
The Fast Subsampled-Updating Stabilized

Fast Transversal Filter (FSU SFTF) RLS Algorithm

for Adaptive Filtering

Karim Maouche Dirk T.M. Slock

Institut EURECOM

2229, route des Crêtes, B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE

Tel: +33 4 93 00 26 32 (Maouche)/ 06 (Slock)/ 27 (fax)

email: fmaouche,slockg@eurecom.fr

Abstract

We present a new, doubly fast algorithm for Recursive Least-Squares (RLS) adaptive �ltering

that uses displacement structure and subsampled-updating. The Fast Subsampled-Updating

Stabilized Fast Transversal Filter (FSU SFTF) algorithm is mathematically equivalent to

the classical Fast Transversal Filter (FTF) algorithm. The FTF algorithm exploits the shift

invariance that is present in the RLS adaptation of a FIR �lter. The FTF algorithm is in

essence the application of a rotation matrix to a set of �lters and in that respect resembles

the Levinson algorithm. In the subsampled-updating approach, we accumulate the rotation

matrices over some time interval before applying them to the �lters. It turns out that the

successive rotation matrices themselves can be obtained from a Schur type algorithm which,

once properly initialized, does not require inner products. The various convolutions that

appear in the algorithm are done using the Fast Fourier Transform (FFT). The resulting

algorithm is doubly fast since it exploits FTF and FFTs. The roundo� error propagation in

the FSU SFTF algorithm is identical to that in the SFTF algorithm, a numerically stabilized

version of the classical FTF algorithm. The roundo� error generation on the other hand

seems somewhat smaller. For relatively long �lters, the computational complexity of the

new algorithm is smaller than that of the well-known LMS algorithm, rendering it especially

suitable for applications such as acoustic echo cancellation.

EDICS: SP 2.2.5

1 Introduction

Nowadays, adaptive �ltering is an important tool in digital signal processing. Recent advances

in VLSI technology have rendered this tool very attractive and have led to diverse applications

such as equalization, echo cancellation, interference cancellation, signal detection, etc. [1]. In

an adaptive �lter, the coe�cients are periodically updated according to an adaptive �ltering

algorithm in order to minimize a certain cost function. There exist two major families of

adaptive algorithms. The �rst family is built around the Least-Mean-Square (LMS) algorithm

[2],[3]. The LMS algorithm minimizes mean square �ltering error by using a gradient search

type algorithm and is very popular because of its low computational complexity which is 2N

(N is the FIR �lter length) and its robustness. However, the convergence rate of the LMS

depends on the length of the �lter and on the input statistics. In applications such as acoustic

echo cancellation where the FIR �lter which models the acoustic path is relatively large and

the input signal is highly correlated (speech signal), the LMS algorithm does not provide

a satisfactory solution because of the very low convergence rate of the �lter estimate. The

second family is based upon the Recursive Least-Squares (RLS) algorithm that minimizes a

deterministic sum of squared errors. The RLS algorithm is known to be capable of performing

much better than the LMS algorithm [4] but su�ers from a computational complexity of O(N2)

operations. This complexity restricts its use in applications where the FIR �lter is relatively

long. Fast RLS algorithms such as the Fast Transversal Filter (FTF) algorithm [5],[6] and

the Fast Lattice/Fast QR (FLA/FQR) algorithms [7] e�ciently exploit the shift invariance

structure present in the RLS approach to the adaptive FIR �ltering problem. They reduce the

computational complexity from O(N2) to O(N) operations per sample. In order to further

reduce the computational complexity of these algorithms, it appears that the sampling rate

at which the LS �lter estimate is provided has to be reduced from the signal sampling rate

to a subsampled rate with a subsampling factor of L � 1. Two strategies emerge in order to

accomplish this. One consists of a block processing approach in which the normal equations

governing the LS problem are solved every L samples. This leads to Block RLS (BRLS)

algorithms [8],[9]. An alternative approach (especially applicable when L < N) consists of

1

using the same strategy as the RLS algorithm and to compute the new �lter estimate and

auxiliary quantities from the same quantities that were available L samples before. In [10], we

have applied this strategy and derived the Subsampled-Updating RLS (SU RLS) algorithm,

which nevertheless provides exactly the same �ltering error signal as the RLS algorithm. The

computational complexity of the SU RLS algorithm is certainly not reduced with respect

to that of the RLS algorithm. However, in the SU RLS algorithm the Kalman gain and the

likelihood variable are L�N and L�L matrices respectively which, due to the shift invariance

present in the problem, exhibit a low displacement rank. Hence, by using the displacement

structure [11] and the FFT (when computing convolutions), we have derived a fast version of

SU RLS that we have called the FSU RLS algorithm.

In [12], we have proposed to handle the problem of reducing the computational complexity

of the RLS algorithm by employing a dual strategy. This allowed us to derive the FSU FTF

algorithm, see Fig. 1. Namely, after having exploited shift-invariance in the RLS algorithm

to obtain the FTF algorithm, we apply the Subsampled-Updating Strategy (SUS) to the

estimation of the �lters involved. The starting point is an interpretation of the FTF algorithm

as a rotation applied to the vectors of �lter coe�cients. Using the �lter estimates at a certain

time instant, we compute the �lter outputs over the next L time instants. Using what we

have called a Schur-FTF procedure, it becomes possible to compute from these multi-step

ahead predicted �lter outputs the one step ahead predicted �lter outputs, without updating

or using the �lters. These quantities allow us to compute the successive rotation matrices of

the FTF algorithm for the next L time instants. Because of the presence of a shift operation

in the FTF algorithm, it turns out to be most convenient to work with the z-transform of

the rotation matrices and the �lters. One rotation matrix is then a polynomial matrix of

order one, and the product of L successive rotation matrices is a polynomial matrix of order

