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Abstract|A number of papers have been dealing with the
problem of estimating the di�erential delay of an unknown
signal impinging on two sensors. The present contribution
deals with the presence of more than one source, which is
a case that has never been dealt with before. The solution

resorts to slices of high-order spectra, and the full spectral
band of the signals is utilized in order to recover the delays.
It can be viewed as an improvement to the classical pro-
cedure consisting of searching the autocorrelation for local
maxima, which does not work when delays are smaller than

the source correlation length.

I. Introduction

It is assumed that k real signals si(t) are received on
l � k sensors. Those signals satisfy the equation model
below (given here for l = 2):

r1(t)=s1(t) + s2(t) + � � �+ sk(t) + v1(t); (1)

r2(t)=s1(t+ �1) + s2(t + �2) + � � �+ sk(t+ �k) + v2(t); (2)

where �i denote delays, vi noises, and si are unknown
source signals. The problem consists of estimating delays
�i from a �nite extend observation. It is assumed that:
A1 The source signals are real and non Gaussian
A2 The source signals are mutually independent
A3 Delays �i are di�erent

Note that assumption A3 is not restrictive, for if two de-
lays �i and �j are equal, then sources si and sj are undis-
tinguishable. Thus it is assumed that nothing is known
about the statistics of the sources but their non Gaussian
character and their independence. In addition, because of
the low SNR (Signal to Noise Ratio) in narrow band, it is
necessary to fully take advantage of the signal bandwidth.
The identi�cation of a di�erential delay between two sig-

nals is an old problem in signal processing; see for instance
the June 1981 special issue of IEEE Transactions on ASSP.
New methods have been proposed in [5], [14], [17] [11]. See
also the approaches based on MUSIC-like algorithms [18]
[15], with more sources than sensors [16] [3], based on the
cyclostationarity of the source signals [10] or based on the
knowledge of the steering vectors coe�cients [19]. All these
works are either dealing with the case of a single signal, i.e.,
s2 = s3 = ::: = sk = 0, or take advantage of some knowl-
edge about the array.
Some works have tackled blind identi�cation of time de-

lays in presence of more than one source (i.e. neither sig-
nals si(t) nor their spectra are known, and the array is
unknown), and include [4], [7] and [8]. But the appoach
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there is basically narrow-band, and there is always fewer
signals than sensors.
Recent techniques allow to virtually augment the size of

the array, but localizing sources from such arrays can be
seen as equivalent to applying a higher-order localization
algorithm [6], e.g. 4-Music [3], or Virtual Esprit (Vespa)
[12]. Note that previous works establishing bounds on the
number of resolvable sources [1] are not questioned here
since they hold true only in the Gaussian context.
In this article, we present a method for estimating delays

between more source signals than sensors. Section III es-
tablishes the required equations where delays are the only
unknowns in the spectral domain. Section IV solves the
delay estimation problem in wide band.

II. Notation

In the spectral domain, denote the observations at pul-
sation !:

r1(!)=s1(!) + s2(!) + � � �+ sk(!) + v1(!); (3)

r2(!)=s1(!)x
�

1 + s2(!)x
�

2 + � � �+ sk(!)x
�

k + v2(!): (4)

where xi = e�|!�i , | =
p�1, and (�) denotes the com-

plex conjugation. De�ne the following n-th order cumulant
spectra of observations at the pulsation ! :

C
(n)
i = Cumfr1(!); � � � ; r1(!)| {z }

n
2

; r1(�!); � � � ; r1(�!)| {z }
n
2
�i

;

r2(�!); � � � ; r2(�!)| {z }
i

g:

These spectra correspond to slices of the standard multi-
variate cumulant spectrum [2] [20] [13]. In this framework,
n must be even and n � 2(k � 1), where k denotes the
number of sources.

III. Problem formulation

A. Preliminary basic properties

The required equations are obtained by taking advantage
of 3 basic properties, as shown below.

A.1. Independence property. Because of the independence

between sources, the sensor cumulants C
(n)
i can be written

as:

C
(n)
i = xi1�1 + � � �+ xik�k;

where �p are the sources cumulants:

�p = cumfsp(!); � � � ; sp(!); sp(�!); � � � ; sp(�!)| {z }
n

g:

Letting i range in f0; :::; k � 1g, the following system is
satis�ed:0
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In compact notation, the last relation can be rewritten as
follows:

C = V � (property I): (5)

The above relation involves 2k unknowns, but only k equa-
tions. Therefore, the identi�cation of these 2k parameters
cannot be carried out by a technique such as the one de-
scribed in [11] or in references therein.

