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Abstract

Wireless Ad Hoc Networks are a particular paradigm where wireless devices commu-
nicate in a decentralized fashion, without any centralized infrastructure or decision.
In order to avoid a situation where nodes chaotically try to communicate, distributed
and localized structures (graphs, trees, Ě) need to be built. Mobility brings challeng-
ing issues to the maintenance and to the optimality of such structures. In conventional
approaches, structures are adapted to the current topology by each node periodically
sending beacon messages, which is a significant waste of network resources. If each
node can obtain some a priori knowledge of future topology configurations, it could
decide to send maintenance messages only when a change in the topology effectively
requires updating the structure.

In this Doctoral Thesis, we investigate this approach and define the Kinetic Graphs,
a novel paradigm regrouping mobility predictions for a kinetic mobility management,
and localized and distributed graph protocols to insure a high scalability. The Kinetic
Graph framework is able to naturally capture the dynamics of mobile structures, and is
composed of four steps: (i) a representation of the trajectories, (ii) a common message
format for the posting of those trajectories, (iii) a time varying weight for building
the kinetic structures, (iv) an aperiodic neighborhood maintenance. By following this
framework, we show that any structure-based ad-hoc protocol may benefit from the
kinetic approach.

A significant challenge of Kinetic Graphs comes from prediction errors. In order to an-
alyze them, we illustrate the relationship between the prediction model and the mobility
model. We decompose the prediction errors into three metrics: the adequacy between
the prediction and the mobility models, the predicability of the mobility model, and
the mobility modelŠs realism. Following the framework, we define a kinetic model
for the modeling of the trajectories and then analyze the extents of the effects of each
error metric and develop solutions in order to reduce them. We finally adapt the Mul-
tipoint Relaying (MPR) protocol, used by the Optimized Link State Routing protocol
(OLSR), and show the significant improvements that may be obtained by using the
Kinetic Graph Framework, even on the very challenging vehicular networks.

Keywords — Kinetic graphs, mobility management, mobility modeling, mobility
predictions, multipoint relays (MPR), optimized link state routing (OLSR), broadcast-
ing, routing, wireless ad hoc networks, vehicular networks.





Résumé

Les nœuds d’un réseau ad hoc sans fil communiquent a priori de manière non coor-
donnée et décentralisée. Afin d’éviter une situation où les nœuds essaieraient de com-
muniquer de manière désorganisée, des structures (graphes, arbres,Ě) distribuées et
localisées sont construites. Cependant, la mobilité est un défi pour la gestion optimale
de telles structures. Dans les méthodes conventionnelles, les structures sont adaptées à
la topologie courante par chaque nœud en émettant périodiquement un message de con-
trôle. Cette approche génère un gaspillage de ressource réseau. Si chaque nœud réussit
à obtenir une connaissance a priori de l’évolution de la topologie, les messages de con-
trôle peuvent être émis uniquement lors d’une modification de la topologie nécessitant
une mise à jour des structures.

Dans cette thèse de doctorat, nous avons investigué cette approche et avons développé
les Graphes Cinétiques, qui sont un nouveau paradigme basé sur la prédiction de mobil-
ité. Les Graphes Cinétiques sont capables de capturer la dynamicité des structures mo-
biles. Le cadre de leur développement est composé de quatre étapes (i) une représen-
tation de la trajectoire des nœuds mobiles, (ii) un format et une structure commune de
transmission de ces trajectoires, (iii) des poids de liens temporellement variables, (iv)
une gestion apériodique du voisinage. En suivant ce cadre, nous montrons que tout
protocole réseau ad hoc basé sur des structures peut bénéficier de l’approche cinétique.

Un défit majeur des Graphes Cinétiques provient d’erreurs de prédictions. Afin de les
étudier, nous illustrons la relation entre modèle de prédiction et modèle de mobilité.
Nous décomposons ces erreurs de prédictions en trois métriques : l’adéquation entre le
modèle de prédiction et le modèle de mobilité, la prévisibilité du modèle de mobilité,
et finalement le réalisme du modèle de mobilité. En suivant le cadre de développement
des graphes cinétiques, nous définissons un modèle cinétique pour la modélisation des
trajectoires, analysons l’étendue de chaque métrique d’erreur, et ensuite développons
des solutions afin d’en limiter les effets. Nous adaptons finalement le protocole des
Relais Multipoints (MPR), principalement utilisé par le protocole OLSR, et montrons
les améliorations significatives des performances réseaux qui peuvent être atteintes en
utilisant les graphes cinétiques, même dans le cadre complexe des réseaux véhiculaires.

Mots-clés — Graph Cinétique, gestion de mobilité, modélisation de mobilité, pré-
diction de mobilité, relais multipoint (MPR), OLSR, diffusion, routage, réseaux ad-hoc
sans fil, réseaux véhiculaires.
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CHAPTER I

Introduction

TWO centuries ago, eminent scientists such as Morse, Meucci, Bell or Marconi
placed the first stone to a revolutionary technology allowing to transmit informa-

tion at light speed to a distant receiving end. They have been the Founding Fathers
of what we nowadays commonly call telecommunication. Grouped in networks in or-
der to improve their capacity and resilience, telecommunication systems have been a
milestone in our society, and maybe one of the most significant achievement of the last
two centuries. Whereas the everlasting increasing vision of our world amplified our
natural need for mobility and exploration, those networks paradoxically allowed us to
stay virtually close.

At the end of the eighties, this evolution reached a breaking point, where drastic
changes occurred in the telecommunication area. We entered into the digital era and
this period also saw the birth of personal wireless mobile telecommunication systems.
As hard as finding the answer of Plutarch’s famous paradox about the hen and the egg,
it is unclear whether mobility created the need for wireless mobile communication sys-
tems, or if those systems, originally designed for an elite, drastically and irremediably
altered the society. In any case, wireless mobile communication systems became de-
facto a natural need giving birth to a new mobile society.

Indeed, wireless networks found a strong success in the society as it deeply altered
the social networks and communication habits. It also changed the telecommunication
market plan, as in most of the countries, historical telecommunication companies expe-
rienced a constant decrease in the fixed line accounts to the benefit of wireless accounts.
There was also a constant demand for more wireless services and communication ca-
pabilities, to which telecommunication companies responded by new generation net-
works from 2G, 2.5G, 3G, IMS or the forthcoming 4G. In the future, it is envision to be
able to obtain similar services on hand-held devices as on standard desktop computers,
including visio-calls and mobile television.
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One major limitation of these wireless networks is the cost of building and maintaining
the infrastructures. Without exception, those networks are based on a cellular approach,
where all communications are routed by access points. The wireless medium providing
much less bandwidth than its wired counterpart, wireless resource must be adequately
managed. Moreover, the centralized aspect also generating bottlenecks at access points
or base stations, very complex and ingenious user multiple wireless access had to be
designed. One solution to reduce the cost of the infrastructure at the same time as
improving network resource is to distribute routing tasks to the wireless terminals,
giving birth to multi-hop wireless networks.

A MOTIVATIONS AND OBJECTIVES

Wireless Ad Hoc Networks are an extreme configuration of wireless networks, with-
out a fixed or wired infrastructure, and where terminals are self-configuring in order
to provide distributed multi-hop wireless communications. The lack of infrastructure
or coordinator favors chaotic situations generating a large waste of already critical re-
sources. Indeed, studies have shown that uncoordinated transmissions was not an effi-
cient method to transmit data in wireless ad hoc networks as it creates an effect known
as the "broadcast storm" problem. Similarly to a chaotic crowd, if everyone talks at the
same time, no one can listen to anyone and everyone will have wasted its energy trying
to communicate, no matter how loud they tried. This remark was one of the justification
for the development of structures in ad hoc networks in order to improve data diffusion
and energy consumption. Algorithms creating backbones and coordinations have yet
to comply with two major assumptions: they must be distributed and localized. Indeed,
ad hoc networks potentially being composed of a very large set of uncoordinated nodes,
decisions should be taken at each node based on local information. As no omniscient
coordinator exists in ad hoc networks, graph theory structures cannot be efficiently
adapted. A successful new research area therefore appeared aimed at generating struc-
tures based on local information yet coming close to the optimal graph theory version:
Distributed Systems. A wide range of solutions have been successfully developed to
improve broadcast, transmission power or coordination.

A.1 The Burden of Mobility

Despite the efficient distributed solutions obtained in wireless ad hoc networks, a ma-
jor assumption have been ignored: mobility. Advocates of distributed solutions argued
that mobility could be simply seen as a maintenance duty, which is optimally kept lo-
cal. Yet, this maintenance may also be seen as a waste of resource and a generation
of instability and delays. Indeed, locality is not sufficient in order to efficiently main-
tain structures in wireless ad hoc networks, as mobility makes the structure adapted to
past configurations, thus dooming them to inefficiency. Moreover, depending on the
dynamics of the network, the local maintenance also becomes resource greedy. It has
been notably observed that the OLSR routing protocol based on the Multipoint Relay-
ing structure was not adapted to highly mobile networks such as vehicular networks,
and more generally that proactive routing protocols consumed a significant energy and
network resource dedicated to the maintenance of their routing tables.
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Then years ago, the concept of Kinetic Data Structure (KDS) has been developed as
a mean to efficiently adapt data structures to mobile objects and attributes. Observ-
ing that all then-known data structures were not directly applicable to a configuration
of objects moving continuously, the objective was to benefit from the coherence and
continuity in the motion of the points to gain efficiency. This could be achieved by
the important hypothesis of objects knowing their trajectories and those of others. One
possible application of KDS was to efficiently adapt spanning trees or other graph
algorithms to mobile configurations. Beside the obvious requirement for the kinetic
structure to fit the real topology, another performance measure was the locality of the
structure’s maintenance.

Yet, at that time, the major achievements in distributed computing obtained in recent
years were not available. Accordingly, those two related problems with respect to ad
hoc networks were handled separately. Indeed, mobility was studied for centralized
graph algorithms, while localized graph algorithms were defined for static ad hoc net-
works. Observing that these two fields could be complementary, we propose here to
regroup both assets in a new concept we named Kinetic Graph. Figure I-1 illustrates
the two separate, yet complementary, issues of graph algorithms: central vs. local and
static vs. dynamic methods.

Graph
Theory

Centralized Static

Localized Kinetic

Localized
Algorithms

Kinetic
Structures

Kinetic
Graphs

Fig. I-1. Illustration of the Positioning of Kinetic Graphs in Graph Theory

We therefore propose to borrow the localized management to the distributed research
field and the kinetic management to the Kinetic Data Structure approach. We believe
that Kinetic Graphs could be successfully applied to all approaches depending on struc-
tures, such as topology control, connected dominating sets, routing, or even location
management.

A.2 The Mobility Reactive Approach

In the routing field of mobile ad hoc networks, protocols have been classified mostly
in two classes, Proactive and Reactive, depending if a route is created if there is data
traffic to transmit, or if all routes are proactively created independently of the data
traffic.
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In order to handle nodes mobility, all proactive and even reactive protocols send peri-
odic beacon messages in order to detect any topological change and to adapt the routes.
Taking a similar vocabulary, but considering mobility instead of routing, these proto-
cols may therefore be seen as Mobility Proactive, in a sense that they proactively adapt
to topology changes.

Conversely, a Mobility Reactive protocol anticipates all topological changes using
mobility predictions. As long as any change has been correctly anticipated, mobility
reactive protocols do not need to act and significant network resources may be saved.
It is only when an unpredicted event occurs that this kind of protocols reacts, and it is
the duty of the node that generated the unanticipated event to trigger the update.

We therefore use a similar terminology but in a different application. For data traffic,
proactive protocols open all routes with or without traffic, while reactive protocols open
routes if and only if there is traffic to send on that route. With respect to mobility, a
proactive protocols triggers a maintenance duty with or without change in the network
topology, while the reactive approach triggers a maintenance duty if and only if there
is an unanticipated topological change that effectively impacts the structures.

A very large majority of topology management, proactive or reactive protocols are
Mobility Proactive. All mobility proactive approaches are resource demanding, as they
need to periodically send beacon messages in order to detect a topology change. That
also adds delays as the routing structure may only be updated when the protocol has
obtained the new topology state.

Despite the growing interest in the mobility prediction protocols illustrated in Chap-
ter II, all heuristics developed for Mobile Ad Hoc Networks did not aim at becoming
mobility reactive. An intermediate class may then be defined: the Mobility Adaptive
protocols. Instead of reactively adapting to topology changes, most of the approaches
using mobility predictions try to reduce the periodicity of the proactive mobility main-
tenance by selecting overall optimal decisions. For instance, a node would choose the
most stable node on average as its cluster head since this would reduce its maintenance
duty. A tradeoff must then be considered between network optimality and maintenance
cost.

To the best of our knowledge, the only technique which reaches the Mobility Reactive
class and that can guarantee optimality at each time instance are Kinetic Data Structures
(KDS) and Kinetic Graphs. A protocol based on Kinetic Graphs predicts the set of
optimal decisions and dynamically switches from one to another at the right time. For
example, a reactive routing protocol implementing the kinetic graphs will not only
compute the optimal route from a source to a destination, but instead a set of optimal
non overlapping routes, such that for each time instant, the optimal route is always
available. Kinetic graphs are only reorganized when an unpredicted event occurs.

Before moving forward, we provide some necessary preliminary definitions related to
graph theory. From static graph theory, we use the following definitions:� Link Weight – It is a value attributed to the cost of using a link between two

graph vertices.� Criterion – It represents the choice of a link, as a function of the link weight,
which insures the optimality of the graph algorithm
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In the kinetic graph theory, we have basically the same definitions, but adapted to a
moving structure:� Time Varying Link Weight – It is a continuous and integrable function related

the evolution of the link weight with time. It needs to be continuous in order
to insure a value for the link weight at each time instant, and also integrable as
two time varying link weights are compared by their primitive integrated over
the simulation time.� Transition – It is the precise time at which one time varying link weight becomes
better than another one.� Activation – It is a time interval, between two successive transitions, during
which a link is active and valid.� Kinetic Criterion – It represents the choice of a set of links as a function of time
varying link weights and activations, which insures the optimality of the kinetic
graph algorithm.

With the previous definitions and Fig. I-2, we are now ready to illustrate the difference
between the traditional approach and kinetic graphs. Considering the distance between
two nodes as the link weight, on Fig. I-2(a), an optimal tree is generated based on the
criterion "shortest link weight between two nodes". However this three is only valid at
precise moment when it is built, as mobility makes link weights and criteria change.

Without loss of generality, considering node � moving towards node � , there will be a
moment when node � will be closer to node � than node � and therefore it should drop
the link with node � to create a new link with node � . In order to detect this precise
moment, the traditional approach is to periodically send beacon messages in order to
check if the link is still the one with the best link weight. The kinetic approach instead
compares the two time varying link weights and computes the transition. It then builds
activations during which links always have the smallest link weight. It therefore does
not need to periodically check this assumption, and thus does not need to send beacon
messages, as long as the topology has been correctly anticipated.

This may be observed in Fig. I-2(b), where the transition has been found at time ���	��

and where a link between node � and node � is always valid during the activation
interval from ����
�
 to ������
 , and a future link between node � and node � has been
anticipated during the activation interval from ������
 and to ������
�
 . Although the
traditional approach is also able to detect the transition at time ������
 and update the
tree accordingly, the kinetic approach does it without exchanging a single message as
each node predicted the events.

The complexity of the Kinetic Graph approach and the need to construct not only the
actual but also the predicted structures may be one reason for the very few related
work in this specific field. To the best of our knowledge, Gentile and Haerri [1] were
the first to introduce this idea to Wireless Sensor Network as a method to reduce the
maintenance complexity of the Belman-Ford algorithm.

In this Thesis, we are going to describe different protocols in order to construct and
maintain structures for Topology Control, Multipoint Relaying and for the Optimized
Link State Routing (OLSR) protocol using Kinetic Graphs.
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Fig. I-2. Example of the Kinetic Graph Approach

B CHALLENGES

The major assumption in Kinetic Graphs is the knowledge of nodes trajectories. How-
ever, in practice, this information is far from being straightforward to obtain and is,
by itself, a complete and complex research area. The major challenge is therefore to
be able to construct nodes estimated trajectories in order to use them for the Kinetic
Graphs. For that matter, we will generate a prediction model and adapt it to fit mobility
patterns created by a mobility model.

Previous to comprehensively describe the different aspects and relationships related to
the trajectory knowledge, we first define four key concepts we will use in this thesis:� Trajectory– It is defined as the probable course of a node in a mobile system.� Mobility Model– It tries to model the "real" trajectories employed by nodes ac-

cording to predefined configurations and external influence. A mobility model
is mainly composed of a set of complex kinematic models aimed at realistically
reproducing mobility patterns. Yet, realistic models also include external influ-
ences and correlations between mobile nodes and the topology.� Mobility Prediction– A prediction model aims at estimating a probable trajec-
tory modeled by a mobility model based on a partial knowledge of its mobility
parameters. It is also composed of complex kinematic models and a criterion
which must be correctly predicted.� Prediction Criterion– A prediction criterion is the objective of the prediction
and represents the information required by a particular application. It may be a
distance, a nodal degree, a resource allocation, yet obtained based on the knowl-
edge of nodes trajectories.

Those four concepts are closely interlinked in the management of mobile systems. In-
deed, the efficiency of mobility prediction models come from their ability to extrapolate
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the partially unknown mobility parameters and add them to known mobility parameters
to estimate a trajectory generated by a mobility model. There is therefore a strong link
between modeling and predicting mobility. In order to illustrate this interaction, we
depict in Fig. I-3 a concept map of the interaction between those concepts in the case
of a realistic mobility model.

Realistic
mobility model

Kinematic
prediction

model
Adequacy

Similarity
Prediction
Criterion

Mobility Traces

generates predicts

Predictibility

de
fin

esconf igures

Mobility
Model

Prediction
Model

External
Influence

alt
er

s

Configuration
Random
Variable

Pa rtial

know
ledge Hypotheses

Fig. I-3. Illustration of the relationship between Realistic Mobility and Prediction Mod-
els

As the knowledge of the mobility model generating the pattern is not possible in prac-
tice, the first objective is usually to develop a kinematic model which fits best to real
mobility patterns and which may be used to predict mobility. How close the synthetic
kinematic model is from the real kinematic model defines the adequacy. The closer
both are the better is the prediction. As the complexity of motion patterns exceeds
the ability to develop a synthetic model, the problem is relaxed by using hypothesis.
If these hypothesis are not valid, the prediction model will not be adequate with the
mobility model. Nevertheless, a certain degree of error is necessary, and accepted in
practice to model complex motion patterns. Finally, in order to further increase the
complexity of the predictions, beside the unknown kinematic model used to generate
motion patterns, a mobility model also employs random variable for its configuration
and is altered by external actions. The prediction model may only obtain a partial
knowledge of those variables.

B.1 Adequacy and Predictability

Before moving further in the analysis of the functionality of mobility and prediction
models, we provides definitions of three key parameters describing their interactions.

Definition 1—Adequacy: The adequacy reflects the similarity between the motion mod-
els used by the kinematic model and the prediction model. If the two models are iden-
tical, or yield to identical results, one say that the two models are adequate.

Definition 2—Predictability: The predictability is a time interval between which the
real and the predicted criteria are identical or within an acceptable error � .
Definition 3—Similarity: The similarity is a feature only relevant to a mobility model
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and reflects the relative variance between successive criteria. Independently to the
adequacy, it reflects the extends of the error if predictability is miscalculated or not
available.

The adequacy is obtained by the comparison between the synthetic kinematic models
employed by the prediction schema and the mobility model. The adequacy is maxi-
mized when the two models are identical, and it is minimized when they totally diverge.
Usually, the objective is to develop kinematic models that fit best to real mobility pat-
terns. For example, using a kinetic first order motion ���������! "�$# to model vehicular
mobility is highly inadequate and will lead to a strong divergence of the prediction
model. In general, developing a mobility or a prediction kinematic model is a simi-
lar task and similar methods are used in order to generate kinematic models from real
motion traces.

The predictability is only obtained either statistically or on average. As the time dur-
ing which the hypothesis used by the kinematic prediction model remains valid also
controls the time interval during which the criterion remains valid, the predictability
depends on the analysis of the stability of the hypothesis. However, this study cannot
be obtained in real-time, but only a posteriori, as the prediction model may only have a
partial access to the parameters of the mobility model. For instance, a car may be able
to transmit its position and velocity but not its destination, as it might be unknown,
subject to external factors, or simply subject to privacy protections. Accordingly, an
average predictability must be learned based on previous patterns, or statistically ob-
tained if the motion patterns are modeled by an analytical model such as the RWM.

The similarity is obtained by the measure of the difference between previous values of
the criterion. The similarity is minimized when no correlation exists between past and
future values, while it is maximized when the future value may be fully extracted based
on past ones.

We next illustrate the different parameters in the case of the Random Waypoint Model.
It is acceptable for the prediction model to obtain the knowledge of the position and
maybe the velocity, but neither the destination nor the epoch may be known. The
hypothesis is a constant speed and azimuth between two trajectory changes, and the
kinematic prediction model is a first order kinematic model �%�&�'�(�) *� # . Accordingly,
the model is in total adequacy with the RWM. By analyzing when the hypothesis are
voided on the mobility traces, the predictability may be extracted, which is reduced
to estimate the epoch time between two waypoints, and depends on the average speed
and the size of the simulation area. Finally, the similarity is minimized as there is no
correlation between past and future positions or speed.

B.2 Realism

As our objective is to adapt Kinetic Graphs on realistic configurations, the mobility
patterns that are predicted should be as realistic as possible. The first step is therefore to
model the mobility patterns really employed by nodes with a realistic mobility model.

Definition 4—Realism: The realism is the depiction of a feature as it appears in life,
without error, interpretation or embellishment.
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Yet, mobility models cannot be homogeneously realistic. A typical motion pattern
should be targeted before being realistically modeled. Each application usually has its
realistic mobility model, such as pedestrians or vehicular mobility.

In this thesis, we targeted the vehicular motions and therefore adapted the kinetic
graphs to vehicular ad hoc networks (VANETs). Beside the applicability of this re-
search field, there are strong reasons to be interested in vehicular networks. Although
being usually sparse, at least in the sense of VANET-ready vehicles, and characterized
by a very high node mobility, VANETs are however not energy limited and it is also
widely accepted that vehicles may be equipped with GPS devices. This last hypothesis
is very important in the case of Kinetic Graphs, as they need a mean to obtain geo-
localization information and time synchronization to generate trajectories. Moreover,
as we will show in this thesis, vehicular mobility patterns show non-uniform distribu-
tions of cars and velocity coming from a strongly restricted mobility helping to reduce
the similarity error. Finally, the concept of trajectory may be easily seen in vehicular
motions.

B.3 Prediction Errors

Once a prediction model is created, it is important to also estimate its prediction error.
As this error depends on the criterion to be predicted, we therefore use the general term
"Criterion Prediction Error", and define it with respect to the mobility patterns.

Definition 5—Criterion Prediction Error: It represents the order of magnitude between
the true and the predicted criteria. The objective is to minimize this error by either
changing the sensitivity of the criterion with respect to mobility prediction errors, or
improve parameters controlling this error. The Criterion error is defined as+-,/.  102 435�7698
where� . : represents the realism error� 0 : represents the adequacy error� 3 : represents the predictability error� 6 : represents the similarity error

We illustrate the criterion prediction error in Fig. I-4. Assuming the real trajectory
followed by a node started at time �:�;
 , the first step is to model that trajectory with
a mobility model. If the modeled trajectory is not similar to the "real" trajectory, we
create a realism error

.
. Then, the next step is to predict the modeled trajectory with

a prediction model. Once again, if the predicted and the modeled trajectories are not
identical, we generate an adequacy error 0 . The predicted trajectory is considered valid
during the average predictability interval. If the criterion changes before the end of this
interval, a predictability error 3 is generated, which is illustrated at time �<�=�?> on
Fig. I-4. Yet, the extends of this error also depends on the similarity. Indeed, if two
successive criteria are close, the predictability error is minimized. In the contrary, the
error will be maximized. This is illustrated by the case (1) or (2) on Fig. I-4.
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Fig. I-4. Illustration of criterion prediction error for the RWM model and a first order
kinematic model

B.4 Prediction Strategies

In the previous sections, we introduced the concept of trajectory knowledge, described
the relationship between mobility and prediction models, and provided a definition of
the prediction error. We are now interested in analyzing this error depending on the
prediction strategies.� Adaptive Strategy: The node which generated the predictions corrects them at

the end of the average predictability interval.

– Prediction Error:
+-,@.  402 135�76 ).� Reactive Strategy: The node which criterion changed immediately notifies the

neighborhood. The predicted trajectory is therefore corrected at the exact pre-
dictability interval A .

– Prediction Error:
+-,@.  40!8 .

The major difference between the adaptive and reactive methods comes from the node
in charge for updating the predictions. While the former assigns this task to nodes
making the predictions, the latter lets nodes being predicted update the system when
necessary. Accordingly, the reactive approach is able to update the predicted trajecto-
ries at the exact predictability of each node, while the adaptative approach update at
the average predictability interval.

The major benefit of the reactive approach is that the predictions are updated roughly
at the same time as the mobility parameters, cancelling the predictability and the sim-
ilarity errors. By adopting this approach, the prediction errors we still need to control
are the adequacy and the realism. This is notably the solution employed by the Kinetic
Graphs. In the case of the RWM model predicted by a first order kinetic model, we
can reach an adequate trajectory construction and a kinetic graph maintenance as the
adequacy is maximized and the predictability error cancelled. However, depending on
the application, the realism error might be significant. We will further illustrate our
statements in this Thesis.
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In order to reduce the prediction errors while using the Kinetic Graphs, we therefore
need to either reduce the realism or the adequacy errors. As the realism depends on
the application, improving the realism may be done by using a specific mobility model
for each application. However, this might generate trajectories that are so complex
to model that we actually increase the adequacy error. One solution in order to have
low realism and adequacy errors is to develop more sophisticated prediction models.
Another solution is to reduce the sensitivity of the prediction criterion to prediction
error.

As mentioned in Section B.2, the realism error is reduced in this Doctoral work by
studying vehicular mobility and by using a realistic vehicular mobility model. A major
limitation of Kinetic Graphs for vehicular networks is the complexity of vehicular mo-
tion modeling. Indeed, unlike random mobility models, motion patterns are influenced
by external constraints that cannot be predicted. Accordingly, the motion and predic-
tion models diverge and create a non negligeable adequacy error. We may then either
improve the prediction model in order to better fit with vehicular motion patterns, or
reduce the sensitivity of the prediction criterion to prediction errors. As the former is
complex maybe even impossible as vehicular motions cannot be modelled solely by
mathematical models, we chose the latter and we introduce a novel criterion called
Kinetic Nodal Degree.

Indeed, a criterion based on the distance might not be stable enough with respect to
prediction updates and errors in order to be efficiently used in Kinetic Graphs for Ve-
hicular networks. The motivation for using nodal degree is manyfold. Indeed, succes-
sive criterion values are correlated and therefore limit the similarity error. Moreover,
the predictability is also increased as the nodal degree does not change as frequently
as the distance between two nodes. Accordingly, the adequacy error may be compen-
sated by an increased predictability. We will illustrate this approach by adapting the
kinetic nodal degree to the Multipoint Relaying (MPR) protocol and the OLSR rout-
ing protocol. We indeed obtain a significant improvement in both cases not only for
the maintenance, which could be expected by a reactive maintenance, but also for the
performance such as routing efficiency and delay.

B.5 Performance

As it may be seen in the definition of the prediction errors in Section B.4, the reactive
strategy is naturally preferred as the prediction error is always smaller than the adaptive
counter part. As Kinetic Graphs are natively implementing the reactive strategy, any
protocol using Kinetic Graphs instead of the adaptive mobility maintenance strategy
will have a better performance towards prediction errors.

Yet, one significant limitation of the reactive approach is the predictability interval A .
Indeed, as we update roughly at the instantaneous predictability interval, it becomes a
performance criterion. If the predictability interval A is short, we need to frequently
update the Kinetic Graphs, while we may reduce this maintenance if A is long. Sum-
marizing this approach, Kinetic Graphs are characterized by� Prediction Error:

+-,@.  B0!8 .� Performance:
+-, AC8
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When the predictability interval is significantly reduced or too small to be efficiently
used, the Kinetic Graphs fall to a degenerated case which is equivalent to a Proactive
Maintenance, where the maintenance is periodically performed. Accordingly, Kinetic
Graphs also cannot perform worst than mobility proactive protocols.

C CONTRIBUTIONS

Our contributions in the field of mobility modeling and prediction are manyfold. First,
we defined the Kinetic Graphs approach, as an optimal solution for mobile wireless ad
hoc networks that benefits from localized and distributed systems for improved graph
algorithms, and kinetic structures for enhanced mobility maintenance. We described
the neighborhood discovery phase, two different time varying link weights and an ape-
riodic neighborhood maintenance. This approach is in fact independent of the kind of
link weights, but depends on the predictability of the motion patterns.

As the performance of Kinetic Graphs depends on the predictability interval, we then
devised the predictability of two popular random mobility models, the Random Way-
point and the City Section mobility models. This first step was necessary in order to
have a fair knowledge of the degree of predictability of those models, thus the expected
benefit we could obtain by the use of prediction techniques as Kinetic Graphs.

Furthermore, as the prediction errors in Kinetic Graphs depend on the realism error,
we studied realistic mobility models. The application we chose is vehicular networks
as vehicles are more easily predictable and their mobility has a far more significant
impact on routing protocols. Moreover, vehicular networks also provide solutions to
obtain the localization information. Indeed, as for most mobility prediction schemes,
Kinetic Graphs need a system that can provide accurate geographic positions. Then,
as each node predicts future states based on the mobility of neighboring nodes, nodes
synchronization is also required. One solution to solve both problems is the use of
Geographic Positioning System (GPS) devices, which is a widely accepted assumption
in Vehicular Networks. We therefore designed a realistic vehicular mobility model and
validated it against a benchmark traffic generator.

Based on our findings on predictability and realism, we developed prediction models
for mobility proactive routing protocols, as reducing the periodic maintenance of such
proactive actions would be a major source of network improvement. We first devel-
oped a dynamic topology control protocol called KADER. However, due to the fact a
trajectory change in any segment on the topology generated by KADER would actu-
ally impact the topology and make the system unstable, we then focused on a different
approach in which we do not predict an exact trajectory, but instead a nodal degree.
Indeed, even if the trajectory of a node changes too often to be accurately predicted,
the nodal degree might not change that often.

We adapted our approach to the MPR protocol and designed the Kinetic Multipoint
Relaying(KMPR) protocol, which is able to predict the actual and future Kinetic Multi-
point Relays based on predicted nodal degrees. We compared our approach with MPR
and illustrated how it was able to provide better broadcasting metrics and at a much
reduced maintenance cost. We also tested this approach in conjunction with the OLSR
protocol, which is based on the MPR protocol for the broadcast of its TC messages.
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We also obtained significant improvements in routing metrics added with a much lower
maintenance cost.

The results obtained with random mobility models are very motivating. However, it
is also clear that the prediction model was able to bring significant improvement not
only due to the prediction algorithm itself, but due to the lack of realism of the Random
Waypoint model for instance. Indeed, vehicles have specific movements not well de-
scribed by this model, and we chose to use a perfect adequacy at the cost of realism. We
therefore also tested KMPR using realistic vehicular mobility patterns. Even though
we expected the simplistic first order kinematic model used by KMPR not to be suf-
ficient to accurately predict complex vehicular mobility, we illustrated that it was still
enough to significantly improve the MPR and OLSR. Nevertheless, we expect more
sophisticated prediction schemes to further improve our results.

D OUTLINE OF THESIS

This thesis focuses on studying and improving mobility management in ad hoc net-
works by using Kinetic Graphs. We also illustrate the strong required interaction be-
tween modeling and predicting mobility in order to efficiently adapt Kinetic Graphs to
wireless ad hoc broadcasting and routing protocols.

Chapter II provides an overview of the current state of the art in mobility prediction
models and their application to ad hoc networks. We also review current research
orientations and achievements in the field of vehicular mobility modeling.

In Chapter III, we describe the Kinetic Graph approach, the hypothesis and methods
used in order to successfully construct and maintain a graph in a mobile environment
without requiring to a periodic maintenance. We then illustrate a potential application
in Topology Control called KADER.

As mentioned in this introductory part, one of the main parameters and challenges for
efficient mobility prediction is the analysis of the predictability. In Chapter IV we
provide a lower bound for this parameter for the Random Waypoint Model (RWM).
We show that this lower bound is more than sufficient to be beneficial to the Kinetic
Graph approach.

Another important parameter also described in this Thesis is the realism. Choosing
vehicular networks as the potential application, and noticing the lack of realistic vehic-
ular mobility models, we introduce VanetMobiSim in Chapter V. It is a validated and
freely available configurable traffic generator for vehicular ad hoc networks.

According to the particular mobility patterns generated by VanetMobiSim, we then
study their impacts on the evaluation of ad hoc routing protocols in Chapter VI. We
show how realism in vehicular motion modeling significantly alters routing in VANETs.

Chapter VII then provides an example of an application of the Kinetic Graph approach
to broadcasting and routing in ad hoc networks. We developed the Kinetic Multi-
point Relays (KMPR) and showed how kinetic graphs could significantly improve the
maintenance overhead as well as the broadcast and routing efficiency either for random
mobility models or the realistic VanetMobiSim model.
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Finally, we draw concluding remarks and summaries of our work and contributions in
Chapter VIII. We discuss the general lessons learned about mobility management in
ad hoc networks, and outline some directions for future research in the different fields
covered by this Doctoral Thesis.
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Abstract—In this chapter, we first describe the challenges facing mobility prediction in mobile
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A THE CHALLENGES OF PREDICTING MOBILITY

S INCE the creation of modern telephony, telecommunication networks have been
developed in a static way, the mobility of users being negligeable with respect

to the new capacity to connect two remote customers. At the eve of the Internet, we
started to see the worldwide generalization of those static networks. However, at the
same time, the customers demand for a larger flexibility toward nomadic patterns ap-
peared, which placed mobility management within static networks as an important im-
provement factor.

In parallel, wireless networks were developed as the response of telecommunication
operators for a growing demand of seamless mobility and wireless connections. Cellu-
lar networks such as 1G, 2G or 3G have been designed with a clear objective to offer a
national mobile communication coverage, quickly increased to a worldwide coverage
with the introduction of roaming capabilities. However, with the generalization of data
traffic on cellular networks, as well as the increasing demand for improved throughput
and security, mobility became a more serious subject.

Mobility is indeed a serious factor contributing to the performance of mobile telecom-
munication networks. It limits the capacity to maintain a connection, or to guaranty
a quality of service between two customers. Moreover, the significant increase of the
telecommunication customers dramatically increased the effect of mobility on the net-
work maintenance.

