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Abstract— This paper addresses the problem of base station
coordination in multicell wireless networks. We present a dis-
tributed approach to downlink multibase beamforming as well
as a low complexity, near-optimal, scheduling algorithm allowing
the multiplexing of M user terminals randomly located in a
network with N base stations. The algorithms rely on the
maximization of the sum rate of the network, based on locally
available information at each base station. Results show that our
approach yields significant gains in the system capacity when
compared to schemes not allowing cooperation between cells,
without requiring the extensive signaling overhead involved in
optimal multicell MIMO processing.

I. I NTRODUCTION

Aggressive frequency reuse in multicell systems has shown
promise of significant capacity gains. In many cases, however,
this potential is severely limited by intercell interference [1].
We may alleviate the interference problem by employing a
system-wide resource distribution, through power-allocation
and scheduling of the users in the different cells [2].

In such schemes, user terminals are still communicating
with their preferred base station (or access point), but ben-
efiting from reduced interference created by concurrent trans-
missions in neighboring cells.

For enhanced performance, this form of resource allocation-
based cooperation between cells, may be augmented with
a signal processing-based cooperation. In this scenario, the
antennas at all base stations in the network are seen as
distributed antennas of a large-scale MIMO array, yet subject
to per-base power constraints. In this view, known multiuser
MIMO transmission techniques, such as Minimum Mean
Square Error, Zero-Forcing, or Dirty Paper Coding can be
reused over the multibase antenna array [3].

Certain approaches of this nature are considered in e.g. [4]
and [5], and also with a more theoretical approach in [6]
and [7]. The optimum use of the distributed base antennas
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that can be found, indicates a promising research avenue.
Yet, it brings two major issues in practical settings: First,
the complexity of implementing multiuser MIMO solutions
for a large number of cells and users is prohibitive. Second,
optimum antenna combining requires a large signaling over-
head between the bases of the network, which must exchange
information on all the users’ channel responses. This type of
approach remains of interest for the optimization of very small
networks or clusters of cells. The disadvantage of clustering,
however, lies in the edge effects it creates for users who sitin
the neighborhood of two or more clusters.

To avoid these problems, in the case of larger scale
networks, deriving multibase MIMO-aided cooperation tech-
niques, which can be realized in adistributed manner and have
a reasonable complexity, is of great interest.

In this paper, we investigate such solutions. The key ideas
presented here can be summarized as (i)distributed beam-
forming and (ii) greedy scheduling. The proposed distributed
beamforming framework exploits the base antennas so that
coherently added signals are received at each of the mobiles,
possibly from several bases. The scheduling technique aims
at assigning users to base stations, one MS being served by
one or more BS, from which distributed beamforming will be
performed.

More specifically, we present the following contributions:
• A setup for distributed beamforming, where each base

station only needs hybrid channel state information (CSI).
By hybrid CSI, we consider instantaneous CSI on locally
measured channels and long-term, statistical CSI on non-
locally measured channels.

• A low complexity algorithm for multibase scheduling,
where the base stations jointly select users, so as to
maximize the sum capacity of the network.

The organization of this paper is as follows: In Section II we
present the system model. Next, in Section III the optimization
problem and possible approaches are given. Results from
numerical simulations are presented in Section V, and the
concluding remarks are contained in Section VI.



II. SYSTEM MODEL

We assume a setting withN base stations (BS) andM
mobile stations (MS), the whole system being engaged in
downlink communication. For ease of exposition, all the BSs
and MSs are equipped with a single antenna. Each base station
holds anM -length symbol vector,s = [s0, s1, · · · , sM−1]

T ,
wheresm is intended for MSm, m ∈ {0, 1, . . . , M − 1}. The
symbols are seen as uncorrelated,E[sms∗k]=0, for m 6= k.

The base stations schedule users and apply precoding in the
form of transmit side matched filtering. To this end, a base
station BSn is required to have perfect CSI on the channels
from itself to theM users. This can be done by a preamble
using training sequences. Note that this assumes a form of
symbol level synchronization between the bases, realizable if
the relative distances between the neighboring bases are not
too large. Synchronization between widely separated basesis
not a requirement, because the larger path loss will in any case
limit the cooperation between such cells.

For the channels between the otherN−1 base stations and
theM users, we assume BSn to have only long-term, statistical
knowledge. Statistical knowledge is equivalent to knowledge
of slow-varying macroscopic parameters of the channels, such
as distance-based path loss and and shadowing effect. See
Fig. 1 for an illustration of the network, and note that the
coefficientwli denote the precoding at BSl, to be defined.

