
AR SOURCE MODELING BASED ON SPATIOTEMPORALLY DIVERSE MULTICHANNEL
OUTPUTS AND APPLICATION TO MULTIMICROPHONE DEREVERBERATION

Mahdi Triki, Dirk T.M. Slock�

Eurecom Institute
2229 route des Crˆetes, B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE

Email: �triki,slock�@eurecom.fr

ABSTRACT

In this paper, we consider the blind multichannel dereverberation
problem for a single source. The multichannel reverberation im-
pulse response is assumed to be stationary enough to allow esti-
mation of the correlations it induces from the received signals. It
is well-known that a single-input multi-output (SIMO) filter can be
equalized blindly by applying multichannel linear prediction (LP) to
its output when the input is white. When the input is colored, the
multichannel linear prediction will both equalize the reverberation
filter and whiten the source. We exploit the channel’s spatiotempo-
ral diversity to estimate the source correlation structure, which can
hence be used to determine a source whitening filter. Multichannel
linear prediction is then applied to the sensor signals filtered by the
source whitening filter, to obtain pure source dereverberation. A key
parameter in this dereverberation scheme is the order of the source
whitening filter. It determines the tradeoff between the modeling er-
ror (limited source whitening) and the estimation error (due to the
blind estimation of the source correlations). In this paper we pro-
pose, using a statistical room reverberation model, a design to opti-
mize the whitening order (function of the room characteristics, and
the number of sub-channels).

1. INTRODUCTION

The quality of speech captured in real-world environments is invari-
ably degraded by acoustic interference. This interference can be
broadly classified into two distinct categories: additive and convo-
lutive. The convolutive interference (commonly referred to as rever-
beration) is due to soundwave reflections from surrounding walls
and objects. It leads to a modification of the speech signal charac-
teristics. Therefore, it constitutes a major problem in speech recog-
nition, speaker verification, and general auditive comfort in ”hands-
free” telephony applications. Blind dereverberation is the process of
removing the effect of reverberation from an observed reverberant
signal.

A simple multi-microphone speech dereverberation system is
the delay-and-sum beamfomer [1, 2]. The dereverberation is per-
formed by a simple averaging over the sensor outputs, delayed to
focus in the direction of the desired speaker. Note that beamform-
ing exploits only a partial spatial information (relative delays), and
ignores the input signal characteristics.
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Another way to address the problem is to consider the whole
Acoustic Impulse Response (AIR). Matched Filter (MF) is proposed
to equalize the room response [3]. In such a way, one increases
the dereverberation SNR (compared to the Delay-and-Sum beam-
former). However, MF equalization introduces a large equalization
delay (of about the AIR length), and produces a pre-echo that is an-
noying in several applications (speech recognition...). On the other
hand, SIMO channel can be perfectly equalized using multiple FIR
filters (transverse filters) [4]. Let us consider a clean speech signal,
����, produced in a reverberant room. The reverberant speech signal
observed on� distinct microphones can be written as:

���� � �������� (1)

where���� � ������ � � � ������� is the reverberant speech signal,
���� � ������ � � ��� ����� �

�����
��� ���

�� is the SIMO chan-
nel transfer function,�� is the channel length, and��� is the one
sample time delay operator. According to the B´ezout’s identity, if
the channels����� � � ������ does not have common zeros, then
����� � ������ � � ������� such that:

� ������� �

��
���

���������� � � (2)

If ���� is known (or can be estimated), the coefficients of�����
can be computed by the well-known rules of matrix algebra. The
AIR blind estimation should face the channel/speech identifiability
problem. In fact, for any scalar filter����, �����	���� , ������
��
is also an acceptable solution of (1). To deal with identification am-
biguities, one can exploit a prior information on source spectrum. In-
deed, if the source is white, the channel can be equalized using multi-
channels linear prediction [5]. For colored input, we take advantage
of the spatial diversity to estimate the source color; and we propose a
tree-stage speech dereverberation procedure exploiting spatial, tem-
poral, and spectral diversities [6, 7]:

� First, the colored non-stationary speech signal is transformed
into an iid-like signal. Exploiting spatial and temporal diver-
sities, we estimate the AutoRegressive(AR) whitening filter
based on received correlations (averaged over the subchan-
nels).