Studies have been produced on the effect of mobility on telecommunication networks.
Information Theory showed that mobility is able to increase the network capacity by
increasing the network spatial diversity, a feature actually long known by epidemiolo-
gists studying virus propagations. However, this improvement comes at the cost of un-
bounded delays making this improved capacity unusable on real network deployments,
and which explains in part why communication protocols are not taking advantage of
the increased spatial diversity for communication improvements.

In most technologies used nowadays, networks are subject to terminal mobility. This
effect may be compared to a blind person evolving in our universe and trying to dis-
cover its own representation with its stick. Our universe is indeed a knowledge plane
acquired with experience, while mobile and fixed network stations are trying to blindly
discover this universe using periodic transmission of beacon messages. Some protocols
have been designed to reduce this drawback, yet without being able to jump the fence
and resolve it.

In this section, we present concrete examples of methods successfully developed for
telecommunication networks in order to limit the effect of user mobility. Then, in the
second step, we re-introduce1 a breach in the way modern telecommunication network
could be designed by illustrating that mobility may actually be tamed by predicting
instead of being subject to it. For that matter, we describe prediction models that are
available, then we illustrate the application fields those models may be used. Our
objective is to clearly demonstrate and convince the reader that efficient solutions exist

1We use the term "re-introducing", as this way of thinking had already been proposed in the past for the
2G and 2.5G cellular networks, but later forgotten in analysis of ad hoc and wireless telecommunication
networks.
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which provide a better vision of the mobility of network terminals.

A.1 Undergoing Mobility

As described in the previous section, telecommunication networks have always been
subject to mobility. A major task for telecommunication engineers is therefore to de-
sign technics reducing this drawback. For example, in cellular networks GSM/UMTS,
mobility management is handled differently whether the mobile terminal in active com-
munication or not.

For example, the only way to contact a mobile terminal in idle mode is by paging
it. In order to save network resources when the mobile terminal is not connected, the
base station only keeps a coarse vision of the zone where the mobile terminal is. Ac-
cordingly, if the base station does not have any precise information on where a mobile
terminal is, it needs to page the whole network with all the latency incurred by this
method. Therefore, in order to reduce the drawbacks of this approach, GSM/UMTS
systems developed a hierarchical structure called Paging Area (PA) including several
Location Areas for the GSM or Routing Areas for the UMTS. Thanks to this, the system
limits its paging’s scope to the PA containing the last LA/RA where the mobile termi-
nal has last been attached. By using this process, the system is able to save network
resources and delay.

Instead, when the mobile terminal is actively communicating, the base station needs
to keep a very precise vision on the region where the terminal is located in order to
reserve network resources for future cell handovers. This procedure is critical for the
seamless functionality of cellular networks as no drop calls should occur resulting from
handovers. For that objective, the mobile terminal periodically samples then transmits
RSSIs of all base station beacons it receives to its connected base station in order to
obtain a coarse relative position estimate. Then, the mobile terminal and the attached
base station may coordinate with the next base station in order to anticipate the han-
dover and reserve the required network resources.

In the IP world, provisions have also been created in order to deal with mobility or no-
madism of IP terminals. The IPv4 and IPv6 networks developed algorithms, called Fast
Handover, limiting the packet losses generated by changes of covering zones. Alerts
are triggered when a node is approaching a new access router, which creates alternate
routes faster and re-routes packets even before the real hand-over actually takes place.
However, this system is resource consuming as it requires a periodic tracking of access
routers.

Ad hoc networks also had to quickly develop efficient methods to handle terminals
mobility. Globally, five different categories of protocols were designed:� Proactive Protocols– Similarly to static networks, those protocols build rout-

ing tables providing a path to any accessible destination on the network. Peri-
odic beacon messages are triggered in order to adapt the backbone to topology
changes at the cost of a higher energy consumption and channel occupancy. The
two flagships in proactive routing protocols are the Wireless Open Shortest Path
First (W-OSPF) [2, 3] and the Optimized Link State Routing (OLSR) [4, 5].
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Indeed, after having developed many protocols, the community slowly started
to converge to those two protocols, which are also the only two candidate to
the IETF standard track RFC for proactive routing in Mobile Ad Hoc Networks
(MANETs). Yet, the more the mobility increases, the harder it becomes to main-
tain the routing tables. Accordingly, this approach has shown not to be very
adapted to fast mobile networks. Recent results also pointed out the relationship
between performance and density, arguing that proactive routing could only be
efficient on dense networks.� Reactive Protocols– In order to limit the waste of resources, reactive networks
only open routes on demand. Thanks to this limitation, the mobility of nodes not
involved in the opened route does not influence network management. However,
the mobility of nodes belonging to the opened route reduces the performance
of reactive networks. Local repairs are possible in the case of a route failure
and, in order to reduce the latency of a broken path, reactive networks also use
periodic beacon messages. In this category, the Direct Source Routing (DSR) [6]
protocol and the Ad hoc On Demand Distance Vector Routing (AODV) [7] are
two potential candidate, although that the IETF recently chose a modified and
improved version of AODV called Dynamic MANET On-demand (DYMO) [8] as
the only candidate to IETF standard track RFC for reactive routing in MANETs.� Geographic Routing– It is a stateless approach where no backbone or route is
generated. Instead, geographic information of the destination and intermediate
nodes are used in order to wisely choose the best candidate to forward a packet
toward the intended destination. Those protocols are based on two functions: the
greedy forwarding and the recovery. Indeed, each node receiving a packet will
try to chose the best candidate among its neighbors with the maximum progress
toward the destination node. This is the greedy forwarding phase and Most For-
ward within Radius [9] is the technique most widely used in order to find the
best progress. But in some cases, the packet falls in some local maxima, where
not any single node in the neighborhood may bring any potential progress toward
the destination. Accordingly, a recovery phase is triggered, where the packet is
sent back until an alternate candidate is found. This is the recovery phase and
use mostly Face Routing ([10] pp. 389-394) to circumvent the local maxima.
The first and still pioneer protocol in this field is the Greedy Perimeter Stateless
Routing (GPSR) [11] protocol, but some extension and improvements in the two
phases have been suggested ([10] Sect. 12.4). Nodes mobility still alters the
precision of geo-localization information, potentially reducing the performance
of the geographic forwarding approach. The strong requirement of the avail-
ability of a geo-localization system was the major justification for the IETF for
not pushing this approach for standardization. Yet, the stateless feature of ge-
ographic routing made them good candidates for routing in Vehicular Ad Hoc
Networks, where GPS systems are commonly accepted.� Fish-Eye Routing– In order to deal with the lack of precision of geographic
information, mobility is handled in a different way whether the destination node
is far or close from the intermediate or sender node.

– Locally: Frequent position updates of all neighboring nodes are triggers as
mobility has a significant local influence.
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– Remote: Only a coarse mobility maintenance is triggered as the remote
mobility does not have a significant influence on a local decision.

The Fisheye State Routing (FSR) [12] protocol or the Landmark Routing (LAN-
MAR) [12], two proactive approaches, are two examples, where a node keeps up
to date state information about all nodes in its inner circle (or landmark), while
the accuracy of such information decreases as the distance increases. Even if
a node does not have an accurate state information about distant nodes, pack-
ets will be routed correctly because the route information becomes more and
more accurate as the packet gets closer to the destination. Another proactive
protocol in this category is called Distance Routing Effect Algorithm for Mobil-
ity (DREAM). It is based on location information, and adapts its location updates
to both mobility rate and distance. Finally, a reactive approach called Location-
Aided Routing (LAR) [12], also based on location information, has been devel-
oped, where each node maintains the location about nodes it is aware of with
respect of the distance. The farer is the node, the larger is area and then, on
demand, orients route requests toward the area where the destination node is.� Hybrid Routing– This is the last category of protocols which mixes the proac-
tive approach for local routing and reactive even geographic approach for dis-
tance routing. Most of the protocols developed in this category either create
local zones, clusters, or trees and use a reactive routing strategy to route between
them. The Zone Routing Protocol [13], or the Hybrid Ad Hoc Routing Proto-
col [14] are examples of this approach.

Although some techniques have been developed to reduce the impact of nodes mobility,
it still has a major impact on the performance of routing protocols. And similarly to
the topology management approaches previously described, all are subject to mobility,
and non negligeable resources are dedicated to maintaining the stability of the network
backbone or routes with respect to mobility. These resources could be better used if
mobility could be used as an asset instead of a drawback.

A.2 Predicting Mobility

An alternative to the methods described in the previous section is to try to predict users
mobility. Indeed, by again considering the example of blind persons, what differen-
tiate us from them is first our global long range vision, and second our capacity to
predict and anticipate the evolution of our environment. Similarly, mobility prediction
techniques could be used in order to improve the management of mobile networks.

Definition 1—Mobility Prediction: Capacity to evaluate a future position given past
positions.

Mobility Prediction is actually a very ancient technique used by the first sailors to
navigate on seas and oceans. In marine literature, this technique is better known as
Dead Reckoning. Using instruments measuring:� the initial point
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� the azimuth, or headings (Astrolab, Sextant, Compas)� the speed (Chip log, Tachometer, Anemometer, Doppler sonar)� the time (Astrolab, Chronograph)

the dead-reckoning technique is able to obtain the current position and the distance
travelled since the last known position. Inertial systems are able to improve the pre-
cision of dead-reckoning techniques for systems that are not able to receive satellite
signals. Nowadays, a large variety of navigational methods are still based on dead-
reckoning, varying from under-water navigation, spatial navigation, missile guidance
and tracking. More generally, in any domain where a knowledge of the trajectory taken
by a system is vital, mobility predictions are used.

In telecommunication network management, resources are shared in order to benefit to
the widest set of users. And those resources are allocated depending on the density of
users. Yet, mobility makes this management random and inefficient. The knowledge
of the trajectory taken by users may be very useful in order to improve the resource
management of mobile telecommunication networks. This is also a significant motiva-
tion for the study of mobility prediction techniques in the field of telecommunication
networks.

Available Localization Techniques

On periodic position reassessments, mobile terminals using algorithms based on mobil-
ity prediction techniques must acquire their position. It is therefore necessary to obtain
a sporadic access to a geo-localization system. Three categories of geo-localization
algorithms exists:� Satellite Systems (GPS or Galileo): It is a widely diffused system, which guar-

anties a precise localization ( D 1m) at a low cost. However, the acquisition time
may be long ( E 30s), it also consumes a non negligeable energy, and requires
access to satellite signals.� Beacon Systems (GSM): The precursor of GPS localization, and an alternative
to situation when the GPS signal is not available. However, the precision cannot
challenge the GPS system.� Hybrid Systems:

– Inertial Systems: Contain a set of accelerometers, gyroscopes and guid-
ance algorithms able to provide the velocity, orientation, and angular ve-
locity of a mobile system by measuring the linear and angular accelera-
tions applied to the system in an inertial reference frame. If calibrated on
known positions and velocities, the inertial system is then able to estimate
a mobile system complete trajectory.

– GPS Systems: Compute position, velocity, acceleration, and use complex
mobility prediction techniques when the signal is not available.
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– GSM Systems: Uses all available techniques or triangulation or multi-
lateration in cellular networks: Angle of Arrival (AOA), Time Difference
of Arrival (TDOA), Enhanced Cell Identification (E-CID), Uplink Time
Difference of Arrival (E-TDOA), Enhanced Observed Time Difference (E-
OTD), or A-GPS.

Mobility Prediction Models

Mobility prediction models has nothing new, and working on this field could look like
trying to reinvent the wheel. Indeed, they have initially been developed for tracking
purposes in the 60s and in cellular Networks since 1995. More complex models have
later been used in order to be applied to cellular systems requiring a quality of ser-
vice such as the Wireless ATM network. The complexity and the precision of those
models culminated around the year 2001, but unfortunately were forgotten afterward
as illustrated in Fig. II-12. In fact, it took a long time to the mobile ad hoc network
community to understand that mobility predictions were as important as it used to be
for cellular network. But then, only simplistic models were re-introduced, as if the
whole past literature has either been forgotten, or judged too complex for the needs.
However, we started to see a growing popularity in complex iterative models in recent
works and expect this popularity to further increase in the near future. This section
aims at recalling and putting back into the light the different orientations taken by the
community in order to tame the mobility of mobile terminals.
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Fig. II-1. Evolution of the Popularity of Prediction Techniques

Deterministic Models

Deterministic mobility prediction models may be a first order model, only considering
the position and a fixed velocity, but more higher order models have also been designed,
including acceleration and a time-varying velocity.

The mostly known and used deterministic model is the first order kinetic model illus-

2This figure has been obtained based on the number of google hits using keywords Trajectory, Prediction,
Tracking, Mobility and estimated based on the complexity of each solution and the initial publication year.
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trated in Fig. II-2(a).FGFIHJ�K 
 ,ML  N�)8O� PNQSRUTWVX RYTZV\[ � PNQSRX R][  P\^ R_^ R` [ � , � F � R 8 (II-1)

A direct application of (II-1) is to compute the kinetic distance or the estimated con-
nection time between two nodes

J
and a . The kinetic distance is computed as followsb<cdfe , �G8g� b<cehd , �G8��ji FkFIHJ�K 
 e , �G8 F FlFIHJ�K 
 d , �G8�i cc� m P Q e F Q dX e F X d [  P ^ _e F ^ _d^ `e F ^ `d [ �O�on c� p dfe � c  Bq dhe �f 1r dhets (II-2)

Considering u as nodes maximum transmission range, as long as
b cdfe , �G8:vwu c , nodesJ

and a are neighbors. Therefore, solving

b<cdfe , �G8 F u c � 
p dhe � c  xq dfe �h Br dfe F u c � 
 s (II-3)

gives �Gy)z|{G}dhe and �k~ {dfe as the time intervals during which nodes
L

and � remain neighbors
(see Fig II-2(b)).

(Xi, Yi)

(Xi+1, Yi+1)

(Vx
i, V

y
i)

x

y

(a) First Order Prediction Model

x

y

LD=[tPQ
from ,t PQ

to ]

PosP

PosQ

VP

VQ

(b) Link Duration (LD) between nodes P
and Q

Fig. II-2. First Order Prediction Model and its Application to Link Duration

In cases where the velocity is not constant, a second order prediction model based on
the Euler motion law is used.

FH ^%RUTWV � FH p R ���f FH ^�R (II-4a)FGFIHJ�K 
 RUTWV � �� FH p R ��� c  FH ^ R ���9 FlFIHJ�K 
 R (II-4b)

Although vehicular motions involve impulsive forces (such as sudden braking), a con-
stant acceleration is usually accepted in high speed mobile networks. However, a piece-
wise constant acceleration is used in practice. In both cases, (II-4) may be used to
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predict a future position based on some kinetic information. (II-4) may be solved by
substitution. FlFIHJ�K 
 RUTWV � �� ��� FH ^ RUTWV F FH ^ RM�� ��� c  FH ^ R ���9 FlFIHJ�K 
 R

� � FH ^ RUTWV  FH ^ R��� ���f FkF�HJ�K 
 R (II-5a)

Accordingly, position predictions are calculated using a velocity one step ahead, which
forces us to have two samples of past velocities and two piecewise constant accelera-
tions in order to predict the future position.FH ^ R � FH ^ R/�fV  FH p2� RM�9VG�M��R � , � R F � RM�9V 8 (II-6a)FH ^ RYTWV � FH ^ R  FH p R(� � RUTWVl� � , � RUTWV F � R 8 (II-6b)FkF�HJ�K 
 RYTWV � � FH ^ RYTWV  FH ^ RM�� � , � RYTWV F � R 8h FkF�HJ�K 
 R (II-6c)

where
FH p � RM�9VG�M��R and

FH p R(� � RUTWVl� are the constant acceleration during the time intervals� � RM�9V s � R@� and
� � R s � RYTZV|� respectively.

If the acceleration is constant between two sampling intervals, the velocity increases

linearly with time and the approximation � �� ���Y��� � T � �� ��� �c � i FH ^ RUT �� i is exact. If not,
we need to sample the velocity at the mid-interval and use a variation from II-4 called
the Feynman-Verlet model. The leap-frog algorithm may be appropriately used in this
case.

FH ^ RYT �� � FH p R �7� R  FH ^ R/� �� (II-7a)FlFIHJ�K 
 RYTWV � FH ^ RYT �� ���f FGFIHJ�K 
 R (II-7b)

Changes in position are calculated using a velocity that is half a step ahead in time.
Likewise, changes in velocity are calculated using an acceleration which is half a step
ahead in time. Position and acceleration are therefore in-phase, while velocity is out of
phase with position and acceleration.

The leap-frog algorithm owes its simplicity to the fact that stepping the velocity half
step out of phase with the position and acceleration provides midpoint values for both
(II-7a) and (II-7b) and thus provides more accurate results than the Euler model. Fig. II-
3 illustrates both approaches.

Stochastic Models

Stochastic models do not aim at obtaining an exact prediction, but rather a correct one
with high probability. Stochastic models may be easily used to add an uncertainty to
deterministic predictions. But a more important use is to model unknown parameters in
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Fig. II-3. Second Order Constant Acceleration Prediction Models

the state equations or to take into account the model’s prediction error. In many cases,
it is both. For example, tracking-based auto-regressive processes (AR) use white noise
to model the AR prediction errors. The estimation of the states, such as position or
velocity, is often accomplished using Kalman Filters. Even if position or velocity are
obtained without error, the AR process still provides predictions with some errors.
Now, if errors are added to the positions or velocities, the performance may decrease
drastically. Accordingly, in most applications, joint optimization is applied to obtain
good predictions. In the rest of the section, we provides examples and related work
using stochastic prediction models.

Approaches for mobility tracking mostly rely on Autoregressive processes [15, 16],
Kalman Filtering [17, 18, 19, 20], semi-Hidden Markov [21, 22, 23] models, or Particle
Filtering [24, 25, 26, 27]. Two measurements have been mostly used in the literature,
the Received Signal Strength Indicator (RSSI) or the Time or Arrival (TOA), but GPS
positioning is experiencing a growing interest from the community as a mean to reduce
the measurement error.

The first and most straightforward model is to weight a deterministic prediction by the
probability the prediction still exists. It is defined as followsJ u?�?��� ~ {��k� , �G8�� J u��?����� ~ , �G8'��� � � � ~ � ~M¡�¢l£9¤�¥§¦ � (II-8)

whereJ u��?����� ~ , �G8©¨ Deterministic Mobility Prediction at time �� �!� � ~ � ~M¡�¢l£$¤�¥§¦ � ¨ Stochastic validity of the prediction parametersª ¨ Stability of the mobility parameters (also called Predicability)� �l« }�¬7­ � ¨ Latest sampling time of the mobility parameters

As mentioned in the beginning of this section, Autoregressive (AR) Models also falls
in the stochastic class. A white Gaussian noise with zero mean � is used to model the
AR prediction error, and the mobility state of the process is estimated using Kalman or
Particle Filters.

An auto-regressive model of order ® defines the ¯W~ � value as a weighted sum of the ®
previously measured ones and is defined as
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�C°-�N±W#� ¬² RY³WV ± R �C° � ¬  1�|° (II-9)

where �|° is an independent identically distributed noise with zero mean.

Creixell and Sezaki [15] proposed to model pedestrian trajectories using first order
auto-regressive process (AR(1)) for the velocity and the azimuth. They used Least
Square Lattice filters (LSL) to solve their model and obtained fairly good predictions
up to 10 simulation step ahead.

Zaidi and Mark [16] also used a first order auto-regressive model (AR(1)) but used
Yule-Walker formulation in order to estimate ± and error coefficients of the AR(1)
process. Unlike [15], the mobility state are not obtained from mobility traces, but are
measured using RSSI (Received Signal Strength Indicator) or TOA (Time of Arrival)
and then approximated using Kalman Filters. They validated their approach by com-
paring it against real sets of data.

Another model is called the Gauss-Markov prediction model and has been proposed
in [28]. It first models a node’s velocity as a time-correlated Gauss-Markov random
process. In discrete time, it computes the predicted velocity based on the previous
value and a Gaussien iid process� , ¯h8��	±W� ° �9V  , � F ±'8k´µ B¶O· � F ± c � ° �fV (II-10)

with the Gauss-markovien auto-correlation process¸�¹ , 0!8���º � � , �G8k� , �W 10!8 � �N¶9� �!� » ¼�»  1´ c (II-11)

where ± � � � � » ¼�»ª ¨ Memory size¶ c ¨ Variance of the v(t) process´ ¨ Expectation of the v(t) process� ° ¨ Gaussien IID Process

Their numerical results have demonstrated the importance of the performance gain of
prediction-based approaches, but also confirmed that the performance of such approach
is directly proportional to the predictability of a node’s mobility pattern. That was also
our intuition and was the justification of our predictability analysis in Chapter IV.

While deterministic models are able to model quite fairly first order or second order
kinetic models with constant accelerations, a velocity subject to an unknown accelera-
tion, or known but non-constant acceleration requires the use of more complex stochas-
tic models. Many studies of position tracking in wireless networks exist, most of them
deploying some form of Kalman filtering to the position tracking problem. However, in
recent years, it has been noted that the sequential Monte Carlo processing filters, better
known as the Particle Filter, can provide an improved performance in the non-linear
and non-Gaussian noise tracking problem [29].
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Central to all navigation and tracking applications is the motion model to which vari-
ous kind of model based on filters can be applied. Models that are linear in the state
dynamics and non linear in the measurements are often considered:

� ~ TWV � ½t� ~  B¾�¿ÁÀ ~  B¾ y � ~ (II-12a)Â ~ � Ã , � ~ 8h B� ~ (II-12b)

where � ~ ¨ state vectorÀ ~ ¨ measured input� ~ ¨ unmeasurable input or faults toward the measured inputÂ ~ ¨ measurement� ~ ¨ measurement error

An independent distributions may usually be assumed for � ~ , � ~ , � # with known proba-
bility densities ® �lÄ , ® y Ä , and ® _)Å , respectively, not necessarily Gaussian. The difference
between the applications based on (II-12) mainly lies in the different means to obtain
the measurement equation (II-12b).

Liu and al. [17] proposed a mobility model for wireless ATM networks based on a
dynamic linear system model in wich the mobility state consists of the position, ve-
locity and acceleration of the mobile terminal. Originally introduced by Singer [30],
the system can capture a wide range of realistic user mobility patterns. The measure-
ment is based on an estimated position obtained by the RSSI (received signal strength
indicator) from three different base stations, and the state vector is given byÆ� , �G8���½Ç� , �G8W B¾�À , �G8h xÈ�u , �G8 (II-13)

where ½N� m-É 

 É n ¾j�	È;� m*Ê 

 Ê n
É �=m 
 ��Ë
 n Ê �Ìm 
 � n

and where� , �G8��ÎÍ Q , �G8 ÆQ , �G8 X , �G8 ÆX , �G8kÏÑÐ ¨ Node À mobility vectorÀ , �G8�� � À _ , �G8lÀ ` , �G8 � Ð ¨ Node À deterministic acceleration commandu , �G8�� � u _ , �G8lu ` , �G8 � Ð ¨ Node À random acceleration

The structure of the model, illustrated in Fig. II-4, manages to replace a time varying
acceleration with a semi-Markov based acceleration commands and a random acceler-
ation component. This filter is resolved using Kalman Filtering techniques.

A key observation is that the process À ° is a semi-Markov process. Therefore, accurate
estimation of À ° should exploit its semi-Markov characterization. Yu and Kobayashi [21,
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22] developed an efficient algorithm for estimating the parameters of a hidden semi-
Markov Model (HSMM), a generalization of a similar approach for Hidden Markov
Models (HMM), and its application to position tracking. Zaidi and Mark [23] also
used the same idea to obtain the acceleration command À ° with a HSMM estimator
while using a Kalman Filter to estimate the mobility states. Thanks to this hybrid ap-
proach, their solution outperformed Liu’s work [17] in terms of prediction errors by a
factor of 5.

Zaidi et al. [20] later generalized their approach and proposed to first preprocess the
RSSI with an average Filter to obtain coarse position estimates, and second to decouple
the mobility state estimates � , �G8 from the estimation of the discrete command processÀ , �G8 . They illustrated how their approach was able to follow mobile trajectories more
accurately than in Liu’s work.

Pathirana et al. [18] proposed a modification to Liu’s work and used a Robust Extended
Kalman Filter (REKF) approach in order to improve the prediction accuracy, process-
ing efficiency, and more important, to include non-linearities to the model. Accord-
ingly, no assumption is made on the measurement equation or the system dynamics,
and thus could be able to better model sharp turns and log-normal or Nakagami propa-
gation models popular in the modeling of Vehicular Network.

Another mean to solve the motion model described in (II-12), without using REKF or
more complex systems, is by means of Bayesian recursive filtering, also called Particle
Filtering. The optimal Bayesian Filter in the case of (II-12) is given below and is
composed of a prediction step and an update step. If the set of available observations
at time � is given by

X ~ �;Ò Â # s ����� s Â ~�Ó s
then the Bayesian solution to compute the posterior distribution ® , � ~ TWVÁÔ X ~ 8 of the state
vector, given past observations, is given by
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® , � ~ TWV�Ô X ~ 8Õ� Ö×® , � ~ TWVÁÔ � ~ s X ~ 8?® , � ~ Ô X ~ 8 (II-16a)

� Ö ® , � ~ TWV Ô � ~ 8�® , � ~ Ô X ~ 8Ø�Á� ~ (II-16b)� Ö×® y Ä � ¾ÚÙy , � ~ TWV F ½t� ~ F ¾Û¿�À ~ 8 � ® , � ~ Ô X ~ 8Ø�Á� ~ (II-16c)

® , � ~ Ô X ~ 8Õ� ® , Â ~ Ô � ~ 8?® , � ~ Ô X ~ �fV 8® , Â ~ Ô X ~ �fV 8 (II-16d)

where we assume that both the initial probability density of state ®9# , and the density® , � ~ Ô X ~ 8 at time step � are known and ® , Â ~ Ô X ~ �fV 8 � r ~ .
In the case the motion model is as II-12a and the update equation is as II-12b, (II-16)
may be rewritten

® , � ~ TWV�Ô X ~ 8Õ� Ö×® y Ä � ¾ÚÙy , � ~ TWV F ½t� ~ F ¾Û¿�À ~ 8 � ® , � ~ Ô X ~ 8Ø�Á� ~ (II-17a)

® , � ~ Ô X ~ 8Õ� ® � Ä , Â ~ F Ã , � ~ 8�8?® , � ~ Ô X ~ �9V 8r ~ (II-17b)

The particle filter can be considered as an approximation to a sequential solution to the
above equations. It achieves this by representing the posterior density with some ran-
dom weighted samples, called the Particles. A typical particle filter algorithm consists
of 5 steps that we shortly describe next.

1. Initialization: Generate � R#�Ü ® _ Å , L �;� s ����� s�Ý . Each sample of the state vector
is referred to as a particle.

2. Measurement Update: At each particle position, the assigned weight of each
particle is updated and normalized according to a likelihood function (based for
example on RSSI cumulative distribution).� R~ �	� V~ �fV ® , Â ~ Ô � R~ 8� R � � RÞ R � R~
This is the update step of the Bayesian recursive filtering.

3. Resampling: P particles are replaced from the set of particles based on the
weights. This step is necessary in order to avoid a high concentration of proba-
bility mass at a few particles.

4. Prediction Move the particle forward according to the adopted Model (II-12a for
instance). This step is therefore the prediction step of the Bayesian recursive
filtering. The particles are now referred to as predicted particles.

5. Let ��¨§�	�O�;� and iterate item 2).
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There is a large literature of successful use of Particle Filtering methods to solve posi-
tioning, tracking or navigation, and it is hard to be exhaustive. The major difference be-
tween different approaches are usually the measurement step or the Resampling Phase.

For example, Yang and Wang [24] also illustrated the inaccuracy of Liu’s work and
proposed an alternative estimation scheme based on a sequential Monte Carlo (SMC)
Filtering. The SMC can achieve better performance than the Liu’s filtering, but is com-
putationally intensive and hence might not be suited for real-time trajectory predic-
tions. Zaidi et al. [20] later showed that the SMC was outperformed by their Modified
Kalman Filtering approach.

Gustafsson et al. [25] proposed a framework for positioning, navigation and tracking
problems using particle filters. They showed a clear improvement in performance in
real-time, off-line, on real data and in simulation environments compared with existing
Kalman filter-based solutions in term of convergence time and precision. By using
Rao-Blackwellization, authors also managed to reduce the increased computational
complexity of the Particle filter approach compared to Kalman Filters.

Mihaylova et al. [26] presented two other Sequential Monte Carlo algorithms, a Particle
Filter and a Rao-Blackwellised Particle Filter. In contrast to previous work [17, 20,
24], the mobility tracking is formulated as an estimation problem of a hybrid system,
where a base state vector is continuously evolving, and where a mode state vector may
undergo abrupt changes. This formulation together with the Monte Carlo approach
showed it could reduce the computational complexity and provide efficient mobility
tracking.

Sha et al. [27] described another Particle Filtering approach for position tracking in
Wi-Fi networks under the assumption of log-normal fading and with intermittent GPS
information signaling. They obtained a factor 2 improvement against a stand alone Wi-
Fi-based localization and could obtain real-time positioning in hybrid Wi-Fi and GPS
systems.

History-based Models

Those models are usually used to predict the terminal macro-mobility, or the cell to
cell mobility. Indeed, repetition of routine movements allows to more easily learn the
users preferred paths.

One method to characterize the regularities of users mobility is to record a set of User
Mobility Patterns stored in a profile for each user and indexed by the occurrence time
(see Fig. II-5(a)). The major difficulty is to assess the sensitivity between the UMP
and the User Actual Path (UAP). Indeed, is a UAP, which diverges from the UMP by a
single cell, a small variation of the same path or a totally new path not reported in the
profile ?

Different approaches have been proposed [31, 17, 32, 33]. We illustrate here the
solution presented in [17], where the authors successfully used approximate pattern-
matching techniques to find the UMP that fits best to a UAP. For example, if a UMP is
described by a cell sequence

, p V p c ������p RM�9V p R p RUTWV ������p�°ß8 , then the authors modelled
the regular movement of a mobile user as an edited UMP by allowing the following
legal options:
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� inserting a cell r at position
L

of the UMP gives UAP:
, p V p c s �����Gp RM�9V r7p R p RUTWV �����Gp�°!8� deleting the cell p R at position

L
of the UMP gives UAP:

, p V p c s ������p RM�9V p RUTWV �����Gp ° 8� changing a cell p R to another cell r gives UAP:
, p V p c s �����Gp RM�9V r7p RYTZV ������p�°ß8

Figure II-5(b) gives an example a UMP r�à�r�#?r7á�r�â and its edited UAP r�à�r�ã?r7ä�r7á�r7â , which
can be obtained by changing r # to r ã and inserting r ä .
The degree of resemblance of a UAP with a UMP is measured by the edit distance a
finite string comparison metric. The simplest way to find this distance is by determining
the smallest number of insertion, deletion and changes by which two cell sequences can
be made alike. If the edit distance is less than a matching threshold � , an approximately
matched UMP is found, indicating the general moving intention of the user and the
macro-prediction may be done accordingly. For example, in Fig. II-5(b), the å�æ J V
has clearly a smaller edit distance than å�æ J c compared to the å5½ J . å�æ J V is
therefore selected as general moving intention of the user.
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Fig. II-5. Global Mobility Model

In the next example, another way to benefit from the repetition of mobility patterns
is by modeling them by a sequence of stationary events generated using a Markovien
process of order m. In other words, the new event may be generated as a function of
the m previous events.J � ^ ­ T } TWV �	� ­ T } TWV Ô ^ V �	� V ����� ^ ­ �&� ­ ����� ^ ­ T } �&� ­ T } � (II-18a)� J � ^ ­ T } TZV ��� ­ T } TWV Ô ^ ­ ��� ­ ����� ^ ­ T } �	� ­ T } � (II-18b)

where
^ R

are the states of the system, which may be represented by a cell, or an occu-
pied road segment.

A representation of (II-18) may be obtained by a trie or a digital search tree, where
every node represents a context

^$ç �è� çßÔ ^ ç �9V �è� ç �9V ����� ^ V �;� V and stores its last
symbol along with the relative frequency of its appearance at the context of the parent
nodes. Obviously, the depth of the trie is the order of the Markovien process and, as
we move down the trie, we restrict our uncertainty to finally converge to a next event
prediction when we reach a leaf. The performance of the prediction is therefore the
trie’s ability to add a new event to the frequency of an already existing node (reducing
the uncertainty) and not to create a new branch (an unpredicted event).
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The Uncertainty of a new event based on a sequence of past events is called the En-
tropy in Information Theory, and the optimal prediction of the future state may then be
obtained from algorithms minimizing this entropy. The Lempel-Zif (LZ78) algorithm
is a good choice in order to generate an optimal dictionary of observed paths and a
reduced search trie.

Figure II-6 illustrates an example of the trie representation of a movement historyp�p�pØq�pØq7qOq7q7q7p�pØq�r�r7����r�q�p�p�p�p with a second order Markov Process and its improvement
using the LZ78 algorithm. This algorithm creates the dictionary p , p�p , q , pØq , q�q , q7q�p ,pØq�r , r , � , ��r , q�p , p�p�p and only adds a new branch by concatenating a new entry � with
a symbol � already contained in it.
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Fig. II-6. Trie Representation of a Movement History modeled by a Markovie Process
of order 2

The idea of using the LZ78 algorithm in order to reduce the uncertainty has been orig-
inally presented by Bhattacharya and Das [34] for Location Management under the
name LeZi-Update. An extension to Handover prediction in Wireless Networks, which
has been introduced in [35], is presented next.

By representing the state sequences as Ýés�ê V s�ê c s ����� ê ° s º , where Ý is a new call, ê R
is the

L ~ � handoff, and º is the end of call, we can generate the prediction tree illustrated
in Fig. II-7. Each sequence of events Ýés�ê V s�ê c s ����� ê ° s º during the lifetime of a call
corresponds to a substring in the Ziv-Lempel algorithm.

Each node builds a tree based on the sequence of events. For example, in Fig. II-7,
the Lempel-Zif algorithm found 3 substrings which ended at time slot 2, 3 substrings
which contained a handover to cell b also at time slot 2, and where all of them ended
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right after the handover, or 15 substrings which contained a handover at time slot 1
etc...

When the mobile requests a new call in cell p in the time interval 9:00-9:01 a.m., we
can use the statistics preserved in the node’s mobility trie to predict the probabilities of
the next possible events of this mobile. From the root’s point of view, it will terminate
the call without handoffs in the 2nd time slot with probability of ë�ìÑ>Á� , handoff to cell
b in the 2nd time slot with probability of

� ìÑ>Á� . Then, depending on the next event, we
go down the tree following the sequence of events in order to refine the predictions. If
one prediction error occurs, the tree is updated.

