
FSU RLS and FSU FTF: Fast Recursive Least-Squares Algorithms

Based on Displacement Structure and the FFT

Dirk T.M. Slock Karim Maouche

Institut EURECOM

2229 route des Crêtes, B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE
slock@eurecom.fr

Abstract

We present two new fast algorithms for Recursive Least-Squares (RLS) adaptive �ltering. These
algorithms are especially suited for adapting very long �lters such as in the acoustic echo cancellation
problem. For the FSU RLS, the starting point is to introduce subsampled updating (SU) in the RLS
algorithm. In the SU RLS algorithm, the Kalman gain and the likelihood variable are matrices.
Due to the shift invariance of the adaptive FIR �ltering problem, these matrices exhibit a low
displacement rank. This leads to a representation of these quantities in terms of sums of products
of triangular Toeplitz matrices. Finally, the product of these Toeplitz matrices with a vector can
be computed e�ciently by using the Fast Fourier Transform (FFT). The second algorithm which is
the FSU FTF apply the same idea to the FTF algorithm. It uses a Schur procedure to compute the
rotation matrix that allows to adapt the �lter and use also the FFT. Its computational complexity
is of the same order as the FSU RLS.

1 Introduction

Fast RLS algorithms such as the Fast Transversal Filter (FTF) algorithm [1],[2],[3] and the Fast
Lattice/Fast QR (FLA/FQR) algorithms [4] e�ciently exploit the shift invariance structure present in
the RLS approach to the adaptive FIR �ltering problem. They reduce the computational complexity
of O(N2) for the conventional RLS algorithm to O(N) operations per sample. In order to further
reduce the computational complexity of these algorithms, it appears that the sampling rate at which
the LS �lter estimate is provided has to be reduced from the signal sampling rate to a subsampled
rate with a subsampling factor of L � 1. The approach we pursue here (which should be especially
applicable when L < N) consists of using the same strategy as the RLS algorithm : compute the new
�lter estimate and auxiliary quantities from the same quantities that were available L samples before.
We shall call this the Subsampled-Updating RLS (SU RLS) algorithm. We derive a fast version of the
SU RLS algorithm, the FSU RLS algorithm. In a second step, the same idea is applied to the FTF
algorithm, which will give the FSU FTF algorithm.

2 The Subsampled-Updating RLS Algorithm

In order to formulate the RLS adaptive �ltering problem and to �x notation, we shall �rst recall
the RLS algorithm. We shall mostly stick to the notation introduced in [1],[5],[2],[3], except that the
ordering of the rows in data vectors will be reversed (to transform a Hankel data matrix into a Toeplitz
one) and some extra notation will be introduced.

2.1 The RLS Algorithm

An adaptive transversal �lter WN;k forms a linear combination of N consecutive input samples
fx(i�n); n = 0; . . . ; N�1g to approximate (the negative of) the desired-response signal d(i). The
resulting error signal is given by

�N (ijk) = d(i) +WN;kXN (i) = d(i) +
N�1X
n=0

Wn+1
N;k x(i�n) (1)

1

where XN(i) =
h
xH(i) xH(i�1) � � �xH(i�N+1)

i
is the regression vector and superscript H denotes

Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N transversal �lter

coe�cientsWN;k =
h
W 1

N;k � � �W
N
N;k

i
are adapted so as to minimize recursively the following LS criterion

�N (k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN(i)k
2 + �k+1� kWN �W0k

2
�N

)

=
kX
i=1

�k�i k�N (ijk)k
2 + �k+1� kWN;k �W0k

2
�N

(2)

where � 2 (0; 1] is the exponential weighting factor, � > 0, �N = diag
n
�N�1; . . . ; �; 1

o
, kvk2� = v�vH,

k:k = k:kI . The second term in the LS criterion represents a priori information. For instance, prior

to measuring the signals, we may assume that WN is distributed as WN � N
�
W0; R

�1
0

�
, R0 = ���N

(or any other distribution with the same �rst and second order moments). The particular choice for
R0 will become clear in the discussion of the initialization of the FSU RLS algorithm. Minimization
of the LS criterion leads to the following minimizer