A.2. Van der Monde property. Let V be a Van der
Monde matrix, as the one de�ned in equation (5), and
Pi be a symmetric polynomial of degree i in k variables
de�ned as: P0 = 1; P1 = x1 + x2 + � � � + xk; P2 =
x1x2 + x1x3 + � � �+ xk�1xk; � � � ; Pk = x1x2 � � �xk: If QT =
[(�1)k�1Pk�1; � � � ;�P1; P0], then the following property is
obtained:

QTV = (�1)k�1XT ; (property II) (6)

where XT = [x2 � � �xk; x1x3 � � �xk; � � � ; x1 � � �xk�1]: In
other words, the sum of the components of X is the �rst
entry of Q, up to a sign.

A.3. Unit modulus property. The complex conjugate of

C
(n)
1 can be written as: C

(n)�
1 = x�1�1 + � � �+ x�k�k: Now

multiply both sides of the previous equation by Pk and use
the fact that for all i 2 f1; :::; kg; jxij = 1 since xi = e�|!�i ,

we obtain: PkC
(n)�
1 = x2 � � �xk�1 + � � �+ x1 � � �xk�1�k: Or

with the previous compact notation:

PkC
(n)�
1 = XT� (property III): (7)

B. Results

With the help of the three properties above, the unknown
source cumulants (�) can be eliminated:

QTC = QTV �; from (I)
= (�1)k�1XT�; from (II)

= (�1)k�1C(n)�
1 Pk: from (III)

(8)

Equation (8) then yields:

k�1X
i=0

(�1)iPiC
(n)
k�1�i = (�1)k�1C(n)�

1 Pk; (9)

where C(n)
i can be estimated (cross-cumulants between the

sensors), and where the Pi's contain the unknown delay
information.

IV. Estimation of delays

Equation (9) can be arranged as follows:

C
(n)
k�1

C
(n)
k�2

= P1 � 1

C
(n)
k�2

(
k�1X
i=2

(�1)iPiC
(n)
k�1�i + (�1)kC(n)�

1 Pk):

(10)
In Pi, all delays are represented by variables xj = e�|!�j .
Now, if we take the inverse Fourier transform of (10), we
obtain k peaks, each representing one delay (the P1 term),
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Fig. 1. Inverse Fourier transform of C
(2)
1 =C

(2)
0 (top), and of C

(2)
1

(botton), k = 2 sources, �1 = 2:3; �2 = 4:2 (interpolated zoom on
the �rst 20 frequency bins, after a FT of length 256).

and several attenuated peaks located at partial sums of the
delays (terms Pi, i 6= 1). If the number of delays is known,
it is then su�cient to estimate the location of the �rst k
peaks, that represent the delays �j .
Equation (10) can be computed for every pulsation !

such that C
(n)
k�2(!) 6= 0 in the signal bandwidth.

.1. Example: k = 2 and n � 2. If n = 2 is chosen, the
following equation is obtained:

C
(2)
1 = P1C

(2)
0 � P2C

(2)�
1 : (11)

Since P1 = x1+x2, the inverse Fourier transform of P1 gives
two peaks at �1 and �2. As shown in Figure 1 by taking the

inverse Fourier transform of C
(2)
1 =C

(2)
0 , we �nd two peaks

and an attenuated peak at �1 + �2 (P2 = x1x2). In the
bottom of Figure 1, the plot of the raw cross correlation

C
(2)
1 shows that the delays cannot be detected because the

correlation length of the sources is too long. If n = 4, the
same equation would be constructed.

.2. Example: k = 3 and n � 3. Since n must be even,
the smallest n we can consider is n = 4. The following
equation is obtained:

C
(4)
2 = P1C

(4)
1 � P2C

(4)
0 + P3C

(4)�
1 (12)

The inverse Fourier transform of C
(4)
2 =C

(4)
1 gives three

peaks, at �1; �2 and �3, and attenuated peaks at �1+�2; �1+
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Fig. 2. Inverse Fourier transform of C
(4)
2 =C

(4)
1 , k = 3 sources,

�1 = 6:2; �2 = 8:6; �3 = 11:9 (interpolated zoom on the �rst
20 frequency bins, after a FT of length 256).

�3; �2 + �3, and �1 + �2 + �3, as shown in Figure 2.