N, m, a
9:00/9:01

T2
2/56

T3
5/56

T2,b
3/56

T2
1/1

T1,b
15/56

T2,d
6/15

T6
1/4

T4
5/15

T5,d
4/15

Tk,i
x/56

T7,f
3/4

Tk
x/y

Tk,i
x/y

End of Call at time 
slot k with prob. x/y.

Handover at time 
slot k to cell i with 
prob. x/y.

New call from node
m, in cell a
between 9:00am and 9:01am

N, m, a
9:00/9:01

T2
2/56

T3
5/56

T2,b
3/56

T2
1/1

T1,b
15/56

T2,d
6/15

T6
1/4

T4
5/15

T5,d
4/15

Tk,i
x/56

T7,f
3/4

Tk
x/y

Tk,i
x/y

End of Call at time 
slot k with prob. x/y.

Handover at time 
slot k to cell i with 
prob. x/y.

New call from node
m, in cell a
between 9:00am and 9:01am

Fig. II-7. Example of a Lempel Zif tree predicting the time slot of either the end of call
or a handoff

This kind of repetition also allows to successfully use fuzzy logic algorithms. In the
following example, authors in [36] used a Neuro-Fuzzy Inference Model (NFIS), which
is based on an IF, THEN rule whose consequence is a real number.This model provides
the inference structure that avoids the time-consuming process of defuzzification in an
inference procedure. The form of fuzzy IF-THEN rules is as follows:

¸ À$íM� L ¨�î�ï\� V �	½ RV p�¯f�&�������ØðÛ�	½ Rð sòñÇê º Ý Â �wó R (II-19)

where

� V ������� � ¨ input variable½ Rð ¨ A fuzzy set for input variable � ð in the
L ~ � fuzzy ruleó ð ¨ A real number for output variable in the
L ~ � fuzzy rule

Given the real-value input vector ô�%� � � V s � c �����G� � � , the real-value output of the fuzzy
model is inferred as follows:

Ý ï�î�õö�\� , ô��� � � V s � c �����G� � � 8�� Þ °RU³ # ´ R ó RÞ °RU³ # ´ R (II-20)
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where

´ R � �÷ð ³WV ´fø
�ù , � ð 8©¨ Fuzzy membership function of the Fuzzy set ½ Rð´fø �ù ¨ Fuzzification function (triangular, trapezoid, Gaussian)

Then, the prediction is as follows:Ý ï�î�õ � õ ~ç s õ ~ç s ������õ ~ � �U� �9VG�ç � H õ ~ TWVç (II-21)

where õO~ç is the state k a time t. õO~ç may contains a set of parameters such as velocity,
acceleration or azimuth.

In [37], the sectorization-based prediction model has been proposed which has been
applied to cellular networks. It is mostly a refinement from the basic regular path
prediction model where a next cell is predicted based on a sequence of previous visited
cells. Depending on predefined sectors in a cell, a node will be more likely to move the
cell adjacent to its sector, or move to another sector. Fig. II-8 illustrates the sectors in
a cellular network.
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Fig. II-8. The Cell Sector Numbering Schema
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Fig. II-9. Sectorized Mobility

Based on the cell sector numbering schema, a history-based sectorized mobility is gen-
erated as illustrated in Fig. II-9, where the probability to be at position ú after

Q
movements is given by

JWû , úé8�� Q1ü ® �� � û T } � , � F ®$8 �� � û � } �ý Vc , Q  4úé8oþ ü!ý Vc , Q F úé8oþ ü (II-22)
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where ® is the probability to leave the cell.

Another approach introduced in [38] is the Shadow Cluster model, which is also a
refinement from the basic regular path prediction model. Its concept is that any active
wireless device establishes an influence on cells in the vicinity of its location and its
direction of travel. The cells currently being influenced are said to form a Shadow
Cluster because the region of influence follows the movement of the active device like
a shadow. Fig. II-10 illustrates this approach, where the shaded areas compose the
shadow cluster centered in cell È .
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Fig. II-10. Shadow Clusters Produced by an active mobile terminal

Complex stochastic techniques are used to compute the active mobile probabilities to
generate the shadow clusters. In [39], Akyldiz and Wang further improved the Shadow
Cluster approach to consider aggregate history and a stochastic model of cell residence
time to shrink the region considered for shadow clusters.

Finally, another particular class of history-based model uses Neural Networks. In those
models, information is gathered in order to train the neural network, which then is able
to predict a particular future state of the network. Based on the sequence of input
vectors during the training period, back-propagation is used to update and improve
the weights of the neural networks layers. Depending on the needed complexity, such
neural network may have several hidden layers. Fig. II-11 illustrates an example of the
multi-later neural network with back-propagation.

where QSR ¨ State of node iX ¨ Decision (Handover, Link duration)ÿ ¨ Real Value during training� R ¨ Weight correction during training

In Capka and Boutaba [40], the moving trajectory of a mobile node is determined as a
sequence of base stations the node has been attached to. The neural network is trained
with sequences observed in the past in order to detect the current movement pattern
and improve network management.
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Fig. II-11. A Multi-later Neural Network with Back-propagation

Shang et al. [41] developed a clustering-based protocol using wavelet neural network,
where a wavelet function replaces the Sigmoid function in conventional neural net-
works. They showed that this approach resulted in more stable clusters than LowID or
MaxConn3.

Hierarchic Models

This last category includes the most precise models ever developed at this time. In-
deed, hierarchic models usually include a micro-prediction algorithm coupled with a
macro-prediction schema. Most of the time, we find stochastic models for the micro-
prediction, and history-based models for the macro-prediction. Those models are not
only capable of predicting with a very high precision the sequence of cells a user will
use in the future, but also the time it will reach the limit of each cell.

A.3 Network Algorithms using Prediction Models

In this section, we describe the divers application domains where mobility prediction
schemes have been successfully adapted to mobile ad hoc networks.

Figure II-12 illustrates domains where prediction models could be applied in mobile
ad hoc networks. In most of those domains, protocols have been developed which
significantly improved the network performance.

Mobility prediction techniques have been successfully applied to the following do-
mains:� Connection Management:

– KADER [42]: This protocol generates a connected forest using a non-
periodic maintenance strategy. Its Performance is similar to other topology
control algorithms, yet at a drastic reduction of the maintenance overhead.

– Kinetic MultiPoint Relays (KMPR) [43]: The KMPR protocol elects MPR
nodes depending on their predicted nodal degree. The KMPR protocol is

3LowID is a clustering technique where a node with the lowest ID is elected as cluster head, while
MaxConn elects a node with the maximum connectivity as clusterhead
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Fig. II-12. Classification of the Applicability of Prediction Techniques

able to reduce the MPR protocol maintenance overhead by 60% and the
delay by 25� Location Management:

– Dead Reckoning-Based Location Service [44]: This model adjusts the pe-
riodic dissemination of geographic information based on a first order de-
terministic mobility prediction model.

– Mobility Prediction-based GLS [45]: Improves the Grid Location Server
(GLS) by adapting the periodic location maintenance with two prediction
models deterministic first order and history-based first order Markovien.

– Predictive Location Service (PLS) [46]: This approach only uses a first
order deterministic prediction model, but manages to reduce the location
errors and the maintenance overhead of GLS.� Link Availability:

– Mobility Prediction-based Position-based Forwarding (MP-PBF) [47]: This
approach improves the accuracy of the general PBF protocol by relaying
packets depending the predicted position of the intermediate nodes with
respect to the predicted position of the destination.

– Predictive Location Aided Routing (P-LAR) [48] : This approach sector-
izes nodes mobility. The cost of routes establishment is largely lower than
LAR.

– Prediction-based Link Availability (PB-LA) [49]: Uses a deterministic
first order prediction model to efficiently predict the link duration between
two nodes. When used in conjunction with the DSR protocol, the perfor-
mance is significantly improved.

– Context Aware Routing (CAR) [50]: Uses a Stochastic model based on
Kalman Filters in order to predict mobility in sporadically connected net-
works. It illustrated its benefit compared with traditional epidemic routing.
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� Route Availability:

– Distance Vector with Mobility Prediction (DV-MP) [51]: Represents the
link cost as the predicted link duration for Distance-Vector approaches,
and improves their performance with respect to conventional Distance-
Vector protocols or LAR.

– Kinetic Minimum Spanning Trees (KMST) [1]: KMST uses a stochastic
prediction model in order to build a Spanning Tree using a non-periodic
maintenance strategy.

– Dead-Reckoning Model (DRM) [52]: The DRM improves the perfor-
mance of DSR by using the prediction of links duration instead of the
hop count as the cost metric.

– Reliable On-Demand Routing Protocol (RORP) [53]: This approach opens
routes with weight set to the minimum link duration of each link com-
prised in the route. Then, the source chooses the route based on the maxi-
mum link duration.

– AODV MOvement Prediction Routing (AODV-MOPR) [54]: In AODV-
MOPR, nodes selected to establish a route from a source to a destination
node are selected depending on their similar direction and velocity. This
generates a 7% improvement in AODV route stability.

– Kinetic Link State Routing (KLSR) [55]: Used in conjunction with KMPR,
KLSR is able to use the actual and predicted future MPR selectors in or-
der to build an optimal routing table containing not only actual but also
future optimal paths, without requiring the periodic broadcast of Topology
Control (TC) messages.

A.4 Summary

Telecommunication networks have long been subject to the effect of user mobility. In
order to reduce this drawback on cellular networks (PCS, GSM), mobility prediction
models have been created and successfully tested. Among other examples, this ap-
proach was seen as a way to provide some kind of quality of service to Wireless ATM
networks. However, the prediction approach lost its popularity as those telecommuni-
cation networks were replaced by new systems such as 3G or wi-fi networks.

The subject reclaimed its popularity when mobility became again a major source of
waste of network resource. For instance, predicting mobility in mobile ad hoc networks
is seen as a mean to make such system scalable.

A large literature reading illustrates the advantage of mobility prediction models for
mobile ad hoc network. However, unlike their counterpart in cellular networks, almost
none of them uses complex schemes. At the eve of mesh and vehicular networks, it
would be interesting to reintroduce such approach. Moreover, the effect of prediction
models on the physical or the Mac layer have not been studied yet.
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B MOBILITY MODELING

Vehicular Ad-hoc Networks (VANETs) have been recently attracting an increasing at-
tention from both research and industry communities. One of the challenges posed by
the study of VANETs is the definition of a generic mobility model providing an accu-
rate, realistic vehicular mobility description at both macroscopic and microscopic lev-
els. Today, most mobility models for vehicular studies only consider a limited macro-
mobility, involving restricted vehicles movements, while little or no attention is paid to
micro-mobility and its interaction with the macro-mobility counterpart. On the other
hand, the research community cannot have access to realistic traffic generators which
have not been designed to collaborate with network simulators. In this paper, we first
introduce a classification of existing methods for the generation of vehicular mobility
models, then we describe the various approaches used by the community for realistic
VANET simulations. Finally, we provide an overview and comparison of a large range
of mobility models proposed for vehicular ad hoc networks.

B.1 A Framework for Realistic Vehicular Mobility Models
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Fig. II-13. Proposed concept map of mobility model generation for inter-vehicle com-
munications

In the literature, vehicular mobility models are usually classified as either microscopic
or macroscopic. When focusing on a macroscopic point of view, motion constraints
such as roads, streets, crossroads, and traffic lights are considered. Also, the generation
of vehicular traffic such as traffic density, traffic flows, and initial vehicle distributions
are defined. The microscopic approach, instead, focuses on the movement of each
individual vehicle and on the vehicle behavior with respect to others.

Yet, this micro-macro approach is more a way to analyze a mobility model than a for-
mal description. Another way to look at mobility models is to identify two functional
blocks: Motion Constraints and Traffic Generator. Motion Constraints describe
how each vehicle moves (its relative degree of freedom), and is usually obtained from
a topological map. Macroscopically, motion constraints are streets or buildings, but
microscopically, constraints are modeled by neighboring cars, pedestrians, or by lim-
ited roads diversities either due to the type of cars or to drivers’ habits. The Traffic
Generator, on the other hand, generates different kinds of cars, and deals with their
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interactions according to the environment under study. Macroscopically, it models
traffic densities or traffic flows, while microscopically, it deals with properties like
inter-distances between cars, acceleration or braking.

The framework states that a realistic mobility model should include:

� Accurate and Realistic topological maps: Such maps should manage different
densities of roads, contains multiple lanes, different categories of streets and
associated velocities.� Smooth deceleration and acceleration: Since vehicles do not abruptly break
and move, deceleration and acceleration models should be considered.� Obstacles: We require obstacles in the large sense of the term, including both
mobility and wireless communication obstacles.� Attraction points: As any driver knows, initial and final destination are anything
but random. And most of the time, drivers are all driving in similar final desti-
nations, which creates bottlenecks. So macroscopically speaking, drivers move
between a repulsion point towards an attraction point using a driver’s preferred
path.� Simulation time: Traffic density is not uniformly spread around the day. An
heterogeneous traffic density is always observed at some peak time of days, such
as Rush hours or Special Events.� Non-random distribution of vehicles: As it can be observed in real life, cars
initial positions cannot be uniformly distributed in a simulation area, even be-
tween attraction points. Actually, depending of the Time configuration, the den-
sity of cars at particular centers of interest, such as homes, offices, shopping
malls are preferred.� Intelligent Driving Patterns: Drivers interact with their environments, not only
with respect to static obstacles, but also to dynamic obstacles, such as neigh-
boring cars and pedestrians. Accordingly, the mobility model should control
vehicles mutual interactions such as overtaking, traffic jam, preferred paths, or
preventive action when confronted to pedestrians.

The approach can be graphically illustrated by a concept map for vehicular mobility
models, as depicted in Figure II-13.

B.2 Generating Mobility Models for Vehicular Networks

Although being a promising approach, the proposed Framework in the previous sec-
tion suffers from non negligeable drawbacks and limitations. Indeed, parameters defin-
ing the different major classes such as Topological Maps, Car Generation Engine, or
Driver Behavior Engine cannot be randomly chosen, but must reflect realistic configu-
rations. Therefore, due to the large complexity of such project, the research community
took more simplistic directions and moved step by step.
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Globally, the development of modern vehicular mobility models may be classified in
four different classes: Synthetic Models wrapping all models based on mathematical
models, Traffic Simulators-based Models, where the vehicular mobility models are ex-
tracted from a detailed traffic simulator, Survey-based Models extracting mobility pat-
terns from surveys, and finally Trace-based Models, which generate mobility patterns
from real mobility traces. A proposed classification is illustrated in Fig. II-14
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Fig. II-14. Classification of Vehicular Mobility Models

Synthetic Models

The first and most well known class includes the synthetic models. Indeed, major stud-
ies have been undertaken in order to develop mathematical models reflecting a realistic
physical effect. Fiore wrote a complete survey of models falling into this category. We
shortly summarize the basic classification he developed. For a more complete version,
we refer the reader to [56]. According to Fiore’s classification, Synthetic models may
be separated in five classes: stochastic models wrapping all models containing purely
random motions, traffic stream models looking at vehicular mobility as hydrodynamic
phenomenon, Car Following Models, where the behavior of each driver is modeled
according to vehicles ahead, Queue Models which model roads as FIFO queues and
cars as clients, and Behavioral Models where each movement is determined by a be-
havioral rule imposed by social influences for instance. Fig. II-15 illustrate Fiore’s
classification.

Synthetic Models


Stochastic

Models


Traffic Stream

Models


Car Following

Models


Queue Models
 Behavioral

Models


Fig. II-15. Classification of Synthetic Mobility Models

In order to validate a mathematical model, it should be compared to real mobility. Ac-
cordingly, one solution is to gather mobility traces by large measurement campaigns
then compare the patterns with those developed by the synthetic model. In [57], au-
thors proposed to validate some key characteristics of the RWP such as average speed
and rest times using real life data. The Weighted Waypoint Model (WWM) [58] is
a second attempt to validate a synthetic model which has been tuned by real traces.
The WWM adds the notion of preference to the random waypoint. This calibration of
this preference criterion has been performed based on mobility traces obtained inside
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the USC campus. The HWGui [59] generates realistic time dependant highway traffic
patterns that have been validated against real traffic in German Highways.

A major critique from synthetic models is the lack of realism towards human behav-
ior. Indeed, drivers are far from being machines and cannot be programmed for a
specific behavior, but respond to stimuli and local perturbations which may have a
global effect on traffic modeling. Accordingly, realistic mobility modeling must also
consider behavioral theory, social networks for instance, which makes models far from
being random. Musolesi and Mascolo illustrated this approach in [60] by developing a
synthetic mobility model based on social network theory, then validating it using real
traces. They showed that the model was a good approximation of human movement
patterns.

Survey-based Models

Although the behavioral theory is able to generate macro-motion models or deviation
from micro-motion models, another solution is a calibration by means of comparison
with realistic social behavior. The major large scale available surveys come from the
US department of Labor, which established surveys and gathered extensive statistics of
US workers’ behaviors, going from the commuting time, lunch time, traveling distance,
preferred lunch politics and so forth. By including such kind of statistics into a mobility
model, one is able to develop a generic mobility model able to reproduce the non
random behavior observed in real daily life urban traffic.

The UDel Mobility Model [61] falls into this category. Indeed, the mobility simulator
is based on surveys from a number of research areas including time-use studies per-
formed by the US Department of Labor and Statistics, time-use studies by the business
research community, pedestrians and vehicle mobility studies by the urban planning
and traffic engineering communities. Based on these works, the mobility simulator
simulates arrival times at work, lunch times, breaks/errands, pedestrian and vehicular
dynamics (e.g., realistic speed-distance relationship and passing dynamics), and work-
day time-use such as meeting size, frequency, and duration. Vehicle traffic is derived
from vehicle traffic data collected by state and local governments and models vehicle
dynamics and diurnal street usage. We can also cite the Agenda-based [62] mobility
model, which combines both the social activities and the geographic movements. The
movement of each node is based on individual agenda, which includes all kind of activ-
ities on a specific day. Data from the US National Household Travel Survey has been
used to obtain activity distribution, occupation distribution and dwell time distribution.

Trace-based Models

Another major drawback of synthetic models is that only some very complex mod-
els are able to come close to a realistic modeling of vehicular motion patterns. A
different approach has therefore been undertaken. Indeed, instead of developing com-
plex models, and then validating them using mobility traces or surveys, a crucial time
could be saved by directly extracting generic mobility patterns from movement traces.
Such approach recently became increasingly popular as mobility traces started being
gathered through various measurement campaigns launched by projects such as Craw-
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DaD [63], ETH MMTS [64], UMASSDieselNet [65], MIT Reality Mining [66], or
USC MobiLib [67]. The most difficult part in this approach is to extrapolate patterns
not observed directly by traces. By using complex mathematical models, it is possible
to predict mobility patterns not reported in the traces to some extends. Yet, the limita-
tion is often linked to the class of the measurement campaign. For instance, if motion
traces have been gathered for bus systems, an extrapolated model cannot be applied to
traffic of private vehicles.

Another limitation from the creation of trace-based mobility models is the few freely
available vehicular traces. Several research groups are currently implementing testbeds,
but the outcome might only be available in few months or years if they are even made
available to the public. To corner this issue, some teams (ETH [64]), or the Los Alamos
Research Labdeveloped very complex simulators, which are able to generate very re-
alistic vehicular traces. However, due to the complexity of the simulator, the trace
generation time has an order of magnitude of couples of hours or days. Then, this
mobility data are usually considered as real traces for the generation or calibration of
mobility models.

Tuduce and Gross in [68] present a mobility model based on real data from the cam-
pus wireless LAN at ETH in Zurich. They used a simulation area divided into squares
and derive the probability of transitions between adjacent squares from the data of the
access points. In [69], authors combine coarse-grained wireless traces, i.e., association
data between WiFi users and access points, with an actual map of the space over which
the traces were collected in order to generates a probabilistic mobility model repre-
sentative of real movements. They derived a discrete time Markov Chain which not
only considers the current location, but also the previous location and the origin and
the destination of the path. However, this study does not consider correlation between
nodes.

Kotz et al. [70] describe a measurement technique for extracting user mobility charac-
teristics also from coarse-grained wireless traces. They derived the location of users
over time and also emphasize popular regions. They major findings was unlike stan-
dard synthetic mobility models, the speed and the pause times follow a log-normal
distribution. They also confirmed that the direction of movement closely reflects the
direction of roads and walkways, and thus cannot be modeled by a uniform distribution.
Similarly to [68], they ignore correlation between adjacent nodes.

In [71], user mobility is modeled by a semi-Markov process with a Markov Renewal
Process associated with access point connection time instants. Unlike previous studies,
this work is able to model how user mobility is correlated in time at different time
scales. The authors also performed a transient analysis of the semi-markov process and
extracted a timed location prediction algorithm which is able to accurately predict users
future locations. This work is moreover the first attempt to characterize the correlation
between movements of individual users.

Chaintreau et al. [72] studied the inter-contact time between wireless devices carried
by humans using coarse-grained wireless traces but also experimental testbeds using
iMotes. Their major breakthrough was that unlike the widely accepted assumption
that inter-contact time follows an exponential distribution, a more realistic assumption
should be that the distribution exhibit a heavy tail similar to a power law distribution.
Another study ([73]) analyzed the student contact patterns in an university campus us-
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ing class time-tables and student class attendance data. A major restricted assumption
has been taken, which forces students to either be in classrooms or in some randomly
chosen communication hubs. They showed that in this configuration, most students ex-
perienced inter-contact time of the order of magnitude of few hours. However, unlike
other studies (such as [72]), the inter-contact time does not follow a power law distribu-
tion. This is where the limitation from trace-base mobility modeling appears. Indeed,
this study is specific to class attendance, and results obtained remain also specific to
the environment where the study has been made.

By using traces, various research teams have therefore been able to extract mobility
models that would reflect more realistically to motion we experience in real life. More-
over, a major result from trace-based mobility modeling, which is at odd with hypoth-
esis used by synthetic models, is that the speed and pause time distributions followed
a log-normal distribution, and that the inter-contact time may be modeled by a power
law distribution,

Traffic Simulator-based Models

By refining the synthetic models and going through an intense validation process using
real traces or behavior surveys, some companies or research teams gave birth to realistic
traffic simulators. Developed for urban traffic engineering, fine grained simulators
such as PARAMICS [74], CORSIM [75], VISSIM [76] or TRANSIMS [77], are able
to model urban microscopic traffic, energy consumption or even pollution or noise
level monitoring. However, those simulators cannot be used straightaway for network
simulators, as no interface have been developed and traces are mutually incompatible.
This, added to the commercial nature of those traffic simulators, became the "raison
d’être" for the development of the novel off-the-shelf vehicular mobility models that
we are going to describe in this Chapter.

By developing parser between traffic simulator traces and network simulator input files,
the end-user gains access to validated traffic patterns and is able to obtain a level of
detail never reached by any actual vehicular mobility model. The major drawback of
this approach is the configuration complexity of those traffic simulators. Indeed, the
calibration usually includes tweaking a large set of parameters. Moreover, the level
of detail required for vehicular network simulator may not be as demanding as that
for traffic analysis, as global vehicular mobility patterns and not the exact vehicular
behavior are, by far, sufficient in most cases. We also want to emphasize that those
commercial models require the purchase of a license that may exceed thousands of
dollars, which is a major limitation for the VANET research community.

B.3 Mobility Models and Network Simulators: The Mute talking to
the Deaf

In the previous section, we described various approaches that have been undertaken
by the research community in order to develop realistic mobility models adapted to
vehicular traffic. Yet, in order to be used by the networking community, those mod-
els need to be made available to network simulators. And this is precisely where we
fall into a "kafkaien" situation. The worlds of Mobility Models and Network Simula-
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tors may be compared to a mute talking to a deaf. They have never been created to
communicate, and even worse, they have been designed to be controlled separately,
with no interaction whatsoever. When imagining the promising applications that could
be obtained from vehicular networks, where networks could alter mobility, and where
mobility would improve network capacity, this situation cannot be tolerated anymore
if the vehicular networks community has the means of its ambitions.

Initially, mobility was seen by network simulators as random perturbations from op-
timum static configurations. Then, in order to give some control to the user on the
mobility patterns, network simulators became able to load mobility scenarios. There
is virtually no limitation to the complexity of the models handled by those simulators,
loading scenarios extracted from traffic simulators, or complex synthetic models for in-
stance. However, as illustrated in Fig. II-16, the models must be generated prior to the
simulation and must be parsed by the simulator according to a predefined trace format.
Then, no modification of the mobility scenario is allowed.

Vehicular

Generation
Trace 

Generator
Traffic

Communication
Generation

Simulator
Network

Fig. II-16. Interaction between Network and Traffic Simulators: The Isolated Case

For example, VanetMobiSim [78] is able to generate realistic vehicular mobility traces
in urban area as well as highway scenarios. It models car-to-car interactions and car-
to-infrastructure interactions, which allows it to integrate stop signs, traffic lights, safe
inter-distance management and behavior based macro-mobility. It is also able to gen-
erate mobility incidents such as accidents. Moreover, it is freely available and has been
validated against realistic traces obtained from CORSIM, a validated traffic generator.

Beside the general waste of computational resources, no interaction is therefore pos-
sible between those two worlds. Unfortunately, all historical models and most of the
recent realistic mobility models available to the research community fall into this cate-
gory (see Section B.4).

The research community then took a radically different step. If network simulators
are unable to interact with mobility simulators, they should be replaced by simplistic
off-the-shelf discrete even simulators which could do this task. Accordingly, new sim-
plistic network simulators were created, where the lack of elaborated protocol stacks
was compensated by a native collaboration between the networking and the mobility
worlds, as depicted in Fig. II-17.

MoVes [79] is an embedded system generating vehicular mobility traces and also con-
taining a basic network simulator. The major asset of this project is its ability to par-
tition the geographical area into clusters and parallelize and distribute the processing
of the tasks from them, which improves the simulation performance. Although the
mobility model reaches a sufficient level of detail, the project’s drawback is the poor
network simulation, which only includes a basic physical and MAC layer architecture
and totally lacks routing protocols. In [80], authors also proposed an integrated vehic-



B Mobility Modeling 51

Vehicular

Generation
Trace 

Generator
Traffic

Communication
Generation

Simulator
Network

Vehicular Network
and Traffic Simulator

Fig. II-17. Interaction between Network and Traffic Simulators: The Integrated Case

ular and network simulator. As all solutions proposed by this approach, the authors
developed their own traffic and network simulator. The vehicular traffic simulator is
a synthetic model integrating basic microscopic motions where drivers may be in one
of the following four modes: free driving, approaching, following, braking. A basic
macroscopic model handles multi-lane and intersection management. Although be-
ing basic, this traffic model brings a sufficient level of details. However, the network
simulator part is by far the major limitation of this project, as it is only modeled by a
simplistic discrete event simulator handling a basic radio propagation and CSMA/CA
MAC layer protocol.

As mentioned before, the major limitation of the embedded approach is actually the
poor quality of the network simulator. Indeed, this approach has been so far only used
to study basic network effects, but could not pass the test of recent mobile ad hoc
routing protocols, including realistic and standardized physical and MAC layers. And
this may also be intriguing, as the actual direction in network simulations is a specific
compliance with standard protocols and computational efficiency through parallel and
distributed computing.

Another approach recently carried on is to federate existing network simulators and
mobility models through a set of interfaces (see Fig. II-18). For instance, MOVE [81]
contains a single graphical user interface for the configuration the mobility modeling
and network simulation. However, MOVE does not itself include a network simula-
tor, but simply parses realistic mobility traces extracted from a micro-motion model
SUMO [82] into a network simulator-dependant input trace format, then generates the
appropriate scripts to be loaded by the network simulator. No interaction is therefore
possible between the network simulator and the mobility model.
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Fig. II-18. Interaction between Network and Traffic Simulators: The Federated Case

A different approach, taken by Prof. Fujimoto and his group in Georgia Tech [83] is
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to generate a simulation infrastructure composed of two independent commercial sim-
ulation packages running in a distributed fashion over multiple networked computers.
They federated a validated traffic simulator, CORSIM, with a state-of-the-art network
simulator, QualNet, using a distributed simulation software package called the Feder-
ated Simulations Development Kit (FDK) [84] that provides services to exchange data
and synchronize computations. In order to allow direct interaction between the two
simulators, a common message format has been defined between CORSIM and Qual-
Net for vehicle status and position information. During initialization, the transportation
road network topology is transmitted to QualNet. Once the distributed simulation be-
gins, vehicle position updates are sent to QualNet and are mapped to mobile nodes in
the wireless simulation. Accordingly, unlike MOVE, both simulators work in paral-
lel and thus may dynamically interact on each other by altering for example mobility
patterns based on network flows, and vice and versa. The only limitation comes from
the complex calibration of CORSIM and its large number of configuration parameters
which must be tweaked in order to fit with the modeled urban area.

A similar solution has been taken by a team from UC Davis [85]. They developed a
simulation tool federating the network simulator Swans and a synthetic traffic model.
The complex vehicular flows are based on the Nagel and Schreckenberg model, ex-
tended to include lane changing in highway scenarios. The network simulator and the
traffic simulator interact with each other by means of specific input and output mes-
sages.

Authors in [86] proposed AutoMesh, a realistic simulation framework for VANET. It is
composed of a set of modules controlling all parts of a realistic simulation. It includes
a Driving Simulator Module, a Radio Propagation Module, and a Network Simulator
Module, all interlinked with feedbacks in order that any alteration made in one module
influences the other modules. At the stage of the development of AutoMesh, the Driv-
ing Simulator Module only include random macro-movement and the IDM model for
micro-movements. It is therefore unable to reproduce the non-uniform distribution of
positions and speed usually experienced in urban area. However, the radio propagation
module is very detailed, using 3D maps and digital elevation models in order to obtain
a realistic radio propagation model in urban area.

Another promising approach is called TraNS [87] and also aims at federating a traffic
simulator SUMO and a network simulator ns2. Using an interface called Interpreter,
traces extracted from SUMO are transmitted to ns-2, and conversely, instructions from
ns-2 are sent to SUMO for traffic tuning. TraNS will be extended to handle other net-
work simulators such as Swans or Nab in the future. A similar project called MSIE [88]
has been developed but using VISSIM instead of SUMO. This project is also more
complete, as it proposes to interlink different simulators for traffic, network and appli-
cation simulations. The major actual limitation is the communication latency between
the different simulators and the expensive price of VISSIM. Besides, the interlinking
interface itself is also not freely available at this time. Authors in [89] chose to replace
VISSIM by a complete tool developed by themselves, the CARISMA traffic simulator.
Although not being as complete as VISSIM or SUMO, it allows to accurately evaluate
the effects of car-to-car messaging systems in the presence of urban impediments by
benefiting from the federated approach and a "real-time" trip (re-)configuration.

By federating independent and validated simulators, the interlinking approach is able to
benefit from the best of both worlds, as state-of-the-art mobility models may be adapted
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to work with modern network simulators. However, it is computationally demanding,
as both simulators need to be run simultaneously, and the development of the interface
may not be an easy task depending on the targeted network and traffic simulators.
Nevertheless, this is probably in this direction that most of the future pioneer work will
come in the field of vehicular mobility modeling and networking.

The networking and mobility modeling community has a mutual interest in interacting
between each others. Indeed, at the time of the promising benefits obtained from the
various cross-layer approaches in network research, the ability to proactively or reac-
tively act on mobility patterns in order to improve network efficiency or radio propa-
gation, or even more promising, the ability to alter mobility patterns based on dynami-
cally events radio transmitted will probably be a central approach in future networking
research projects.

B.4 A Taxonomy of existing Synthetic VANETs Mobility Models

In this Section, we provide a taxonomy of existing VANETs synthetic mobility mod-
els and simulators freely available to the research community. We first introduce a set
of criteria that will be able to better differentiate and classify the different synthetic
models. We then provide a short summary of each model, including its assets and
drawbacks, and provide its taxonomy in Table II-1 and Table II-2 according to the clas-
sification criteria. We purposely chose not include commercial-based traffic simulators
as they cannot be freely used by the researcher working in the VANET field. As a con-
sequence, most of the federated models described in the previous section may not be
included. Similarly, we can neither add Trace-based models not Survey-based Models
to our taxonomy as they are extrapolated from real mobility and cannot be classified
according to our criteria.

Taxonomy Criteria

Prior to providing a classification, one need to define the criteria based on which to
generate the taxonomy. The proposed criteria fall in three categories: Macro-mobility,
Micro-mobility, and Simulator Related.

Macro-mobility Criteria

When considering macro-mobility, we do not only take into account the road topology,
but also include trip and path generation, or even the effects of points of interests, which
all influence vehicles movement patterns on the road topology. We therefore define the
following criteria:� Graph – The macro-motion is restricted to movements on a graph.� Initial and Destination Position – The positions may be either random, randomly

restricted on a graph or based on a set of attraction or repulsion points.� Trip Generation – A trip may be randomly generated between the initial and
destination points, or set according to an activity sequence.



54 Chapter II. Related Work

� Path Computation – Provides the algorithms used to generate the path between
the source-destination points contained in the trip.� Velocity – The simulated velocity may be uniform, smooth or road-dependant.

Graphs

The selection of the road topology is a key factor for obtaining realistic results when
simulating vehicular movements. Indeed, the length of the streets, the frequency of
intersections, or the density of buildings can greatly affect important mobility metrics
such as the minimum, maximum and average speed of cars, or their density over the
simulated map. We categorize the graphs by the following criteria:� User-defined – The road topology is specified by listing the vertices of the graph

and their interconnecting edges.� Random – A random graph is generated, which is often Manhattan-grid, Spider,
or Voronoi graphs.� Maps – The road topology is extracted from real maps obtained from different
topological standards, such as GDF, TIGER, or Arcview.� Multi-lane – The topology includes multi-lanes, potentially allowing lane changes,
or not.

We show examples of the possible topologies in Fig. II-19.

Attraction Points

Attraction or Repulsion points are particular source or destination points that have a po-
tentially attractive or repulsive feature. For instance, for a weekly morning, residential
areas are repulsion points and office buildings are attraction points, as a large majority
of vehicles are moving from the former and to the latter. We depict the use of attrac-
tion points on a user-defined graph in Fig. II-20, where circles are entry/exit points of
high-speed roads (thick lines), and squares are entry/exit points of normal-speed roads
(thin lines).

Activity-based Trips

Activity sequences generation is a further restriction in vehicles spatial and temporal
distributions. A set of start and stop points are explicitly provided in the road topol-
ogy description, and cars are forced to move among them. In particular, multiple sets
of points of interest can be specified, along with the probability matrix of a vehicle
switching from one set to another. Fig. II-21 illustrates an activity sequence generated
from a first order Markov chain between two categories of attractions points.