L. Applying the L rotation matrices to the �lter vectors becomes an issue of multiplying

polynomials (convolution), which can be e�ciently carried out using the FFT. Unfortunately,

the FTF algorithm is numerically unstable because of round-o� error accumulation that arises

with �nite precision implementation. Inheriting the round-o� errors dynamics of the FTF

algorithm, the FSU FTF algorithm is also numerically unstable. The Stabilized FTF (SFTF)

2

algorithm, a numerically stabilized version of the FTF algorithm, has been introduced to

alleviate this problem, at the cost of a marginal increase of the computational complexity

from 7N to 8N [13]. Here, we extend the FSU FTF idea to the Stabilized FTF (SFTF)

algorithm. The starting point is still an interpretation of the SFTF algorithm as a rotation

applied to the vectors of �lter coe�cients. The key ingredient is the computation of the

rotation parameters in a way that mimicks exactly the operations performed bu the SFTF

algorithm. The resulting FSU SFTF algorithm turns out to be especially applicable in the

case of very long �lters such as those that are used in the acoustic echo cancellation problem.

The gain it o�ers in computational complexity is obtained in exchange for some processing

delay, as is typical of block processing.

In order to formulate the RLS adaptive �ltering problem and to �x notation, we shall �rst

recall the RLS algorithm in section 2. In section 3, we brie
y present the (multi-channel)

SFTF algorithm and introduce its rotation formulation. The Schur-SFTF procedure that

allows the computation of L �ltering errors without updating the �lter estimate at each input

data sample is presented in section 4. In order to update the �lters by convolution, the FFT

based Overlap-Save technique is presented in detail in section 5. In section 6, we show how

the z-transform yields an easy formulation of the FSU SFTF algorithm whose computational

complexity is discussed in section 7. Finally, concluding remarks are given in section 8.

2 The RLS Algorithm

An adaptive transversal �lterWN;k forms a linear combination of N consecutive input samples

fx(i�n); n = 0; : : : ; N�1g to approximate (the negative of) the desired-response signal d(i).

The resulting error signal is given by (see Fig. 2)

�N (ijk) = d(i) +WN;kXN (i) = d(i) +
N�1X
n=0

W n+1
N;k x(i�n) ; (1)

where XN (i) =
h
xH(i) xH(i�1) � � � xH(i�N+1)

iH
is the input data vector and superscript

H denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N

transversal �lter coe�cientsWN;k =
h
W 1

N;k � � �WN
N;k

i
are adapted so as to minimize recursively

3

the following LS criterion

�N(k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN (i)k2 + �k+1� kWN �W0k2�N
)

=
kX
i=1

�k�i k�N(ijk)k2 + �k+1� kWN;k �W0k2�N ;

(2)

where � 2 (0; 1] is the exponential weighting factor, � > 0, �N = diag
n
�N�1; : : : ; �; 1

o
,

kvk2� = v�vH, k:k = k:kI . The second term in the LS criterion represents a priori information.

For instance, prior to measuring the signals, we may assume that WN is distributed as WN �
N
�
W0; R

�1
0

�
, R0 = ���N . The particular choice for R0 will become clear in the discussion

of the initialization of the FSU SFTF algorithm.

Minimization of the LS criterion leads to the following minimizer

WN;k = �PH
N;kR

�1
N;k ; (3)

where

RN;k =
kX
i=1

�k�iXN (i)X
H
N (i) + �k+1��N

= �RN;k�1 +XN (k)XH
N (k) ; RN;0 = R0 = ���N

PN;k =
kX
i=1

�k�iXN (i)d
H(i) � �k+1��NW

H
0

= �PN;k�1 +XN (k)dH(k) ; PN;0 = �R0W
H
0 ;

(4)

are the sample second order statistics. Substituting the time recursions for RN;k and PN;k

from (4) into (3) and using the matrix inversion lemma [14, pg 656] for R�1N;k, we obtain the

RLS algorithm:

eCN;k = �XH
N (k)�

�1R�1N;k�1 (5)

�1N (k) = 1 � eCN;kXN (k) (6)

R�1N;k = ��1R�1N;k�1 � eCH
N;k
N (k)

eCN;k (7)

�pN(k) = �N(kjk�1) = d(k) +WN;k�1XN (k) (8)

�N(k) = �N(kjk) = �pN(k)
N (k) (9)

WN;k = WN;k�1 + �N(k) eCN;k ; (10)

where �pN(k) and �N(k) are the a priori and a posteriori error signals (resp. predicted and

�ltered errors in the Kalman �ltering terminology) and one can verify (or see [5]) that they

4

are related by the likelihood variable
N (k) as in (9).