.3. Limitations. The proposed method has some restric-
tions:
(i) If a peak corresponding to a delay is too close to an-
other one corresponding to the partial sum of delays, then
the identi�cation becomes ill-conditionned.
(ii) Obviously, if delays are too close to each other, a single
peak might be detected.
(iii) Because of the relation between the number of sources
and the order of cumulants n � 2(k� 1), only three source
signals can be considered if fourth order cumulants are
used.
(iv) It is useful to know the number of source signals, es-
pecially when it is di�cult to di�erentiate between peaks
corresponding to delays and those corresponding to sum of
delays.
If delays are well separated (compared to source correla-

tion length), a mere maxima search of the autocorrelation
function can be su�cient. This method yields a solution
when delays are separated by a gap that is much smaller
than the correlation length of the signal. It can be applied
to several problems in Sonar, Radar, or telecommunica-
tions.

�1 �2
mean std mean std

M1 2.16 0.014 4.1 0.041
M2 2.30 0.047 4.19 0.004

TABLE I

Mean and standard deviation (std) of estimated delays over

100 independent trials using the wide-band spectral

approach (M1) and the time domain approach (M2). True

delays are 2.3 and 4.2 in this simulation.

V. Simulation results

The signals si(t) are ARMA processes driven by a i.i.d.
sequence uniformly distributed with zero mean and unit
variance: si(t) = �a1;isi(t � 1) � a2;isi(t � 2) + vi(t) +

b1;ili(t�1)+b2;ili(t�2): Coe�cients are de�ned as: a1;i =
�2�i cos �i, a2;i = �2i , b1;i = �2�i cos�i, b2;i = �2i and
�1 = 60�, �2 = 30�, �3 = 40�, �1 = 0:7, �2 = 0:8, �3 = 0:6,
�1 = 110�, �2 = 140�, �3 = 160�, �1 = 0:8, �2 = 0:9,
�3 = 0:7.
All results are obtained over 100 independent trials, each

of sample size 10000. Table I summarizes the results with
two delays (without noise). The method M1 is the one de-
scribed in section IV-.1. The inverse Fourier transform of
(C

(2)
1 =C

(2)
0 ) is interpolated with the cardinal sine function

in order to �nd the maxima of the function with increased
accuracy. The method M2 is the optimization method de-
scribed in [9], with initial guesses given by method M1.

SNR �1 �2
(dB) mean std mean std

M1 0 4.01 0.20 7.98 0.62
M2 0 3.28 0.86 9.38 1.66
M1 10 3.33 0.22 4.04 0.20
M2 10 3.56 0.27 4.02 0.36
M1 12 2.16 0.02 4.06 0.07
M2 12 2.31 0.05 4.21 0.03

TABLE II

Mean and standard deviation of estimated delays over 100

independent trials without attenuations using the wide-band

spectral approach (M1) and the time domain approach (M2)

in a noisy context. True delays are 2.3 and 4.2 in this

simulation.

�1 �2 �3
mean std mean std mean std

M1 6.1 0.016 8.42 0.039 11.95 0.05

TABLE III

Mean and standard deviation (std) of estimated delays over

100 independant trials using the spectral method with 2

sensors and 3 source signals (M1). True delays are 6.2, 8.6

and 11.9 in this simulation.

The advantage of the method M1 is that it does not
need initial guesses, and that it is wide-band, compared
to the spectral method proposed in [8]. The time domain
optimization improves the result.
The same approach (table I) is presented with indepen-

dent noises v1 and v2. The numerical value of delays has
been chosen in order to �nd the limit of validity of the
approach. The signal to noise ratio (SNR) is de�ned as
SNR = 10 log(std(s1 + s2)=std(v1)), where std denotes
standard deviation.
The limit of performance is reached when the two peaks

cannot be separated (about SNR = 12dB). With SNR =
0dB, the second peak detected is located in the neighbor-
hood of the sum of the two delays (without noise), which
explains the bias. Table III presents the wide-band method
described in section IV-.2 with three delays.



This result is attractive, because with only two sensors,
it is possible to estimate the delays of three source signals
using fully the signal bandwidth.

VI. Conclusion

The algorithm described in this paper allows the esti-
mation of relative di�erential delays between more sources
than sensors, in a wide-band context. It can also be seen
as a whitening operation applicable when sources are un-

known, because of the division by C
(n)
k�2. This key oper-

ation strongly increases accuracy. For the moment, the
algorithm cannot be compared to others, since none exists
that is able to perform blind identi�cation of time delays
when the number of sensors is not larger than the number
of sources. Following the same lines as in [9], unknown
attenuations can be taken into account as well.
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