WN;k = �PH
N;kR

�1
N;k (3)

where

RN;k =
kX
i=1

�k�iXN(i)X
H
N (i) + �k+1��N

= �RN;k�1 +XN(k)X
H
N (k) ; RN;0 = R0 = ���N

PN;k =
kX
i=1

�k�iXN(i)d
H(i) � �k+1��NW

H
0

= �PN;k�1 +XN(k)d
H(k) ; PN;0 = �R0W

H
0

(4)

are the sample second order statistics. Substituting the time recursions for RN;k and PN;k from (4)
into (3) and using the matrix inversion lemma for R�1N;k, we obtain the RLS algorithm:

eCN;k = �XH
N (k)��1R�1N;k�1 (5)

�1N (k) = 1� eCN;kXN (k) (6)

R�1N;k = ��1R�1N;k�1 � eCH
N;kN(k)

eCN;k (7)

�pN (k) = �N (kjk�1) = d(k) +WN;k�1XN(k) (8)

�N (k) = �N (kjk) = �pN (k) N(k) (9)

WN;k = WN;k�1 + �N (k) eCN;k (10)

where �
p
N (k) and �N (k) are the a priori and a posteriori error signals (resp. predicted and �ltered

errors in the Kalman �ltering terminology) and one can verify (or see [1]) that they are related by the
likelihood variable N(k) as in (9).

Equations (8)-(10) constitute the joint-process or �ltering part of the RLS algorithm. Its computa-
tional complexity is 2N+1. The role of the prediction part (5)-(7) is to produce the Kalman gain eCN;k

and the likelihood variable N(k) for the joint-process part. In the conventional RLS algorithm, this is
done via the Riccati equation (7) which requires O(N2) computations. Fast RLS algorithms (FTF and
FLA/FQR) exploit a certain shift invariance structure in XN(k) which is inherited by RN;k and PN;k,
to avoid the Riccati equation in the prediction part and reduce its computational complexity to O(N)
(the FLA/FQR algorithms also provide �pN (k) but replace WN;k by a transformed set of parameters
as in the square-root Kalman �ltering/RLS algorithms). We now investigate an alternative way to
reduce the computational complexity of the RLS algorithm.

2.2 The SU RLS Algorithm

In what follows, we shall often assume for simplicity that L is a power of two and thatM = N=L is an
integer, though more general cases can be considered equally well. We shall introduce the following

2

notation. Let

dL;k =

264 d
H(k�L+1)

...
dH(k)

375 ; xL;k =
264 x

H(k�L+1)
...

xH(k)

375 ; XN;L;k =

264 X
H
N (k�L+1)

...
XH
N (k)

375 = [xL;k � � �xL;k�N+1]

(11)
where XN;L;k is a Toeplitz data matrix. We can now obtain the following multi-step updates from (4)

PN;k = �LPN;k�L +XH
N;L;k�LdL;k ; RN;k = �LRN;k�L +XH

N;L;k�LXN;L;k : (12)

If we plug in these recursions into the solution (3), then we get similarly to the derivation of the RLS
algorithm the following recursion

eCN;k = �XN;L;k�
�LR�1N;k�L (13)

�1
N
(k) = ��1L �XN;L;k

eCH

N;k (14)

R�1
N;k

= ��LR�1
N;k�L

� eCH

N;kN (k)
eCN;k (15)

�p
N;L;k

= dL;k +XN;L;kW
H
N;k�L (16)

�1
N
(k) �N;L;k = �pN;L;k (17)

WN;k = WN;k�L + �HN;L;k
eCN;k (18)

where �pN;L;k and �N;L;k are vectors of a priori and a posteriori errors respectively:

�p
N;L;k

=

264 �HN (k�L+1jk�L)
...

�HN (kjk�L)

375 ; �N;L;k =

264 �HN (k�L+1jk)
...

�HN (kjk)

375 : (19)

While the Subsampled-Updating RLS algorithm thus obtained constitutes a valid algorithm to provide
the �lter solution WN;k every L samples, it does not represent much computational gain w.r.t. the
original RLS algorithm (L = 1). We now consider a �rst instance of exploiting the FFT technique to

reduce the computational complexity in equation (16) by a factor O
�

L
log2 L

�
.