3 The SFTF Algorithm

The FTF algorithm e�ciently exploits the shift-invariance present in the adaptive FIR �ltering

problem, which translates into a low displacement rank ofR�1N;k. The computational complexity

of the FTF algorithm is 7N in its most e�cient form. In this algorithm, AN;k and BN;k are

the forward and backward prediction �lters, epN(k) and eN (k) are the a priori and a posteriori

forward prediction errors, rpN (k) and rN (k) are the a priori and a posteriori backward predition

errors, eCN+1;k =
h eC0

N+1;k � � � eCN
N+1;k

i
is the Kalman gains of (increased) orderN+1, and �N (k)

and �N(k) are the forward and backward prediction error variances. The key ingredient of

the stabilization of the FTF algorithm is the introduction of redundancy in the algorithm by

computing the backward prediction error in two ways: rpfN (k) and rpsN (k). Hence, the di�erence

between the two computed values constitutes a measurement of the numerical errors in the

implemented algorithm. This numerical error is fed back to the algorithm in order to stabilize

the numerical error propagation system associated with the algorithm [15]. This feedback

operation can be done by simply taking as �nal value of rpN (k) a certain convex combination

of the two computed values as was suggested independently in [16] and [13]. The convex

combination coe�cients can be interpreted as feedback coe�cients. The signal rpN (k) appears

essentially in two places in the algorithm, for which the two values K1 = 1:5 and K2 = 2:5

of the feedback gains appear to stabilize well for most applications. It was also shown in [13]

that the likelihood variable recursion of the FTF algorithm is also numerically unstable, but

that this problem can be circumvented by eliminating
N (k) in terms of �N (k) and �N(k).

In Table 1, the SFTF algorithm is presented for the general complex multichannel case.

However, the remainder of this paper will concentrate on the single-channel case for notational

simplicity, extensions to the multichannel case are immediate though. The algorithm can be

5

described in the following way, which emphasizes its rotational structure:26666666664

h eCN;k 0
i

AN;k

BN;k

[WN;k 0]

37777777775
= �k

26666666664

h
0 eCN;k�1

i
AN;k�1

BN;k�1

[WN;k�1 0]

37777777775
; (11)

with �k a 4 � 4 rotation matrix given by

�k = �1
k �

2
k �

3
k �

4
k ; (12)

where the four 4� 4 matrices �i
k ; i = 1; 2; 3; 4 are

�1
k =

26666666664

1 0 0 0

0 1 0 0

0 0 1 0

�N (k) 0 0 1

37777777775
; �2

k =

26666666664

1 0 � eCN
N+1;k 0

0 1 0 0

0 0 1 0

0 0 0 1

37777777775

�3
k =

26666666664

1 0 0 0

0 1 0 0

r
(1)
N (k) 0 1 0

0 0 0 1

37777777775
; �4

k =

266666666664

1
�epHN (k)

��N (k�1) 0 0

eN (k) 1 0 0

0 0 1 0

0 0 0 1

377777777775
: (13)

In fact, one can straightforwardly see that the di�erent steps in the SFTF algorithms consists

of the following vector transformations:

�k

26666666664

h
0 eCN;k�1

i
AN;k�1

BN;k�1

[WN;k�1 0]

37777777775
= �1

k�
2
k

26666666664

h eCN;k 0
i

AN;k

BN;k�1

[WN;k�1 0]

37777777775
= �1

k

26666666664

h eCN;k 0
i

AN;k

BN;k

[WN;k�1 0]

37777777775
=

26666666664

h eCN;k 0
i

AN;k

BN;k

[WN;k 0]

37777777775
: (14)

Apart from the computation of the �lters, the prediction error variances �N(k) and �N(k) also

need to be updated. In order to compute the rotation matrices, one must obtain the a priori

errors epN(k) ; r
pf
N (k) and �pN (k) which are the outputs at time k of the �lters AN;k�1; BN;k�1

and WN;k�1. In the FTF algorithm, these quantities are computed via inner products.

6

4 The Schur-SFTF Procedure

Now we apply the SUS to the SFTF algorithm. From the �lters at time instant k�L, we want
to obtain the �lters at time instant k. This will require the rotation matrices and hence the a

priori errors in that time range. We shall show that these quantities can be computed without

generating (completely) the intermediate �lter estimates using a Schur-SFTF algorithm. Let

us introduce the negative of the �lter output

bd p
N (k) = d (k)� �pN (k) ; bdN (k) = d (k) � �N (k) : (15)

Consider now the following set of �ltering operations

FL (k)
4
=

26666666664

�HN;L;k

ep HN;L;k

rpf HN;L;k

� bd p H
N;L;k

37777777775
4
=

26666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�L

[WN;k�L 0]

37777777775
XH
N+1;L;k (16)

where

XN+1;L;k =

2666664
XH
N+1(k�L+1)

...

XH
N+1(k)

3777775 = [xL;k xL;k�1 � � �xL;k�N] ; (17)

is the L� (N+1) Toeplitz input data matrix and xL;k = [xk�L+1 � � � xk]H . FL(k) is a 4 � L

matrix, the rows of which are the result of the �ltering of the data sequence fx(j) ; j =

k�N�L+1; : : : ; kg by the four �lters of the SFTF algorithm, see Fig. 3. �N;L;k is the output

of the Kalman gain and epN;L;k and r
pf
N;L;k are respectively the vectors of forward and backward

(multistep ahead) prediction errors

epN;L;k =

2666664
eHN(k�L+1jk�L)

...

eHN(kjk�L)

3777775 ; rpfN;L;k =

2666664
rf HN (k�L+1jk�L)

...

rf HN (kjk�L)

3777775 : (18)

7

The last row of FL(k) corresponds to the (multi-step ahead predicted) adaptive �lter outputs

bd p
N;L;k = dL;k � �pN;L;k =

2666664
dH(k�L+1)

...

dH(k)

3777775�
2666664
�HN(k�L+1jk�L)

...