Micro-mobility Criteria In the proposed taxonomy, the micro-mobility aspect uses
the following criteria:
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(a) User-defined topology
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56 Chapter II. Related Work

� Human Mobility Patterns – The car’s internal motion and its interactions with
other cars may be inspired from human motions described by mathematical mod-
els such as Car Following, or not.� Lane Changing – Describes the kind of overtaking model implemented by the
model, if any.� Intersections – Describes the kind of intersection management implemented by
the model, if any.

In this section, we shortly describe the most widely used vehicular specific micro-
mobility models. We refer to [56] for a larger coverage of the different microscopic
mobility models.

Car Following Models

The car following models are a class of microscopic models that adapts a following
car’s mobility according to a set of rules in order to avoid contact with the lead ve-
hicle. A general schema is illustrated in Fig. II-22. Brackstone in [90] classified Car

Perception Decision Making+ Vehicle Dynamics
Lead
Vehicle
State

Following
Vehicle
State

Errors Action

Driver

Fig. II-22. General Schema for Car Following Models

Following Models in five classes: GHR Models, Psycho-Physical Models, Linear Mod-
els, Cellular Automata, Fuzzy Logic Models. A description of the differences between
those models is out of scope of this paper. We refer the interested reader to [91]. We
only list here the widely used models in traffic simulations.� Krauss Model (KM) [92]� Nagel and Schreckenberg Model (N-SHR) [93]� Wiedeman Psycho-Physical Model (Psycho) [94]� General Motors Model (GM) [95]� Gipps Model (GP) [96]� Intelligent Driver Model (IDM) [97]

Lane Changing Models

Despite the large attention given to the driving tasks in general (such as Car Following
Models), much less attention has been directed to lane changing. Modeling lane chang-
ing behaviors is a more complex task. Indeed, it actually includes three parts: the need
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of lane changing, the possibility of lane changing, and the trajectory for lane chang-
ing. Each part is important to generate realistic lane changing models. And unlike car
following models, it also needs to consider nearby cars and traffic flow information.
Most of the models are based on a Gap Acceptance threshold [98] or a set of rules [99].
But recent approaches ([100, 101]) also considered forced merging, behavior aspects
or game theory. Lane changing is not widely considered in open vehicular mobility
models. In this survey, we mostly find� Gibbs Model for Lane Changing (GP-LC) [98] and its variations� Wiedeman Psycho-Physical Model for Lange Changing (Psycho-LC) [102]� MOBIL [101]

Intersection Management

Intersection management adds handling capabilities to the behavior of vehicles ap-
proaching a crossing. In most cases, two different intersection scenarios are consid-
ered: a crossroad regulated by stop signs, or a road junction ruled by traffic lights.
Nevertheless, all intersection management technics only act on the first vehicle on each
road, as the car following model automatically adapts the behavior of cars following
the leading one. The most basic ones consider intersections as obstacles and abruptly
stop, yet more complex ones, such as the IDM_IM and IDM_LC [103], smoothly stop
cars at stop-based crossing, or acquire the state of the semaphore in a traffic light con-
trolled intersection. If the color is green, passage is granted and the car maintains its
current speed through the intersection. If the color is red, crossing is denied and the car
is forced to decelerate and stop at the road junction. Fig. II-23 illustrates the IDM_IM
behavior when approaching an intersection with respect to the deceleration and the
multi-lane management.

(a) Acceleration
management

(b) Multi-lane man-
agement

Fig. II-23. Intersection management in IDM_IM and IDM_LC

Simulator Related Criteria Finally, we provide these additional criteria, which are
more specific to the mobility simulator or to the interaction with a network simulator:� Obstacles – The model considers radio obstacles, either in the form of an obsta-

cle topology for network simulators and a propagation computation interface for
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network simulators, or directly a radio propagation trace file.� Visualization – The model includes a visualization tool.� Output – Describes the kind of output generated by the mobility model, such as
NS-2 or QualNet compliant traces.� Language – Provides the programming language on which the simulator has
been developed.

Taxonomy of Synthetic Vehicular Models

In this section, we simultaneously provide a brief description of the major synthetic
mobility models available to the vehicular networking community, and classify them
in Table II-1 and Table II-2 according to the previously defined criteria. As previously
mentioned, we cannot include the Trace-based nor the Survey-based models as they
have been obtained from real mobility and do not fall in the taxonomy. We include
some Traffic Simulator-based models if they are based on freely available traffic simu-
lators.

First, we point out that many realistic traffic simulation tools, such as PARAMICS [74],
CORSIM [75], VISSIM [76] or TRANSIMS [77] have been developed to analyze ve-
hicular mobility at both microscopic and macroscopic level with a very high degree
of details. However, all the aforementioned softwares are distributed under commer-
cial licenses, a major impediment to adoption by the academic research community.
With the exception of few teams that developed parsers (e.g. [122, 123]), or federated
a realistic traffic simulation tool with a network simulator (such as FDK [84]), these
tools have been originally designed for traffic analysis and not for generation of move-
ment traces usable by networking simulators. Furthermore, the presence of copyrights
impedes the modification/extension of the source code when particular conditions, not
planned by the original software, have to be simulated. For such reasons, we will not
consider these tools in the following, their scope being very different from VANET
mobility simulators are intended for. For a complete review and comparison of such
traffic simulation tools, the interested reader can refer to [124].

When mobility was first taken into account in simulation of wireless networks, several
models to generate nodes mobility patterns were proposed. The Random Waypoint
model, the Random Walk model, the Reference Point Group (or Platoon) model, the
Node Following model, the Gauss-Markov model, just to cite the most known ones, all
involved generation of random linear speed-constant movements within the topology
boundaries. Further works added pause times, reflection on boundaries, acceleration
and deceleration of nodes. Simplicity of use conferred success to the Random Way-
point model in particular, however, the intrinsic nature of such mobility models may
produce unrealistic movement patterns when compared to some real world behaviors.
Despites, random models are still widely used in the study of Mobile Ad-hoc Networks
(MANETs).

As far as Vehicular Ad-hoc Networks (VANETs) are concerned, it soon became clear
that using any of the aforementioned models would produce completely useless results.
Consequently, the research community started seeking more realistic models. The sim-
ple Freeway model and Manhattan (or Grid) model were the initial steps, then more
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Macro-Mobility
Graph Init/Dest

Position
Trip Path Velocity

User De-
fined

Random Map Multi-
lane

Virtual
Track
[104]

yes TIGER
[105]

no random random
S-D

RWP uniform

IMPOR-
TANT
[106]

Grid no random random
S-D

RWM,
RWalk

smooth

Bonn-
Motion
[107]

Grid no random random
S-D

RWM uniform

RiceM
[108]

TIGER no random random
S-D

Dijkstra uniform

SUMO
[82]
MOVE
[81]
TraNS
[87]

yes grid, spi-
der

TIGER yes random,
AP

random
S-D
activity

RWalk,
Dijkstra

smooth,
road-dep

CARISMA
[89]

ESRI
[109]

yes random random
S-D

Dijkstra,
Speed,
Density

smooth,
road-dep

SHIFT
[110]

yes yes AP activity smooth,
road-dep

STRAW
[111]

TIGER no random random
S-D

RWalk,
Dijkstra

smooth

GrooveSim
[112]

TIGER no random random
S-D

RWalk,
Dijkstra

uniform,
road-dep

Obstacle
[113]

Voronoi no random random
S-D

Dijkstra uniform

Voronoi
[114]

Voronoi no random random
S-D

RWalk uniform

GEMM
[115]

Grid no AP random
S-D

RWP uniform

Canu-
MobiSim
[116]

yes GDF
[117]

no random,
AP

random
S-D
activity

RWP,
Density,
Dijkstra

uniform

City
[118]

Grid no random random
S-D

RWM smooth

Mobi-
REAL
[119]

yes no random random
S-D

RWalk uniform

SSM/
TSM
[120]

Grid TIGER no random random
S-D

Dijkstra uniform,
road-dep

MoVES
[79]

GPSTrack
[121]

no random RWalk uniform,
road-dep

Gorgorin
[80]

TIGER yes random RWalk smooth

AutoMesh
[85]

TIGER yes random random
S-D

Dijkstra,
Density,
Speed

uniform,
road-dep

VanetMobi-
Sim [78]

yes Voronoi TIGER,
GDF

yes random,
AP

random
S-D
activity

RWP,
Density,
Dijkstra,
Speed

smooth,
road-dep

S-D: Source-Destination; AP: Attraction Point; road-dep: Road dependent;

TABLE II-1. MACRO-MOBILITY FEATURES OF THE MAJOR VEHICULAR MOBIL-
ITY MODELS
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Micro-Mobility Simulator Related
Human
Patterns

Intersection Lane
Chang-
ing

Radio
Obsta-
cles

Visualization
Tool

Output Platform Remarques

Virtual
Track
[104]

no no no no no ns-2,
glo-
moSim,
QualNet

C++

IMPOR-
TANT[106]

CFM no no no no ns-2 C++ unrealistic
CFM

Bonn-
Motion
[107]

no no no no yes ns-2,
glo-
moSim,
QualNet

Java

RiceM
[108]

no no no no no ns-2,
glo-
moSim,
QualNet

C++

SUMO
[82]
MOVE
[81]
TraNS
[87]

CFM
(Krauss)

stoch
turns

no no yes ns-2,
glo-
moSim,
QualNet

C++ federated
traf/net
simu-
lator,
vali-
dated
micro-
model

CARISMA
[89]

CFM
(Krauss)

stop
signs

no yes yes ns-2,
glo-
moSim,
QualNet

C++ federated
traf/net
simula-
tor

SHIFT
[110]

CFM no LC no yes none C++/
SHIFT

config.
CFM/LC

STRAW
[111]

CFM
(Nagel
Schreck)

traffic
lights,
signs

no no no Swans JiST-
Swans

GrooveSim
[112]

no no no yes none C++

Obstacle
[113]

no no no yes yes ns-2,
glo-
moSim,
QualNet

C++

VoronoiM
[114]

no no no no no ns-2 C++

GEMM
[115]

no no no no no ns-2 Java

Canu-
MobiSim
[116]

IDM no no yes yes ns-2,
glo-
moSim,
QualNet,

Java

City
[118]

IDM stoch
turns

no no yes ns-2 C++

MobiREAL
[119]

CPE no no yes yes GTNetS C++ pedestrian
mobility

SSM/TSM
[120]

no traffic
lights,
traffic
signs

no no no ns-2 C++

MoVES
[79]

CFM
(Psycho)

random
traffic
lights,
traffic
signs

no no yes none C++ integrated
traf/net
simula-
tor

Gorgorin
[80]

CFM
(Psycho)

traffic
lights,
traffic
signs

CFM
(Psycho-
LC)

no yes none C++ integrated
traf/net
simu-
lator,
vali-
dated
micro-
model

AutoMesh
[85]

IDM stop
signs

no yes yes ns-2,
glo-
moSim,
QualNet

C++ federated
traf/net
simula-
tor

VanetMobi-
Sim
[78]

IDM,
IDM_IM,
IDM_LC

traffic
signs,
traffic
lights

MOBIL yes yes ns-2,
qualNet,
glo-
moSim

Java validated
macro/
micro
model

CFM: Car Following Model; IDM: Intelligent Driver Model CPE: Condition-Probability-Event;

IDM_IM: IDM with Intersection Management; IDM_LC: IDM with Lange Changes;

TABLE II-2. MICRO-MOBILITY FEATURES OF THE MAJOR VEHICULAR MOBIL-
ITY MODELS
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complex projects were started involving the generation of mobility patterns based on
real road maps or monitoring of real vehicular movements in cities. However, in most
of these models, only the macro-mobility of nodes was considered. Although car-to-car
interactions are a fundamental factor to take into account when dealing with vehicular
mobility [125], little or no attention was paid to micro-mobility. More complete and
detailed surveys of mobility models can be found in literature [126, 127, 128, 129].

Recently, new open-source tools became available for the generation of vehicular mo-
bility patterns. Most of them are capable of producing traces for network simulators
such as ns-2 [130], GloMoSim [131], QualNet [132], or OpNet [133]. In the rest of
this section, we review some of these tools, in order to understand their strengths and
weaknesses.

The IMPORTANT tool [106], and the BonnMotion tool [107] implement most of the
random mobility models presented in [126], including the Manhattan model. This
model restricts nodes macro-mobility on a grid, while the micro-mobility contains a
Car Following Model. The BonnMotion does not consider any micro-mobility. When
related to our proposed framework, we can easily see that the structure of both tools
is definitely too simple to represent realistic motions, as they only model basic motion
constraints and hardly no micro-mobility.

The GEMM tool [115] is an extension to BonnMotion’s and improves its traffic gen-
erator by introducing the concepts of human mobility dynamics, such as Attraction
Points (AP), Activity, or Roles. Attraction points reflect a destination interest to multi-
ple people, such as grocery stores or restaurants. Activities are the process of moving
to an attraction point and staying there, while roles characterize the mobility tendencies
intrinsic to different classes of people. While the basic concept is interesting, its imple-
mentation in the tool is limited to a simple enhanced RWM between APs. It however
represents an initial attempt to improve the realism of mobility models by considering
human mobility dynamics.

The MONARCH project [108] proposed a tool to extract road topologies from real
road maps obtained from the TIGER [105] database. The possibility of generating
topologies from real maps is considered in the framework, however the complete lack
of micro-mobility support makes it difficult to represent a complete mobility generator.
Indeed, this mobility model is simply a Random Waypoint Model restricted on a graph
extracted from real topological cities. Although it brings some spatial correlations, it
absolutely lacks time, car-to-car, and car-to-infrastructures correlations. Besides, the
authors showed that their model was having similar patterns than the RWM, a proof of
the lack of realism.

The Obstacle Mobility Model [113] takes a different approach in the objective of ob-
taining a realistic urban network in presence of building constellations. Instead of ex-
tracting data from TIGER files, the simulator uses random building corners and Voronoi
tessellations in order to define movement paths between buildings. It also includes a
radio propagation model based on the constellation of obstacles. According to this
model, movements are restricted to paths defined by the Voronoi graph.

The Simulation of Urban MObility (SUMO) [82] is an open source, highly portable,
microscopic road traffic simulation package designed to handle large road networks.
The car microscopic movement model in SUMO is a car following model and includes
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a stochastic traffic assignment modeled by a probabilistic route choice according to
driver models. SUMO contains parsers for various topologies, ranging from TIGER,
Arcview, or even VISSIM. Routes assignments may also be imported from various
sources. However, at that time, SUMO is not able to output traces straightforwardly
usable by network simulators.

The Mobility Model Generator for Vehicular Networks (MOVE) was recently pre-
sented [81]. It is a simple parser for SUMO and enhances its complex configuration
with a nice and efficient GUI. MOVE also contains a parser to generate traces usable
by network simulators such as ns-2 or QualNet.

SUMO is also the root functionality of TraNS [87], a federated model including ns2.
Using an interface called Interpreter, traces extracted from SUMO are transmitted to
ns-2, and conversely, instructions from ns-2 are sent to SUMO for traffic tunning. Ac-
cordingly, interactions between the vehicular traffic and network may be implemented.

Another important microscopic mobility simulator is the SHIFT Traffic Simulator [110].
It has been developed by the PATH Project at the UC Berkley, and is now a well es-
tablished micro-mobility simulator that generates the trajectories of vehicles driving
according to validated models on realistic road networks. More specifically, SHIFT is
a new programming language with simulation semantics and was used in SmartAHS as
means of specification, simulation and evaluation framework for modeling, control and
evaluation of Automated Highway Systems (AHS). The major limitation of this simu-
lator is its limitation to the modeling of segments of highways and its lack of complete
topology modeling.

The CARISMA traffic simulator [89] is a realistic simulator containing microscopic
and macroscopic features. It implements the Krauss’s car following model, adds a stop
sign intersection management, imports real topological maps in ESRI standard [109].
It furthermore provides a real-time trip management, which is a very interesting fea-
ture for the evaluation of car-to-car messaging. This model has also been interlinked
with ns-2 for realistic evaluations of vehicle-to-vehicle messaging systems. One major
limitation comes from the ESRI shape files, which are not publicly available unless one
buy some ESRI products. Moreover, lane changing models and complex intersection
managements are not considered at that time.

The Street Random Waypoint (STRAW) tool [111] is a mobility simulator based on
the freely available Scalable Wireless Ad Hoc Network Simulator (SWANS). Under
the point of view of vehicular mobility, it provides urban topologies extractions from
the TIGER database, as well as micro-mobility support. STRAW is also one of the few
mobility tools to implement a complex intersection management using traffic lights
and traffic signs. Thanks to this, vehicles are showing a more realistic behavior when
reaching intersection. The concept behind STRAW is very similar to the framework de-
scribed in section B.1, as it contains accurate mobility constraints as well as a realistic
traffic generator engine. STRAW also includes several implementations of transport,
routing and media access protocols, since they are not present in the original SWANS
software. The main drawback of the tool is the very limited diffusion of the SWANS
platform.

The GrooveSim tool [112] is a mobility and communication simulator, which again
uses files from the TIGER database to generate realistic topologies. Being a self-
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contained software, GrooveSim neither models vehicles micro-mobility, nor produces
traces usable by network simulators. The interesting feature of this model is the non
uniform distribution of vehicles speeds. Indeed, motion constraints such as speed lim-
itations, often force vehicles to give up in their effort to reach the velocity initially
set by the model. Although that is might look as a straightforward pattern, this type
of motion constraints is, at this time, considered only by few simulators. GrooveSim
includes four types of velocity models, where the most interesting is the road-based
velocity when used in conjunction with a shortest trip path generation. The authors
illustrated how vehicles were naturally choosing the roads with the highest speed limi-
tations while on their journey. The main drawback of this tool is however its lack of a
micro-mobility model as well as the lack of mobility traces for network simulators.

The CanuMobiSim tool [116] is a tool for the generation of movement traces in a va-
riety of conditions. Extrapolation of real topologies from detailed Geographical Data
Files (GDF) are possible, many different mobility models are implemented, a GUI
is provided, and the tool can generate mobility traces for ns-2 and GloMoSim. Un-
like many other tools, the CanuMobiSim tool keeps micro-mobility in consideration,
implementing several car-to-car interaction models such as the Fluid Traffic Model,
which adjusts the speed given vehicles local density, or the Intelligent Driver Model
(IDM), which adapts the velocity depending on movements between neighboring vehi-
cles. Also unlike other tools, CanuMobiSim includes a complex traffic generator that
can either implements basic source-destination paths using Dijkstra-like shortest path
algorithms, or similarly to the GEMM, it can model trips between Attraction Points
depending on the class of users’ specific motion patterns. This solution is actually the
only fully implemented and available solution considering heterogeneous classes of
user and destinations. In order to improve its modeling capability, CanuMobiSim has
even been recently extended (see [134]) by the same authors and now includes radio
propagation information for ns-2 and GloMoSim/QualNet.

In recent months, a couple of research teams proposed a new set of simulators that
comes closer to the objective to accurately model vehicles’ specific motions. The
first one is the City Model [118]. It has been basically designed for routing proto-
cols testing and no network simulator traces are provided. This model includes a basic
micro-mobility model composed of the IDM and a simplistic crossing management.
Crossings are modeled like obstacles, where a car needs to reduce its speed and stop
before the crossing. Then, the vehicle changes its direction according to a particular
probability. This simulator mostly lacks modularity mostly due to its unique grid-based
macro-mobility constraints, to the restriction to stochastic turns, and to the lack macro-
mobility patterns based on human mobility dynamics.

The second is the SSM/TSM model [120]. It represents actually two different mobil-
ity models, a Stop Sign Model and a Traffic Sign Model. The motion constraints part
is dealt using a TIGER parser, while the traffic generator includes the Car Following
Model. As GrooveSim, both SSM and TSM include a road-dependent velocity distri-
bution. However, this model goes farer than GrooveSim, since it contains a basic traffic
generator which makes its mobility traces more realistic than GrooveSim’s. And simi-
larly to STRAW, SSM/TSM has been specifically designed to model vehicles’ motions
at intersections. The authors managed to show how a basic intersection management
such as a simple stop sign was able to produce a clustering effect at those intersection.
In urban environment, this effect is better known under the name Traffic Jam, and is
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hardly represented in most of the actual simulators. But similarly to the City Model,
the SSM/TSM also lacks macro-mobility patterns based on human mobility dynamics.

The Voronoi Model [114] is an illustration of how Voronoi graphs proposed by some
simulators could be refined and improved to generate smoother roads. Unlike other mo-
bility models including Voronoi tessellations, this Voronoi Model does not model roads
as graph edges, but as Voronoi channels. A Voronoi channel is a spatial area obtained
after multiple application of a Voronoi Tessellation algorithm. It provides a global mov-
ing direction, while keeping some degree of liberty in the local direction patterns. Most
of this model contributions are on the improvement of the motion constraints compo-
nent as a promising random topology generator, while the traffic generator engine is
a simple implementation of a Random Walk within each Voronoi channel. However,
this model’s absolute lack of micro-mobility considerations and macro-mobility pat-
terns based on human mobility dynamics, makes it unrealistic for vehicular mobility
modeling.

All models presented in this section so far claims to be able to model realistic vehicular
motion patterns. However, with the exception of SHIFT, none of them formally vali-
dated their patterns agaist real vehicular traces, or validated traffic simulators. Vanet-
MobiSim [78], on the other hand, is the only synthetic model so far, which motion pat-
terns for urban and highways environments have been validated. Indeed, the authors
compared the traces obtained from VanetMobiSim and from CORSIM on similar urban
configurations. They managed to show that the spatial distributions, the speed distribu-
tions, and the traffic shock waves generated by both models were similar. As CORSIM
has been formally validated against real urban traces, so are VanetMobiSim’s.

VanetMobiSim models car-to-car and car-to-infrastructure interactions, allowing it to
integrate stop signs, traffic lights, safe inter-distance management and behavior based
macro-mobility including human mobility dynamics. It also includes various road
topology definitions, ranging from realistic GDF [117] or TIGER [105], to user-defined
or random topologies. It lets the user define the trip generation between random source-
destination, to activity-based trips. Moreover, the path used on the defined trip is also
configurable between a Dijkstra shortest-path, a road-speed shortest path and a density-
based shortest path. It finally generates traces for various network simulators. Vanet-
MobiSim is at that time one of the most realistic and configurable synthetic model for
the generation of vehicular motion patterns.

A special attention should also be brough to a novel solution named MobiREAL [119].
Although it focuses on the modeling of pedestrian mobility, its strict compliance with
the proposed framework and its novel approach of cognitive modeling makes it very
promising for a future extension to vehicular mobility. The most interesting features
is that MobiREAL enables to change a node or a class of nodes’ mobility behavior
depending on a given application context. At this time, only CanuMobiSim, Vanet-
Mobisim and MobiREAL are able to include this feature. This particular application
context is modeled by a Condition Probability Event (CPE), a probabilistic rule-based
mobility model describing the behavior of mobile nodes, which is often used in cogni-
tive modeling of human behavior. As most of recent mobility models, MobiREAL is
able to include geographical informations. Moreover, it is also able to use this informa-
tion to generate obstacles and more specifically it is able to model radio’s interference
and attenuations on the simulation field. With CanuMobiSim’s extension and the Ob-
stacle model, they are the only models that are able to both generate motion traces and



C Discussion 65

signal attenuation information. MobiREAL’s major drawback at this time is the limited
diffusion of Georgia Tech Network Simulator (GTNets) and the manual configuration
of all necessary parameters, which requires a full recompilation of the simulator at each
reconfiguration.

Recently, new approaches appeared in realistic scalable simulations of vehicular mo-
bility. In [79], the authors created MoVes, a complex mobility generator on top of
Artis [135], a scalable distributed simulation middleware. MoVes features cars follow-
ing models, drivers’ characterizations, intersection management and includes a parser
module to include GPS maps using the GPS TrackMaker program [121]. However,
MoVes does not include any lane changing model, and no realistic path generation is
supported.

Gorgorin [80] also integrated a network and a mobility simulator. Although the idea
looks promising, the major flow at this time is the relative simplicity of both simulators.
Indeed, although the mobility model is able to import TIGER maps and includes a
similar micro mobility model to VISSIM, it does not consider any macro-mobility
aspect. Moreover, similarly to MoVes, the network simulator also suffers from its
simplistic architecture and from its poor diffusion compared to QualNet, OpNet or
Ns-2.

The UDel Models [61] are a set of mobility and radio propagation models generated
for detailed large-scale urban mesh networks. The urban mobility part is significantly
different from all the previous approaches, as detailed urban vehicular and pedestrian
mobility is based on surveys. Indeed, urban planning and the US Department of Labor
generated a large database of statistics on time use or human mobility preferences. The
generated simulator also considers a detailed urban propagation model and includes an
accurate map builder capable of parsing GIS dataset and adding realistic radio obsta-
cles.

C DISCUSSION

Although the benefits from using Mobility Reactive approach are obvious, they mostly
depends on a protocol’s ability to predict the local topology. We described in Section A
the different approaches to generate predictions in order to improve adequacy. How-
ever, realism is also important as the performance of any prediction technique is closely
related to its ability to follow nodes’ mobility patterns. The performance is therefore
related to the mobility model used during the simulation.

For example, it is quite easy to predict the Random Waypoint Model, as a node samples
its origin, destination and velocity and then move following a straight line toward the
destination point at a fixed velocity. Accordingly, if the node transmits those informa-
tion, any neighboring node will be able to build a first order kinetic model based on the
fixed velocity and straight trajectory. The mobility model and the prediction model are
therefore adequate and the prediction efficiency maximized.

However, in the more realistic mobility models we described in Section B, a perfect
match between the mobility patterns and the prediction model is mostly impossible.
The larger is the divergence, the lower will be the prediction efficiency. So, iterative
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prediction models are developed in order to reduce the gap between the prediction
model and the mobility patterns though learning processes.

Accordingly, results obtained from prediction-based algorithms should be put in per-
spective to the mobility models used. An algorithm might be very efficient with the
Random Waypoint model, but loose most of its assets when tested against a realistic
vehicular mobility model such as VanetMobiSim. The mobility prediction and model-
ing worlds are therefore closely interlinked and should be jointly studied.
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Abstract—The concept of Kinetic Graphs is an interesting example of the application of mobility
predictions to graph theory. Unlike the static counterpart, graphs are assumed to be continu-
ously changing and edges are represented by time-varying weights. Each node follows a posted
trajectory, which may change at any moment through a trajectory update. Kinetic graphs are
a natural extension of classical ones and provide solutions to similar problems, such as convex
hulls, spanning trees or connected dominating sets. In this chapter, we propose a natural rep-
resentation of the trajectories, then describe the protocol, the data structure and the overhead
involved by the posting of the trajectories. We also propose two time-varying weights which
could be used to adapt graph theory algorithms to the kinetic aspect. Finally, we define methods
to keep track of changes in the topology without requiring to periodic beaconing.

Keywords—Kinetic graph, kinetic data structure, trajectory, time varying weight, MANET

K INETIC Graphs is particular class of graphs aimed at maintaining the attributes
of interests, such as spanner, Voronoi tesselation, or convex hull, in graphs with

moving vertices. In regular graphs subject to mobility, the position of the vertices are
updated and then the attribute of interest is recomputed. Since the attributes do not
changes homogeneously in the whole graph, it is hard to find a refreshing rate which
optimizes the computing cost of the reconfiguration. Unlike this fixed step approach,
kinetic graphs perform an event-driven simulation where only events relevant to the
vertex and the attributes are generated and processed. Kinetic graphs are therefore
mobility proactive, as the structure is updated only when an attribute that effectively
alters the graph is changed.

Kinetic graphs are also a special application to a more generic approach called the
Kinetic Data Structures (KST) introduced by Bash et al. [136]. In the KDS framework,
it is assumed that trajectories of objects are known, but the algorithm does not know
when trajectories will change. This is a direct use of mobility predictions applied
to data structures, where two goals are targeted: the optimality with respect to the
attribute, and the maintenance efficiency. This topic has been widely studied in various
area such as mobile facility locations [137], clustering and routing [138] or shortest
path [1]. A survey on KDS can be found in [139].

Mobile Ad Hoc Networks (MANETs) are an emergent concept in view of infrastructure-
less communication. It appeared clear to the community that graph theory heuristics
such as Connected Dominating Sets (CDS), Convex Hulls, or Minimum Spanning
Trees (MST), could be applied to various objectives such as Broadcasting, Routing,
or Topology Control. Moreover, any algorithm should be distributed as no central om-
niscient entity exists in MANETs. However, due to the limited capability of processing
power, storage and energy supply, many conventional algorithms are too complicated
to be implemented in wireless ad hoc networks. Thus, they require efficient distributed
algorithms with a low computation complexity and a low communication complexity.
More importantly, distributed algorithms should also be localized, as each node run-
ning the algorithm could only use the information of nodes within a constant number
of hops. However, localized algorithms are difficult to design or even sometime impos-
sible. The community however started to work on adapting decades of graph theory
outbreaks and to solve several challenging questions such as localized Delaunay tri-
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angulation [140], localized spanner [141], localized spanning trees [142] and even
to broadcasting [143, 144]. A survey on Localized approaches for broadcasting and
topology control may be found in [145], and for routing in [10].

When looking at the state of the art of achievements in the approaches described in
the previous paragraphs, we can see a straightforward interweaving aspect. Localized
Protocols solve the performance issues of Kinetic Structures, and conversely, Kinetic
Structures provide solutions to handle mobility for Localized Protocols for MANETs.
Unfortunately, these two communities have worked quite independently, and only few
works [1, 138] appeared to have seen the potential benefits from joining both worlds.

A SUMMARY OF CONTRIBUTION

In this Chapter, we are going to describe the Kinetic Graphs framework and illustrate
how to adapt well known mobility protocols (topology control, broadcast, or routing) to
the Kinetic approach. We will first provide a general description of how the trajectories
are modeled, how the structure is initially built and finally, how it is maintained. We
emphasis that our objective is to suppress the periodic beaconing process widely used
by almost all mobility protocols in order to adapt to mobility. Then, we will discuss
two different kinetic criteria that could be easily adapted in most of the protocols for
MANETs. Finally, we will illustrate a successfully application of the Kinetic Graph
approach to Topology Control.

B ORGANIZATION OF WORK

The Chapter is organized as follows. In Section C, we propose a possible trajectory
representation in Kinetic Graphs, while in Section D, we present the neighborhood
discovery phase involving a common packet format and a data compression for geo-
localization information. Section E describes two possible time varying link weights
for the construction of Kinetic Graphs, and Section F provides heuristics in order to
aperiodically maintain the neighborhood. Finally, Section G illustrates an application
of Kinetic Graphs to Topology Control and Section H concludes the Chapter.

C TRAJECTORY KNOWLEDGE

In order to model trajectories in Kinetic Graphs, we need to define kinematic hypoth-
esis in order to reduce the complexity of the kinematic model. For example, if we can
assume a fixed velocity or a fixed acceleration between two trajectory changes, we may
either use a first order or a second order kinematic model. The worst case scenario is if
we cannot assume any kinematic hypothesis and thus must use a sophisticated stochas-
tic prediction model. In this chapter, we chose to assume a fixed velocity between two
successive trajectories, and therefore used a first order prediction model possibly im-
proved by a stochastic validity function as described in Chapter II. We let the definition
and use of more sophisticated stochastic kinematic models to future work.
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We base our trajectory computation on Location Information, which may be provided
by the Global Positioning System (GPS) or other solutions exposed in [146] or [147]
and exchanged by means of beacon messages. Velocity may be derived through suc-
cessive location samples at close time instants. We also assume a global time syn-
chronization between nodes in the network which could also be obtained by the GSP
system. Accordingly, we define � s Â s �Á� s � Â as the four parameters describing a node’s
position and instant velocity1, thereafter called mobility.

Over a relatively short period of time 2, we assume that each such node, say
L
, follows

a linear trajectory. Its position as a function of time is then described by687:9 R , �G8��Ìm � R  1��� R �O�Â R  1� Â R �O� n s (III-1)

where
J�K 
 R , �G8 represents the position of node

L
at time � , the vector

� � R s Â R � Ð denotes
the initial position of node

L
, and vector

� ��� R s � Â R � Ð its initial instantaneous velocity.
Let us consider node � as a neighbor of

L
. In order to let node

L
compute node � ’s

trajectory, let us define the squared distance between nodes
L

and � asb cR ð , �G8g� b cð R , �G8��ji 6;7<9 ð , �G8 F 687:9 R , �G8�i c� P m � ð F � RÂ ð F Â R n  m �Á� ð F ��� R� Â ð F � Â R n �O� [ c� p R ð � c  xq R ð �f Br R ð s (III-2)

where p R ð>= 
 , r R ð?= 
 . Consequently, p R ð s q R ð s r R ð are defined as the three parame-
ters describing nodes

L
and � mutual trajectories. And

b cR ð , �G8-� p R ð � c  Nq R ð �� 	r R ð ,
representing � ’s relative distance to node

L
, is denoted as � ’s linear relative trajectory

to
L
. Consequently, thanks to (III-1), a node is able to compute the future position of

its neighbors, and by using (III-2), it is able to extract any neighboring node’s future
relative distance.

Finally, considering u as nodes maximum transmission range, according to the Unit
Disk Graph (UDG)3, as long as

b cR ð , �G8�v	u c , nodes
L

and � are neighbors. Therefore,
solving

b<cR ð , �G8 F u c � 
p R ð�� c  xq R ð��f Br R ð F u c � 
 s (III-3)

gives �Gy)z�{�}R ð and �k~ {R ð as the time intervals during which nodes
L

and � remain neighbors.

1We are considered moving in a two-dimensional plane.
2The time required to transmit a data packet is orders of magnitude shorter than the time the node is

moving along a fixed trajectory.
3Up to normalization, a Unit Disk Graph (UDG) corresponds to a graph where every two nodes are

connected if and only if they are at a distance at most the homogenous transmission range.
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D NEIGHBORHOOD DISCOVERY

Basically, the Kinetic Graph neighborhood discovery procedure makes a node detect
changes in its neighborhood without any exchange of periodical beacon messages. Dur-
ing this phase, each node broadcasts a single4 ê �?íMí K message indicating its presence in
the neighborhood, and transmitting its mobility parameters � s Â s �Á� s � Â , along with its
stability parameters

ª
and �l# . Such message is emitted using maximum transmission

power in order to reach the maximum number of neighbors, and is never forwarded.
Thanks to mobility predictions, upon completion of this discovery procedure, nodes in
the network have an accurate knowledge of their neighborhood, and as long as their
neighbors keep on moving along their initial linear trajectories, there will be no need to
refresh it by sending new ê �?íMí K messages. If such prediction becomes invalid due to an
unpredicted event (i.e. trajectory changes or disconnections), the respective node spon-
taneously advertises its new parameters, refreshing the predictions in a event-driven
way.