2.3 Fast Computation of the Filtering Errors using the FFT

Consider a partitioning of the �lter coe�cients vector in M = N=L subvectors of length L: WN;k =h
W 1

N;k � � �W
M
N;k

i
. Now consider the vector of (block) a priori �ltering errors

�pN;L;k = dL;k +XN;L;kW
H
N;k�L = dL;k +

MX
j=1

XL;L;k�(j�1)LW
j H
N;k�L : (20)

In other words, we have essentially M times the product of a L � L Toeplitz matrix with a vector
of length L. Such a product can be e�ciently computed in basically two di�erent ways. One way is
to use fast convolution algorithms [6], which are interesting for moderate values of L. Another way
is to use the overlap-save method. We can embed the L � L Toeplitz matrix XL;L;k into a 2L � 2L
circulant matrix, viz.

X
H

L;L;k =

"
� XH

L;L;k

XH
L;L;k �

#
= C

�
xH2L;k

�
(21)

where C(cH) is a right shift circulant matrix with cH as �rst row. Then we get for the matrix-vector
product

XH
L;L;k�(j�1)LW

j H
N;k�L = [IL 0L�L] C

�
xH2L;k�(j�1)L

� " 0L�1
W j H

N;k�L

#
: (22)

The product of a circulant matrix C(cH) with a vector v where c and v are of length m can be computed
e�ciently as follows. Let Fm be the Discrete Fourier Transform matrix for a DFT of length m. Then

3

using the property that a circulant matrix can be diagonalized via a similarity transformation with a
DFT matrix, we get

C(cH) v =
1

m
C(cH)FH

m Fmv =
1

m
FH
m diagH (Fm c) Fmv (23)

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So the
computation of the vector in (22) requires the padding of W j H

N;k�L with L zeros, the DFT of the
resulting vector, the DFT of x2L;k�(j�1)L, the product of the two DFTs, and the (scaled) IDFT of this
product. When the FFT is used to perform the DFTs, this leads to a computationally more e�cient
procedure than the straightforward matrix-vector product which would require L2 multiplications.
Note that at time k, only the FFT of x2L;k needs to be computed; the FFTs of x2L;k�jL; j = 1; . . . ;M�1
have been computed at previous time instants. Remark also that we need to apply the inverse DFT
(and the scaling by 1

2L) only once, after having summed up the M products in the frequency domain.
The above procedure reduces the N computations per sample for �pN;L;k to

N

�
FFT(2L)

L2
+

2

L

�
+ 2

FFT(2L)

L
(24)

computations per sample (FFT(L) signi�es the computational complexity associated with a FFT of

length L) or basically O
�
N log2(L)

L

�
operations.

2.4 Relation Between the Filtering Errors and Kalman Gains in Block Mode and

in Sequential Mode

Remark that in the SU RLS algorithm, we �nd �ltering errors that are not just predicted one step
ahead, but several steps. This results from the fact that the �lter WN;k gets updated only once every
L samples. The learning curve for the SU RLS algorithm would be the variance of the �ltering errors
obtained from �N;L;k and hence would be piecewise constant, coinciding with the learning curve for
the RLS algorithm at times that are integer multiples of L, and remaining constant for L�1 samples
after those instants. However, it turns out to be fairly simple to recover the a priori �ltering errors of
the conventional RLS algorithm from those of the SU RLS algorithm.

Let us introduce the following notation

�pN;k =

2664
�p HN (k�L+1)

...

�
p H
N (k)

3775 =

264 �HN (k�L+1jk�L)
...

�HN (kjk�1)

375 (25)

�N;L;k = diag fN(k�L+1); . . . ; N(k)g (26)

DN;L;k = �L �N;L;k (27)

where �pN;k is a vector of L a priori errors of the RLS algorithm. Then one can show that

�p HN;L;k N(k) �
p
N;L;k = �p HN;kDN;L;k �

p
N;k : (28)

Now consider the Upper Diagonal Lower (UDL) triangular factorization of the L � L matrix
N
(k),

then we get

N
(k) = UN;L;kDN;L;k U

H
N;L;k (29)

where UN;L;k is upper triangular with unit diagonal, and the diagonal factor is indeed the DN;L;k

introduced in (27). One can show that there exists a unit-diagonal triangular relation between �pN;L;k
and �pN;k and hence from (28) and (29), this triangular factor must be UN;L;k, viz.