�HN (kjk�L)

3777775 =
2666664
bd H
N (k�L+1jk�L)

...

bd H
N (kjk�L)

3777775 :

(19)

The �rst column of FL (k) turns out to be

FL (k) uL;1 =

26666666664

1 �
�1N (k�L)
epN (k�L+1)
rpfN (k�L+1)
� bd p

N (k�L+1)

37777777775
; (20)

where uL;n is the L � 1 vector with 1 in the nth position and 0 elsewhere. The quantities in

(20) give after some straightforward operations (using the appropriate recursions of the SFTF

algorithm in Table 1) the scalars �N (k�L+1) ; eN (k�L+1) and epN (k�L+1)=��N (k�L) ,

that are elements of the rotation matrix �k�L+1. In order to obtain the rest of the el-

ements that de�ne �k�L+1 , we must compute rpsN (k�L+1) (this allows the computation

of r(1)N (k�L+1) that appears in the matrix �3
k�L+1) and eCN

N+1;k�L+1 (in �2
k�L+1). Since

rpsN (k�L+1) = ���N (k�L) eCN
N+1;k�L+1 (see Table 1), we just need to compute eCN

N+1;k�L+1 in

order to obtain the rotation matrix �k�L+1. In the SUS, our aim is to compute the successive

rotation matrices over an interval of L samples. To do this, we need the di�erent eCN
N+1;k�L+j

for j = 1; : : : ; L. In fact, it turns out that these quantities can be obtained in an e�cient

manner by carrying out the SFTF recursions on the last L � j entries of the �lters in the

SFTF prediction part:

For j = 1; : : : ; L :

nj = N � L+ j ; kj = k � L+ j

eCnj:N
N+1;kj = eCnj�1:N�1

N;kj�1 � ��1��1(kj�1) ep HN (kj)A
nj:N
N;kj�1

rpsN (kj) = ���N(kj�1) eCN H
N+1;kj

If j < L :

A
nj+1:N
N;kj

= A
nj+1:N
N;kj�1

+ eN(kj) eCnj :N�1
N;kj�1

8

h eCnj:N�1
N;kj

0
i

= eCnj:N
N+1;kj

� eCN
N+1;kj

B
nj:N
N;kj�1

B
nj+1:N
N;kj

= B
nj+1:N
N;kj�1 + r

(1)
N (kj)

h eCnj+1:N�1
N;kj

0
i

End if (21)

End for :

Counting only the most signi�cant term as we often do, the computational complexity of these

recursions is 2L2. So with the quantities in FL (k) uL;1, some recursions from Table 1 and the

recursions (21), it is possible to construct the successive �k�L+j ; j = 1; : : : ; L.

Now we rotate both expressions for FL(k) in (16) with �k�L+1 to obtain �k�L+1FL(k) which

equals26666666666666666666664

h eCN;k�L+1 0
i

AN;k�L+1

BN;k�L+1

[WN;k�L+1 0]

37777777777777777777775

XH
N+1;L;k =

26666666666666666666664

�HN;L�1;k �

eN(k�L+1) ep HN;L�1;k

rfN (k�L+1) rpf HN;L�1;k

�� bdN (k�L+1) � bd p H
N;L�1;k

37777777777777777777775

: (22)

One can see from (22) that quantities in boxes are the four rows of FL�1(k). This can be

written more compactly as

S (�k�L+1 FL(k)) = FL�1(k) ; (23)

where the operator S(M) stands for: shift the �rst row of the matrix M one position to the

right and drop the �rst column of the matrix thus obtained. Now this process can be repeated

until we get F0(k) which is a matrix with no dimensions. So the same rotations that apply

to the �lters at times k�L+j; j = 1; : : : ; L, also apply to the set of �ltering error vectors

FL�j(k) over the same time span. With this procedure, the one step ahead output errors

(rotation parameters) are computed during this time span without updating the �lters. Inner

products (�ltering operations) are just needed for the computation of FL(k) and constitutes

the initialization part of the procedure. The Schur-SFTF procedure is given in Table 2. This

9

procedure contrasts with the Levinson-style [17] SFTF algorithm in (11). Taking into account

the fact that a rotation matrix in factored form as in (12) only contains �ve non-trivial

entries, this takes 2:5L2 operations per L samples. The innner products need 4N operations,

so the successive rotation matrices can be obtained via the Schur-SFTF procedure with a

computational complexity of 4:5L2+4N operations per L samples. The amount of operations

needed for the inner products can be further reduced by using the FFT as is explained in the

next section.

5 Fast computation using the FFT

It is possible to reduce the computational complexity of the Schur-SFTF procedure by in-

troducing FFT techniques as explained in [18]. In what follows, we shall often assume for

simplicity that L is a power of two and that NL = (N+1)=L is an integer. To get FL(k) in

(16), we need to compute products of the form �N+1;k X
H
N+1;L;k where �N+1;k is a row vector

of N+1 elements.

Consider a partitioning of �N+1;k in NL subvectors of length L:

�N+1;k =
h
�1L;k � � � �NLL;k

i
; (24)

and a partitioning of XN+1;L;k in NL submatrices of order (L� L):

XN+1;L;k = [XL;L;k XL;L;k�L � � �XL;L;k�N+L�1] ; (25)

then

�N+1;k X
H
N+1;L;k =

NLX
j=1

�jL;kX
H
L;L;k�(j�1)L : (26)

In other words, we have essentially NL times the product of a vector of length L with a (L�L)

Toeplitz matrix. Such a product can be e�ciently computed in basically two di�erent ways

[18]. One way is to use fast convolution algorithms , which are interesting for moderate values

of L. Another way is to use the overlap-save method in which one embeds the L�L Toeplitz

10

matrix XL;L;k into a 2L� 2L circulant matrix, viz.