D.1 Geo-localization Data Format

In deployment, it is envisioned to directly use the coordinates provided by a GPS-like
system (and A-GPS for indoor location), whose benefits are twofold. First, it provides
a standard reference coordinates, and second, it ensures a global synchronization based
on the atomic GPS clock.

GPS Data Format

According to the GPS standard, the 3D positioning provides the coordinates of a GPS
device in a 3-axis referential, whose origin is the gravity center of the GPS satellite
constellation. Then, the GPS terminal converts this raw data into exploitable longitude,
latitude, and elevation in the World Geodetic System 84 (WGS84) [148], the most
widely used providing a worldwide navigational system. The provided data format is
as follows:� longitude– describes the location of a place on Earth east or west of the Green-

wich meridian. A longitude is expressed in sexagesimal notation as
� ëA@ �CBED ë�
EFº . An alternate representation is a decimal representation of the minutes and

degrees
� ëHG I�>KJÁë�ëC@ , where the Est/West suffix is replaced by a negative sign for

coordinates west of the Greenwich Meridian. Accordingly, a longitude may be
represented by a signed floating point ranging in [  Ú�LJÁ
A@ , F �LJÁ
M@ ] usually with a
6 digits precision.� latitude– describes the location of a place on Earth north or south of the Equa-
tor. Similarly to the longitude, a latitude is expressed in sexagesimal notation
as �)ëC@-�LN D I�ëEF Ý , with an alternate decimal representation ��ëOG ë � J��ß�P@ , where
the North/South suffix is replaced by a negative sign for coordinates south of the

4In order to take into account possible collisions and packet losses, a Q;RTSUSUV message is sent a configurable
number of times. Unless otherwise specified, we send each Q;RWSXSUV message 3 times.
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Equator. Accordingly, a latitude may be represented by a signed floating point
ranging in [  YNÁ
M@ s F NÁ
M@ ] usually with a 6 digits precision.� elevation– describes the altitude of a place on Earth relative to the WGS-84
ellipsoid. The elevation is therefore expressed in by a signed integer ranging
from J�
Á
Á
Áú (Mount Everest) to F �Á��
�
Á
Áú (Mariana Trench).

The common point of the tree coordinates is that they are usually represented by 32
bits. Accordingly, each geo-localization set is usually represented by a 96 bits or 12
bytes.

GPS Time Representation

In order to precisely determine the position of a GPS device, its internal clock must be
synchronized with the satellites atomic clocks. The GPS system therefore provides a
global synchronization mean to any application connected to a GPS device.

GPS time is expressed as a number of seconds since the beginning of the GPS epoch
on Sunday January 6th 1980 at 0:00 UTC. Initially represented by a 32 bit integer,
this value has been increased to a 64 bits long integer at the end of the last century.
Accordingly, the transmission of the time in a packet requires 64 bits or 8 bytes.

D.2 A Common Geo-localization Message Format

This section defines the content and the structure of a mobility message containing a
configurable set of geo-localization or mobility information.

All <mobility> messages are conformed to the following specification:

<mobility> = <value-semantic><value>

<value-semantic> is an 8 bit field that describes the structure of the <mobility>
tag. � bit 0 (position bit): Messages with this bit cleared (’0’) do not contain the posi-

tion of the node. Messages with this bit set (’1’) contain position information.� bit 1 (velocity bit): Messages with this bit cleared (’0’) do not contain the veloc-
ity of the node. Messages with this bit set (’1’) contain the velocity.� bit 2 (azimuth bit): Messages with this bit cleared (’0’) do not contain the az-
imuth of the node. Messages with this bit set (’1’) contain the azimuth.� bit 3 (stability bit): Messages with this bit cleared (’0’) do not contain the stabil-
ity of the node. Messages with this bit set (’1’) contain the stability.� bits 4-7 are RESERVED
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<value> is a field containing the mobility parameters. The length of this field may
be obtained from the <value-semantic> field.

<value> = <pos><azi><velo><stab><time>

where� <pos> is a 48 bit field containing the coordinates of a node following the general
layout <pos> = <Longitude><Latitude><Elevation>.� <velo> is an 8 bit field containing the node’s velocity in m/s� <azi> is an 8 bit field containing the node’s azimuth in degree� <stab> is an 8 bit field containing the node’s stability. It represents the node
eagerness to keep the current mobility parameters.� <time> is an 16 bit field containing the GPS time in seconds when the mobility
parameters have been sampled.

The basic layout of a <mobility>message included in a HELLO packet is illustrated
in Fig. III-1.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| HELLO | Resv|0|0|1|0|0| Length | Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Address | Resv |1|1|1|1|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Longitude | Latitude |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Elevation | Velocity | Azimuth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stability | Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. III-1. Hello Packet Containing Geo-localization Information

D.3 The Real Overhead of Diffusion of Geo-localization Data

In this section, we illustrate the overhead generated by the transmission of geo-localization
data in wireless ad hoc network. We show the non negligeable increase of the size of
mobility control packets compared to conventional ones.

We first describe a typical mobility information format. As depicted in Fig. III-2, nodeL
transmits its position and velocity to node � . For that matter, it transmits 5 fields:Q
,
X

,
^ _ , ^ ` and � �l« }�¬7­ � completely describing its localization, velocity, heading and

freshness. In this case, those 5 fields are represented by integers and encoded into 32
bits. The total payload per mobility information is therefore ���CJ bits (

� � bytes).

If the system uses GPS coordinates, the same message consists of the following 5
fields í K ¯[Z L �kÀ$��� , íMp�� L �kÀC��� , 
�® �?�?� , p]\ L ú%À �GÃ , � �G« }�¬�­ � . In that case, the first four fields
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Fig. III-2. Neighborhood discovery typical message content

are represented by 32 bits integers or floating points, while the last field is represented
by a 64 bit integer. The total payload per mobility information is therefore

� 
�
 bits (
� >

bytes).

Accordingly, considering a simple neighborhood discovery heuristic which involves
a one-hop restricted broadcast of neighborhood information (such approach is used
for example in the MPR protocol by OLSR [4]), the total control traffic depends on
each node’s neighbor degree. Fig. III-3 illustrates the drastic overhead increase for
the transmission of a single packet as a function of the nodes density. We compare
the two previous examples in contrast with the conventional single ID approach. We
model a density ranging from 1 neighbor per node to 20 neighbors per node, which is
a reasonable assumption for sparse and dense networks.
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Fig. III-3. Illustration of the per packet neighbor discovery overhead with geo-
localization data

We can clearly see the drastic increase in the overhead per packet as a function of the
node density. A typical application usually generating periodic transmission of such
packet, we can also extrapolate these results for the overhead created by the use of
geo-localization information in mobile ad hoc networks.
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D.4 Reducing the Geo-localization Overhead

The motivation of our approach comes from the observation that geo-localization and
time data use non-appropriate representation formats. For example, mobility informa-
tion, if even considered, are usually represented by Cartesian coordinates encoded by
a ë � bit integer potentially covering a simulation area of

� à c square meters, which is
clearly never reached in practice. The representation of longitude or latitude are also
done by a ë � bit integer (see [105]), even though the maximum value may only be�LJÁ
�����
 á , including a 6 digit precision. Our approach therefore substitutes the standard
representation with a more efficient one based on a mantissa/exponent number repre-
sentation. We aim at using the minimum number of bits required to cover the full range
of applicability of geo-localization data.

Compressing GPS Coordinates

As GPS coordinates are represented by a signed integer ranging up to �LJÁ
�����
 á , we use
16 bits. For practical reasons that we will explain later, we reserve � bit for the sign
code r . Of these �)> remaining bits, the most significant 8 bits represent the mantissap , and the least significant 7 bits represent the exponent q . In the following, K is a
constant that is common to all nodes implementing this compression algorithm. As the
geo-localization data is represented by an integer, we set ^`_ � {l­U{�� �;� .
Algorithm 1 Signed Integer Compression
Require: A signed integer

L
and ^ E&


Ensure: A compressed unsigned integer

1: a=b=0
2: c = SIGN(i) {Returns 1 if c a 0; Returns 0 if c = 
 }
3: j = ABS(i) {To use it as unsigned}
4: while ðb = �Kc do
5: b++
6: end while
7: b-
8: if q8aw
 then
9: a = 0

10: b = 0
11: else if qÛE�� �MB then
12: a = 255
13: b = 127
14: else
15: p*� � >Á��� � ð� bYd cfe � F � �
16: end if

17: if r�Ex
 then
18: return (a � 128 + b) | 0x8000
19: else
20: return (a � 128 + b) & 0x7FFF
21: end if
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Algorithm 2 Signed Integer Decompression
Require: Compressed unsigned integer

L
and ^=Ew
 .

Ensure: A signed integer

1: c = (i g 15 ) & 0x01
2: j = i & 0x7FFF {To remove the sign bits}
3: a= j g 7
4: b= j - (a � 128)
5: return h��� «c ä�áAi � �Cc �j^ � , F �)8 �

Using this method, the minimal value representable is
, F �?8 � �C^ and the maximum

value is
, F �?8 � ��ëOG ëCNt����
 àWk �l^ . We finally add the sign bit representation to obtain the�)� bit representation of a 32 bit signed integer.

This method may therefore be used to represent the geo-localization information in
GPS or Cartesian coordinates with a >Á
Mm reduction of the number of bits without loss
of precision.

Compressing GPS time

As GPS time is represented by an unsigned integer whose maximal value is
� á�ã , we also

use 16 bits. The most significant 8 bits represent the mantissa p , and the least significant
8 bits represent the exponent q . Using this method, the minimal value representable is^ and the maximum value is �KGU�)>:�?�)
 â�â �l^ . Similarly to the geo-localization case, as
GPS time is represented by an integer, we set ^ò~ R } � �è� .
Algorithm 3 Unsigned Integer Compression
Require: An unsigned integer

L
and a constant ^=E&


Ensure: A compressed unsigned integer

1: a=b=0
2: while

Rb = � c do
3: b++
4: end while
5: b-
6: if q8aw
 then
7: a = 0
8: b = 0
9: else if qÇE � >�> then

10: a = 255
11: b = 255
12: else
13: p*� � >Á��� � R� bYd c e � F � �
14: end if
15: return

, pÚ� � >Á>� xq78
This method may therefore be used to represent the GPS time representation using aB >Cm reduction of the number of bits without loss of precision.
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Algorithm 4 Unsigned Integer Decompression
Require: Compressed unsigned integer

L
and a constant ^=Ew
 .

Ensure: An unsigned integer

1: p*� L gnJ
2: q:� L F , pÚ� � >Ñ��8
3: return h �� «c ä�áAi � � c �j^

The same approach may be used for the speed, azimuth or stability, representing p andq with I bits each. Using this method, the minimal value representable is 
 and the
maximum value is �ÁëKICJCJ��o^ . By fixing a specific ^ to reach a target precision, we are
therefore able to reduce the size of the transmission of this data by

B >Cm .

As the stability is represented by a strictly positive integer, we propose to fix ^ � ~ « c �� .
The speed representation should consider the application use. It is represented in me-
ters per second. Therefore, by considering a 2 digits precision, we reach a range be-
tween 
ÁúéìÁ
 and ��ëEIÁú ìÑ
 , providing a sufficient range for its representation. Accord-
ingly, we fix È � ¬ �l�l� �N
HG 
ß� .
The azimuth needs further precisions. In literature, the azimuth is represented in de-
grees with a 6-digit precision, ranging between 
A@ to ëÁ��
C@ . As such time of format
cannot be represented by the 8-bit compression, we could increase the size of p and q .
However, similarly to the velocity, we should also analyze the applications using this
information. The azimuth is directly used as projection in order to obtain the direction
of movement. By using the 8 bit compression, we obtain a 2-digits precision, which
generates a 
HG 
ß�?>Cm error in cosine projection and 
HG 
Á
Á�]m in sine projection. Accord-
ingly, we are convinced that the error generated by the loss of 4 precision digits are
negligeable and therefore assume a loss-less azimuth compression. We therefore set^ «lp R } ¿ ~ � �N
HG 
ß�

Scenarios Size Value
a [bit] b [bit] c [bit] K Compr.

GPS 7 7 1 1 50%
Cartesian 7 7 1 1 50%

Time 8 8 0 1 75%
Azimuth 4 4 0 0.01 75%

Speed 4 4 0 0.01 75%
Stability 4 4 0 1 75%

TABLE III-1. SUMMARY OF THE PARAMETERS FOR DIFFERENT MOBILITY DATA

Figure III-4 illustrates the compression efficiency. We first show in Fig. III-4(a) the
overhead reduction as a function of the node density for a 2D geo-localization includ-
ing velocity and could see the non negligeable benefit achieved by our proposed solu-
tion. Second, we describe in Fig. III-4(b) the compression efficiency depending on the
format of the geo-localization data transmitted for an average density of ��
Ñ¯hq�u�
�ì�¯ K ��� .
We can also clearly see that already reaching a 66% reduction for a simple 2D geo-
localization, the efficiency reaches 71% when we transmit 2D geo-localization, veloc-
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ity, azimuth, time and stability.
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Fig. III-4. Compression Efficiency

Finally, in Fig. III-5, we illustrated the Routing Overhead Ratio of the OLSR [4] routing
protocol as a function of the node density. We used CBR traffic at a rate of >Ñ
 kb/s
with ��
 sources and control traffic of 
OG > hello_pkt/s. We can clearly see that as the
density increases, so does the cost of carrying geo-localization data. Yet, the proposed
compression is able to significantly reduce this drawback.
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Fig. III-5. Illustration of the routing overhead ratio of OLSR with geo-localization
information

D.5 Discussion

In this section, we discussed the overhead generated by the transmission of geographic
localization information for neighborhood discovery. We proposed a compression al-
gorithm managing to reduce this overhead up to 71%. We also introduced a Wireless
Vehicular Communication message format defining a structure for the transmission of
mobility information. We finally illustrated how our solution could improve the routing
overhead of the OLSR protocol up to 46%. We therefore provided a framework for op-
timized and configurable transmission of geo-localization information and believe our
approach could ease interoperability and improve the performance of location-based
solutions in ITS. Our solution has also been proposed for a possible standardization
within the IETF [149].

E TIME VARYING LINK WEIGHTS

In this section, we describe two popular link weights used in graph theory and which
could be applied to kinetic graphs. Based on those time varying link weights, a graph
can be build and dynamically updated. Most of the graph algorithms could be adapted
to use those criteria, however, as mentioned in the introduction part of this chapter, it
is important that graph protocols be distributed and local. Accordingly, we suggest as
potential targets localized graph constructions described in [145].

E.1 Kinetic Distance Weight

The power cost function, required to transmit between nodes
L

and � at time � , is defined
as
J R ð , �G8é� brqR ð , �G8� . , where ± = �

and for some constants
.

. The constant
.

represents a constant charge for each transmission, including the energy needed for
signal processing, internal computation, and overhead due to MAC control messages.
However, since we assume perfect channel, and that the election is distributed and does
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not put any extra burden on any particular node,
.

is common to all nodes and is not of
great significance when comparing power costs. Therefore, without loss of generality,
we assume

. �N
 5 and defineJ R ð , �G8�� b cR ð , �G8��	p R ð�� c  xq R ð��f Br R ð (III-4)

as the power cost function for the weight of the Kinetic Graphs. By choosing the
distance between nodes as the link weight, one obtains minimum power routes that
help preserve battery life (see Figure III-6).

Fig. III-6. The power function, where each parabola represents the energy needed to
reach each neighbor of node

L
We then define ® R , �G8��	� � � � � ~ � ~ � � (III-5)

as the probability that a node
L

is continuing on its present trajectory, where the Poisson
parameter

V� �
indicates the average time the node follows a trajectory, and � R the time

its current trajectory has begun (see Figure III-7).

Assuming independent node trajectories,® R ð , �G8Õ� ® R , �G8O�G® ð , �G8� � � � � � T$� ù � � ~ � Ä �ts�� � Ä ù s ùs|� � s ù � ��� �!� � ù � ~ � ~ � ù � (III-6)

describes the probability that nodes
L

and � are continuing on their respective courses
at time � , which will be considered as the stability6 of link

L � . The modified power cost
below probabilistically weights the power cost

J R ð , �G8 to reflect the link’s stability.

5Therefore, Power and Distance will later be interchangeably used.
6The probability that the mutual trajectory between two nodes remains identical after both nodes have

changed course at the same time is negligible
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Fig. III-7. The stability function, where the probability for a node
L

to behave as pre-
dicted decreases exponentially

Finally, since we aim at suppressing periodic beacon messages, a node that will shortly
leave the neighborhood must be automatically removed from the neighboring table.
We use �l~ {R ð as a timeout counter. Upon expiration, it will remove the corresponding
neighbor from the table. The link weight computed so far is able to dynamically rep-
resent the energy cost between two mobile nodes. However, it does not represent the
actual capability to reach the neighbor, more specifically if two nodes stop being within
mutual transmission range. For that matter, we must add a function which invalidates
a link weight as soon as two neighbors stop being neighbors in the Unit Disk Graph
sense. Accordingly, to represent the node’s finite range, we use an inverse sigmoid
function

õ L Z�ú R , �G8�� ��� 1� « d � ~ � ~ Ävu� � (III-7)

whose value is equal to � as long as �wa �G~ {R and thereafter drops to 
 , where �G~ {R ð is
computed as described in Section C.

We finally define x R ð , �G8g� F ® R ð , �G8J R ð , �G8 ��õ L Z�ú R ð , �G8 (III-8)

� F � � � � � ù � � ~ � ~ � ù �p R ð � c  Bq R ð �f 1r R ð � ��� B� « d � ~ � ~ Äyu� ù �x R ð , �G8g� F � � � � � T$� ù � � ~ � Ä
�ts�� � Ä ù s ùs|� � s ù �

p R ð � c  Bq R ð �f 1r R ð (III-9)

� ��� B� « d � ~ � ~ Ävu� ù �
as the composite link weight between two neighbors (see Figure III-8). A low modified
power cost favors a low power cost with high stability. We have then six parametersp R ð s q R ð s r R ð , ª R ð , � R ð , and �l~ {R ð describing

x R ð , �G8 as the time varying weight of a link
between two nodes in a Kinetic Graph.

In order to clarify our approach, let’s consider the situation depicted in Fig. III-9-C.
Node

L
tries to find the best next hop node to reach a far destination node. To do
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so, it will consider the distance separating it from its neighbors, and the stability of
the respective links, in other words, the expected length of its neighbors’ trajectories.
Fig. III-9-A reflects the probabilities nodes � V and � c are not to have changed their
trajectories. �oð � and �oð � are the time they actually began. As it can be seen, at time�k# , �k# representing the execution time, the probability node � V has not to have changed
its trajectory is bigger than � c . Therefore, as depicted in Fig. III-9-B, even though
node � c is closer to node

L
and has a similar trajectory, this link is less reliable than� V ’s. However, at time � ~ z « ° � , node � c has a relatively more reliable link and follows a

similar trajectory that node
L
. Therefore, at this time, node

L
automatically changes its

next hop neighbor, and this, without any exchange of messages.
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Fig. III-9. Topology example

E.2 Kinetic Nodal Degree Weight

In Graph theory, besides the Euclidian distance, the nodal degree is also widely used,
as it provides a high spreading efficiency instead of low weight structure. While the
former is popular as a criterion for routing protocol (i.e. Distance Vector), the latter is
very popular for broadcast and multicast protocols, as a node with a high nodal degree
has a bigger diffusion potential.

Similar to the euclidian distance, the nodal degree may also be applied to Kinetic
Graphs as a time varying link weight. We explain in the next, the method for mod-
eling Kinetic Nodal Degrees in MANETs. Similarly to Section C, we model nodes’
positions as a piece-wise linear trajectory and, as we show in Chapter IV, the corre-
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sponding trajectory durations are lengthy enough to become a valuable cost for using
kinetic degrees.

As defined in Section C, we model two nodes
L

and � mutual trajectory asbµcR ð , �G8��Np R ð � c  Bq R ð �f 1r R ð (III-10)

Consequently, thanks to (III-10), a node is able to compute the future position of its
neighbors and is able to extract any neighboring node’s future relative distance.

Considering u as nodes maximum transmission range, as long as
b cR ð , �G8:v&u c , nodes

L
and � are neighbors. Therefore, solving

b<cR ð , �G8 F u c � 
p R ð � c  xq R ð �f Br R ð F u c � 
 s (III-11)

gives ��y�z|{�}R ð and �k~ {R ð as the time intervals during which nodes
L

and � remain neigh-
bors. Consequently, we can model nodes’ kinetic degree as two successive sigmoid
functions, where the first one jumps to one when a node enters another node’s neigh-
borhood, and the second one drops to zero when that node effectively leaves that neigh-
borhood (see Fig. III-10).

tij
from tij

to t

1

Fig. III-10. Double sigmoid function modeling a link lifetime between node
L

and node�
Considering ¯hq|uÑ
 R , �G8 as the total number of neighbors detected in node

L
’s neighbor-

hood at time � , we define

b �zZ R , �G8Õ� ° c z � � � ~ �²ç ³ #
{ ��� }|j~]� , F p�� , � F �Gy)z|{G}ç 8G8 � ��� }|j~A� , p2� , � F � ~ {ç 8G8K�

(III-12)

as node
L
’s kinetic degree function, where ��y)z�{�}ç

and �l~ {ç represent respectively the time
a node � enters and leaves

L
’s neighborhood. Thanks to (III-12), each node is able to

predict its actual and future degree and thus is able to proactively adapt its coverage
capacity. Figure III-11(a) illustrates the situation for three nodes. Node � enters

L
’s
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neighborhood at time �:��I�
 and leaves it at time ��� �)��
 . Meanwhile, node � leavesL
’s neighborhood at time ��� � 
�
 . Consequently, Fig. III-11(b) illustrates the evolution

of the kinetic degree function over � .

i r

k
j t=20

t=4

t=16

(a) Node � kinetic
neighborhood

� �W� � �l� � � �W�U� ��� � �
�v� �U� � �
��

�

(b) Node � kinetic nodal degree

Fig. III-11. Illustration of nodes kinetic degrees

Finally, the kinetic degree is obtained by integrating (III-12)�b �zZ R , �G8Õ� Ö��~ { ç ³ ° c z � �²ç ³ # , ��� �|�~A� , F p�� , � F �Gy)z�{�}ç 8G8 � ��� �|�~A� , p2� , � F � ~ {ç 8G8 8 �
(III-13)

For example, in Fig. III-11(b), node
L

kinetic degree is � ë � .
Similarly to the previous section E.1, the kinetic nodal degree may also be stochasti-
cally weighted by the probability of the existence of the link. The last task is therefore
to consider the uncertainty of a predicted degree by adding the stability function (III-6).
Accordingly, we obtain a criterion reflecting nodes actual and future degree, yet biased
by the uncertainty of the link between all of their respective neighbors.

By using substituting (III-6) to (III-13), we define�b �zZ R , �G8g� Ö��~ { ç ³ ° c z � �²ç ³ #
{ ��� }|j~A� , F p2� , � F �Gy�z|{�}ð 8G8 � ��� �|�~A� , p2� , � F � ~ {ð 8�8��|�~A� , F ,/ª R  ª ð 8 , � F � R ª R  1��ð ª ðª R  ª ð 8�8 [t[ (III-14)

Using the same topology as Fig. III-11 and applying the uncertainty of predicted de-
grees, we obtain a stochastically predicted nodal degree depicted in Fig. III-12. Ini-
tially, node

L
has a degree equal to � since node � is in its neighborhood and both

initiated their trajectories at the same time. Yet, as time elapses, so does the probability
both nodes have to keep their trajectories. Therefore, the stochastically predicted de-
gree decreases. Then, at time ����I , node

L
detects a new neighbor � and computes the

time during which both nodes will be in range. However, node � initiated its trajectory
before nodes

L
and � , consequently node � ’s Poisson function is smaller than node � ’s

(see Fig. III-12 left part). Thus, during the interval node
L

and � are in range, the nodal
degree of node

L
does not increase as much as it did in Fig. III-11. Worse, its decreasing
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curve is sharper than the one between nodes
L

and � taken alone. Similarly to Fig. III-
11, at time �-� ��� and �S� � 
 , nodes � and � leave

L
’s neighborhood thus makingL��

s nodal degree decrease abruptly. The main difference here between the two figures,
is that the degree is not stable during the time two nodes are in range but decreases
following the probability both nodes are still following their initial trajectories.

�y�K� �v�M��� �v�K¡£¢ �¥¤ ¦U§
¨�©tª¬«­©t©
�¡®l¯�°v±² ® ¯­°y±³ �¥¤ ¦U§

�
�y�K�

Fig. III-12. Stochastically Predicted Nodal Degree

F ADAPTIVE APERIODIC NEIGHBORHOOD MAINTENANCE

A limitation in per-event maintenance strategies is the neighborhood maintenance.
While mobility prediction and the kinetic graph approach allow to discard invalid links
or unreachable neighbors, it remains impossible to passively acquire new neighbors
reaching some other nodes’ neighborhood. The lack of an appropriate method to tackle
this issue would limit Kinetic Graphs’ ability to obtain up-to-date links and effective
kinetic multipoint relays.

We developed several heuristics to help Kinetic Graphs detect nodes stealthily entering
some other nodes transmission range in a non-periodic way.� Constant Degree Detection— Every node tries to keep a constant neighbor de-

gree. Therefore, when a node
L

detects that a neighbor actually left its neighbor-
hood, it tries to acquire new neighbors by sending a small advertising message.
(see Figure III-13(a));� Implicit Detection— A node � entering node

L
transmission range has a high

probability to have a common neighbor with
L
. Considering the case depicted

in Figure III-13(b), node � is aware of both
L

and � ’s movement, thus is able
to compute the moment at which either � or

L
enters each other’s transmission

range. Therefore, node � sends a notification message to both nodes. In that
case, we say that node

L
implicitly detected node � and vice versa;� Adaptive Coverage Detection— We require each node to send an advertising

message when it has moved a distance equal to a part of its transmission range.
An adjusting factor which vary between 0 and 1 depends on the node’s degree
and its velocity (see Figure III-13(c));

All three heuristics may be implemented simultaneously, further improving the capabil-
ity to detect nodes stealthily entering other nodes neighborhood. The adaptive coverage
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Fig. III-13. Three heuristics to detect incoming neighbors in a per-event basis

contains an adjusting factor that can be tweaked. If nodes send beacons after having
moved a large part of their transmission range, we reduce the beaconing overhead but
also reduce the capability to detect new neighbors, whereas if they send a beacon after
having moved a shorter distance, we improve the capacity to discover new neighbors
at the cost of an increased beaconing overhead. In this Thesis, we chose an adjusting
factor of ¯é� cà and postponed the tweaking of the adjusting factor to future work.

A second approach is identical to the information exchange period proposed in [142].
The idea is to determine the refreshing rate by a probabilistic model with the following
assumptions:

� All nodes are randomly distributed within a disk of area õO
 and the total number
of nodes in ´ , Ý , is known.� For a short time interval of length t, each node moves independently toward a
random direction in

, 
 s �Eµ 8 with a constant speed v that is uniformly distributed
in
� 
 s ��ú�p�� � .� The maximum transmission range of a node is �-����ú%p�� .

Under these assumptions, Li [142] calculated the probabilities that a new neighbor
moves into the transmission range of node À within a time interval of � . We ignore the
case of existing neighbors moving out of the transmission range of node u since we
already know this intervals.

The probability, ®ßð { R ° , that node � moves into transmission range of node À within
time � is ¶ ®ßð { R ° �¸· � T z� c _º¹ �¹ Å z � � K u�
»awu¼a � �®ßð { R ° �¾½ � � � z � c � �¹ Å z · � T z� � z c _º¹ �¹ Å z � � K u�u = � �
Then, given that node u has n neighbors and the total number of nodes is Ý . the
probability that not a single new neighbor enters the visible neighborhood of node u is® V � , � F ®Øð { R ° 8�¿ � ° �fV
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Therefore, the probability that the visible neighborhood of node u changes is® �k� « ° _ � �×� F ® V
Given a predetermined probability threshold ® ~ � , we can determine the neighborhood
update interval � such that ® �k� « ° _ � aò® ~ � .
G KINETIC TOPOLOGY CONTROL IN MANETS

While most topology control protocols only address limited network mobility, we pro-
pose in this Section a quasi-localized topology control algorithm, denoted as Kinetic
Adaptive Dynamic topology control for Energy efficient Routing (KADER), that con-
siders mobility predictions and Kinetic Graphs in order to construct and maintain a
power efficient topology without relying on periodic beacons.

G.1 Background on Topology Control in MANETs

A mobile ad-hoc network (Manet) consists of a collection of mobile nodes forming
a dynamic autonomous network through a fully mobile infrastructure. Nodes com-
municate with each other without the intervention of centralized access points or base
stations. In such a network, each node acts as a host and may act as a router. Due to
limited transmission range of wireless network interfaces, multiple hops may be needed
to exchange data between nodes in the network, which is why the literature often uses
the term of multi-hop network in Manet. The topology of a multi-hop network is the
set of communication links between nodes used by routing mechanisms. Removing
redundant and unnecessary topology information is usually called topology control.

The importance of topology control lies in the fact that it critically affects the system
performance in several ways. For once, as shown in [150], it affects networks spatial
reuse. Choosing a power assignment too large results in excessive interference while
choosing it too small creates a disconnected network. Power assignment in topology
control also exerts influence on the energy consumption of communication, thus im-
pacts battery life which is a critical resource in many mobile applications. In addition,
topology control also improves contentions at the MAC layer.

Several topology control algorithms have been proposed [151, 152, 153, 154, 155,
156, 157] to create power efficient network topologies in MANETs, yet only consid-
ering limited mobility or no mobility at all. Some of the algorithms require explicit
propagation channel (e.g., [154]), while others (e.g., [151]) incur significant message
exchanges. In [154] and its extension [158], Rodoplu et al. introduced the notion of
relay region and enclosure for the purpose of power control. It is shown that the net-
work is strongly connected if each node maintains links with the nodes in its enclosure
and the resulting topology is a minimum power topology. In [153], Ramanathan et
al. presented two centralized algorithms that minimize the maximum power used per
node while maintaining the (bi)connectivity of the network. In the same paper, the au-
thors also proposed two distributed heuristics for mobile networks. LINT uses locally
available neighbor information collected by routing protocols to keep the degree of
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neighbors bound. LILT further improves LINT by overriding the threshold on the node
degree when topology changes indicated by routing updates result in undesirable con-
nectivity. In [151], Narayanaswamy et al. developed a power control protocol, called
COMPOW, that reduces the power level to a common value that reaches a maximum
network connectivity. In [152], authors proposed an algorithm, called È5¾ ñ È , ±'8 , in
which each node finds the minimum power ® such that transmitting with ® ensures that
it can reach some nodes in every cone of degree ± . Other works also exist on power
efficient topology control. Following a probabilistic approach, Santi et al. derived
the suitable common transmission range which preserves network connectivity [159].
In [160], a "backbone protocol" is proposed to manage large wireless ad hoc networks,
in which a small subset of nodes is selected to construct the backbone. In [142], Li
et al. presented a MST-based topology control algorithm, in which each node builds
its local minimum spanning tree (LMST) independently and only keeps on-tree nodes
that are one-hop away as its neighbors in the final topology. This approach has been
improved in [155] and in [156], where a MST is quasi-locally built from the LMST
structure. Finally, [157] presents a strictly local protocol, called XTC, which does not
only work on Unit Disk Graphs, but also on general weighted networks graphs.

G.2 Basic Idea

In this section, we are focusing on a novel approach, called stochastic mobility predic-
tion, where nodes are able to predict their neighbors’ future positions. We are adapt-
ing this concept to a topology control protocol denoted as Kinetic Adaptive Dynamic
topology control for Energy efficient Routing (KADER). We base our approach on
the DDR [161] protocol which we modified to obtain a distributed self-maintained
topology control strategy which tries to optimize the power assignment for multi-hop
transmissions, and where modifications to the topology are announced by the respec-
tive nodes in a per-event basis. The contribution of this Chapter includes: (i) KADER
builds a self adaptive forest which maintains the network connectivity; (ii) each tree
in the forest forms a zone, in which shortest path routes are proactively maintained;
(iii) the criterion to build the forest is based on the relative power needed to reach a
neighbor, thus minimizing the power assignment and creating a backbone adapted to
mobility; and (iv) Since KADER is based on mobility predictions, it only needs to
update its structure when a node changes its trajectory. Since most of links remain
valid after a localized topology changes, the updates are also kept local further mini-
mizing the maintenance cost. The capability of forming a self-adaptive topology that
is closely linked to nodes relative mobility is what make KADER achieve linear time
and message complexity, scalability and energy efficiency.

Both CONNECT and its extension are centralized algorithms that requires global in-
formation, thus cannot be directly deployed in the case of mobility. On the other hand,
LINT and LILT cannot guarantee the preservation of the network connectivity. In
opposite, KADER does not require global information and is able to ensure network
connectivity. Moreover, COMPOW is known to give poor performance in the case of
uneven spatial distributions, while the performance of KADER is not subject to the
spatial distribution, and as a matter of fact, is especially well-suited in the case of un-
even spatial distributions. Finally, what makes KADER unique compared to previous
approaches, is its ability to use mobility predictions to maintain its backbone in a com-
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plete per-event way (i.e. non periodically). Indeed, most of the proposed protocols
either do not consider mobility induced topology changes, or perform this task peri-
odically although trying to adapt the frequency of topology updates to nodes limited
mobility ([142]).

G.3 KADER’s Topology Construction Algorithm

We propose to construct a self-adapting forest from an ordinary network that consists of
non-overlapping dynamic trees, thereafter called zones7. Each zone is kept connected
with its neighboring zones through gateway nodes, thus making the whole network a set
of connected zones. The size of a zone will increase or decrease dynamically without
any need of periodic maintenance. Unexpected topological changes are announced
by the respective nodes through a specific non-periodic message communicating its
new mobility parameters. Following this event, the forest will adapt itself to the new
topology.

The algorithm described hereafter consists of five cyclic time-ordered phases: neigh-
borhood discovery, preferred neighbor election, forest construction, self-adaptive intra-
zone clustering, and self-adaptive inter-zone clustering. Since these phases are similar
to DDR [161], we will only describe the major extensions between DDR and KADER.

Neighborhood Discovery

Basically, KADER’s neighborhood discovery procedure makes a node detect changes
in its neighborhood without exchanges of periodical beacon messages. During this
phase, each node broadcasts a single ê �)íIí K message indicating its presence in the
neighborhood, and transmitting its mobility parameters � s Â s �Á� s � Â , along with its sta-
bility parameters

ª
and �l# . Such message is emitted using maximum power in order to

reach the maximum number of neighbors, and is never forwarded. Thanks to mobility
predictions, upon completion of this discovery procedure, nodes in the network have
an accurate knowledge of their neighborhood, and as long as their neighbors keep on
moving along their initial linear trajectories, there will be no need to refresh it by send-
ing new ê �?íMí K messages. If such prediction becomes invalid due to an unpredicted
event (i.e. trajectory changes or disconnections), the respective node spontaneously
advertises its new parameters, refreshing the predictions in a event-driven way.