UH
N;L;k �

p
N;L;k = �pN;k : (30)

This relation allows us to compute the a priori �ltering errors �pN;k of the RLS algorithm from the a

priori �ltering errors �pN;L;k in the SU RLS algorithm. The necessary triangular factorization (29) can

4

easily be made part of the inversion of
N
(k) in the SU RLS algorithm. One can now also easily show

N
(k) �pN;L;k = UN;L;k�L �N;L(k)U

H
N;L;k �pN;L;k| {z }

a priori SURLS errors| {z }
�
p

N;k
a priori RLS errors| {z }

�N;k a posteriori RLS errors| {z }
�N;L;k a posteriori SURLS errors

: (31)

Similarly, there exists a relation between the Kalman gain in the SU RLS algorithm and L con-
secutive Kalman gains of the RLS algorithm. One can show that

UH
N;L;k

eCN;k = ��1L

2664
eCN;k�L+1

...eCN;k

3775 : (32)

Let uN;L;k be the last column of UN;L;k. Then (32) leads in particular to

uHL;1
eCN;k = ��L+1 eCN;k�L+1 (33)

uHN;L;k
eCN;k = eCN;k : (34)

uL;i being the L� 1 vector with 1 at the ith position and zeros elsewhere.

3 Displacement Structure of the SU RLS Kalman Gain Quantities

Consider the displacement structure of a matrix R:

r�R = R� �Z RZH =
�X
i=1

ui v
H
i (35)

where �, called displacement rank, is the rank of R� �Z RZH , Z is the lower shift matrix (ones on
the �rst subdiagonal and zeros elsewhere), and the vectors ui, vi are called the generators of R for the
following reason. By solving the Lyapunov equation (35), it is straightforward to obtain the following
representation for R:

R = r�1�

�X
i=1

ui v
H
i

!
=

�X
i=1

1X
j=0

�j Zj ui v
H
i (ZH)j =

�X
i=1

L(ui) e�LH(vi) (36)

where e� = diag
�
1; �; �2; . . .

	
and L(u) is a lower triangular Toeplitz matrix with u as �rst column.

We shall exploit this representation for eCN;k and �1
N
(k) to reduce the computational complexity of

the SU RLS algorithm. Considering the de�nition of these quantities, we see that we �rst have to
consider R�1N;k.

3.1 Displacement Structure of the Inverse Sample Covariance Matrix

In [7], the following displacement structure was derived

r�

"
R�1N;k 0

0 0

#
= AH

N;k�
�1
N (k)AN;k �BH

N;k�
�1
N (k)BN;k + �

h
0 eCN;k

iH
N(k)

h
0 eCN;k

i
(37)

where AN;k and BN;k are forward and backward prediction �lters and �N (k) and �N(k) are forward
and backward prediction error variances (see [1]).

5

3.2 Displacement Structure of the Kalman Gain

Let epN;L;k and rpN;L;k be respectively the vectors of forward and backward a priori prediction errors
de�ned by

epN;L;k = XN+1;L;k A
H
N;k�L (38)

rpN;L;k = XN+1;L;k B
H
N;k�L : (39)

The displacement structure of the SURLS Kalman gain turns out to be

r�

h eCN;k 0
i

= �epN;L;k�
�L��1N (k�L)AN;k�L + rpN;L;k�

�L��1N (k�L)BN;k�L

� (�N;L;k � uL;1)�
�L+1N(k�L)

h
0 eCN;k�L

i
(40)

where

�N;L;k = XN+1;L;k

h
0 eCN;k�L

iH
: (41)

By using (33), the L� 1 vector �N;L;k introduced above can also be expressed in terms of the Kalman
gain at time k�1 as

�N;L;k = �L�1XN+1;L;k

h
0 eCN;k�1

iH
uL;1 = �L�1XN;L;k�1

eCH

N;k�1uL;1 (42)

which leads to
�N;L;k = �L�1

�
��1L � �1

N
(k�1)

�
uL;1 : (43)

3.3 Displacement Structure of the Likelihood Variable

Consider now the displacement structure of the likelihood variable �1
N
(k)

r�
�1
N
(k) = r� �

�1
L + ��Lr�

�
XN;L;kR

�1
N;k�LX

H
N;L;k

�
: (44)

By using the displacement structure of the Kalman gain given in (40), the displacement structure of
the likelihood variable becomes

r�
�1
N
(k) = epN;L;k�

�L��1N (k�L)ep HN;L;k � rpN;L;k�
�L��1N (k�L)rp HN;L;k

+ (�N;L;k � uL;1)�
�L+1N(k�L) (�N;L;k � uL;1)

H : (45)

This last equation exhibits the Hermitian structure inherited from �1
N
(k).