X
H

L;L;k =

2666664
� XH

L;L;k

XH
L;L;k �

3777775 = C
�
xH2L;k

�
(27)

where C(cH) is a right shift circulant matrix with cH as �rst row. Then we get for the vector-

matrix product

�jL;kX
H
L;L;k�(j�1)L =

h
01�L �

j

L;k

i
C
�
xH2L;k�(j�1)L

� 264 IL

0L�L

375 : (28)

Now consider the Discrete Fourier Transform (DFT) Vj
L;k of �

j
L;k

Vj
L;k = �jL;k FL ; (29)

FL is the L� L DFT matrix whose generic element is (FL)p;q = e�i2�
(p�1)(q�1)

L , i2 = �1.
The inverse of FL is 1

L
FH
L . It de�nes the inverse DFT transformation (IDFT)

�jL;k = Vj
L;k

1

L
FH
L : (30)

The product of a row vector v with a circulant matrix C(cH) where v and c are of length m

can be computed e�ciently as follows. Using the property that a circulant matrix can be

diagonalized via a similarity transformation with a DFT matrix, we get

v C(cH) = v Fm diag
�
cHFm

� 1
m
FH
m =

h
(vFm) diag

�
cHFm

� i 1

m
FH
m ; (31)

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So

the computation of the vector in (28) requires the padding of v with L zeros, the DFT of the

resulting vector, the DFT of x2L;k�(j�1)L, the product of the two DFTs, and the (scaled) IDFT

of this product. When the FFT is used to perform the DFTs, this leads to a computationally

more e�cient procedure than the straightforward matrix-vector product which would require

L2 multiplications. Note that at time k, only the FFT of x2L;k needs to be computed; the

FFTs of x2L;k�jL; j = 1; : : : ;M�1 have been computed at previous time instants. This reduces

11

the 4N computations per sample that are needed for the initialization of the Schur-SFTF

procedure to

4N

"
FFT(2L)

L2
+

2

L

#
+
5FFT(2L)

L
(32)

computations per sample (FFT(L) signi�es the computational complexity associated with a

FFT of length L) or basically O
�
N log2(L)

L

�
operations.

6 The FSU SFTF Algorithm

Once we have computed the L consecutive rotation matrices with the Schur-SFTF algorithm,

we want to apply them all at once to obtain the �lters at time k from the �lters at time k�L.
Due to the shift of the Kalman gain in (11), we need to work in the z-transform domain. So

we shall associate polynomials with the �lter coe�cients as follows26666666664

eCk (z)

Ak (z)

Bk (z)

Wk (z)

37777777775
=

26666666664

h eCN;k 0
i

AN;k

BN;k

[WN;k 0]

37777777775

26666666664

1

z�1

...

z�N

37777777775
: (33)

Hence (11) can be written in the z-transform domain as26666666664

eCk (z)

Ak (z)

Bk (k)

Wk (z)

37777777775
= �k

2666664
z�1

1
1

1

3777775

26666666664

eCk�1 (z)

Ak�1 (z)

Bk�1 (z)

Wk�1 (z)

37777777775
: (34)

Let us introduce the following polynomial matrix

�k (z) = �k

2666664
z�1

1
1

1

3777775 : (35)

12

Now, in order to adapt the �lters at time k from the ones at time k�L, we get straightforwardly26666666664

eCk (z)

Ak (z)

Bk (k)

Wk (z)

37777777775
= �k;L (z)

26666666664

eCk�L (z)

Ak�L (z)

Bk�L (z)

Wk�L (z)

37777777775
(36)

where

�k;L (z) = �k (z)�k�1 (z) � � ��k�L+1 (z) : (37)

Now also remark that �k;L (z) has the following structure

�k;L (z) =

26666666664

� � � 0

� � � 0

� � � 0

� � � 1

37777777775
(38)

where the stars stand for polynomials in z�1 of degree at most L. The accumulation of the

successive rotation matrices is done as follows

For j = 2; : : : ; L

kj = k�L+j

�kj ;j(z) = �1
kj
�2
kj
�3
kj
�4
kj

2666664
z�1

1
1

1

3777775 �kj�1;j�1(z) : (39)

The computation of �k;L (z) takes 7:5L2 operations. As a result of the structure displayed

in (38), the product in (36) represents 12 convolutions of a polynomial of order L with a

polynomial of order N . These convolutions can be done using fast convolution techniques.

In the case we consider, in which the orders of the polynomials are relatively large, we will

implement the convolutions using the FFT technique. Consider one of those convolution

products: it has the form PL ? �N+1;k where PL is one of the 12 order L vectors that appear

in the accumulated rotation matrix and �N+1;k is one of the four SFTF �lters. As in section

5, the product is splitted in NL parts

PL ? �N+1;k = PL ?
h
�1
L;k � � ��NL

L;k

i
=
h
PL ? �

1
L;k � � � PL ? �

NL
L;k

i
; (40)

13

every subproduct in (40) is done using the Overlap-Save method. Note that at this stage, we

do not need to compute the FFTs of the �lters AN;k; BN;k; eCN;k and WN;k because they were

already used when computing FL(k) in the Schur-SFTF procedure. The update of each �lter

need 3 times such product. Taking in particular the update of the adaptive �lter, we have

Wk(z) = (�k;L(z))4;1
eCk�L(z)+ (�k;L(z))4;2Ak�L(z)+ (�k;L(z))4;3Bk�L(z)+Wk�L(z) ; (41)

each product in (41) is done as explained before. The additons are done in the frequency

domain, reducing hence the number of needed IDFTs. The complexity associated with the

update of the adaptive �lter is (N+1
L

+3)FFT (2L)+6 (N + 1) operations per L samples. The

resulting FSU SFTF algorithm is summarized in Table 3.