Preferred Neighbor Election

A node’s Preferred Neighbor (PN) is a dedicated neighbor through which a node sends,
receives, or forwards packets. It therefore represents the link on which a node sends
its traffic. The criterion determining this neighbor depends on the application needs.
For example, it could be the nodal degree in order to improve broadcast, or nodes en-
ergy level and traffic level for load balancing. It also could be a combination of all
three. In KADER, we wish to obtain a criterion that is able to satisfy two objectives.
The first one is to represent the energy needed to reach a neighbor. The second one

7We will later use the term tree and zone interchangeably.
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is neighbor stability. A node’s stability is the probability that it evolves as predicted.
Since KADER does not periodically update its set of links, we want the links cho-
sen by KADER to remain as stable as possible such that routing errors could be kept
low. Accordingly, KADER should not elect the closest neighbor, but might decide to
choose a more distant yet a more stable one. Therefore, KADER is able to lower nodes
power assignment by preferring close-by neighbors, which increases transmission con-
currency and improves nodes lifespan. It is also able to lower topology maintenance
and routing errors by favoring stable nodes.

As described in Section E.1, We definex R ð , �G8�� F ® R ð , �G8J R ð , �G8 (III-15)

� F � � � � � T$� ù � � ~ � Ä � s � � Ä ù s ùs � � s ù �
p R ð � c  xq R ð �9 Br R ð (III-16)

as the composite link weight between two neighbors.

Election Algorithm

Based on the criterion described above and similarly to [161], a node
L

can determine
its PN � at time � V , which represents the time at which � has the smallest cost function
over all � other neighbors of

L
.J Ý R , � V 8��B� L �7� x R ð , � V 8��ÁÀÃÂyÄçLÅ ° c � , x R ç , � V 8G8

Yet, since we are performing mobility predictions, a PN is not elected for a single time
instant � , but for a time interval

� � V s � c � . During this interval, also called activation,
the link function assigned to this PN is the smallest over all � other neighbors. An
activation between node

L
and node � over an interval

� � V s � c � is defined as

p�r�� ,ML s ��8 � � V s � c � �ÇÆ À»ÂyÄ�� V 
CG �GÃÈG J Ý R , � V 8��B�ÀÊÉE~�� cÌË , � VPÍfÎ 8O
KG �GÃ J Ý R , �G8��B�
Therefore, the set (

L
, � , p�r�� ,ML s ��8 � � V s � c � ) uniquely identifies a preferred link between

node
L

and node � activated from � V to � c , and will thereafter mentioned as
L �<Ï ~ �TÐ ~ �oÑ .

Then, by always considering the smallest link weight function for all time � , L creates a
set of actual and future preferred neighbors that always minimize the link weight.

Forest Construction

For every time instant, a dynamic forest, or a group of non overlapping dynamic trees,
is constructed by connecting each node to its PN (similarly formulated as connecting
the set of all preferred links). Due to mobility issues, PNs may change (along with
preferred links) during the simulation. But since every node knows in advance the
set of its actual and future PNs, thus actual and future preferred links, no future re-
configuration or exchange of messages is needed to adapt the topology. We prove in
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the appendix that, whatever the network topology is, this approach always yields to a
forest at each time instant.

In order to construct preferred links and consequently the forest, each node generates
a table called Intra-Zone table (see Table III-2). Indeed, as soon as node

L
determines

the set of its PNs, it must notify its neighbors, especially its PNs, of its decision. It
first updates its Intra-Zone table by adding the set of its PNs in a PN field along with
their respective activations. Any node appearing in the PN field of node

L
’s Intra-Zone

table means it is either a PN of node
L
, or it elected node

L
as PN. Node

L
then sends a

PN message
J Ý R � ,ML s L �HÏ ~ �fÐ ~ ��Ñ 8 . This message indicates that node

L
is electing node� as its PN with the activation p�r7� ,/L s ��8 � � V s � c � . Upon reception of

L
’s message, node �

checks whether it has been chosen as the PN of
L
. If so, it also updates its intra-zone

table regarding
L
. Since nodes

L
and � appear in the PN field of their respective Intra-

Zone table, a tree branch is built between node
L

and its preferred neighbor � during� � V s � c � . Therefore, those edges become a preferred link, and the set of preferred links
in each neighborhood generates the set of preferred paths in the network.

We illustrated KADER’s constructed dynamic forest in Figure III-14, considered at
time ���;
 . Full lines represent actual preferred links, while dashed lines future ones.
For example, as we can see on the same Figure and on Table III-2(a), node � has a PNr activated between �O�N
�
 and ���è��
�
 . Since the simulation time �O�	
 , the preferred
link �Ør Ï # Ð V # Ñ is active. But, node � also has a future PN � activated between ��� ��
�

and �:� � 
�
 . Therefore, at time �:�;
 , the preferred link �Ø� Ï V # Ð c # Ñ is not yet activated
and is considered as a future preferred link and depicted as a dashed line. It will be
quietly activated at time �O�;��
 .
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Fig. III-14. Constructed forest by KADER, considered at time �*� 
 . The brackets
represent the links’ activation intervals.

Self-Adaptive Intra-Zone Clustering

KADER aims at regrouping closed-by nodes into a zone in order to provide energy
efficient communications. At this phase, we illustrate how nodes obtain the best path,
with respect to the electing criterion, to reach all nodes in their zone and proactively
maintain them in their intra_zone table. The process is very similar to [161], and
readers may refer to this paper for a more detailed description.
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When a node
L

gets elected by a neighbor � , it then locally notifies all its neighbors
of this election. To do so,

L
sends a so called Learned_PN message Ò��?p�u)¯f�?� _ J Ý R �,ML s L �AÏ ~ �lÐ ~ ��Ñ 8 , indicating that node � with p�r�� ,/L s ��8 � � V s � c � has node

L
as its PN. Upon

reception of this message, each tree member updates its intra_zone table, and re-
advertises to its neighbors if it is not a leaf node8. For this purpose, each node generates
another field in its intra_zone table called Learned Preferred Neighbor (Learned_PN,
see Table III-2) in order to keep nodes that have been learned to belong to the same tree.
Therefore, if node

L
is chosen to be the PN of � over a time interval

� � V s � c � , � sends a PN
message to inform its neighborhood of its elected PN. Among the neighboring nodes
of � , the PN

L
forwards � ’s decision to each node that holds a tree edge with

L
, say node� , activated over a time interval

� � à s � ã � . Then, the local view of � ’s tree is that, over the
time interval

, � � V s � c �PÓ � � à s � ã � 8 , � is reachable through
L
. For example, in Figure III-14

and in Table III-2(b), node � elected node � as PN for a time interval
� 
 s � � . Node � is

then a Learned_PN of node � over the time interval
, � 
 s � � Ó � 
 s ��
 � 8O� � 
 s � � .

Consequently, as we can see in Table III-2, on convergence of KADER, the PN field
represents the next hop nodes to reach any node belonging to its zone (appearing in the
Learned_PN field). This is a very interesting feature for routing since the end-to-end
delay for route discovery may be limited.

PN Learned_PNÔ Ï # Ð V # Ñ p Ï # Ð V # Ñ s q Ï # Ð V # ÑÕ Ï # Ð V # Ñ s � Ï # Ð V # Ñu Ï # Ð V # Ñ s � Ï # Ð V # Ñí Ï Ö Ð V # Ñ s 
 Ï Ö Ð V # Ñ× Ï V # Ð c # Ñ Z Ï V # Ð c # Ñ s À Ï V # Ð c # Ñ� Ï V # Ð c # Ñ s Ã Ï V # Ð c # Ñr Ï # Ð V # Ñ -

(a) ØlÙMÚtÛfÜ _ ÝßÞMà

PN Learned_PN� Ï # Ð V # Ñ u Ï # Ð V # Ñ� Ï # Ð á Ñá Ï # Ð V # Ñ r Ï # Ð V # Ñ s � Ï # Ð V # Ñ� Ï á Ð V # Ñ -q Ï # Ð V # Ñ -p Ï # Ð V # Ñ 
 Ï Ö Ð V # Ñ s í Ï Ö Ð V # ÑÕ Ï # Ð V # Ñ -

(b) ØlÙMÚtÛlÜ _ ÝâÞ]ã
TABLE III-2. INTRA-ZONE TABLE OF NODES � AND � REGARDING FIGURE III-14

Self-Adaptive Inter-Zone Clustering

Once zones have been built, KADER’s task is to keep them connected to each others
at each time instant. For that matter, KADER uses a different table, called Inter_Zone
table, that regroups connections to different surrounding zones. Each node belong-
ing to this table is referred as gateway and the link connecting two zones as bridge
(see Figure III-15). Moreover, each gateway must keep a connection to each of its
peer-gateways belonging to its neighboring zones. We prove in the appendix that the
zones created by KADER are always connected to each others if the original graph is
complete.

At the beginning, neighbors of a node
L

are put in its Inter_Zone table during their full
initial activation, say

� ñ V s�ñ c � , which is defined as the connection lifetime between the
two nodes or the time two nodes remain direct neighbors. Then, as node

L
succeeds to

add a neighbor � to its tree and updates its intra_zone table over an activation
� � V s � c � ,

8A leaf node is a node which only has a single neighbor and which is never a PN.
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it prunes � ’s initial activation. The remaining activation is then Ò � ñ V sGñ c ��ä � � V s � c � Ó .
During this time, node � is still not considered part of

L
’s tree. Node � then appears in

the Intra_Zone table over
� � V s � c � and in the Inter_Zone table over Ò � ñ V sGñ c ��ä � � V s � c � Ó .

For example, in Figure III-15 and corresponding tables in III-3, node 
 is in the In-
ter_Zone table and also in the Intra_Zone table of node p , yet for different time in-
tervals. For the time interval

� 
 s N � , node p is a gateway node and the link 
�p is a
bridge. However, from the time interval

� N s �)
 � , zone \ � grows and zone \ � fusions
with it. Accordingly, for this time interval, node 
 becomes a PN and nodes í s K s ú s �
Learned_PN for node p . As we can see, the size of different zones grows and shrinks
over time, which makes them self-adapting to the mobility-based topology changes,
yet without exchanges of messages.
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Fig. III-15. KADER Constructed Forest and its evolution over time
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Gate. ID Zone ID
 Ï # Ð Ö Ñ z2

(a) Inter_zone table of
node Ü regarding Fig-
ures III-15(a) and III-
15(b) .

PN Learned_PNÔ Ï # Ð V # Ñ r Ï # Ð V # Ñ s q Ï # Ð V # ÑÕ Ï # Ð V # Ñ s � Ï # Ð V # Ñu Ï # Ð V # Ñ s � Ï # Ð V # Ñ� Ï # Ð V # Ñ9 Ï Ö Ð V # Ñ í Ï Ö Ð V # Ñ
(b) Intra_zone table of nodeÜ regarding Figures III-15(a)
and III-15(b).

TABLE III-3. INTER-ZONE AND INTRA-ZONE TABLES OF NODES p REGARDING
FIGURE III-15

Quasi-local topology maintenance

In this subsection, we show how a particular message, called New Trajectory (NT), is
used to inform neighboring nodes of any topology changes, and to trigger a quasi-local
maintenance process. Therefore, KADER’s zone maintenance can be seen as per-event
based.

As mentioned before, node trajectories information remains valid during a short period
of time. Then, since a node is unable to predict the time its neighbors will change their
trajectories, it biases the link weight

x
to reflect the decreasing probability of the link

existence, and to ensure that a good low power but unstable link could not be chosen
for routing. Yet, we still consider this link valid as long as it is not otherwise notified.
Consequently, when a node is changing its trajectory, it must inform its neighbors about
the induced topology change. To do so, it sends a New Trajectory (NT) message to all
its neighbors and piggybacks its new coordinates and velocity. Therefore, its neighbors
are able to adapt their trees to this event. Eventually, the algorithm carries out the PN
election phase again.

G.4 Analysis of KADER’s Topology

In this section, we prove that under the assumption of a Unit Disk Graph (UDG) and
a fully connected initial topology, the backbone created by KADER always leads to a
tree and the trees are interconnected to form a forest.

Definition 6: An arbitrary undirected time dependent graph ´ , �G8 is defined as ´ , �G8��, ^ s º , �G8�8 , where
^

is the set of vertices, and º , �G8 is the set of edges at time � .
Theorem 1: For any graph ´ , �G8 , let ´ � , �G8�� , ^ s º � , �G8�8 be the subgraph obtained by
connecting each vertex

^
to its preferred links º ��, �G8 . Then ´ ��, �G8 is a forest.

Proof: Let ´ , �G8 be the original graph at time � , and let ´ ��, �G8 be the graph ob-
tained by executing the KADER algorithm for each vertex � Ë ^ at time � . We first
recall that the main idea is to select for each node � Ë ´ , �G8 , a neighbor that has the
maximum link function W. In order to prove that ´ � , �G8 does not contain any cycle



G Kinetic Topology Control in MANETs 95

È � � R s � RUTWV s GzGjG s � R/�fV s � R , let us suppose the contrary, and let � R be the vertex of È
with the biggest

x
.

vi

vi−1

vi−2

vi+1

vi−3

vi+2

Fig. III-16. The proof of theorem 1

Let us consider two vertices of � RM�9V and � RUTWV adjacent to � R in È (Figure III-16).
Without loss of generality, assume that the algorithm on � R chosen an adjacent vertex� RUTWV (if neither � RM�9V nor � RUTWV had been chosen, È is not a cycle). Consider now the
execution of the algorithm on � R/�fV . We will show that such node will not choose � R ,
thus implying that È is not a cycle.

Lets define � , � R s � RUTWV 8 as the weight function W between � R and � RYTWV . Since � R
chooses � RYTWV , � , � R s � RYTWV 8BE � , � R s � RM�9V 8 . And by � RM� c ’s decision to choose � R/�fV ,� , � R/� c s � R/�fV 8µE � , � RM� c s � RM� à 8<E � , � R s � RYTZV 8 , � being a monotone increasing func-
tion. Therefore, � , � R s � RM�9V 8åa	� , � RM�9V s � RM� c 8 . This proves that � R/�fV will not choose � R
as PN, and È will not be a cycle.

Theorem 2: For any PN activation p�r�� , � R s � RYTZV 8 � � V s � c � , and any graph ´ �o, � V s � c 8 �, ^ s º �o, � V s � c 8�8 obtained by connecting each vertex to its preferred links º ��, � V s � c 8 acti-
vated during

� � V s � c � , ´ �I, � V s � c 8 is then always a forest at every time instant included in� � V s � c � .
Proof: When a node � R elects a PN � RYTZV during an activation p�r�� , � R s � RYTZV 8 � � V s � c � ,

it means that æC� Ë � � V s � c � , � , � R s � RUTWV 8 , �G8éE � , � R s � ç 8 , �G8 s æß� . Since nodes share a
common clock, all their current left activation are equal to the current time and will
thereafter be considered as 
 , past activations being irrelevant.

If a node � R elects a PN � RUTWV during an activation p�r7� , � R s � RUTWV 8 � 
 s � V � , without loss of
generality, � RYTWV can elect a node � RUT c as PN during an activation p�r7� , � RUTWV s � RUT c 8 � 
 s � c � .
Since the algorithm prunes the activation between � R and � RUT c as

, � 
 s � V�� Ó � 
 s � c � 8 , we
must consider two cases. In the first case, the initial activation p�r�� , � R s � RUTWV 8 � 
 s � V|� is
less or equal than p�r�� , � RUTWV s � RUT c 8 � 
 s � c � , thus it is kept unaltered during the forwarding
steps. In the second case, the algorithm prunes the initial activation. The forwarded
activations are two separated and mutually exclusive activations.

Let us consider � c v\� V . Then, following the development in the proof of Theorem 1,
at some point, node � RM�9V could elect node � R during an activation p�r�� , � R s � R/�fV 8 � 
 s �là � ,
as �Gà"v � V . � 
 s �là � is the remaining activation after multiple pruning at each node in
the path. Then, it means that æC� Ë � 
 s ��à � , � RM�9V could elect � R as PN, thus creating
a cycle during this time. Theorem 1 prove that this situation is not possible, sinceæ$� Ë � 
 s � à � , we obtain a stable tree which is not a function of � . Then, during the
activation p�r�� , � R s � R/�fV 8 � 
 s � à � , È does not contain any cycle.
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Since the initial activation has been pruned, we still need to consider the case of the
remaining activation (

� �Gà s � V�� ). Without loss of generality, let us consider that this acti-
vation has been pruned at a single node � RYT c . This node has the possibility to elect � RYTZV
as PN (mutual election), updating the mutual activation as the union of their respective
ones. Note that this case does not create a cycle. � RUT c can otherwise elect another
node, say � RYT à . Since

� �là s � V|�AÓ � 
 s �là � �èç , � RUT c � RYT à is then a branch of a different and
independent tree and the situation is independent from the previous one. Therefore,
this neither creates a cycle, which concludes the proof.

Theorem 3: æ G, let G’ be the subgraph obtained by connecting each node to its pre-
ferred links during their respective activations. Then G’ is a forest at every time instant.

Proof: æ node � R , since all its PNs activation intervals are mutually exclusive
(
Ó , p�r�� , � s � V 8 s GjGzG s p�r�� , � s � ° 8�8��éç ), from Theorem 2, we can conclude that KADER

always yield to a forest at every time instant.

Theorem 4: For any complete graph G(t), the subgraph ´ �I, �G8�� , ^ s º ��, �G8G8 created by
connecting each vertex to its preferred neighbor creates a set of connected zones.

Proof: Let us consider the contrary and take two unconnected zones ½ and ¾ .
At any time instant, a neighbor of a node either belongs to its Intra_Zone table or to its
Inter_Zone table. The former means both nodes belong to the same zone, and the latter
means both nodes belong to two adjacent zones which they are connecting. Therefore,
if a link between two nodes does not exist between two zones in ´ ��, �G8 , it also could not
exist in the original graph ´ , �G8 . This is a contradiction to the hypothesis of a complete
graph ´ , �G8 .
G.5 Properties of KADER’s Topology

In this section, we study KADER’s computed backbone with parameters such as av-
erage zone diameter (i.e. in term of number of hops), average number of zones in the
network, average ratio of remaining edges, average ratio of PNs in the network, and
average power assignment. The following results are obtained by measuring the met-
rics after the population of mobile nodes was distributed uniformly on a ½ëêò½ grid
where ½�� � 
�
Á
Áú , with each node having a transmission range u of 250m. Moreover,
each node has a different stability value, but nodes’ average stability is �?ì ª �NëÁ
�
 . We
will compare KADER in two different cases : variable density and globally constant
density9.

We begin by illustrating in Figure III-17 the topology created by KADER from an
arbitrary graph ´ (see Figure III-17(a)) to a forest and trees (see Figure III-17(b)),
where solid lines are tree edges and dashed lines are bridges connecting different trees.

We can see in Figure III-18(a) that KADER is able to remove 65% of the total number
of edges. By getting rid of unnecessary links, KADER improves spatial reuse and
concurrent communications. Then, in Figure III-18(b), KADER is able to remove 45%
of PNs, which helps to reduce the broadcasting overhead in the network. Therefore, by

9Globally constant density is obtained by maintaining the ratio ì[ízîoïWð¬ñWò óEò ô �õ � fixed
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(b) Constructed forest

Fig. III-17. KADER’s Topology
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(b) Remaining PNs Ratio
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(c) Diameter of Zones
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(d) Average Power Assignment

Fig. III-18. Properties of KADER’s Topology
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removing 65% of unecessary links and by only keeping a backbone of 55% of router
nodes yet keeping the graph connected, KADER helps performing load reduction and
proves to be broadcast efficient.

Then, the graph in Figure III-18(c) shows the diameter of a zone versus the number of
nodes in the network. The diameter of a zone is defined as the length of the path that
has the longest euclidean distance. If the zone diameter is obtained, then we can place
an upper bound on the Intra_zone end-to-end delay. We clearly see in Figure III-18(c)
that zones in KADER are relatively stable, in both a variable and a constant density.
This comes from its distance parameter in the electing criterion. Since KADER always
tries to create a link between nearby neighbors, neither density nor the number of nodes
have a big impact on the zone’s diameter. This shows another interesting property of
KADER that is its suitability for dense and sparse networks on non-evenly distributed
nodes.

Finally, Figure III-18(d) illustrates KADER’s average node power assignment ratio
while keeping the graph connected. We can see that on average, KADER is able to
lower the power assignment by 75%. The most important asset of a reduced power
assignment is the increased battery lifespan. Yet, reducing the transmission range
also causes less contention and interference for concurrent communications. This is
even amplified for dense networks, where interferences reduce broadcasting efficiency.
Therefore, KADER’s low power assignment not only being energy efficient, also helps
improve unicast and broadcast communications.

G.6 Convergence and Overhead Complexity of KADER’s Topology

It is important to compute the communication complexity of KADER for topology
creation. The communication complexity describes the average number of messages
required to perform a protocol operation. Note that this comparison does not include
the complexity of route discovery 10. This issue is not covered in this chapter.

Message Complexity (MC)

In KADER, the network of ¯ nodes is partitioned into ú zones on the average, and each
zone has an average number of nodes of °} . The amount of communication overhead to
build and maintain the forest is ¯ since by sending ¯ PN election messages, a forest will
be constructed. To construct a zone, each node generates (d-1) messages to forward the
learned PN or removed PN, where � is the hop-wise zone diameter. Therefore, each
zone generates

, � F �?8 °} messages. Since there exists ú zones in the network, the
overall number of generated forward messages becomes

, � F �)8l¯ . In conclusion, the
message complexity is O(

ª �7¯%��� ),where �Êa&ë (see Figure III-18(c)).

Time Complexity (TC)

In order to obtain the time complexity induced by KADER, we need to analyze the
broadcasting overhead in mobile ad-hoc network. Authors in [162] showed that

�5, ÄC8
10KADER being zone-wise proactive, it is able to obtain intra-zone paths at no extra cost.
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rounds are required by any broadcasting protocol when the network nodes are mobile.
Accordingly, the broadcasting overhead does not change whether nodes are arranged in
lines or in mesh, but only depends on the number of nodes in the network. Therefore,
since KADER converges when a Learn_PN message has reached every node in a zone,
and that KADER’s zones have on the average ¯Wì?ú nodes, the time complexity of
KADER is

�5, ÄCìPÀS8 .
G.7 Benefit of KADER’s Topology on Routing Algorithms

KADER is able to derive the most stable links from a network topology such that full
connectivity is always guaranteed. It then becomes interesting to analyze the benefits
routing protocols may obtain from it.

Efficient Routing

KADER is able to group nodes into a set of zones, which proactively maintains routes
between every node belonging to the same zone. Therefore, any routing protocol using
KADER may perform Intra_Zone routing at no extra cost. For Inter_Zone routing, a
protocol still needs to be determined. It could be imagined that a reactive approach,
such that AODV [7] or DYMO [8], may take great help of the topology created in
KADER by reducing the overhead of its route discovery procedure. This creates a
hybrid routing protocol, using proactive intra-zone routing, and on-demand zone-level
routing. On the other hand, similar to OLSR [4] using MPR, a proactive protocol takes
benefit from KADER to improve its scalability and its end-to-end delay.

Energy Efficiency

In KADER, during the construction of the forest, every node elects its Preferred Neigh-
bor partly depending on the energy needed to reach it. Indeed, the transmission range
of the Intra_zone routing is always adapted to reach only the desired PN. Hence, by
using the power assignment, KADER performs topology control and makes proactive
Intra_Zone routes optimal in terms of energy data flow generated and forwarded by
each node, further reducing the energy used for routing and increasing the channel
capacity. It also improves concurrent communications by reducing interferences and
contentions. Since KADER does not use beacons, routing protocols using KADER
reach routing energy efficiency.

H CONCLUSION

In this chapter, we presented an original approach for applying mobility predictions
to Mobile Ad Hoc Networks (MANET) called the Kinetic Graphs. The objective was
to construct and maintain a topology or routing structure without relying on periodic
maintenance. The approach is independent of the criteria used in order to build the
backbone, and various approaches may be tested.



100 Chapter III. Kinetic Graphs in MANETs

For example, we used the predicted nodes trajectory as the criterion for building a
topology control protocol and developed KADER and showed how we could save en-
ergy and reduce interference.

However, KADER does not have totally local decisions, as some topology information
has to be propagated in the trees. We therefore suggest as future work to adapt the same
approach to the Localized Minimum Spanning Trees (LMST) algorithm and created
the KLMST protocol. Due to the locality of all decisions, the KLMST protocol should
actually correct coherency issues in KADER.
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Abstract— In Palm Calculus, the Palm intensity of a particular transition is the model’s ex-
pected number of transitions per time unit when considered at stationary regime. Considering
transitions as the event of vehicles reaching a waypoint in MANETs’ Mobility Models, the In-
verse Palm Intensity (IPI) is defined as the mean interval between two waypoints, or the expected
time spent by vehicles to reach a predefined target. This is also the predictability parameter we
defined in Chapter I for measuring the efficiency of Kinetic Graphs. We propose in this Chapter
to study this Palm intensity because such information is crucial in order to evaluate the pre-
dictability of MANETs Mobility Models. We obtain a lower bound for the IPI with reasonable
configuration parameters situated at ����� averaged on the Random-Waypoint mobility model
(RWM) and �! "� for the City Section mobility model (CityM), both considered at steady state.
Therefore, by wisely using this predictability interval, it is possible to adapt prediction models
and improve the global performance of topology control and routing protocols.
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Keywords—Predictability, Trajectory Duration, Mobility, Palm Calculus, Mobile Ad Hoc Net-
works.

BEFORE designing a Mobility Prediction Algorithm, the first task is to derive a
model that accurately describes the mobility pattern of the targeted system. The

more complex the patterns are, the harder it is to generate prediction schemes. Once
the model has been drawn, a key factor for the performance of prediction systems is
directly related to the ability to extract future patterns based on past ones. In Informa-
tion Theory, this feature is defined as the mutual information between past and future
events, a low mutual information is called uncertainty, while a high mutual informa-
tion is called predictability. It is therefore important to quantify the predictability
of the mobility models in order to evaluate the potential gains the prediction schemes
could provide.

A BASIC IDEA

Palm Calculus [163] is a set of formulae that relates time averages versus event aver-
ages. Time averages are obtained by sampling the system at arbitrary time instants.
The event average viewpoint is obtained by sampling the system when selected state
transitions occur. In MANETs, Palm Calculus is applied to mobility models in order to
avoid subtle problems, such as speed decay of average speed as simulation progresses,
or such as getting rid of differences between the long term distribution of nodes and
the initial one. One important concept in Palm Calculus is the Palm Intensity. It is
defined as the expected number of state transitions per time unit. When Palm calculus
is applied to mobility models, a state transition is defined as the time instant when new
parameters are set (direction, speed,..). The Inverse Palm Intensity (IPI) is therefore
defined as the mean interval between two successive state transitions. Although the
Palm distribution of speeds and positions of mobile nodes have already been asserted
in [128], to our knowledge, the Palm intensity has never been analyzed in MANET’s
mobility models.

B SUMMARY OF CONTRIBUTION

In this Chapter, we make use of Palm Calculus to provide a theoretical lower bound on
the mean interval between two successive waypoints, also called trajectory duration1,
for vehicular motion. We show that this value never falls below

B 
 on average for
all reasonable practical purposes. This result is validated through simulations using
the Random Waypoint Mobility model (RWM) and the City Section Mobility model
(CityM) belonging to the Random Trip Framework [164]. It therefore motivates the
use of mobility reactive strategies, since setting a lower bound on topology updates toB

seconds makes the number of maintenance messages drop dramatically. Accordingly,
it becomes conceivable to consider prediction-based models to reach optimal aperiodic
maintenances.

1Therefore, Inverse Palm Intensity, Mean Interval between two successive waypoints, and Trajectory
Duration will be later used interchangeably.



C Organization of Work 103

C ORGANIZATION OF WORK

The rest of the Chapter is organized as follows. In Section D, we develop a theoretical
lower bound on the mean interval between two successive waypoints. Then, Section E
shows simulation results and compares them with the theoretical approach. Finally, in
Section F, we draw some concluding remarks and highlight future work.

D PALM INTENSITY

D.1 Random Waypoint

Palm calculus is now well established, but not widely used or even known in applied
areas2. We do not use all the Palm Calculus framework here but only concentrate on the
Palm Intensity A . We apply Palm Calculus to the random waypoint model. We assume
that this model has a stationary regime for a minimum velocity strictly greater than
zero (see [165] for a complete proof) and consider as selected transitions instant ñ ° ,
the time at which waypoints are reached. Since the simulation is in stationary regime,
we imagine that at time 0, the simulation has been running for some time. We take
as convention ñ # v�
 a ñ V . In other words, ñ # is the last time a transition occurred
before time 
 and ñ V is the next one starting from 
 . Considering ñ # � 
 , the Palm
intensity formula is given by �A �$# # , ñ V F ñ # 8��%# # , ñ V 8
The inverse Palm intensity (IPI), or the mean interval between two successive way-
points, is therefore given by

A �fV �%# # , b V 8&# # , �^ # 8�� ' Ö �# �� � # , �Ø8l��� (IV-1)

where
b V

and
^ # are two random variables representing nodes next position and speed

respectively, and where ' is the average distance between two points in the simulation
area and � # , ��8 is the Palm density distribution of speeds. The intensity is finite if and
only if # # , V� Å 8 is finite, which, for the uniform speed case, means � } R °wE 
 . There
exists a closed form for ' when the simulation area is a rectangle [166]. We consider
here the simulation area as a p ê�p square and use the closed form ' � 
HG§> � �zI�p .

D.2 Uniform Time Stationary Distribution of Speeds

When speeds are chosen from a uniform distribution with a low minimum speed, then
at any given time, a large proportion of nodes will be moving very slowly. Since the
average distance between nodes is fixed, this can create a nearly stable backbone that
could make the Palm intensity seem unrealistically good. Therefore, the worst case for
the intensity would be to have a uniform time stationary distribution of speeds which

2For a quick overview of Palm Calculus, refer to [165]; for a full fledged theory, see [163].
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keeps vehicles velocities uniformly distributed through the simulation. Accordingly,
the Palm intensity is reduced to the ratio between ' and the mean time stationary
distribution of speeds. We also consider this case in our theoretical values and consider
an appropriate choice of � # , �Ø8 proposed in [167]:

� # , ��8�� � 
� c} « _ F � c} R ° for � } R ° aw
 ax� } « _ (IV-2)

Therefore, the inverse intensity is reduced to

A �9V � ' �� } « _  1� } R ° (IV-3)

D.3 Random Waypoint with Pausing

When a mobile reaches a waypoint, it picks a pausing duration according to the density� #¬ « , stays immobile for this duration, and then moves again. To analyze this model,
we consider as selected transition times the time instants at which either a waypoint is
reached or a pausing time expires. From [165], the intensity formula gives�A �	
HG§> �A ¬ «  B
HG§> �A }�{ (IV-4)

D.4 City Section

A final consideration would be the analysis of the theoretical IPI for the City Section
mobility model (CityM). Since it is a special case of the random waypoint model on a
non-convex domain, (IV-1) or (IV-3) may be applied. The domain is the union of the
segments defined by the edges of a space graph (Fig. IV-6(a) for example). Therefore,' is the average distance between two segments in the domain, which is specific to
each map. For example, in Fig. IV-6(a), ' � ����ëÑú .

E EXPERIMENTAL RESULTS

We assessed the Inverse Palm intensity through simulations and compared it with the
theoretical values obtained in the previous section (see solid lines in the following
figures). We have evaluated the IPI for both the RWM and the CityM in which we have
used different real topological maps. Since both mobility models are extracted from the
Random Trip Framework [164], the IPIs are obtained when both models are at steady
state.

The following figures show the characteristics of the Inverse Palm Intensity (IPI) given
the mean speed on the RWM and CityM evaluated at regular >�ú ìÑ
 intervals. The solid
line represents the theoretical value for the IPI, while the boxes are the experimental
ones. Each box represents 10 runs. We made node average velocities (*),+ vary from >
to >Á
 � ú ìÑ
 � , yet with different variances ± around the mean speed. In other words, a
node velocity is uniformly distributed between

� ( )-+ F ± s ( ),+  B± � . We have simulated
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N�
Á
�
 of both models for three different pausing times:
�
, > , �)
 � ú ìÑ
 � . Nodes were

assumed to be moving in a flat squared area of ��
�
Á
Ñú ê4��
Á
�
Ñú . Finally, we defined.-/0.,13254
as the IPI obtained by simulating the RWM or the CityM using the uniform time

stationary distribution of speeds given by (IV-2).
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Fig. IV-1. Comparison of the experimental and theoretical IPI for the RWM at station-
ary regime

Fig. IV-1 illustrates the theoretical and the experimental IPI of the RWM considered
at stationary regime. Similarly, Fig. IV-2 depicts the theoretical and the experimental.-/0.,13254

of the RWM also at stationary regime. According to those two Figures, the
IPI and

.-/0. 15234
’s lowest bound for the RWM are � I�
�
 and � ��
�
 respectively. Yet,

when considering moderate values for the average velocity such as
� >�ú ìÑ
 , we can

see that the IPI is � ��
�
 in Fig. IV-1 and � � 
�
 in Fig. IV-2. As explained in Sec-
tion D.2, Fig. IV-2 is as expected the worst case configuration for the RWM given its
uniform time-stationary distribution of speeds. Indeed, the IPI values are on averageB >Cm smaller than IPI obtained with a non-time-stationary distribution.

Fig. IV-3 depicts the evolution of the IPI of the RWM when the degree of liberty around
the average velocity, ± , is increased. We can see that the IPI increases when we increase± from > , �)
 , and �?>�ú ìÑ
 . This may be explained by the fact that since the average
distance between nodes is fixed, the IPI is only influenced by ± in (IV-1). This remark
is also corroborated by the large values obtained for the IPI in Fig. IV-1, where ± is
maximized to (6),+ . Then, considering (IV-3), ± does not have any influence on the.-/0.,13254

. Therefore, varying ± on the RWM will only influence simulations using non
uniform time-stationary distribution of speeds. And as it may be seen when comparing
Fig. IV-3 and Fig. IV-2, increasing ± will only increase the gap between IPI and

.-/7.813254
.

This is therefore the final belief when considering uniform time-stationary distribution
of speed as the most restricting configuration parameter for the IPI. As soon as we relax
this constraint and increase ± , the IPI becomes more attractive.