Because of the shift invariance of the adaptive �ltering problem, the Kalman gain and the likelihood
variable have a low displacement rank of 3; that is, these matrices have a structure close to the Toeplitz
one and can be replaced by their representation as in (36). The appearence of Toeplitz matrices in
this representation allows for an e�cient computation of the product of the Kalman gain matrix with
an a posteriori error vector by using the FFT. Also, the inversion of the likelihood variable matrix can
be done e�ciently by using the generalized Schur algorithm. Furthermore, instead of updating eCN;k

and �1
N
(k) by using the SU RLS equations (13), (14), it su�ces to update the �lters AN;k, BN;k andh

0 eCN;k

i
, and to compute the �lter outputs epN;L;k, r

p
N;L;k and �N;L;k from their de�nitions (38), (39)

and (41), using the data available at the time instant k.

4 The FSU RLS Algorithm

We can rewrite equation (18) in the form

[WN;k 0] = [WN;k�L 0] + �HN;L;k

h eCN;k 0
i
: (46)

The reason why we add the zeros is that for the FSU RLS algorithm, it will turn out to be more
convenient to assume that M = N+1

L
is an integer. The a posteriori �ltering error vector �N;L;k is

6

Table I: FSU RLS Algorithm

Computation Cost per L samples

1 �
p

N;L;k = dL;k +XN+1;L;k [WN;k�L 0]H (2 + N+1
L

)FFT(2L) + 2(N+ 1)

2 r
p
N;L;k = XN+1;L;k BH

N;k�L (1 + N+1
L)FFT(2L) + 2(N+ 1)

3 �N;L;k = XN+1;L;k

h
0 eCN;k�LiH (1 + N+1

L)FFT(2L) + 2(N+ 1)

4

24 eHN(k�L+1)

e
p
N;L;k+1

35 =

24 XN+1;L;k A
H
N;k�L+1

XH
N+1(k+1)AH

N;k�L+1

35 (1 + N+1
L)FFT(2L) + 3N

5 e
p

N;L;k =

24 eHN (k�L+1)�
e
p

N;L;k+1

�
1:L�1

35� �N;L;k e
H
N (k�L+1) L

6 �1
N

(k) = r
�1
�

�
e
p

N;L;k�
�L�

�1
N (k�L)ep HN;L;k

�r
p

N;L;k�
�L�

�1
N (k�L)rp HN;L;k

+(�N;L;k � uL;1)�
�L+1N (k�L) (�N;L;k � uL;1)

H
	

7 LN;L;k GN;L;k L
H
N;L;k = �1

N
(k) Generalized Schur algorithm : 2L2

8 LHuN;L;k = uL;L Backsubstitution : 0:5L2

9 �1
N

(k) [�N;L;k rN;L;k eN;L;k+1] =
�
�
p

N;L;k
r
p

N;L;k
e
p

N;L;k+1

�
3L2

10
h eCN;k 0

i
= r

�1
�

�
�e

p
N;L;k�

�L��1N (k�L)AN;k�L

+rpN;L;k�
�L��1N (k�L)BN;k�L

�(�N;L;k � uL;1)�
�L+1N(k�L)