The initialization of the algorithm is done with the soft constraint initialization technique [5].

The additon of the soft constraint to the LS cost function as shown in (2) can be interpreted

as the result of an unconstrained LS problem where the input signal is equal to
p
� at time

k = �N and zero at all other time instants before time k = 0. Hence the FSU SFTF algorithm

departs from the following initial conditions

WN;0 = W0

AN;0 = [1 0 � � � 0] ; �N(0) = �N�

BN;0 = [0 � � � 0 1] ; �N(0) = �

eCN;0 = [0 � � � 0] ;
N(0) = 1 :

(42)

With this initialization at k = 0, the corresponding initial sample covariance matrix is indeed

R0 = ���N for some diagonal matrix �N of powers of �.

7 Computational Complexity

The complexity of the FSU SFTF algorithm is

CFSUSFTF = (8
N + 1

L
+17)

FFT (2L)

L
+ 32

N

L
+ 12L (43)

operations per sample. This can be very interesting for long �lters. For example, when

(N;L) = (4095; 256); (8191; 256) and the FFT is done via the split radix (FFT (2m) =

14

mlog2(2m) real multiplications for real signals) the multiplicative complexity is respectively

1:2N and 0:8N per sample. This should be compared to 8N for the SFTF algorithm, the

currently fastest stable RLS algorithm, and 2N for the LMS algorithm. The number of

additions is somewhat higher. The cost we pay is a processing delay which is of the order

of L samples. In fact, there exists an optimal value of L for every �lter length N and the

computational complexity per �lter coe�cient is decreasing as a function of N . In Table 4,

we give the optimal multiplicative complexities for di�erent values of N . Note that the

computational complexity falls below that of the SFTF algorithm when N is greater than 127

and similarly below that of the NLMS algorithm when N becomes greater than 1023. This

can be considered as a relatively small �lter length when dealing with acoustic echos that

appear in teleconference applications.

8 Concluding Remarks

We have simulated the algorithm to verify its correctness. In Fig. 4, we compare the evolution

in dB of the numerical errors that can be measured in the backward prediction part: 10 log <

(rp fN (k) � rp sN (k))2 >, where the mean is taken over 100 samples. The input is white noise

of unit variance, the �lter length is N = 100, the initial backward prediction error energy is

chosen to be � = 0:01, the forgetting factor is � = 1 � 1
3N

= 0:9967 and the downsampling

factor is L = 32. As we see, the FSU SFTF algorithm is numerically stable (simulations were

run for more than 107 samples). Moreover, when comparing with the numerical errors of the

SFTF algorithm, it appears that the FSU SFTF algorithm is more accurate.

In [10], we have introduced the FSU RLS algorithm, an alternative algorithm with a very

di�erent internal structure, but a very similar computational complexity

CFSURLS = (8
N + 1

L
+20)

FFT (2L)

L
+ 35

N

L
+ 5:5L ; (44)

see Fig. 5. These developments lead us to conjecture that perhaps a lower bound on com-

putational complexity has been reached for RLS algorithms when the subsampled updating

strategy is applied and when the �lters to be adapted are relatively long. We have also applied

the SUS to other adaptive �lters such as the FNTF algorithm [19],[20] and the FAP algorithm

15

[21],[22] which respectively leads to the FSU FNTF algorithm [23] and the FSU FAP algo-

rithm [24]. As a perspective for further research, we may remark that since the FSU SFTF

algorithm updates in blocks of L samples; numerical errors on the backward prediction �lter

can be observed in an L dimensional subspace, opening up the perspective of correcting the

errors in an L dimensional subspace. This would increase the range of � for stable operation

by a factor L. At this point, these issues are subject of ongoing research.

16

References

[1] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cli�s, NJ, 1991. second

edition.

[2] B. Widrow and S.D. Stearns. Adaptive Signal Processing. Prentice-Hall, Englewood

Cli�s, NJ, 1985.

[3] O. Macchi. The Least Mean Squares Approach with Applications in Transmission. John

Wiley & Sons, New York, 1995.

[4] E. Eleftheriou and D. Falconer, \Tracking properties and steady state performance of

RLS adaptive �lter algorithms". IEEE Trans. on ASSP, ASSP-34(5):821{823, July 1987.

[5] J.M. Cio� and T. Kailath. \Fast, recursive least squares transversal �lters for adaptive

�ltering". IEEE Trans. on ASSP, ASSP-32(2):304{337, April 1984.

[6] D.T.M. Slock and T. Kailath. \A Modular Prewindowing Framework for Covariance FTF

RLS Algorithms". Signal Processing, 28(1):47{61, July 1992.

[7] D.T.M. Slock. \Reconciling Fast RLS Lattice and QR Algorithms". In Proc. ICASSP

90 Conf., pages 1591{1594, Albuquerque, NM, April 3{6 1990.

[8] X.-H. Yu and Z.-Y. He. \E�cient Block Implementation of Exact Sequential Least-

Squares Problems". IEEE Trans. Acoust., Speech and Signal Proc., ASSP-36:392{399,

March 1988.

[9] J.M. Cio�. \The Block-Processing FTF Adaptive Algorithm". IEEE Trans. on ASSP,

ASSP-34(1):77{90, Feb. 1986.