� Then, a blind channel predictor is computed based on pre-
processed reverberant speech.

� Finally, speech signal dereverberation is performed using a
zero-forcing equalizer based on the predictor computed in the
previous step.

A key parameter in our dereverberation scheme is the order of the
whitening filter. In fact, if the correlation matrix of the pre-processed



speech signal���
� � ������
� is spherical and if we take a long

enough multichannel LP filter
�
�� � ����

���

�
, Delay�Predict equal-

izes perfectly the channel. To investigate the choice of this param-
eter, we plot the curves of the output Direct to Reverberant Ratio
(DRR) (function of the whitening filter order) using�, �, and	 mi-
crophone array setups. The whitening order is plotted in logarithmic
scale�
 ��
�����.
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Fig. 1. The output DRR (function of the whitening filter order),
using�, �, and	 microphones

If we have only�-microphones, the two-channel filter cannot be as-
sumed to be all-pass (spatial diversity is not enough). Then, by in-
creasing the order of the whitening filter (� 
 �

) we are capturing
details belonging either to the clean speech, and/or the channel. The
whitening in the first stage will also remove some channel correla-
tion before the multichannel equalization. The fact that affects the
overall dereverberation accuracy. However, for the	 microphone ar-
ray setup, the all-pass multi-channel assumption is better matched.
Then by increasing the whitening LP order, we remove essentially
more source correlation. And the whiteness assumption of�� is bet-
ter fitted. Remark that this problem is quite different from the classic
AR order selection problem, where the estimation of the source cor-
relations is troubled by the finite number of the available observa-
tions [13]. In our problem, we assume having enough observations
to have an accurate estimation of the received signals colors. The
disturbance is due to the blind estimation of the source correlations:
the channels are not flat and the number of microphones is not infi-
nite. The whitening order should optimise the tradeoff between the
modeling error (limited source whitening) and the estimation error
(due to the blind estimation of the source correlations). In this paper
we propose, using a statistical room reverberation model, a design to
optimize the whitening order (function of the room characteristics,
and the number of subchannels).

Notations: Upper- and lower-case boldface letters denote ma-
trices and vectors, respectively; whereas upper-case normal letters
denote spectral qualities.� ��� and��� represents respectively the
statistical expectation and the spatial averaging.���� denotes the
complex conjugate (Hermitian) transpose operator.

2. STATISTICAL ROOM REVERBERATION MODEL

In this section, we introduce the room reverberation model, which is
built on some well-known results from statistical room acoustics.
Studying an empty rectangular room, the room impulse response
���� can be computed by solving awaveequation. At higher fre-
quency, the complexity (in terms of the number of modes) of the
deterministicwaveequation modeling increases to a point where ex-
act analysis is no longer feasible. To model����, we will apply the
theory of random (or diffuse) sound fields[9]. The crucial assump-
tion of statistical room acoustics is that the distribution of amplitudes

and phases of individual planewaves is soclose to random that the
sound field is uniformly distributed throughout the room volume.
This theory closely describes the room acoustic behavior if the fol-
lowing conditions are met[8]:

A1) The dimension of the room are large relative to thewavelength
of the source signal����. For the frequencies of interest in speech
processing, this condition is easily satisfied in almost all rooms.

A2) The average spacing of the resonance frequencies of the room
must be smaller than on third of their bandwidth. In a room with vol-
ume� (in ��), and reverberation time��� (in seconds), this con-
dition is fulfilled for frequencies that exceed the ”Schroeder large
room frequency”:

�� � �



�
���	� (3)

A3) The source and the microphones are located in the interior of
the room, at least a half-wavelength away from the walls.
Under the above conditions, the frequency response���� (the Fourier
transform of����) can be treated as a random function of the source
and microphone positions. These statistical properties are indepen-
dent of the time-instant of the observation. They are determined by
the room characteristics (volume, reverberation time, average wall
absorption coefficient...).
We write the transfer function���� as

���� � �	��� � ������ (4)

where�	��� and����� are real and imaginary parts of����, re-
spectively; and� �

�
����.