h
0 eCN;k�Lio

11 BN;k = BN;k�L + rHN;L;k

heCN;k 0
i

(3 + N+1
L)FFT(2L) + 6(N + 1) + 10L

12 �N (k) = �L�N(k�L) + rHN;L;kr
p

N;L;k L + 1

13
heCN;k 0

i
= uHN;L;k

heCN;k 0
i

(3 + N+1
L)FFT(2L) + 6(N + 1) + 10L

14 �1N (k) = (GN;L;k)L;L

15 AN;k+1 = AN;k�L+1 + eHN;L;k+1

h eCN;k 0
i
ZH
N+1 (3 + N+1

L)FFT(2L) + 6(N + 1) + 10L

16 e
p
N (k+1) = e

p H

N;L;k+1uN;L;k L

17 eN (k+1) = e
p

N (k+1)N (k) 1

18 AN;k = AN;k+1 � eN (k+1)
h
0 eCN;ki N

19 �N (k+1) = �L�N(k�L+1) + eHN;L;k+1e
p

N;L;k+1 L + 1

20 �N (k) = ��1
�
�N (k+1)� eN (k+1)e

p H

N (k+1)
�

2

21 [WN;k 0] = [WN;k�L 0] + �HN;L;k

h eCN;k 0
i

(6 + N+1
L)FFT(2L) + 6(N + 1) + 10L

Total cost per sample (20 + 8N+1L)FFT(2L)L + 34NL + 5:5L

7

obtained by resolving the system of equations (17) via the generalized Schur algorithm. Now, if we

replace
h eCN;k 0

i
in (46) by its expression given in terms of its displacement vectors (via (36) and

(40)), the joint-process update equation takes the form

[WN;k 0] = [WN;k�L 0] + �HN;L;k

3X
i=1

diT
i
L;L

e�L G
i
L;N+1 (47)

where di, T i
L;L and GiL;N+1 are respectively scalars, L � L lower and L � (N + 1) upper triangular

Toeplitz matrices. The last term in equation (47) can be computed in the following manner. For
i = 1; 2; 3 do:

� mutiply di by �N;L;k to obtain p1L;i = �HN;L;kdi.

� use the circular embedding and FFT technique to compute the product p2L;i = p1L;iT
i
L;L.

� multiply p2L;i with the diagonal matrix e�L. This gives a 1� L vector, say p3L;i = p2L;i
e�L.

� use again the circular embedding and FFT technique to compute the product p4L;i = p3L;iG
i
L;N+1

in N+1
L

portions of length L (see section 2.3).

Finally, add the three vectors p4L;i and obtain �HN;L;k
P3

i=1 diT
i
L;L

e�L GiL;N+1 by applying the inverse

FFT to the sum
P3

i=1 p
4
L;i .

The RLS Kalman gain can be updated by using (34) and the representation of eCN;k in terms of
its generators. The updating of the prediction �lters is similar to the updating of WN;k. A minor
complication arises in the update of the forward prediction �lter, the details of which can be found in
[8]. The resulting FSU RLS algorithm can be found in Table I.

5 The FSU FTF Algorithm

5.1 The Fast Transversal Filter Algorithm

The Fast Transversal Filter exploit e�ciently the shift invariance structure of the adaptive FIR �ltering
problem. Its computational complexity is 7N . This algorithm can be formalized as follows:26664

h eCN;k 0
i

AN;k

BN;k

[WN;k 0]

37775 = �k

26664
h
0 eCN;k�1

i
AN;k�1

BN;k�1

[WN;k�1 0]

37775
�N (k) = ��N (k�1) + eN (k) epN (k)

�N (k) = ��N (k�1) + rN (k) rpN (k)

N (k) = �N�N (k) =�N (k) (48)

where �k is a (4� 4) rotation matrix

�k = �1
k �

2
k �

3
k �

4
k (49)

and the four (4� 4) matrices �i
k i = 1; 2; 3; 4 are given by

�1
k =

26664
1 0 0 0
0 1 0 0
0 0 1 0

�N (k) 0 0 1

37775 �2
k =

26664
1 0 0 0
0 1 0 0

rN (k) 0 1 0
0 0 0 1

37775

�3
k =

2666664
1 0

rpN (k)

��N (k�1)
0

0 1 0 0
0 0 1 0
0 0 0 1

3777775 �4
k =

2666664
1 �

epN (k)

��N (k�1)
0 0

eN (k) 1 0 0
0 0 1 0
0 0 0 1

3777775 : (50)

8

In order to have these matrices, one must compute the a priori errors eN (k) ; rN (k) and �N (k) which
are the outputs of the �lters AN;k�1; BN;k�1 and WN;k�1. We can also constuct these matrices by
using the Schur algorithm as we will see in the next section.