[10] D.T.M. Slock and K. Maouche. \The Fast Subsampled-Updating Recursive Least-Squares

(FSU RLS) for Adaptive Filtering Based on Displacement Structure and the FFT". Signal

Processing, Vol. 40, No. 1, Oct. 1994, pp. 5{20.

17

[11] T. Kailath, S.Y. Kung, and M. Morf. \Displacement ranks of matrices and linear equa-

tions". J. Math. Anal. Appl., 68(2):295{407, 1979. (See also Bull. Amer. Math. Soc., vol.

1, pp. 769{773, 1979.).

[12] D.T.M. Slock and K. Maouche. \The fast subsampled-updating fast transversal �lter

(FSU FTF) RLS Algorithm" Annals of telecommunications, Vol. 49, No. 7-8, 1994, pp.

407-413.

[13] D.T.M. Slock and T. Kailath. \Numerically Stable Fast Transversal Filters for Recursive

Least-Squares Adaptive Filtering". IEEE Trans. Signal Proc., ASSP-39(1):92{114, Jan.

1991.

[14] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cli�s, NJ, 1980.

[15] J-L Botto and G.V. Moustakides. \Stabilization of Fast Recursive Least-Squares

Transversal Filters for Adaptive Filtering". In Proc. ICASSP 87 Conf., volume 1, pages

403{407, Dallas, Texas, April 1987.

[16] A. Benallal and A. Gilloire. \A New Method to Stabilize Fast RLS Algorithms based

on a First-Order Model of the Propagation of Numerical Errors". In Proc. ICASSP 88

Conf., volume 3, pages 1373{1376, New York, April 1988.

[17] N. Levinson. \The Wiener r.m.s. (root-mean-square) error criterion in �lter design and

prediction". J. Math. Phys., 25:261{278, 1947.

[18] M. Vetterli. \Fast Algorithms for Signal Processing". In M. Kunt, editor, Techniques

modernes de traitement num�erique des signaux. Presses Polytechniques et Universitaires

Romandes, Lausanne, Switzerland, 1991. ISBN 2-88074-207-2.

[19] G.V. Moustakides and S. Theodoridis. \Fast Newton Transversal Filters { A New Class

of Adaptive Estimation Algorithms". IEEE Trans. SP, SP-39(10):2184{2193, Oct. 1991.

[20] T. Petillon, A. Gilloire, and S. Theodoridis. \The Fast Newton Transversal Filter: an

E�cient Scheme for Acoustic Echo Cancellation in Mobile Radio". IEEE Trans. ASSP,

ASSP-42(3):509{518, March 1994.

18

[21] K. Ozeki and T. Umeda. \An Adaptive Algorithm Using Orthogonal Projection to an

A�ne Subspace and its Properties". Trans. IECE Japan, J67-A:126{132, 1984.

[22] S. L. Gay. \A Fast Converging Low Complexity Adaptive Filtering Algorithm". In Proc.

ICASSP Conf., pages 3023{3026, Detroit, USA, May 1995.

[23] K. Maouche and D.T.M. Slock. \The Fast Subsampled-Updating Fast Newton Transver-

sal Filter (FSU FNTF) for Adapting Long FIR Filters". In Proc. 28th Asilomar Conf.

on Signals, Systems and Computers, pages 1488{1492, Paci�c Grove, CA, Oct. 31 - Nov.

2 1994.

[24] K. Maouche. Algorithmes des Moindres Carr�es R�ecursifs Doublement Rapides: Applica-

tion �a l'identi�cation de R�eponses impulsionnelles Longues. PhD thesis, Ecole Nationale

Sup�erieure des T�el�ecommunications, Paris, France, March 1996.

19

�
�

�
�

�
�

�
�

��	

@
@
@
@
@
@
@
@
@
@@R

? ?

RLS

FTFSU RLS

FSU FTFFSU RLS

displacement

structure

block processing

(FFT)

block processing

(FFT)

displacement

structure

Figure 1: Dual strategies for the derivation of the FSU FTF and FSU RLS algorithms.

?

�
�
�
�

�
�
�7

- +��
��
-

desired-response

data sequence

input

data sequence

Adaptive

Transversal

F ilter

WN;k

d(i)

x(i)

�N(ijk)

Figure 2: The adaptive FIR �ltering scheme.

20

-

-

-

-

-

-

-

-

BN;k�L

XN+1;L;k

rpfN;L;k

epN;L;k

� bdpN;L;k

�N;L;k

[WN;k�L 0]

AN;k�L

h
0 eCN;k�L

i

Figure 3: Filtering operations in the FSU SFTF algorithm.

21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−300

−280

−260

−240

−220

−200

−180

SFTF

FSU SFTF

discrete-time

10 log <(rp f � rps)2>

dB

Figure 4: Evolution of numerical errors for the SFTF algorithm ('��') and the FSU SFTF
algorithm ('|')

22

10
0

10
1

10
2

10
3

10
4

10
5

10
−

1

10
0

10
1

N

Number of multiplications (x N)

S
F

T
F

LM
S

F
igu

re
5:

F
S
U
S
F
T
F
('�')

an
d
F
S
U
R
L
S
('�

')
com

p
lex

ities
vs.

�
lter

len
gth

.