We next cite a couple of useful results derived using the Statistical
Room Acoustics (SRA) theory[8, 9, 10, 11]. Assuming the assump-
tion (A1-A3) to be fulfilled:
- �	���, and����� are independent, zero-mean, Gaussian process.

-
�	����	�� � �

	�	���	� � 		�����
		�
 �

�� �

���
.

where��� is the spatial expectation (estimated by averaging over all
possible source and microphone positions),� is the average wall ab-
sorption coefficients, and� is the total wall surface area.
By denoting����� �

�

 ��� ���� � ���� � IFFT

�	����	�� the
autocorrelation of the room impulse response, one can show that:
������

������� � �� �

���
Æ����

������
�
� cst ��� ��	�	 	���

�������������� � 
 
�� �� ��

(5)

where�� is the time for which the sound energy in the room decays
to �	� of its initial value after impulsive excitation (�� � ���	���	).

We also assume that the room impulse response between a source
and� microphones (and the corresponding autocorrelations) are
i.i.d. Thus, by averaging the correlation of the different sub-channel
������ � �

�

��
��� �������, we have
����

������� � �������� �
�� �

���
Æ���

var������� �
�

�
var��������

(6)

where var��� �
�
��
� � ���� denotes the spatial variance. Note

that the previous results can be also derived by modeling the room
impulse response as one realization of a non-stationary stochastic
process[12]:

���� � ��������Æ (7)

where���� is a centered stationary Gaussian noise.



3. SPEECH SOURCE WHITENING

As it is reported in the previous section, using the SRA theory one
can show that for frequencies� 
 ��
� � �




�
���	� , the aver-

age reverberation spectrum is flat , i.e.,�			� �
�������

�			�� �
�� �

���
(8)

Simulations shows that the superposition of the SIMO sub-channels
spectrums tends to be flat as the number of microphones increases
[6]. Then, the superposition of the spectra of the received signals can
estimate (up to a multiplicative factor) the source spectrum. As this
common part is due to the anechoic speech signal, it can be modeled
as an AR process, i.e.,

���� �
�

�����
 ���� (9)

where ���� is a zero-mean white process. The common AR coeffi-
cients can be estimated as those that minimize the sum of the squares
of the prediction errors, averaged over the microphones:
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The previous optimization problem leads to the normal equations:�����
�����
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where -������� �
�

�

��
���

�������� is the correlation of the re-

ceived signal at time-lag� (averaged over the� microphones).
- �������� represents the correlation at the time-lag� of the

received signal at the
�� microphone.
- ���� ���� are the common AR parameters.

If the whitening filter is estimated using the source correlations,����� � ���������� �
��� ���

�����
 ���� will be perfectly white if the

AR order goes to infinity. However, as source correlations�����
are unknown and only������� are available to estimate the source
color, infinite order is no-longer optimal. The optimal whitening or-
der should be choosing as that minimizing the mean of the prediction
error variance!�

�� � �
 ������!, i.e.,

�� � arg���
�
!�
�� (11)

On the other hand, the averaged received correlations������� can
be written as a function of the source correlations����� and the av-
eraged channel correlations, i.e.,

������� � ����� � ������� (12)

By decomposing the averaged channel correlation into a determinis-
tic and a zero-mean random processes, we have:

������� � "�
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where"� � ���
���

, and����� ��� is a zero-mean random process.
If we assume that 
�


���
� �, using second-order approximation

one can show that
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where��, and���� (resp. ��, ���� ) have the same structure
as���� (resp. ���� ), where���� ��� is replaced by����� and
�������. Then, we use the predictor��� (performed using the noisy
source correlation�������) to whiten the speech source. The pre-
diction error variance is given by:

!��� � !�� � ������ � �
�
� ��� � ��������� (15)
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We observe that the prediction error variance can be decomposed
into two terms:

� A deterministic term!�� � ��� �
��
� �� representing the error

due to the use of finite order filter predictor.
� A stochastic term

"��
�

�
�
��
������������ ��

��
�����
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� ����

�
�
��
������������ ��

�
representing the error due to the use of noisy correlations
������� to estimate to source color. Note that this term in-
creases with the AR order, and is inversely proportional to
the number of microphones.