For the user scheduling, we define ascheduling graph,
represented by theN × M -sized matrixG:

G = [g0 g1 . . . gN−1]
T, with gn = [gn0, gn1, . . . , gn(M−1)]

T,

where each coefficientgnm is interpreted as

gnm =

{

1 , if BSn transmits to MSm ,

0 , otherwise.
(1)

We scheduleone user MSm, m ∈ {0, 1, . . . , M −1}, per
base station BSn, n ∈ {0, 1, . . . , N − 1}, at full power, at
any given time. More generally, we assume that one user is
assigned to each spectral resource slot available at each cell
(time, frequency, code, etc.). Any MSm is served by zero, one
or more base stations. For a given BSn, the optimization is thus
limited to choosing the best receiver, according to a chosen
performance criterion, so this is a pure scheduling problem.
There is no attempt at fairness by requiring all users to be
served, for this, we rely on user mobility and time-variant
channel conditions.

The set of feasible graphs,SG, includes allG for which
eachgn, n ∈ {0, 1, . . . , N −1}, gT

n being then-th row vector
of G, containsa single non-zero element:

SG =
{

G : gn ∈ {e1, e2, . . . , eM}
}

, (2)

where em is an M × 1-sized vector with 1 at them-th
coordinate, and 0 elsewhere, so the set{e1, e2, . . . , eM}
defines the standard basis forR

M .
We combine this user selection and the matched filter pre-

coding inW =
[

w0 w1 . . . wN−1

]T
, a matrix of sizeN×M .

hil

hik

BSl

BSj BSk

MSi

wli

wji wki

hij

Fig. 1. System model, showing the base stations as squares ina multicell
network, while the users are depicted as circles. Arrows from BSk to MSi

implies that MSi is scheduled by BSk, the interference is not shown.

Eachwn = [wn0 wn1 . . . wn(M−1)]
T is the scheduling and

precoding vector of BSn, where the coefficient

wnm =gnm

√

Pt

h∗
mn

|hmn|
, (3)

is used by BSn for sm, the symbol intended for MSm.
Here, hmn is the complex channel gain between BSn and
MSm, including both fast (multipath) fading and more slowly-
changing effects. The transmit power per BS is limited as
|wn|2 = Pt (in Watts) and BSn transmitsxn = wT

ns. The
M×1 vector of received symbols at all the MSs is

y = HWs + v , (4)

where H is the M × N -sized total channel matrix, with
entries(H)mn = hmn. TheM × 1 vectorv contains random
noise coefficients, following a Gaussian, white distribution,
vm ∼ (0, σv). Each MSm may receive both desired symbols,
interfering symbols, and is also affected by noise:

ym = (H)m,:Ws + vm = yd
m + yi

m , (5)

where the desired part of the signal is

yd
m =

√

Pt

N−1
∑

n=0

gnm|hmn|sm , (6)

while the interference and noise are contained in

yi
m =

√

Pt

N−1
∑

n=0

hmn

M−1
∑

k=0
k 6=m

gnk

h∗
kn

|hkn|
sk + vm . (7)

The signal-to-interference-plus-noise ratio (SINR) of user m

is denoted SINRm(G, H), as it depends both on the channel
H and the scheduling graphG. Using the assumptions that
E[|sm|2] = σ2

s , E[sms∗k] = 0 for m 6= k, and thatE[skv∗m] = 0



for all possiblek andm, we develop the SINRm(G, H) as:

SINRm(G, H) =
Es[|yd

m|2]
Es,v[|yi

m|2]

=

Es

[

|√Pt

N−1
∑

n=0
gnm|hmn|sm|2

]

Es,v

[

|√Pt

N−1
∑

n=0
hmn

M−1
∑

k=0
k 6=m

gnk
h∗

kn

|hkn|sk + vm|2
]

=

(√
Pt

N−1
∑

n=0
gnm|hmn|

)2
σ2

s

M−1
∑

k=0
k 6=m

∣

∣

√
Pt

N−1
∑

n=0
hmngnk

h∗

kn

|hkn|

∣

∣

2
σ2

s + σ2
v

. (8)

III. U SER SCHEDULING PROBLEM

We seek the scheduling graphG that optimizes our chosen
measure of performance; the network downlink sum capacity.

There is no cooperation or coherent combining between the
MSs, so the instantaneous capacity of the whole system is
simply the sum of the data rates of theM non-cooperating
MISO receive branches.

C(G, H) =

M−1
∑

m=0

Cm(G, H)

=

M−1
∑

m=0

log2(1 + SINRm(G, H)) , (9)

whereCm(G, H) is the data rate at MSm. From (8), we get

C(G,H) =

M−1
∑

m=0

log2

(

1+
(

√

Pt

N−1
∑

n=0

gnm|hmn|
)2

σ2
s

/

[

M−1
∑

k=0
k 6=m

∣

∣

∣

√

Pt

N−1
∑

n=0

hmngnk

h∗
kn

|hkn|
∣

∣

∣

2

σ2
s + σ2

v

]

)

. (10)

Given the above presented constraints and assumptions,
the optimization problem is expressed as finding the best
scheduling matrix, such that the sum capacityC(G, H) is
maximized. This problem can be approached in different ways,
first we present a centralized scheduler in Subsection III-
A, useful for comparison. In Section IV, we propose low-
complexity distributed schedulers.

