared to 7NV for the FTF algorithm,
the currently fastest RLS algorithm, and 2N for the LMS algorithm. The number of additions is
somewhat higher. The cost we pay is a processing delay which is of the order of I samples. We have
simulated the algorithms and have verified that they work. Preliminary experience appears to indicate
that the numerical behavior of the algorithms may require further attention.

10

Table II: FSU FTF Algorithm

Computation Cost per L samples
MNLL [0 CN,k—L]
p H
e Angp—1r
1 DAL XEox | (6+48LFFT(2L) 4 8N
o L,
"N,Lk Byk-1
—df s (W k-1 0]

2 | Schur Algorithm:

~

Input: NMN,Lk> e?V,L,k’ T%,L,k’ _dff,L,k
Output: Or_i(z)t=L-1,---,0 2.5L2
-1
3 Orr(z) = [[Or-i(2) 7.5L2
2=0
Ch (2) Cr_1 (%)
Ak z Ak_L z
4 (=) = Oz (2) (=) (12 + 42 FFT(2L) + 24N
By (=) Bi_1 (2)
Wi (2) Wnk—1 (2)
Total cost per sample (17 + 8%)% + 32% +10L

References

[1] J.M. Cioffi and T. Kailath. “Fast, recursive least squares transversal filters for adaptive filtering”.
IEEE Trans. on ASSP, ASSP-32(2):304-337, April 1984.

[2] D.T.M. Slock and T. Kailath. “Numerically Stable Fast Transversal Filters for Recursive Least-
Squares Adaptive Filtering”. IFEE Trans. Signal Proc., ASSP-39(1):92-114, Jan. 1991.

[3] D.T.M. Slock and T. Kailath. “A Modular Prewindowing Framework for Covariance FTF RLS
Algorithms”. Signal Processing, 28(1):47-61, July 1992.

[4] D.T.M. Slock. “Reconciling Fast RLS Lattice and QR Algorithms”. In Proc. ICASSP 90 Conf.,
pages 1591-1594, Albuquerque, NM, April 3-6 1990.

[5] J.M. Cioffi and T. Kailath. “Windowed Fast Transversal Filters Adaptive Algorithms with Nor-
malization”. IEEE Trans. on ASSP, ASSP-33(3):607-625, June 1985.

[6] M. Vetterli. “Fast Algorithms for Signal Processing”. In M. Kunt, editor, Techniques modernes de
traitement numérique des signaux. Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1991. ISBN 2-88074-207-2.

[7] D.T.M. Slock. “Backward Consistency Concept and Round-Off Error Propagation Dynamics in
Recursive Least-Squares Algorithms”. Optical Engineering, 31(6):1153-1169, June 1992.

[8] Dirk T.M. Slock and K. Maouche. “The Fast Subsampled-Updating Recursive Least-Squares (FSU
RLS) Algorithm for Adaptive Filtering Based on Displacement Structure and the FFT”. Technical
Report RR N© 92-001, Institut Eurécom, Sophia Antipolis, France, 14 Dec. 1992.

11