The whitening order should be optimized to give the best tradeoff
between these two terms.

4. WHITENING ORDER SELECTION

4.1. Stochastic Whitening Order Selection

As we can see from (15),!�
�� depends on the channel realization (via

���� and���� ). These information are not available (our goal is
to perform blind equalization). Thus, we propose relaxing the cost
function in (11), and computing the prediction order that minimize
the spatially averaged prediction error variance, i.e.,

�� � arg���
�

�
!�
��

�
(16)

In such a way, we select a whitening order optimal in the average
(over source and microphones positions), but not necessarily for the
given channel realization. Note also that the (16) depends on the
room statistics (function of the reverberation time, room volume...),
but no-longer on the channel realization. Knowing the source corre-
lations and the statistics of the room impulse response, one can have
an analytical expression of

�
!�
��

�
. However, this analytical expres-

sion is very complex to derive and to implement (even using second
order approximations). So that, we propose computing the expecta-
tion using Monte-Carlo simulations:

1. We generate random channels���� using (7) (having the same
second order statistics as the room impulse responses)

2. We compute!�
�� using the random channels�����.

3. We average over the random channels realizations.



Remark that!�
�� depends on the unknown source correlations (aver-

aged over a given frame). However, the correlation details are not
relevant, only the shape of the speech correlations is important. So
that, we propose compute (16) using a priori speech correlation esti-
mate����� (averaged over a long period of time, speakers ...). Fig. 2
subplots the curves of the averaged prediction error

�
!�
��

�
function

of the whitening order for 2 and 4 microphones. As it was expected
from (15), the optimal whitening order for 4 microphones is higher
than the one for 2 microphones. We also remark that the optimiza-
tion results are coherent with the dereverberation results (Fig. 1).
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Fig. 2. The averaged prediction error
�
!�
��

�
function of the whitening

order for 2 and 4 microphones.

4.2. Deterministic Whitening Order Selection

The order selected in the previous section is optimal in the average
(over all possible channel realizations), but not necessarily for the
given source and microphones position. In this section, we recon-
sider the it blind AR order selection for a given channel realization
(solving (11)). To solve this problem, we propose looking to the
AR modeling problem from a different point of view: we consider
source correlations as the received-signal correlations corrupted by
the inverse of the channel correlations. On the other hand, for large
enough whitening order (such that the covariance matrices�� and
�

���� are almost band), we have:

���� � �
������#

���� � �
������

(17)

Using these approximations,the prediction error variance becomes
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where��,���� , and���� are����������� matrices defined as
in previous. Finally, unknown matrix������ is replaced by its spatial

average
�
$�����
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(18)

The expectation is computed using Monte-Carlo simulations (as in
the previous section). Fig. 3 subplots the curves of the prediction
error!�

�� computed by (18) (using the source covariance matrix) or
”blindly” by (18). We remark that the minima in the two curves
match well; and that (18) can be used to select the whitening or-
der. However, the approximation in (17) is valid only for large or-
der �� � �

�. Thus, it can happen that we see some minima for
� % �

. Those minima should be ignored. Another drawback of
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Fig. 3. The prediction error!�
�� computed using the source covari-

ance matrix (a), or using (18) (b)

this approach is due to local minima. To alleviate this problem, we
can use stochastic whitening order selection to situate approximately
the optimal order. Then deterministic whitening order selection is
derived to optimize the AR order for the given channel realization.
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