5.2 Schur Algorithm for the Fast Transversal Filter

Let us introduce bd p
N (k) = d (k)� �pN (k) (51)bdN (k) = d (k)� �N (k) : (52)

Consider the following product

FL (k) =

266666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�L

[WN;k�L 0]

377777777775
XH
N+1;L;k =

2666666666664

�HN;L;k

ep HN;L;k

r
p H

N;L;k

� bd p H
N;L;k

3777777777775
: (53)

The �rst column of FL (k) is

FL (k) uL;1 =
h
1� �1N (k�L) e

p
N (k�L+1) r

p
N (k�L+1) � bd p

N (k�L+1)
iT

: (54)

So, with the recursions for �N (k�L+1) and �N (k�L+1) that are

�N (k�L+1) = ��N (k�L) + epN (k�L+1)N (k�L) epN (k�L+1)

�N (k�L+1) = ��N (k�L) + rpN (k�L+1)N (k�L+1) rpN (k�L+1) (55)

(plus possibly an alternative calculation for N (k�L)), it is possible to construct �k�L+1 and then
goes on the recursions of the FTF.
Now, if we rotate with �k�L+1 on both sides of (53), then we have266666666664

h eCN;k�L+1 0
i

AN;k�L+1

BN;k�L+1

[WN;k�L+1 0]

377777777775
XH
N+1;L;k =

2666666666664

�HN;L�1;k �

eN (k�L+1) ep HN;L�1;k

rN (k�L+1) rp HN;L�1;k

� bdN (k�L+1) � bd p H
N;L�1;k

3777777777775
: (56)

By shifting to the right the �rst row of the right hand side of (56) and take the three vectors
epN;L�1;k; r

p
N;L�1;k and �

bd p H
N;L�1;k, we obtain FL�1 (k) and hence can do the same operations to obtain

the next rotation matrices. So by using the well known Schur algorithm working on the four vectors
given by the matrix FL (k), it is possible to obtain the successive rotation matrices from time k�L+1
to time k.

5.3 The FSU FTF Algorithm

In a subsampled updating strategy, one need to obtain the adapted �lter at time k from the one at
time k�L. In the case of the FTF algorithm, this will be done by using the Schur procedure described
previously but without computing the di�erent �lters at each iteration.
To have a polynomial formulation of the problem, let's de�ne26664

eCk (z)
Ak (z)
Bk (z)
Wk (z)

37775 =

26664
h eCN;k 0

i
AN;k

BN;k

[WN;k 0]

37775
266664

1
z�1

...
z�N

377775 : (57)

9

Hence (48) can be written as

�k

26664
eCk (z)
Ak (z)
Bk (k)
Wk (z)

37775 =

26664
z�1

1
1

1

37775
26664

eCk�1 (z)
Ak�1 (z)
Bk�1 (z)
WN;k�1 (z)

37775 : (58)

Let

�k (z) = �k

26664
z�1

1
1

1

37775 (59)

Now, in order to adapt the �lter at time k from the one at time k�L, it is straightforward to �nd26664
eCk (z)
Ak (z)
Bk (k)
Wk (z)

37775 = �k;L (z)

26664
eCk�L (z)
Ak�L (z)
Bk�L (z)
WN;k�L (z)

37775 (60)

where
�k;L (z) = �k (z)�k�1 (z) � � ��k�L+1 (z) : (61)

The successive matrices appearing in (61) can be obtained as it was shown, by using the Schur
algorithm applied to the rows of FL (k). The computationnal complexity associated with the Schur
procedure is 2:5L2 multiplications. It appears from (60) that the �lter can be adapted at times
multiples of L in a equivalent manner as the FTF algorithm by computing the (4 � 4) polynomial
matrix �k;L (z). The accumulation of the successive matrices �i (z) takes 7:5L

2 multiplications since
there are �ve non trivial entries in a matrix �i (z).
Remark that �k;L (z) has the following structure

�k;L (z) =

26664
� � � 0
� � � 0
� � � 0
� � � 1

37775 (62)

where the stars stand for polynomials of degree at most L. Hence, the product in (60) represents 12
convolutions of polynomials of order L and N . These convolutions can be done using fast convolution
techniques. In the present case where the length of the �lter is relatively large, we will choose the
FFT technique. In that case the complexity is 3(1+2N+1

L
)FFT (2L)+2 (N + 1)) multiplications and

6 (N + 1) additions for each �lter. The product (53) which gives FL (k) is also computed with the
FFT and hence, we have to compute the FFTs of the �lters just one time.
The FSU FTF algorithm is given in the table II.