A. Centralized Scheduler

The centralized scheduling approach requires full, instan-
taneous CSI on the whole channel, and is performed by a
central unit, in the form of an exhaustive search. The central
unit iterates through theentire set of feasible graphsSG, and
picks the one that maximizes the sum capacity, denotedG∗.

G∗ = arg max
G∈SG

C(G, H) . (11)

The cardinality of feasible graphs set is|SG| = MN , so
for a large network, the centralized scheduler is prohibitively
complex and time-consuming. Furthermore, this implies a very
large amount of feedback information between the MSs and

the bases, to be centrally collected by the network, which is
not practical for large networks in mobility settings.

IV. D ISTRIBUTED SOLUTIONS

The concept of the centralized scheduler is simple, as each
BS only needs to be told which MS to schedule. However,
the exponential complexity increase and the need for full,
instantaneous CSI in a central unit motivates the search for
low-complexity solutions with acceptable performance.

In the following, we give some user scheduling approaches
of a more distributed nature. One approach to derive dis-
tributed algorithms is to break channel information into two
sets, characterized as being local or non-local information.
These sets of information are treated differently and dubbed
together as ”hybrid CSI”. Here, the term is used to describe the
fact that BSn has full, instantaneous CSI on its local channels,
defined as theM channels linking BSn to all the users,
hn = [h0n, h1n, . . . h(M−1)n]T . On the remainingM(N−1)
channels, BSn has only long-term, statistical CSI, by which,
for this scenario, we specifically refer to the path loss and the
shadow fading.

In Section IV-B, we describe a spatially distributed multi-
base scheduler, of relatively low complexity and where only
hybrid CSI is needed. For comparisons, we also give a fully
distributed, greedy scheduler and a conventional singlebase
scheduler, in Sections IV-A and IV-C, respectively.

A. Greedy User Scheduling

The first scheme is greedy and fully distributed, no central
unit is required for coordination. Each BSn, n ∈ {0, 1, . . . , N−
1} schedules the MSm with the maximum receive signal-to-
noise ratio (SNR), with no regard for the interference. In other
words, BSn finds its own best scheduling vectorg∗

n, such that:

g∗
n = arg max

gn∈{e1,e2,...,eM}
SNR(gn, hn) , (12)

where SNR(gn, hn) is defined as

SNR(gn, hn) =

Es

[

∣

∣

√
Pt

M−1
∑

m=0
gnm|hmn|sm

∣

∣

2
]

σ2
v

. (13)

Please note that the sum in the above nominator has a single
non-zero term. From a network point of view, one receiving
user may be selected by multiple base stations, in which
case it receives a coherently added sum of the desired signal,
beamformed from these BSs.

The advantages of this method are the very low complexity
and the fact that only local information is used, while statistical
external information is not needed. In that sense, this scheme
is fully distributed. One disadvantage is the limited amount of
cell cooperation, which will in turn limit network performance.

B. Iterative Capacity-Maximizing Scheduling

Next, we present an iterative scheme, in which the base
stations successively update the scheduling graphG. In this
case, all cells will share a common objective of maximizing the
sum capacity, thus benefiting from inter-cell cooperation.The



price to pay in comparison with the scheme above, is the need
to exchange statistical information throughout the network, as
well as keeping the scheduling graph updated. The system
starts from an initial graphG0, known to all the BSs. Next, in
a pre-determined, non-optimized order, each BSn determines
its best corresponding vectorg∗

n in G, such that:

g∗
n = arg max

gn∈{e1,e2,...,eM}
EH̃n

{

C(G, H)
}

, (14)

whereEH̃n
, denotes taking the expected value with respect to

all channels in

H̃n = [h0, h1, . . . hn−1, hn+1, . . . hN−1] , (15)

which is a matrix containing all the column vectors of the full
channelH , excepthn, the channel from BSn to all MSs. As
hn is instantaneously known at BSn, no averaging is needed.
This reflects that BSn only has local, instantaneous channel
state information, while it has long-term statistical information
on the rest of the channel;̃Hn.

In the above iterative procedure, the global scheduling graph
G is updated once for each of theN base stations. This calls
for a central unit to hold and distribute the currentG, but the
exchange of information to and from the users is moderate.