We then show in Fig. IV-4 the influence of the pause times on the IPI for the RWM. In
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Fig. IV-2. Comparison of the experimental and theoretical
.-/7.913254

of the RWM at sta-
tionary regime with a uniform time stationary distribution of speeds

this figure, we can see that the RWM with pausing gives smaller values for the IPI than
all other configurations for the RWM due to the IPI of the pause transitions (Eq. IV-
4). This can be explained by the fact that when RWM is simulated with pause times,
the event leave a waypoint needs to be considered as a second transition case, hence
increasing the average transitions per unit of time. As we could expect, the smallest
IPIs are obtained for large velocities. When considering the RWM with small pausing
times, the IPI is � B 
 (see Fig. IV-4(a)). Yet, it improves when the average pausing
time increases. In Fig. IV-4(b), the IPI � J�
 and in Fig. IV-4(c), it is � � � 
 . As before,
for more reasonable velocities, the IPI becomes more attractive.

Finally, we simulated the City section mobility model (CityM) in Fig. IV-5, IV-6,
and IV-7 with different road topologies extracted from the US Census Bureau TIGER
database [105]. Vehicles are moving at constant speed on a road and each intersection
represents a waypoint. Since the mean distance between intersections is far lower in
our maps than in the RWM simulations, we obtained smaller values for the IPI than
those in the RWM. We only considered here a range of average velocities varying up
to
� 
ÁúéìÁ
 , since larger velocities would not be acceptable for realistic situations. The

simulation parameters are similar to those of the RWM model. As we mentioned be-
fore, uniform time-stationary distribution of speeds is the most restrictive configuration
for the IPI. Since we wish to obtain a lower bound for the IPI, we assumed nodes ve-
locities to be uniform time-stationary and we accordingly used (IV-3) in order to obtain
the theoretical

.-/0. 15234
.

In Fig. IV-5, we simulated the CityM on two different highly dense urban areas, while
in Fig. IV-6 we depicted the CityM on two lightly dense urban areas. We thought that
instead of randomly using a large number of different maps, it would be more inter-
esting to find different classes of topological maps and compute the IPI accordingly.
We can see that for fairly large velocities, the IPI does not vary that much. In Fig-
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(a) : = 15 m/s.
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(b) : = 10 m/s.
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Fig. IV-3. Comparison of the experimental and theoretical IPI of the RWM at stationary
regime for two different values of ± .
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(a) pause time = 2s.
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(b) pause time = 5s.

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Average Velocity in m/s

 

In
ve

rs
e 

P
al

m
 In

te
ns

ity
 in

 s

theo RWM pausing=10s
exp RWM pausing=10s

(c) pause time = 10s.

Fig. IV-4. Comparison of the experimental and theoretical IPI for the RWM at station-
ary regime for different values of pausing times.
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(c) Inverse Palm intensity for the map of
Capitol Hill
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(d) Inverse Palm intensity for the map of
WestUnivPlace

Fig. IV-5. Comparison of the experimental and theoretical IPI for the CityM in two
highly dense urban areas
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(c) Inverse Palm intensity for the map of
South Central Park
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Fig. IV-6. Comparison of the experimental and theoretical IPI for the CityM in two
lightly dense urban areas
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ures IV-5(c) and IV-5(d), IPI � N�
 , while in Figures IV-6(c), and IV-6(d), IPI � �)ë�
 .
It is rather for smaller velocities that the IPIs differs more dramatically. Indeed, when
nodes are moving at ��
ÁúéìÁ
 , the IPI in Figures IV-5(c) and IV-5(d) is � � ë�
 , while in
Figures IV-6(c), and IV-6(d), the IPI � �Á
�
 .
Another observation is that for lightly dense urban areas, and particularly for low mean
speeds, the theoretical

.-/0.-13254
differs from the experimental one. Indeed, as it may be

observed in Fig. IV-5 or in Fig. IV-6 for larger mean speeds, the practical and theoreti-
cal

.-/7.,15234
are more correlated. This particular effect may be explained by the fact that

unlike the RWM, the path between an initial point and a target point in the CityM is
not a straight line, but is rather determined using Dijkstra’s shortest path algorithm ap-
plied to the map. Yet, this feature is neither taken into account by (IV-1) nor by (IV-3).
Therefore, for the same reasons the IPI differs from

.-/7. 13254
for the RWM, the experi-

mental
.-/7.,15234

will observe less stability around the theoretical value. And this feature
is more probably to appear in lightly dense areas, or for low mean speeds because in
those two cases, the ratio J�|5KKÀ»|jÄ"L _ MX|zÄ6KNL8OCìPJW�:|j|5Q makes nodes more sensitive to the
choice of the segments by Dijkstra’s algorithm.
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Fig. IV-7. Comparison of the experimental and theoretical average IPI for the CityM

We finally averaged the IPI of our maps in Fig. IV-7. This figure represents the average
theoretical and practical IPI of the City Section mobility model. According to this
figure, when the mean speed is

� 
ÁúéìÁ
 , the IPI is � ��
�
 . But when the mean speed
is smaller, we can expect a much larger IPI. Indeed, for a mean speed of ��
Ñú ìÑ
 , IPI� I�
�
 , which is corroborated by the theoretical IPI. Moreover, in a configuration where
mean speeds could vary depending on the street category (similar to a speed limit for
example), the IPI would be even bigger than that.
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F CONCLUSION

We have provided a theoretical and experimental lower bound on the average trajectory
duration, or Inverse Palm Intensity (IPI), that is � B 
 and � N�
 using extreme values
for the configuration parameters of the Random Waypoint mobility model and the City
Section mobility model respectively. We also illustrated that the values obtained by the
Palm Calculus in Section D modeled the practical ones correctly, and could be directly
used in order to extract trajectory durations from various mobility models. Finally,
we pointed out that for realistic situations, the trajectory duration observed by mobile
nodes is � ëÁ
�
 .
This outcome is interesting as it provides a lower bound for the predictability, an con-
versely an upper bound on the uncertainty, of mobility patterns generated by random
mobility models for MANETs. It therefore motivates the use of prediction techniques
and Kinetic Graphs in order to exploit this precious information in order to optimize
the refreshing processes of topology control and routing protocols. For example, con-
sidering the IETF recommendations for operating OLSR [4], if we set the topology
update intervals to ��
�
 , the corresponding overhead could be reduced by up to 85% .

Although very interesting, these values depend on nodes’ average velocity and on the
distance between two successive waypoints. Even though it is not an easy task to obtain
a good estimate of their values in real situations, we can find a dual behavior for pedes-
trian and vehicular motions. When nodes move fast, they usually follow predefined
routes and their trajectories may be easily predicted. But when nodes experience ran-
dom walks, they usually move at a lower speed and results obtained in this Chapter give
estimates on their average trajectory duration. Therefore, nodes mobility assessment
depends on the application for the deployment of mobile ad-hoc networks.

An interesting future orientation is to perform a thorough study on trajectory lengths
in real environments using mobility traces or realistic mobility models. Indeed, the
mobility patterns might not show a similar regularity than those of the random trip
framework. Now that we have obtained an insight of the average trajectory durations
in random mobility models, it would be interesting to see if we could obtain similar
values in real deployments. For that matter, we would need to think of a more realistic
mobility model fitting real patterns, and devise more complex prediction schemes in
order to reduce the uncertainty of the generated motion patterns.
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Abstract— Although having been used in various fields of mobile ad hoc networking in past
years, the Random Waypoint Model, and Random Models in general, have attracted criticisms
for their lack of realistic motion modeling for specific MANET applications. Among them, inter-
vehicular communications (IVC), which require an accurate modeling of vehicular motion pat-
terns, are attracting a growing attention from both academia and industry, due to the amount
and importance of the related applications, ranging from road safety, traffic control, and mo-
bile entertainment. Although faithful vehicular mobility modeling is a challenging field, vehicles
usually show some signs of regularities in their patterns which could be therefore exploited by
prediction techniques.



114 Chapter V. Modeling Vehicular Mobility Patterns

Because of their peculiar characteristics, IVCs require the definition of specific networking tech-
niques, whose feasibility and performance are usually tested by means of simulation. One of
the main challenges posed by simulations for IVCs is the faithful characterization of vehicular
mobility at both macroscopic and microscopic levels, leading to realistic non-uniform distri-
butions of cars and velocity, and unique connectivity dynamics. Yet, freely distributed tools
which are commonly used for academic studies only consider limited vehicular macro-mobility
issues, while they pay little or no attention to vehicular micro-mobility and its interaction with
the macro-mobility counterpart. Such a simplistic approach can easily raise doubts on the con-
fidence of derived IVCs simulation results. In this Chapter we present and describe VanetMo-
biSim, a freely available generator of realistic vehicular movement traces for telecommunication
networks simulators. VanetMobiSim is validated first by illustrating how the interaction between
featured macro- and micro-mobility is able to reproduce typical phenomena of vehicular traffic.
Then, the traces generated by VanetMobiSim are formally validated against those obtained from
CORSIM, a benchmark traffic generator in transportation research.

Keywords—Traffic Generator, Vehicular Mobility Patterns, Simulator, Validation, Vehicular Ad
Hoc Networks.

IN the previous chapter, we provided an insight on the predictability of the Random
Waypoint Mobility (RWM) model. However, this model recently attracted a lot of

criticism for the lack of realism of the generated mobility patterns. Indeed, it cannot
faithfully model constrained motions, which are common in almost all applications of
mobile networks. For example, vehicular mobility typically involves complex spatial
and temporal dependencies which cannot be addressed by the RWM. Vehicular motions
moreover seem to show some kind of regularities which could be exploited by appro-
priate prediction schemes. However, a prediction algorithm is strongly interlinked with
the mobility model generating the patterns it aims at predicting.

A MOTIVATION

Vehicular Ad-hoc Networks (VANETs) represent a rapidly emerging, particularly chal-
lenging class of Mobile Ad Hoc Networks (MANETs) to be used for Inter-Vehicular
Communications (IVC). VANETs are distributed, self-organizing communication net-
works built up from traveling vehicles, and are thus characterized by very high speed
and limited degrees of freedom in nodes movement patterns. Such particular features
often make standard networking protocols inefficient or unusable in VANETs, and this,
combined with the huge impact that the deployment of VANET technologies could
have on the automotive market, explains the growing effort in the development of com-
munication protocols which are specific to vehicular networks.

Whereas it is crucial to test and evaluate protocol implementations in real testbed envi-
ronments, logistic difficulties, economic issues and technology limitations make simu-
lation the mean of choice in the validation of networking protocols for VANETs, and a
widely adopted first step in development of real world technologies. A critical aspect in
a simulation study of VANETs, is the need for a mobility model which reflects, as close
as possible, the real behavior of vehicular traffic. When dealing with vehicular mobility
modeling, we distinguish between macro-mobility and micro-mobility descriptions.

For macro-mobility, we intend all the macroscopic aspects which influence vehicular
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traffic: the road topology, constraining cars movement; the per-road characterization,
defining speed limits, number of lanes, overtaking and safety rules over each street of
the aforementioned topology; the traffic signs description, establishing the intersections
crossing rules; the car class dependent constrains, providing differentiation in the above
rulings for different types of vehicles; the traffic patterns delineation, outlining the
popularity of different locations as traffic destinations during different hours of the day
and for different classes of drivers, etc.

Micro-mobility instead refers to the individual behavior of drivers, when interacting
with other drivers or with the road infrastructure: traveling speed in different traffic
conditions; acceleration, deceleration and overtaking criteria; conduct in presence of
road intersections and traffic signs; general driving attitude, related to driver’s age, sex
and mood, etc. The distinction between macro- and micro-mobility we propose is not
to be confused with the difference between the macroscopic and microscopic scales
commonly employed in traffic flow theory, and in physics in general. In that contest,
macroscopic descriptions model gross quantities of interest, such as density or mean
velocity of cars, treating vehicular traffic according to fluid dynamics, while micro-
scopic descriptions consider each vehicle as a distinct entity, modeling its behavior in
a more precise but computationally more expensive way.

It would be desirable for a trustworthy VANETs simulation that both macro-mobility
and micro-mobility descriptions be jointly considered in modeling vehicular move-
ments. Indeed, many MANET mobility models employed in VANETs simulations
ignore these guidelines, and thus fail to reproduce peculiar aspects of vehicular mo-
tion, such as car acceleration and deceleration in presence of nearby vehicles, queuing
at road intersections, clustering caused by semaphores, vehicular congestion and traffic
jams.

B SUMMARY OF CONTRIBUTION

In this Chapter, we introduce VanetMobiSim [78], a freely distributed, open source
vehicular mobility generator based on the CanuMobiSim architecture [116] and de-
signed for integration with telecommunication network simulators. VanetMobiSim can
produce detailed vehicular movement traces employing different macro- and micro-
mobility models and taking into account the interaction of the two, and can simulate
different traffic conditions through fully customizable scenarios. We validate the mo-
bility patterns generated by VanetMobiSim by recreating distinctive vehicular mobility
effects, such as speed decay with increasing car density, non-uniform distribution of
vehicles in urban areas, and shock waves due to stop-and-go perturbations. We also
formally validate VanetMobiSim by comparing this vehicular traces with those gener-
ated by a benchmark traffic generator in the transportation community.

C ORGANIZATION OF WORK

The rest of the Chapter is organized as follows. Section D illustrates the need for
realistic simulations in vehicular networks. A detailed description of the features of
VanetMobiSim is given in Section E. Section F presents validating tests on movement
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traces produced by VanetMobiSim in specific scenarios and by comparison with TSIS-
CORSIM. Finally, in Section G, we discuss the outcome of this chapter and outline
future research directions.

D THE NEED FOR REALISM IN VEHICULAR TRAFFIC MODEL-
ING

Only in recent times has networking community started paying attention to the impact
that realistic mobility modeling has on vehicular communications.

The use of simplistic mobility models that has characterized most of the literature on
the topics of mobile and vehicular networks appears an evident flaw, when considering
that vehicular traffic theory has undergone fifty years of increasingly accurate studies.

When comparing mobility models employed in recent works on vehicular networks
and analytical descriptions following well known approaches of traffic theory, the dif-
ference in terms of results is dramatic, and it is clear that such a discrepance cannot
have a null impact on the performance of networking protocols and techniques.
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Fig. V-1. Flow versus density and speed versus flow under the Fluid Traffic Model

In traffic theory, since the 60’s, models reproducing drivers behavior have been subject
to standard tests in order to be considered realistic enough. As an example, a mini-
mal requirement is a model capable of recreating the lambda-shaped relation between
vehicular flow and density. Even low-complexity traffic stream models can reproduce
it, as they look at vehicular mobility as a hydrodynamic phenomenon, and thus do not
model the behavior of each car individually. An example is shown in Fig. V-1, which
is depicting both the aforementioned lambda-shaped relation and the one obtained for
the speed and flow when using the Fluid Traffic Model implemented in VanetMobiSim.
The reason at the basis of the phenomena is that, given a straight road, the out-flow of
vehicles grows linearly at first, as the in-flow rate, and consequently the car density, is
increased. However, when the critical vehicular density is reached, the road capacity
cannot sustain the arrival rate anymore, leading to queueing phenomena that slow down
the system as the density increases.
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Fig. V-2. Flow versus density and speed versus flow under the Manhattan Model

When the same test is performed on the previously mentioned Manhattan model, the
results depicted in Fig. V-2 are not matching the expectations. Even if the Manhat-
tan model implements some bounded randomness in the velocity update, and imposes
speed limitations to avoid overlapping of vehicles, the lack of a desired speed and of ac-
curate car following rules make the description unrealistic as the growth in the in-flow
is producing a linear increase on the car density.

Speed waves represent another condition of vehicular traffic commonly reproduced
during the validation process of a mobility model in traffic theory works. These per-
turbations are known to be generated by heavy traffic conditions on highways or by
periodic obstacles such as traffic lights or entering ramps, and are due to the finite
response time of drivers to slowdowns determined by such events. As depicted in
Fig. V-3, where slow speed dark waves move against the direction of traffic in time, a
car following model like the Intelligent Driver Model (IDM) implemented in VanetMo-
biSim and discussed later in the chapter, can correctly recreate this phenomenon. The
equivalent plot obtained using the Manhattan model appears as a white image, since
all the vehicles maintain the maximum speed, and is thus not shown here. As shown
in Fig. V-3, the Fluid Traffic Model fails to reproduce the desired behavior in this case,
since this model does not include a car-to-car interaction description.

Another typical proof of the validity of a vehicular mobility model is determined by its
response to dynamic situations, such as that occurring to a queue of cars in presence of
an obstacle ahead suddenly removed. In that case, it is expected that the model forces
the drivers to slow down while approaching the obstacle and then to accelerate again
once the impediment is removed. This is actually what we can observe in Fig. V-4
when IDM is used. Each line represents the evolution of speed over time of one car
and for the first twenty vehicles in the queue. It can be noticed that the first vehicle
slows down as the obstacle becomes nearer, and that the cars behind follow the leader’s
speed dynamics with some delay due to the drivers’ reaction time. When the obstacle
is removed, just before the leading car stops completely, the vehicles start accelerating
again towards full speed. The cars back in the queue experience a different speed
evolution, as they are far from the obstacle and are thus still moving at high speed
when the impediment is removed. The same is not true when the Manhattan model



118 Chapter V. Modeling Vehicular Mobility Patterns

 0
 5
 10
 15
 20

Road (m)

T
im

e 
(s

)

 0  200  400  600  800  1000  1200  1400  1600  1800  2000
 1600

 1700

 1800

 1900

 2000

 0
 5
 10
 15
 20

Road (m)

T
im

e 
(s

)

 0  200  400  600  800  1000  1200  1400  1600  1800  2000
 1600

 1700

 1800

 1900

 2000

Fig. V-3. Speed versus time and space in a highway scenario, in presence of increas-
ing car in-flow, when using the Intelligent Driver Model (upper) and the Fluid Traffic
Model (bottom)

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140  160  180  200

Sp
ee

d 
(m

/s
)

Time (s)

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140  160  180  200

Sp
ee

d 
(m

/s
)

Time (s)

Fig. V-4. Evolution of speed for the first 20 vehicles belonging to a queue of cars meet-
ing an obstacle which is then suddenly removed. The plots refer to the case in which the
Intelligent Driver Model is employed (upper) and that in which the Manhattan model
is used (bottom)



E VanetMobiSim 119

is used, as the model prevents vehicle overlapping by abruptly reducing to zero the
speed of the leading vehicle when it reaches the obstacle. Furthermore, it is not able to
induce a free-flow acceleration due to the lack of a desired speed description. The cars
in the queue are forced to strictly follow the leading vehicle behavior, and thus describe
similar curves. The resulting plot is shown in Fig. V-4.

E VANETMOBISIM

VanetMobiSim is an extension to CanuMobiSim [116], a generic user mobility simu-
lator. CanuMobiSim is a platform- and simulator-independent software coded in Java,
and producing mobility traces for different network simulators, including ns-2 [130],
GloMoSim [131], QualNet [132] and OPNET [133]. It provides an easily extensible
mobility architecture, but, due to its general purpose nature, suffers from a reduced
level of detail in specific scenarios. VanetMobiSim is therefore aimed at extending
the vehicular mobility support of CanuMobiSim to a higher degree of realism. In this
section, we outline the structure and characteristics of VanetMobiSim and detail the
resulting vehicular mobility support.

(a) User-defined
topology

(b) GDF map
topology

(c) TIGER map
topology

(d) Clustered
Voronoi

Fig. V-5. Road topologies examples

E.1 Macro-mobility Features

When considering macro-mobility, we not only take into account the road topology,
but also the road structure (unidirectional or bidirectional, single- or multi-lane), the
road characteristics (speed limits, vehicle-class based restrictions) and the presence of
traffic signs (stop signs, traffic lights, etc.). Moreover, the concept of macro-mobility
also includes the effects of the presence of points of interests, which influence vehicles
movement patterns on the road topology. All these different aspects of the macro-
mobility are discussed in details in the remainder of this section.

Road topology definition

The selection of the road topology is a key factor for obtaining realistic results when
simulating vehicular movements. Indeed, the length of the streets, the frequency of
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intersections, or the density of buildings can greatly affect important mobility metrics
such as the minimum, maximum and average speed of cars, or their density over the
simulated map. VanetMobiSim allows to define the road topology in the following
ways:� User-defined graph: the road topology is specified by listing the vertices of the

graph and their interconnecting edges.� GDF map: the road topology is imported from a Geographical Data File (GDF)
[117]. Unfortunately, most GDF file libraries are not freely accessible.� TIGER map: the road topology is extracted from a map obtained from the TIGER
database [105]. The level of detail of the maps in the TIGER database is not as
high as that provided by the GDF standard, but this database is open and contains
digital descriptions of wide urban and rural areas of all districts of the United
States. In fact, topology descriptions from the TIGER database are becoming
quite common in VANETs simulation.� Clustered Voronoi graph: the road topology is randomly generated by creating
a Voronoi tessellation on a set of non-uniformly distributed points. This ap-
proach is similar to that proposed in [168], but we also consider the presence of
areas with different road densities which we refer to as clusters. The number
of clusters and their density are customizable to represent diverse geographical
characterizations in the same map, such as city centers, suburban areas, or coun-
tryside. The clustered Voronoi graph can be especially useful to rapidly generate
large road topologies.

In all these cases, the road topology is implemented as a graph over whose edges the
movement of vehicles is constrained. Examples of different VanetMobiSim topologies
are illustrated in Fig. V-5.

Road topology characterization

As stated before, the concept of vehicular macro-mobility is not limited to motion
constraints obtained from graph-based mobility, but also includes all aspects related to
the road structure characterization, such as directional traffic flows or multiple lanes,
speed constraints or intersection crossing rules. None of these aspects is present in
CanuMobiSim, thus the following enhancements are introduced by VanetMobiSim:� introduction of roads with multiple lanes in each direction� physical separation of opposite traffic flows on each road� definition of independent speed limits on each road of the topology� implementation of traffic signs at each road intersection. By default, intersec-

tions are fully regulated by stop signs. Alternatively, it is possible to regulate
traffic at intersections by means of traffic lights.
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Note that, for the road topology characterization to have an impact on vehicular mobil-
ity, a strong interaction between the macro-mobility description and the micro-mobility
models that define drivers behavior is required. Thus, the micro-mobility model must
be designed to keep roads characteristics in consideration. This issue is discussed in
Section E.2.

Vehicular movement patterns selection

Vehicular traffic schemes in urban scenarios are far from being random. Indeed, cars
tend to move between points of interests, which are often common to many drivers
and can change in time (e.g., offices may be strong attraction points, but mainly during
the first part of the morning). Accordingly, VanetMobiSim exploits CanuMobiSim
capability of building up movement patterns from the cooperation of a trip generation
module, which defines the sets of points of interest, and a path computation module,
whose task is to compute the best path between those points.

Two choices are given for the trip generation module. The first is a random trip, as
the start and stop points of movement patterns are randomly selected among the ver-
tices of the graph representing the road topology. The second is an activity sequences
generation, in which a set of start and stop points are explicitly provided in the road
topology description, and cars are forced to move among them. In particular, multiple
sets of points of interest can be specified, along with the probability matrix of a vehicle
switching from one set to another.

Independently from the trip generation method employed, the path computation, i.e.
the selection of the best sequence of edges to reach the selected destination, can be
performed in three ways. The first method selects the shortest path to destination,
running a Dijkstra’s algorithm with edges cost inversely proportional to their length.
The second method does not only considers the length of the path, but also the traffic
congestion level, by weighting the cost of traversing an edge also on the number of
cars traveling on it, thus modeling the real world tendency of drivers to avoid crowded
paths. The last method, which is not present in the original CanuMobiSim, extends the
other two, by also accounting for the road speed limit when calculating the cost of an
edge, in a way that fastest routes are preferred.

The combination of trip generation and path computation methods offers a wide range
of possibilities, when the definition of vehicular movement paths is a factor of interest
in the mobility simulation. The best practice depends on the application. But generally,
the mobility patterns are more realistic if we use similar criteria as real drivers, in other
words, if we use an activity sequence trip generation in conjunction with a speed path
selection.

E.2 Micro-Mobility Features

The concept of vehicular micro-mobility includes all aspects related to an individual
car’s speed and acceleration modeling. The micro-mobility description plays the main
role in the generation of realistic vehicular movements, as it is responsible for effects
such as smooth speed variation, cars queues, traffic jams and overtakings.
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Three broad classes of micro-mobility models, featuring an increasing degree of detail,
can be identified depending on whether the individual speed of vehicles is computed
i) in a deterministic way, ii) as a function of nearby vehicles behavior in a single lane
scenario, or iii) as a function of nearby vehicles behavior in a multi-flow interaction
(i.e., urban) scenario.

CanuMobiSim provides implementations for models belonging to the first two classes.
The Graph-Based Mobility Model (GBMM) [169], the Constant Speed Motion (CSM)
[116] and the Smooth Motion Model (SMM) [170] fall into the first category, as the
speed of each vehicle is determined on the basis of the local state of each car and
any external effect is ignored. They all constrain a random movement of nodes on
a graph, possibly including pauses at intersections (CSM) or smooth speed changes
when reaching or leaving a destination (SSM). The movement is random in a sense
that vehicles select one destination and move towards it along a shortest-length path,
ignoring (and thus possibly overlapping) other vehicles during the motion. While these
models may work for isolated cars, they fail to reproduce realistic movements of groups
of vehicles.

The Fluid Traffic Model (FTM) [171] and Intelligent Driver Model (IDM) [97] are
instead part of the second class, as they account for the presence of nearby vehicles
when calculating the speed of a car. These models describe car mobility on single
lanes, but do not consider the case in which multiple vehicular flows have to interact,
as in presence of intersections.

The FTM describes the speed as a monotonically decreasing function of the vehicular
density, forcing a lower bound on speed when the traffic congestion reaches a critical
state according to the following equation
��&ú�p��1m/
 } R ° s 
 } « _ P � F �� ð « } [ n
where 
 is the output speed, 
 } R ° and 
 } « _ are the minimum and maximum speed re-
spectively, � ð « } is the vehicular density for which a traffic jam is detected, and � is the
current vehicular density of the road the node is moving on. This last parameter is given
by ���è¯Wì�í , where ¯ is the number of cars on the road and í is the length of the road
segment itself. According to this model, cars traveling on very crowded and/or very
short streets are forced to slow down, possibly to the minimum speed, if the vehicular
density is found to be higher than or equal to the traffic jam density. On the other hand,
as less congested and/or longer roads are encountered, the speed of cars is increased
towards the maximum speed value. Thus, the Fluid Traffic Model describes traffic
congestion scenarios, but still cannot recreate queuing situations, nor can it correctly
manage cars behavior in presence of road intersections. Moreover, no acceleration is
considered and it can happen that a very fast vehicle enters a short/congested edge,
suddenly changing its speed to a very low value, which is definitely a very unrealistic
situation.

On the other hand, the IDM characterizes drivers behavior depending on their front ve-
hicle, thus falling into the so-called car following models category. The instantaneous
acceleration of a vehicle is computed according to the following equations����Á� �	p R � F P �� # [ ã F P 
PS
 [ cET and 
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In the left hand Equation, � is the current speed of the vehicle, ��# is the desired veloc-
ity, 
 is the distance from preceding vehicle and 
WS is the so called desired dynamical
distance. This last parameter is computed as shown in the right hand equation, and
is a function of the minimum bumper-to-bumper distance 
�# , the minimum safe time
headway ñ , the speed difference with respect to front vehicle velocity 'Ú� , and the
maximum acceleration and deceleration values p and q . When combined, these formu-
lae give the instantaneous acceleration of the car, divided into a “desired” acceleration� � F , �ßì?� # 8 ã � on a free road, and braking decelerations induced by the preceding vehicle, 
PS�ìÁ
)8 c .
VanetMobiSim adds two original microscopic mobility models, both of which account
for the interaction of multiple converging flows by acting consistently with the road
infrastructure, and thus fall into the third category mentioned above. These models
extend the IDM description, which is the most realistic among those present in Canu-
MobiSim, in order to include the management of intersections regulated by traffic signs
and of roads with multiple lanes. We also would like to emphasize that, as both models
extends IDM, they are also able to reproduce a lambda-shape relation between vehicu-
lar flow and density.

The first new micro-mobility model is referred to as Intelligent Driver Model with
Intersection Management (IDM-IM). It adds intersection handling capabilities to the
behavior of vehicles driven by the IDM. In particular, IDM-IM models two different
intersection scenarios: a crossroad regulated by stop signs, or a road junction ruled by
traffic lights. In both cases, IDM-IM only acts on the first vehicle on each road, as
IDM automatically adapts the behavior of cars following the leading one. Every time
a vehicle finds no intermediate car between itself and an intersection regulated by stop
signs, the following parameters are used by IDM-IMÆ 
���¶ F õ'Ú�*�	�
where ¶ is the current distance to the intersection and õ is a safety margin, accounting
for the gap between the center of the intersection and the point the car would actually
stop at. Thus, compared to the IDM, the distance from preceding vehicle is substituted
by the distance to the point the vehicle has to stop at. On the other hand, the speed
difference is set to the current speed of the car � , so that the stop sign is seen as a still
obstacle. This allows vehicles to freely accelerate when far from the next intersection,
and then to smoothly decelerate as they approach a stop sign. Once a car is halted at
a stop sign, it is informed by the macroscopic level description of the number of cars
already waiting to cross the intersection from any of the incoming roads. If there are no
other cars, the vehicle may pass. Otherwise, it has to wait for its turn in a first-arrived-
first-passed and right hand rule policy.

When a vehicle is heading towards a traffic light intersection, it is informed by the
macroscopic description about the state of the semaphore. If the color is green, passage
is granted and the car maintains its current speed through the intersection. If the color is
red, crossing is denied and the car is forced to decelerate and stop at the road junction,
using the modified IDM parameters as in the case for a stop sign.

It may also be stressed out that vehicles behavior can dynamically vary in presence of
traffic lights, according to red-to-green and green-to-red switches. In the former case,
a car currently decelerating to stop at a red light will accelerate again if the semaphore
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Fig. V-6. Traffic light red-to-green scenario. A vehicle, driven by the
IDM-IM setup in Table V-1, starts its movement from zero speed, and
travels towards a red traffic light. The upper figure shows the evolu-
tion of speed in time, while the lower one depicts the car movement
on the road versus time.
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Fig. V-7. Traffic light green-to-red scenario. A vehicle, driven by
the IDM-IM setup in Table V-1, starts its movement from zero speed,
and travels towards a green traffic light, which turns into red at time���¸JÁ
$
 . The upper figure shows the evolution of speed in time, while
the lower one depicts the car movement on the road versus time.
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turns green before it has completely halted (see Fig. V-6). In the latter case, a vehicle
keeping its pace towards a green light will try to stop if the light becomes red before it
has passed through the intersection. In this last case, a minimum breaking distance X
 is
evaluated by means of simple kinematic formulae asX
����t� FZY q� � c ��� � �Y q � F[Y q� � �Y q � c � � c� Y q
which describes the space needed to come to a full stop as a function of the current
speed of the vehicle, � , the time � and the deceleration value, Y q . The last parameter
represents the maximum safe deceleration, i.e., the IDM comfortable braking valueq scaled by a factor Y = � . The final expression above is obtained by substitution
of � with

, �ßì Y q78 , which is the time at which a zero velocity is reached by inducing a
constant deceleration Y q on current speed � . Upon computation of X
 , if the vehicle finds
that it is not possible to stop before the intersection, even braking as hard as possible,
i.e., if X
�Ew¶ F õ , then it crosses the intersection at its current speed. Otherwise, it stops
by applying a strong enough deceleration. This reproduces a real world situation, since,
when a traffic light switches to red, drivers only stop if safety braking conditions can
be respected. Examples of driving behaviors in presence of a green-to-red semaphore
are shown in Fig. V-7.

The second model we introduce is named Intelligent Driver Model with Lane Changes
(IDM-LC), and extends the IDM-IM model with the possibility for vehicles to change
lane and overtake each others, taking advantage of the multi-lane capability of the
macro-mobility description detailed in Section . Two issues are raised by the introduc-
tion of multiple lanes: the first is the separation of traffic flows on different lanes of the
same road, while the second is the overtakings model itself.

As far as the first problem is concerned, vehicular flows on parallel lanes of the same
road are separated by forcing the car following model to only consider vehicles trav-
eling on the same lane. However, as the number of lanes can vary from one road to
another, a vehicle approaching a crossroad will receive from the macro-mobility de-
scription the information about the structure of the road it is going to move to. It can
then adopt one of the following behaviors:� if the lane the vehicle is currently moving on is also present in the next road on

its path, then it moves through the intersection and keeps traveling on the same
lane in the next street;� if the lane currently used by the vehicle does not exist in the next road, then it
tries to merge to its right as it approaches the junction. If it cannot do it, e.g.
because the lane to its right is very crowded, it stops at the intersection and waits
until a spot becomes available.

On the overtaking model itself, the MOBIL model [101] is employed, mainly due to its
implicit compatibility with the IDM. This model adopts a game theoretical approach
to address the lane changing problem, allowing a vehicle to move to a different lane if
the lane change minimizes the vehicles overall braking. Such requirement is fulfilled
when the two conditionsp ­ F pßD�p c R «7� Eö®rhIp � ¿ z  Bp ° �,\ F p ­ � ¿ z F p ­ ° �,\ i  �p ~ ��z and p ­ ° �,\ E F p �l« y �
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are verified. In the left hand inequality, p is the current acceleration of the vehicle,
i.e., � _� ~ in the IDM formulae, while p ­ is the equivalent acceleration, computed in the
case the vehicle moved to an adjacent lane í . Similarly, p � ¿ z�z and p ­ � ¿ z�z describe the
acceleration of the car which currently follows the vehicle we are considering in the
case the vehicle under study stays on its lane, or in the case it moves on another laneí . Finally, p�° �,\ and p ­ ° �,\ represent the acceleration of the car which would become
the new back vehicle if the car under study changed its lane to í , before and after a
possible lane change of the latter. The model allows a vehicle to move to lane í if
the left hand inequality is verified, that is, if, in terms of acceleration, the advantage
of the driver who changes its lane p ­ F p , is greater than the disadvantages of the
following cars p � ¿ z F p ­ � ¿ z and p ° �,\ F p ­ ° �,\ . The MOBIL model also consider a
politeness factor ® , which scales the right hand term, in a way that, for values of ®
towards (or above) one, a polite behavior towards other drivers is maintained, while,
as ® moves to (or below) zero, the driver can become selfish or even malicious. The
threshold acceleration p ~ ��z introduces a minimum acceleration advantage to allow a
lane change, in order to avoid lane hopping in border cases. The bias term p c R «7� is
instead added to favor movements to one side: in our case, this bias value is added to
the advantage computed for movements to the right and subtracted for movements to
the left, thus reproducing the real world tendency of drivers to stay on their right on a
multi-lane road. Finally, in any case, the safety condition expressed by the right hand
side equation above must be verified for the lane change to occur, meaning that the
new back vehicle does not have to brake too hard (its deceleration must be over the
safe value p �l« y � ) as a consequence of the lane change.