5.4 Concluding Remarks

The complexity of the FSU RLS and the FSU FTF are respectively O(8N+1
L

FFT (2L)
L

+ 34N
L
+ 5:5L)

and O(8N+1
L

FFT (2L)
L

+32N
L
+10L) operations per sample. This can be very interesting for long �lters.

For example, for the FSU RLS when (N;L) = (4095; 256); (8191; 256) and the FFT is done via the
split radix (FFT (2m) =mlog2(2m) real multiplications for real signals) the multiplicative complexity
is respectively 0:8N and 0:6N per sample. With the FSU FTF, for the same parameters N and L, the
multiplicative complexity is respectively 1:1N and 0:74N , compared to 7N for the FTF algorithm,
the currently fastest RLS algorithm, and 2N for the LMS algorithm. The number of additions is
somewhat higher. The cost we pay is a processing delay which is of the order of L samples. We have
simulated the algorithms and have veri�ed that they work. Preliminary experience appears to indicate
that the numerical behavior of the algorithms may require further attention.

10

Table II: FSU FTF Algorithm

Computation Cost per L samples

1

266666664

�HN;L;k

e
p H
N;L;k

r
p H

N;L;k

�bd p H

N;L;k

377777775
=

266666664

h
0 eCN;k�Li
AN;k�L

BN;k�L

[WN;k�L 0]

377777775
XH
N+1;L;k (5 + 4N+1L)FFT(2L) + 8N

2 Schur Algorithm:

Input: �N;L;k ; e
p

N;L;k
; r

p

N;L;k
; �bd p

N;L;k

Output: �k�i (z) i = L�1; � � � ; 0 2:5L2

3 �k;L (z) =

L�1Y
i=0

�k�i (z) 7:5L2

4

266666664

eCk (z)
Ak (z)

Bk (z)

Wk (z)

377777775
= �k;L (z)

266666664

eCk�L (z)

Ak�L (z)

Bk�L (z)

WN;k�L (z)

377777775
(12 + 4N+1L)FFT(2L) + 24N

Total cost per sample (17 + 8N+1L)FFT(2L)L + 32NL + 10L

References

[1] J.M. Cio� and T. Kailath. \Fast, recursive least squares transversal �lters for adaptive �ltering".
IEEE Trans. on ASSP, ASSP-32(2):304{337, April 1984.

[2] D.T.M. Slock and T. Kailath. \Numerically Stable Fast Transversal Filters for Recursive Least-
Squares Adaptive Filtering". IEEE Trans. Signal Proc., ASSP-39(1):92{114, Jan. 1991.

[3] D.T.M. Slock and T. Kailath. \A Modular Prewindowing Framework for Covariance FTF RLS
Algorithms". Signal Processing, 28(1):47{61, July 1992.

[4] D.T.M. Slock. \Reconciling Fast RLS Lattice and QR Algorithms". In Proc. ICASSP 90 Conf.,
pages 1591{1594, Albuquerque, NM, April 3{6 1990.

[5] J.M. Cio� and T. Kailath. \Windowed Fast Transversal Filters Adaptive Algorithms with Nor-
malization". IEEE Trans. on ASSP, ASSP-33(3):607{625, June 1985.

[6] M. Vetterli. \Fast Algorithms for Signal Processing". In M. Kunt, editor, Techniques modernes de

traitement num�erique des signaux. Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1991. ISBN 2-88074-207-2.

[7] D.T.M. Slock. \Backward Consistency Concept and Round-O� Error Propagation Dynamics in
Recursive Least-Squares Algorithms". Optical Engineering, 31(6):1153{1169, June 1992.

[8] Dirk T.M. Slock and K. Maouche. \The Fast Subsampled-Updating Recursive Least-Squares (FSU
RLS) Algorithm for Adaptive Filtering Based on Displacement Structure and the FFT". Technical
Report RR No 92-001, Institut Eur�ecom, Sophia Antipolis, France, 14 Dec. 1992.

11