C. Conventional Singlebase Assignment

Finally, we formalize a conventional singlebase approach
for this scenario, in the sense that a receiving MS can only
be scheduled by a single BS. A central unit goes through
the N available base stations, and allows each BS to choose
a previously unscheduled MS, if there are any left. This
approach is based on the same hybrid CSI as in the previous
sections. The central unit holds and updates the scheduling
graph, ensuring that one MS is scheduled by one BS only.
For BSn, the user is selected by maximizing the receive SNR.

g∗
n = arg max

gn∈Se

SNR(gn, hn) , (16)

where Se is a subset of the fullRM standard basis
{e1, e2, . . . , eM}, representing those users not already sched-
uled by a BS.

The central unit exploits the available information to a
maximum by optimizing the order in which the receiving users
are scheduled to the base stations, at all times coupling theBS-
MS pair that maximum expected SNR, among the remaining,
not previously scheduled, BSs and MSs.

V. NUMERICAL RESULTS

Next, we present some results of Monte-Carlo simulations
for the above described schedulers, focusing on how the low-
complexity, capacity-maximizing approach in Section IV-B
performs when compared to the centralized, the greedy and
the conventional schemes.

The base stations are placed in a grid, as seen in Fig. 1, with
a minimum distanced between neighbors. The positions of the
mobile users are quasi-static, generated following a random
and uniform spatial distribution over the entire network area.

TABLE I

SIMULATION PARAMETERS

Parameter Value
Shadow fading meanµχ 0
Shadow fading standard dev.σχ 10 dB
Transmit powerP 1 Watt
Transmit antenna gainGt 6 dB
Receive antenna gainGr 6 dB
Antenna heights{hb, hr} {30, 1} m
Carrier frequencyfc 1800 MHz
Smallest distanced between BSs 0.5 km
Random MS locationsNMS 50
Channel realizationsNchan 200

The channel from BSn to MSm is hmn =γmn h
′

mn, where
h

′

mn represents the complex random, Rayleigh distributed
fast fading,h

′

mn ∼ CN (0, 1). The constant and slow-varying
transmission effects are contained inγmn. In dB scale, we
write

γmn,dB = Gt,dB − ρmn,dB + χmn,dB + Gr,dB , (17)

whereGt,dB and Gr,dB are the transmit and receive antenna
gains, andρmn is the path loss, generated using the COST 231
model [8]. The distributed, long-term (shadow) fadingχmn,dB

is modeled as random, log-normal,χmn,dB ∼ N(µχ, σχ).
Useful parameters are detailed in Table I.

All the simulations were run by averaging the resulting
sum capacity over a total ofNMS random MS locations
and Nchan realizations of the instantaneously known channel
coefficients. The expectation operatorEH̃j

, of (14), implies
further averaging for each of theNchan channel realizations.

Simulations have been run for three different scenarios,
where performance is measured by the network sum capacity
of (10) per cell, with unit bits/second/Herz/cell.

First, we tested a rather small network, with only 4 trans-
mitting base stations and 4 receiving users,N = M = 4.
In Fig. 2, the curves show how the network sum capacity
develops with an increasing edge-of-cell target SNR (reference
value for single-user at distancedref). The top curve represents
the centralized scheduler of Section III-A, while the otherthree
result from using the schemes described in Sections IV-B, IV-
A and IV-C, in downward order.

Second, we fixed the target SNR to 20 dB and explored the
network sum capacity when increasing the number of receiving
usersM = {4, 8, 12, 16}, while keeping a constantN = 4
base stations. The results are shown in Fig. 3. In this case, as
the M increases beyondN , note that onlyN of these users
will be served at any given time.

Finally, in Fig. 4, we present the simulation results when
increasing the number of receiving users and base stations,
M = N = {4, 8, 12, 16}. We observe that the sum capacity
per cell is decreasing when increasingM and N together,
and see an explanation for this in the increased levels of
interference resulting from more BSs transmitting. In Figs. 3
and 4, only three curves are plotted, as the centralized scheme
of Section III-A is very time-consuming in larger networks.
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Fig. 2. Sum capacity per cell versus edge-of-cell target SNRfor N =

M = 4, averaged overNMS random MS location sets andNchan channel
realizations. Note that the iterative, capacity-maximizing scheduling approach
lies between that of the centralized scheme and the interference-limited
performance of the greedy and the conventional schedulers.

VI. CONCLUSION

In this paper, we have presented approaches to base sta-
tion coordination in multicell, multiuser wireless networks.
First, a framework for distributed, downlink beamforming
was given, where each partaking BS only needs access to
hybrid channel state information, including instantaneous CSI
on locally measured channels. Next, we have detailed some
scheduling schemes to use with this framework, all aimed
at maximizing the sum capacity of the network. In par-
ticular, the low-complexity approach for iterative, capacity-
maximizing scheduling represents a middle course between
the interference-limited greedy and conventional schemes, and
the prohibitively complex centralized algorithm.
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