23

The SFTF Algorithm

Computation Cost per sample

1 e
p
N (k) = AN;k�1XN+1(k) N

2 eC0H
N+1;k = ���1��1N (k�1)epN (k)

3 eCN+1;k =
h
0 eCN;k�1

i
+ eC0

N+1;kAN;k�1 N

4
�sN+1(k) =
�1N (k�1)� eC0
N+1;ke

p
N (k)

5 eN (k) = e
p
N (k)
N (k�1)

6 AN;k = AN;k�1 + eN (k)
h
0 eCN;k�1

i
N

7 ��1N (k) = ��1��1N (k�1)� eC0H
N+1;k

s
N+1(k)

eC0
N+1;k

8 r
p f
N (k) = BN;k�1XN+1(k) N

9 r
p s
N (k) = ���N (k�1) eCN H

N+1;k

10 r
p (1)
N (k) = 1:5 rpfN (k)� 0:5 rpsN (k)

11 r
p (2)
N (k) = 2:5 rpfN (k)� 1:5 rpsN (k)

12
h eCN;k 0

i
= eCN+1;k �

eCN
N+1;kBN;k�1 N

13
�sN (k) =
�sN+1(k) +
eCN
N+1;kr

p f
N (k)

14 r
(j)
N (k) = r

p (j)
N (k)
sN (k) ; j = 1; 2

15 BN;k = BN;k�1 + r
(1)
N (k)

h eCN;k 0
i

N

16 �N (k) = ��N (k�1) + r
(2)
N (k)r

p (2)H
N (k)

17
�1N (k) = ��N�N (k)�
�1
N (k)

18 �
p
N (k) = d(k) +WN;k�1XN (k) N

19 �N (k) =
N (k)�pN (k)

20 WN;k = WN;k�1 + �N (k) eCN;k N

Total Cost per Sample: 8N

Table 1: The SFTF Algorithm.

24

The Schur-SFTF Procedure

0 FL (k) =

26666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�L

[WN;k�L 0]

37777777775
XH
N+1;L;k =

26666666664

�HN;L;k

ep HN;L;k

rp fHN;L;k

� bd p H
N;L;k

37777777775
For j = 1 : L ; kj = k�L+j ; nj = N � L+ j

1 FL�j+1 (k) uL�j+1;1 =

26666666664

1 �
�1N (kj�1)
epN (kj)

rp fN (kj)

� bd p
N (kj)

37777777775
2 eCnj:N

N+1;kj
= eCnj�1:N�1

N;kj�1
� ��1��1N (kj�1) ep HN (kj)A

nj :N
N;kj�1

3 rpsN (kj) = ���N(kj�1) eCN H
N+1;kj

4 eN(kj) =
N (kj�1)epN (kj)
5 A

nj+1:N
N;kj

= A
nj+1:N
N;kj�1

+ eN(kj) eCnj:N�1
N;kj�1

6
h eCnj:N�1

N;kj
0
i
= eCnj:N

N+1;kj
� eCN

N+1;kj
B
nj:N
N;kj�1

7
�sN+1(kj) =
�1N (kj�1) + ��1epN(kj)�
�1
N (kj�1)epHN (kj)

8 �N (kj) = ��N (kj�1) + epN (kj) eHN (kj)

9 r
p (1)
N (kj) = 1:5 rp fN (kj)� 0:5 rp sN (kj)

10 r
p (2)
N (kj) = 2:5 rp fN (kj)� 1:5 rp sN (kj)

11
�sN (kj) =
�1N+1(kj)� ��1rpN (kj)�
�1
N (kj�1)rpHN (kj)

12 r
(j)
N (kj) = r

p (j)
N (kj)
sN (kj) ; j = 1; 2

13 B
nj+1:N
N;kj

= B
nj+1:N
N;kj�1 + r

(1)
N (kj)

h eCnj+1:N�1
N;kj

0
i

14 �N(kj) = ��N (kj�1) + r
(2)
N (kj)r

p (2)H

N (kj)

15
�1N (kj) = ��N�N (kj)�
�1
N (kj)

16 �N(kj) =
N (kj)�
p
N (kj)

17 S
�
�kj FL�j+1(k)

�
= FL�j(k)

Table 2: The Schur-SFTF Procedure.

25

The FSU SFTF Algorithm

Computation Cost per L sample

1

266666666664

�HN;L;k

e
p H

N;L;k

r
p fH

N;L;k

�

bd p H
N;L;k

377777777775
=

266666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�L

[WN;k�L 0]

377777777775
XH
N+1;L;k (5 + 4N+1

L
)FFT (2L) + 8N

2 Schur-SFTF Procedure:

Input: �N;L;k; e
p
N;L;k; r

p f
N;L;k; �

bd p
N;L;k

AN�L+1:N
N;k1�1

; BN�L:N�1
N;k1�1

; eCN�L+1:N
N;k1�1

Output: �k�i (z) i = L�1; : : : ; 0 4:5L2

3 �k;L (z) =
L�1Y
i=0

�k�i (z) 7:5L2

4

266666666664

eCk (z)

Ak (z)

Bk (z)

Wk (z)

377777777775
= �k;L (z)

266666666664

eCk�L (z)

Ak�L (z)

Bk�L (z)

Wk�L (z)

377777777775
(12 + 4N+1

L
)FFT (2L) + 24N

Total Cost per Sample: (17 + 8N+1
L

)FFT (2L)
L

+ 32N
L
+ 12L

Table 3: The FSU SFTF Algorithm.

N 63 127 255 511 1023 2047 4095 8191 16383

L (optimal) 16 32 32 64 64 128 128 256 512

Complexity (�N) 7.53 5.51 4.01 2.88 2.13 1.50 1.13 0.78 0.59

Table 4: Optimal Complexity of the FSU SFTF Algorithm.

26