F VANETMOBISIM VALIDATION

Several tests were run on the vehicular movement traces produced by CanuMobiSim
and VanetMobiSim, in order to verify that the overall mobility description provided
by these tools is able to model vehicular traffic with a sufficient level of realism. This
also gives us the possibility to comment on the different outputs obtained with various
microscopic mobility models implemented by CanuMobiSim and by VanetMobiSim.]^]]^]]^]_^__^__^_
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Fig. V-8. City section topology
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1−q

1−p

pq

Fig. V-9. Activity chain

First, different micro-mobility models are tested on a user-defined graph representing
a square city section of 1500 m side. The urban topology employed in those tests is
shown in Fig. V-8, where, unless specified differently, all roads have a single lane,
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and a speed limit of 15 m/s (54 km/h), except for the roads represented with thicker
lines, which allow a maximum speed of 20 m/s (72 km/h). Vehicles travel between
entry/exit points at borders, identified with circles and squares, crossing the city sec-
tion according to the fastest path to their destination. The trips generation scheme is
activity-based (see Section ), and the relative transition probability matrix describes a
simple activity chain, depicted in Fig. V-9. There, the states denote the class of the
selected destination: a round for the entry/exit points of high-speed roads, a square for
the entry/exit points of normal-speed roads, as also shown in Fig. V-9. The chain is
trivially ergodic, with steady state � ¬¬ T�~ s ~¬ T�~ � . In our simulation, the probabilities are

set so that ®é� Õ �j�?ì � , resulting in a stationary distribution h Vc s Vc i . This, along with
the proportion between the number of entry/exit points of the two classes, determines a
popularity of high-speed roads entry/exit points which is more than double with respect
to that of normal-speed entry/exit points. This mimic the tendency of traffic flows to
concentrate on the main, high-speed roads. The number of cars traveling at the same
time within the city section ranges from 100 to 500, reproducing light (10 vehicles/km)
to heavy (50 vehicles/km) traffic conditions. For each test, a single simulation was run,
with statistics recorded for 3600 s, after a transient phase of 900 s. When computing
95% confidence intervals for mean values collected averaging in time and on the whole
road topology, the error margin was found to be within 0.5% from the mean. The
mobility models parameters used in these experiments are listed in Table V-1.

In the rest of this section, we first compare vehicular mobility patterns generated by
VanetMobiSim with those of other popular vehicular models, then we validate Vanet-
MobiSim against TSIS-CORSIM, a benchmark traffic simulator.
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Model RWP CSM

Parameter speed pause speed pause

Value �EÙM����� >A@���GC@8��D��C� �EÙM���U� @���IC@8��� �EÙM����� >A@���GC@8��D��C� �EÙM���U� @��^���8���
(a) RWP and CSM

Model IDM

Parameter �C� �9� Þ Ü �
Value �KÙC����� >A@���GC@8��D��C� >-D @�� ��� @�� IED��C�8� @�� �ED��C�9�

(b) IDM

Model FTM IDM-IM IDM-LC

Parameter �9����� � ���C� �5  �C� � Ü3¡ ���C¢ £ Ü3¤�¥C¦
Value FED§�C� GC@ED��C� @��¨>AGC�C©oÜjÛ��8D � @�� GED§�C�8� @�� � @�� GED§�C�8�

(c) FTM, IDM-IM and IDM-LC

TABLE V-1. PARAMETERS USED FOR THE MICRO-MOBILITY MODELS

F.1 Validation against Popular Vehicular Models

In this section, we validate VanetMobiSim by showing how it is able to produce mo-
bility patterns more realistic than those produced by other popular vehicular mobility
models. In the following, we also report results obtained with the Random Waypoint
Model (RWP), in order to provide a benchmark of this popular model. Due to its nature,
this model is not bound by road constraints.

In Fig. V-10, the trend of the average speed versus the number of vehicles is shown.
RWP and CSM, ignoring car-to-car interactions, are not affected by the number of
vehicles present on the topology, leading to an unrealistically constant mean speed. The
mean velocity recorded with CSM is slightly lower than that measured with RWP, even
if the mean pause time is shorter in CSM than in RWP. The reason is that CSM limits
nodes movement to the road topology, with pauses at every intersection encountered
on the path. Thus, the average distance between subsequent pauses is reduced in CSM,
at the consequence of a lower average speed.

The low level of realism of these models is further evidenced in Fig. V-11 and Fig. V-
12, depicting the time-averaged vehicular density distributions over the road topology
obtained with RWP and CSM, respectively. These distribution plots, as well as the
equivalent ones for the other mobility models in the remainder of this Section, refer to
the 30 vehicle/km case.

As expected, RWP spreads nodes all over the square area, with a higher density of
nodes in the center of the map, which is part of RWP normal behavior [128].

On the other hand, cars driven by CSM follow the road topology, and we can observe
a non-zero density only where roads are present. Also, in Fig. V-12 the effect of the
activity-based mobility can be observed: the two faster and more frequented roads ex-
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Fig. V-11. Vehicular density: RWP
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Fig. V-12. Vehicular density: CSM

perience a higher vehicular density with respect to the other streets in the topology.
The same can be observed also in the vehicular density plots obtained with the other
micro-mobility models. However, CSM produces what we call an on-off behavior, with
a constant vehicular density on roads and sudden high peaks (note the different density
scale with respect to the equivalent plots of the other micro-mobility models) at inter-
sections, where vehicles overlap and stop for a random amount of time. The absence
of car-to-car interaction leads thus to an unrealistic complete absence of queuing or
acceleration/deceleration phenomena in proximity of intersections.

Looking back at Fig. V-10, modeling the vehicular mobility with FTM produces a very
high average speed, mostly due to the fact that vehicles never stop with this model, as
the zero speed condition would cause a deadlock as discussed in Section E.2. Probably,
a smaller value of the Y ð « } parameter would have reduced this effect, producing a
lower and more realistic figure of the average velocity. However, the settings we chose
force vehicles to move at a minimum speed of 10 km/h when they are at a distance
of 3 m or less from each others, which represents a suitable real world condition. As
expected, FTM reproduces the average speed reduction caused by the vehicular density
growth, since the increase of the number of cars traveling concurrently on the same road
reduces the fluid speed. However, the vehicular density distribution depicted in Fig. V-
13 demonstrates the non sufficient realism of this model. In the considered scenario, a
high density is experienced by the central segment marked as ½Û¾ in Fig. V-8, which
is shared by many of the possible paths drivers can choose from. The high quantity of
cars driving through determines a reduction of the speed according to the model and
creates an even higher vehicular density, which is consistent with what would happen
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Fig. V-13. Vehicular density: FTM
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Fig. V-14. Vehicular density: IDM

in a real world situation. However, FTM reasons on a per-edge basis and produces a
constant car density over each street, which results in the absence of traffic correlation
over connected roads. In our case, it can be noticed that the high car density in ½Û¾
suddenly disappear in roads after intersections ½ and ¾ (see Fig. V-8 for the mapping of
letters to intersections). Moreover, as FTM ignores intersections, the average number
of vehicles at crossroads does not differ from that of vehicles on roads nearby, which
again, is far from reality.

As far as IDM is concerned, the average speed curve in Fig. V-10 shows lower val-
ues when compared with that obtained with FTM, and quite surprisingly, appears to
be affected by the number of cars present on the topology. The speed reduction with
respect to FTM is imputable to a more realistic car-to-car interaction, which leads to
queuing of fast vehicles behind slow cars. The dependence from vehicular density has
instead a two-fold nature: first, the higher density increases the probability of encoun-
tering slow vehicles, which generate queues and force a reduction on other drivers’
speed. Second, there exists a side effect of the CanuMobiSim implementation, that oc-
curs when vehicles coming from different directions and overlapping at intersections
suddenly notice that the safety distance condition is violated. According to the current
implementation, they stop and wait for a distance 
?# to be restored before leaving the
junction. Such a circumstance causes the average speed to decrease, and occurs more
and more frequently as the vehicular density grows. In Fig. V-14, the vehicular density
proves that the realism of an accurate car-to-car interaction model in urban scenarios is
low, if intersection management is not taken into account. Spikes at highly frequented
intersections ½ , ¾ and È are to impute to the implementation issue explained above,
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while in general we can state that IDM does not perform more realistically than FTM
in an urban context.
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Fig. V-15. Vehicular density: IDM-IM stops
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Fig. V-16. Vehicular density: IDM-IM lights
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Fig. V-17. Vehicular density: IDM-LC lights

Two different tests were run for IDM-IM, the first with intersections regulated by stop
signs, and the second with traffic lights at road junctions. As observed in Fig. V-10,
in the first case the model produces a very low average speed, since cars spend most
of their time queued at intersections. The problem is exacerbated as the density of
vehicles increases and causes longer queues. This can also be noticed by looking at
the vehicular density in Fig. V-15, where high vehicular densities, accounting for long
queues, are recorded in the neighborhoods of the main intersections ½ , ¾ , È and

b
.

The higher concentration of vehicles around these intersections also has the side-effect
of reducing the number of vehicles on the other roads of the topology, which, as a
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matter of fact, record lower vehicular densities. A realistic effect of smooth vehicular
density, increasing towards the congested crossroads, is obtained with this model. It
can be noticed that such effect in not limited to single segments as it happened with
FTM, but also impacts adjacent roads.

When traffic lights with a period of 90 s are used to regulate traffic at intersections,
as proved by Fig. V-10, vehicular mobility is improved with respect to the stop sign
case, especially in dense scenarios. This could be expected, as traffic lights replace
the slow “taking-turns” crossroads management induced by stop signs with a faster
“burst” mechanism, in which groups of cars are allowed to cross the junction one after
the other, thus saving on acceleration delay. However, for the same reason observed
in the stop sign case, the mean speed is still reduced when more cars are introduced in
the road topology. An interesting effect can be observed when the vehicular density is
low: the stop sign case outperforms the traffic light one. This occurs because, when the
number of cars is small, the probability that a crossroad is free is high, thus passage is
often immediately granted with a stop handling of intersections, yet at the cost of slow-
ing down and accelerating again. On the other hand, when a traffic light management
is considered, vehicles still have to stop in presence of red traffic lights and wait for
the light to turn green, even if there are no other cars waiting to cross the intersection.
The vehicular density, presented in Fig. V-16, appears consistent with the speed figure,
as queuing at highly visited intersections is still present, but noticeably reduced with
respect to the previous IDM-IM scenario. Thanks to the improved distribution of traf-
fic over the whole topology, the queuing phenomenon can now be observed at minor
intersections, where vehicles have to wait for green traffic lights.

Finally, we report the results obtained when IDM-LC is employed as micro-mobility
model. We considered two per-direction lanes on each road, and traffic lights at in-
tersections. From Fig. V-10, modeling vehicular micro-mobility with IDM-LC seems
to avoid most of the speed decay effects previously discussed. This is an interesting
result, motivated by the fact that i) vehicles actually employ overtakings to avoid slow
cars and congested lanes, thus increasing the average velocity, and ii) the presence
of multiple lanes helps vehicular mobility in presence of densely populated intersec-
tions, as multiple cars can pass through the intersection at the same time and reduce
the bottleneck effect of road junctions. In other words, the availability of two parallel
unidirectional lanes on each road does not only physically double the capacity of the
urban infrastructure, leading to a halved perceived vehicular density, but also brings
important correlated effects. In our case, the maximum simulated density of 50 ve-
hicles/km would appear, for the reasons explained before, as a density of less than
25 vehicles/km, a condition which does not seem to generate severe traffic conges-
tion. The vehicular density measured with IDM-LC is depicted in Fig. V-17 and shows
that queuing phenomena at intersections are almost equally distributed over the whole
topology. Minor intersections experience a higher density with respect to the IDM-IM
case as, in absence of critical congestion situations at main junctions, vehicles are more
uniformly spread and their presence at smaller crossroads is more noteworthy.

In a different test, we exploited the vehicular mobility description provided by Vanet-
MobiSim to recreate a typical effect of vehicular traffic. In Fig. V-18, the shock waves
produced on vehicular density by a periodic perturbation are shown. This result has
been obtained with IDM-LC on a 1 km long, unidirectional, double lane, straight road.
Cars move towards positive abscissae and a traffic light, located halfway and with a
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period of 360 s, is used as the perturbation source. We can notice that the red traffic
light inhibits the movement of vehicles, causing them to stop at 500 m. As more vehi-
cles approach the traffic light, a queue is formed, as shown by the increasing vehicular
density, but, when the traffic light turns green, queued vehicles start flowing towards
and through the second half of the road. It is possible to see that the high density shock
wave propagates in the opposite direction with respect to movement of cars as time
goes on. The speed dynamics recorded during the same experiment are depicted in
Fig. V-19, where we can observe the queuing perturbation even better, which are rep-
resented by the dark, zero-speed areas, propagating against the traffic flow direction in
time. Shock waves are a common phenomena of real world traffic. When long queues
form in proximity of perturbation sources (crowded intersections, toll stations, in-flow
ramps, etc.) the finite reaction time of drivers determines a delay in the propagation of
movement. Thus, vehicles queued far from the perturbation origin experience changes
in velocity or local traffic density only a long time after the original mobility change
occurs at the perturbation.

F.2 Validation against a Benchmark: TSIS-CORSIM

In the previous section, we illustrated how VanetMobiSim was able to reproduce more
realistic mobility patterns than other widely spread models used by the community.
However, we may raise the question of what realistic means. One solution in order
to verify the realism of a mobility model is to compare its synthetic traces with real
mobility traces. However, those real traces are hard to obtain. Another solution is to
compare the synthetic traces with a traffic simulator, which has already been calibrated
and validated based on real traces. In the following section, we therefore use TSIS-
CORSIM, a benchmark traffic generator within the traffic engineering community, in
order to validate the traces generated by VanetMobiSim.

TSIS-CORSIM [75] is a comprehensive traffic simulator, applicable to surface streets,
freeways, and integrated networks with a complete selection of control devices (i.e.,
stop/yield sign, traffic signals, and ramp metering). It simulates traffic and traffic con-
trol systems using commonly accepted vehicle and driver behavior models. COR-
SIM has been validated by showing its ability to model identical mobility patterns to
real traces gathered in predefined testing areas. CORSIM has been applied by thou-
sands of practitioners and researchers worldwide over the past 30 years and embodies
a wealth of experience and maturity. Funded by the US Federal Highway Adminis-
tration (FHWA) throughout the last three decades, TSIS-CORSIM has evolved into a
benchmark within the transportation profession. We validated VanetMobSim against
CORSIM in the version 5.1.

CORSIM has been created for transportation, traffic, and civil engineers. As no in-
teraction has been created in CORSIM for network analysis or simulations, we had to
create a specific parser to extract vehicular mobility information. Formally, CORSIM
does not output any other data than statistics. However, it communicates with the visu-
alization tool TRAFVU using a set of files from where we extracted the mobility traces.
We configured CORSIM according to the same urban topology and activity chain as in
Fig. V-8 and Fig. V-9. As CORSIM has been designed to model urban traffic in a high
level of precision, it also contains a large set of configuration parameters. For parame-
ters common to VanetMobiSim and CORSIM, we used the same values as in Table V-1.
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Fig. V-20. CORSIM Vizualizer

For the other parameters, we kept the values defined by default in CORSIM. The exact
number of cars simulated by CORSIM cannot be easily configured. Accordingly, we
cannot guarantee that we have the same number of cars in both cases. That will be
visually seen in the next figures as the local density will slightly differ. However, we
are more interested in the geographical distribution of the cars than in local intensity.

In Fig. V-21, we compare the spatial distribution of vehicles in the topology generated
by CORSIM and by VanetMobiSim. Even though the local densities are not similar,
we can clearly see that the aggregation occurs at similar places. Similarly to VanetMo-
biSim, vehicles are likely to follow streets with a higher velocity. Accordingly, we see
that in both figures, a bottleneck is generated on the CD and AB edges. Indeed, the in-
tersection at C is a major crossroad between two high speed streets, and the intersection
at B contains a side street which potentially attracts a lot of traffic due to the number of
attraction points. As all intersections are modeled by stop signs where cars pass one at
a time according to the right hand rule, the slow traffic flow at those intersections are
generating similar mobility patterns.

Figure V-22 compares the spatial distributions between CORSIM and VanetMobiSim
when intersections are controlled by traffic lights. Similarly to the previous graph, we
can clearly see that the spatial distribution is very similar, cars aggregating in the same
intersections or road-segments. We can also observe a similar effect of the traffic light
located at the intersection C, which helps resolving the vehicle aggregation on the edge
CD both in CORSIM and VanetMobiSim.

Finally, in Fig. V-23, we see that the added lane changing capability has a similar ef-
fect on traffic aggregation. In both cases, the large aggregations are reduced to local
peak densities at similar intersections. The local densities are also more uniformly dis-
tributed per intersection. By allowing cars to overtake slow and potentially blocking
cars, both CORSIM and VanetMobiSim manage to reduce the clustering effect at the
intersection very similarly. Accordingly, even though the two simulators use different
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Fig. V-21. Comparison of the spatial distribution with Stop signs
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Fig. V-22. Comparison of the spatial distribution with Traffic lights
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Fig. V-23. Comparison of the spatial distribution with Traffic lights and lane changing
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macro- and micro-mobility models, potentially having different configuration parame-
ters, we see that CORSIM and VanetMobiSim produces similar traffic distributions.
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Fig. V-24. Comparison of the density shock waves

In the next set of figures, we compare the shock wave effect created by a periodic
perturbation modeled by a traffic light. The topology is identical to the one used for
the Fig. V-18 and Fig. V-19. By comparing the two plots in Fig. V-24, we first can see
that CORSIM and VanetMobiSim generate similar density shock waves. In both cases,
the local perturbation is backward propagated. In Fig. V-25 the similarity is even more
exacerbated as we see the periodic speed perturbation. In both plots, the speed shock
waves are also backward propagated according to the delayed stop and move patterns
observable in waiting queues. Similarly to the traffic distribution previously displayed,
CORSIM and VanetMobiSim produces very similar mobility patterns generated by
periodic perturbations.
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To conclude this section, we would like to emphasize that although CORSIM and
VanetMobiSim neither use similar micro-mobility patterns, nor are controlled by same
configuration parameters, we showed that the traffic distribution and well as the shock
waves generated by a periodic perturbation were similar and conformed to real life
situation. Accordingly, this let us claim that the mobility patterns generated by Vanet-
MobiSim are validated and realistically reflect real motion patterns.

F.3 Illustration in Real Urban Case

As a further addition to the validation of the mobility generated by VanetMobiSim,
Fig. V-26 shows a snapshot of the vehicular mobility obtained with VanetMobiSim on
the urban area of Westwood in Los Angeles overlapped with a real map of the same
city section. The simulated vehicular mobility is extracted from the nam network an-
imator of ns-2. The snapshot refers to a simulation involving IDM-IM, traffic lights
at intersections, a random speed-based path selection. Although TIGER maps do not
include speed limits information, we deduced them from the street class, according to
the local speed limitation policy. Drivers thus take into account the path length and the
allowed speed along the path, making detours if a path appears globally faster. The con-
sequence can be seen in in Fig. V-26, where Wilshire Boulevard attracts the majority
of drivers, hoping to save time by using a large East-West commuting corridor instead
of parallel streets. When the local vehicular density exceeds the traffic lights manage-
ment capability, like at intersections between Wilshire and Glendon, and Glendon and
Lindbrook, the traffic cluster pours out and cars start stacking up on the surrounding
streets and not only at the road junctions. These congestion phenomena can be easily
observed in real-life situations.

Fig. V-26. Simulated vehicular mobility in the Westwood area

G CONCLUSION

As the lack of realism of the Random Waypoint Model (RWM) was a serious obstacle
to the outcome of the predictability analysis of Chapter IV, we decided to assess more
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realistic mobility patterns. Vehicular motions seemed an appropriate choice as their
patterns were complex enough and reflecting real situations, but also showed some
signs of regularity which could be exploited by mobility prediction heuristics.

In this Chapter, we therefore presented VanetMobiSim, an open extension to the Canu-
MobiSim user mobility framework capable of producing realistic vehicular mobility
traces for several network simulators. We reviewed the macroscopic and microscopic
mobility descriptions of CanuMobiSim, and detailed the additions to both scopes brought
by VanetMobiSim. Simulation results were presented and discussed, trying to under-
stand the differences between various micro-mobility models, in terms of vehicular
density and speed distribution.

By taking a comprehensive look at the results obtained, it appears clear that the detail
level of the micro-mobility models implemented by other mobility models available for
VANETs is not sufficient to reproduce realistic vehicular traffic traces. The increased
degree of detail introduced by the micro-mobility models of the VanetMobiSim exten-
sion, and the possibility of their interaction with the new macro-mobility description
appear necessary to reproduce real world phenomena. In particular, the progressive
introduction of stops signs, traffic lights, multiple lanes and overtakings demonstrates
how the modeling of each of these features brings noticeable changes to the system
performance.

Moreover, we compared the vehicular mobility traces obtained by VanetMobiSim with
TSIS-CORIM, a benchmark traffic generator able to reproduce realistic and validated
vehicular traffic traces. Through the illustration of the similarity between both traces,
it let us claim that VanetMobiSim is able to produce realistic vehicular mobility traces
available to network simulators. That makes VanetMobiSim one of the few synthetic
vehicular-oriented mobility simulator fully validated and freely available to the vehic-
ular networks research community.

From a networking point of view, the differences observed between different micro-
mobility models, in terms of vehicles and speed distribution, queuing dynamics and
presence and size of clusters may heavily affect the connectivity of VANETs, and,
consequently, the performance of ad-hoc network protocols. It is part of our future
work to investigate the actual impact of these different traffic phenomena on a vehicular
network, so to understand which factors must be considered and which can be neglected
for a confident VANETs simulation study.

Also, a very important factor when simulating highly mobile networks is the radio
propagation model. Results obtained without accounting for the impact of large ob-
stacles, such as buildings, on the radio signal propagation can hardly be realistic. We
are thus interested in studying this aspect, taking benefit from the availability of a de-
tailed topology description to introduce a new component in VanetMobiSim, capable
of generating radio propagation information for network simulators.
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Abstract— In this Chapter, we illustrate how the realistic motion patterns introduced in Chap-
ter V affect the velocity, and how new parameters become necessary to evaluate the performance
of routing protocols in Vehicular Ad Hoc Networks (VANETs). To express our point, we evalu-
ate the performance of AODV with realistic urban scenarios. We show how new urban specific
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parameters have significant impacts on routing, and de-facto replace some non-urban specific
parameters. For example, the average velocity appears to be irrelevant in urban scenarios and
should be replaced by road segment lengths. Then, we evaluate AODV and OLSR performance
in realistic urban scenarios. We study those protocols under urban-specific metrics such as road
segment length, and cluster effect, or non-urban specific metrics such as vehicle density, and
data traffic rates. We show that clustering effects created by cars aggregating at intersections
have remarkable impacts on evaluation and performance metrics. We conclude that OLSR is a
better candidate than AODV for routing in VANET in urban areas.

Keywords— Simulation Parameters, Performance Evaluation, Urban Environment, Realistic
Vehicular Mobility Models, AODV, OLSR, VANET.

IN Chapter V, we showed the drastic difference between the motion patterns gener-
ated by the VanetMobiSim Model (VMM) and other models used in the literature

to evaluate VANET protocols. As the spatio-temporal distribution of the vehicles and
speed are key parameters for the stability of wireless links, routing protocols might
show different behavior. Accordingly, previous studies of ad hoc routing protocols
cannot be applied to VANETs modeled by realistic motion patterns. In this Chapter,
we therefore aim at studying the effect of realistic vehicular motion patterns on routing
protocols for VANETs.

A MOTIVATION

One of the critical aspects when evaluating routing protocols for VANETs is the em-
ployment of mobility models that reflect as closely as possible the real behavior of ve-
hicular traffic. Simple random models cannot describe vehicular mobility in a realistic
way, since they ignore the peculiar aspects of vehicular traffic, such as cars acceler-
ation and deceleration in presence of nearby vehicles, queuing at roads intersections
or traffic bursts caused by traffic lights. All these situations greatly affect the network
performance, since they act on network connectivity, which makes vehicular specific
performance evaluations fundamental when studying routing protocols for VANETs.
Initial works [172, 173] on performance evaluation were based only on random mo-
tions, such as random walk models, and lacked any interaction between cars, generally
referred as micro-mobility. Following the recent interest in realistic mobility models
for VANETs, new studies appeared on performance evaluations of VANETs in urban
traffic or highway traffic conditions [174, 118]. As these new models generate urban
specific spatial and temporal dependencies, the real mobility parameters differ from the
initial and controlled ones. Performance comparison may become unfair and arguable.

Another critical aspect is to use the appropriate parameters in order to evaluate routing
protocols. A crucial parameter influencing the performance of Vanets is referred by the
generic term mobility. In simple models, mobility is equal to velocity. However, on
the eve of realistic mobility models, it becomes hard to understand the real parameters
controlling this mobility. However, only few studies have been done illustrating how
realistic motion patterns influence the mobility and other configuration parameters.
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B BASIC IDEA

Our objective is to illustrate how realistic urban motions reduce the effect of some
standard evaluation metrics, and how they generate new urban-specific performance
parameters never described in the past. Using VanetMobiSim Model (VMM) pre-
sented in Chapter V, it becomes possible to evaluate more realistically ad hoc routing
performances for vehicular networks. We configure VanetMobiSim to model an urban
environment, then evaluate the performance of AODV and OLSR in terms of (i) Packet
Delivery Ratio (PDR) (ii) Delay (iii) Hop Count. We test AODV and OLSR in four
different conditions (i) velocity (ii) road segment length (iii) cluster effect (iv) traffic
load.

C SUMMARY OF CONTRIBUTION

We first show how the average velocity has a minor impact on performance as it cannot
reflect the real velocity in urban traffic. A more significant parameter is the road seg-
ment length, as this is the parameter controlling the real velocity. We also exhibit how
the clustering effect obtained at intersection has a major effect on the effective average
velocity during the simulation. We finally illustrate how OLSR outperforms AODV
and is consequently a better candidate than AODV for routing in urban environment.

D ORGANIZATION OF WORK

The rest of the Chapter is organized as follows. In Section E, we provide a brief
overview of related work in MANET protocol evaluation and comparison. Section F
illustrates the effects of VMM mobility patterns on standard performance parameters.
In Section G, we evaluate AODV and OLSR performance in realistic urban scenarios,
and we finally conclude the Chapter in Section H.

E RELATED WORK ON MANET PROTOCOL COMPARISON

Several studies have been published comparing the performance of routing protocols
using different mobility models or performance metrics. One of the first comprehen-
sive studies was done within the framework of the Monarch project [172]. This study
compared AODV, DSDV, DSR and TORA and introduced some standard metrics that
have been then used in further studies of wireless routing protocols. A paper by Das
et al. [173] compared a larger number of protocols. However, link level details and
MAC interference are not modeled. Another study [175] compared the same protocols
as the work by Broch et al. [172], yet for specific scenarios as the authors understood
that random mobility would not correctly model realistic network behaviors, and con-
sequently the performance of the tested protocols. Globally, all these papers concluded
that reactive routing protocols perform better than proactive routing protocols.

Although the proactive OLSR protocol has been developed in 2002, very few studies
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compared it with other ad hoc network protocols. Clausen et al. [176] evaluated AODV,
DSR and OLSR in varying network conditions (node mobility, network density) and
with varying traffic conditions (TCP, UDP). They showed that unlike previous studies,
OLSR performs comparatively to the reactive protocols.

Following the developments started with scenario-based testing, it also became obvious
that, as scenarios were able to alter protocol performances, so would realistic node-to-
node or node-to-environment correlations. This approach became recently more excit-
ing as VANETs attracted more attention, and a new wave of vehicle-specific models
appeared. The most comprehensive studies have been performed within the Fleetnet
project [177]. In a first study [174], authors compared AODV, DSR, FSR and TORA
on highway scenarios, while [118] compared the same protocols in city traffic scenar-
ios. For instance, they found that AODV and FSR are the two best suited protocols,
and that TORA or DSR are completely unsuitable for VANET. Another study [178]
compared a position-based routing protocol (LORA) with the two non-position-based
protocols AODV and DSR. Their conclusions were that, although AODV and DSR per-
form almost equally well under vehicular mobility, the location-based routing schema
provides excellent performance. Similar results has been reached by members of the
NoW project [179], which was their major justification for the design of position-based
forwarding techniques. However, to the best of our knowledge, no performance eval-
uation has been conducted between OLSR and other routing protocols under realistic
urban traffic configurations.

F INFLUENCE OF VANETMOBISIM ON VEHICULAR MOTION PAT-
TERNS

The VanetMobility Model (VMM) requires many configuration parameters, all of which
have effects on the modeling of vehicular motions. In this section, we illustrate the av-
erage road segment length, the average acceleration, resp. deceleration rate, and the
clustering effect, which are three major novel motion parameters VMM defines, and
compare their influence on the RWM.

With these parameters, VMM generates motion patterns that cannot be modeled by
pure random motions. Yet, these parameters deeply influence the spatial distribution
and velocity of cars in the network. Indeed, any single one or any combination of
them is able to generate a significant difference between the initial average velocity
and the real velocity, or between the average and the local density. This problem may
be formulated as the difference between initial distribution of the statistics of mobil-
ity parameters and the steady state distribution. However, as the problem of analyti-
cally computing the steady state distributions of realistic mobility models is much more
complex than that of random models, the only way to illustrate this effect is through
simulations. The corollary is that any simulation must be undertaken after a sufficiently
large "warming" time in order to reduce the effect of the transient state.
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F.1 Parameters Definition

Before going further, we would like to define the particular parameters we use in this
Chapter.

We first provide Speed related definitions� Average Speed– The average speed controls the distribution of the random vari-
able that determines the speed between each destination point.� Desired Speed– The desired speed is the speed sampled at each destination point.
It is therefore the speed a driver aims at reaching using a smooth acceleration.
However, according to traffic regulations, there is no guarantee that this speed
may ever be reached.� Real Speed– The real speed is the temporal speed obtained at each time instant.
It is subject to traffic, traffic signs and driver habits.� Speed Decay– The speed decay is the gap between the desired speed and the real
speed.

Then, the Clustering Effect is a particular parameter specific to realistic mobility mod-
els which should not be mistaken with the density or the number of nodes. Indeed,
the clustering effect is a parameter taken from urban traffic modeling and controls the
aggregation at the intersections. Our purpose is to spot out the effects solely dependent
on the urban traffic distribution and not dependent on effects on the MAC layer or on
routing protocols from an increased number of neighbors. Accordingly, the clustering
effect is controlled by increasing the number of vehicles in the urban area, while re-
ducing the transmission range in order keep the average network density constant1 (in
terms of average number of neighbors per vehicle). Thanks to it, we are able to see
the effect of spatial and temporal dependencies on routing protocols, and not only the
effect of the density that has already been studied in the past.

Finally, a Road Segment is defined as the piece of road connecting two intersections.
The length of a road segment is therefore the distance between two intersections. Its
major effect on realistic mobility models is its control of the gap between the desired
speed and the real speed. It is also able to control the clustering effect.

F.2 Illustration

In Fig. VI-1, we illustrate the effects of the average road segment length and the accel-
eration, resp. deceleration rate, on the real velocities of vehicles. In both figures, the
desired velocity is the one reached at any time by RWM, and we modeled the velocity
of a single vehicle during on single trip. Unlike the RWM which ignores the VMM’s
parameters, the velocity modeled by VMM fluctuates significantly as it is influenced by
the acceleration rate and the road segment length. By considering the acceleration rate��úéìÁ
 c and comparing Fig. VI-1(a) and VI-1(b), vehicles never reach the desired speed

1It is possible to obtain a significant performance difference if we have a large clustering effect at a low
network density or a low clustering effect at a high network density.
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Fig. VI-1. Illustration of vehicular real velocity on a single trip, where p and q are the
acceleration, resp. deceleration rate
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in the former figure, as cars modeled by VMM respect traffic regulations and must
decelerate and stop at each intersection in the trip always before reaching the desired
speed. However, by looking at Fig. VI-1(b), the effect may be limited by increasing the
distance between two successive intersections, as cars have more time to reach their
desired speed. The second parameter is the acceleration, resp. deceleration rate. Con-
sidering Fig. VI-1(a), for a fixed distance between two intersections, a car with a strong
acceleration rate is quickly going to reach the desired speed and will run faster on the
selected road segment than a car with a smaller acceleration rate. Since the real velocity
is an important parameter for routing protocols in mobile ad hoc networks, we expect
these new parameters to be more fundamental than average, or desired velocities.

RWM’s objective is to keep vehicles position uniformly distributed in the network, an
effect that may be sought for SANETs for instance. However, for VANETs, this is sel-
dom the case as vehicles follow predefined paths and aggregate at intersections. This
leads to a non-uniform distribution of vehicles in the network, which we call the clus-
tering effect. As we see on Fig VI-2(b), the number of vehicles observed in the network
is higher on predefined roads and even higher on intersections, while the number of ve-
hicles is, as expected, uniformly distributed in Fig VI-2(a). Since the distribution of
vehicles in the network has an impact on connectivity and data dissemination, we also
expect the clustering effect to have a significant influence on performance of mobile ad
hoc networks in vehicular urban areas.

As an illustration of a possible effect on performance, we show in Fig. VI-3 the aver-
age speed decay from a desired velocity that vehicles experience with VMM. However,
this desired velocity is subject to speed limitations that cannot be exceeded, or to any
obstacle that either reduces the vehicle speed or even forces it to stop. Clearly, the
desired speed is always reached by the RWM as there is no correlation with the envi-
ronment, but VMM needs to comply with those limitations. Accordingly, there is no
guarantee that this velocity can even be reached during the simulation under VMM. As
we can see on Fig. VI-3(a), there is a drastic decay as a function of the desired velocity,
and it does not depend on it. The desired velocity is therefore not able to control the
real velocity reached by nodes under VMM. However, as seen in VI-1, the road seg-
ment length does. The speed decay is therefore not stable in Fig. VI-3(b), since it is
influenced by the road segment length or acceleration, resp. deceleration rates.

The main conclusion is that network mobility as defined in previous works can-
not be used as an evaluation metric for vehicular ad hoc networks. We should
rather define new metrics as acceleration/deceleration factors, clustering effect or
distance between two intersections.

G PERFORMANCE EVALUATION

In order to illustrate the influence of the new parameters described in the previous
section on routing protocols, we used the open source network simulator ns-2 in its
version 2.27 as it is widely used for research in mobile ad hoc networks. We first
provide a description of the scenarios and then present the obtained results.
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Fig. VI-2. Spatial distribution of vehicles in the urban environment (Cluster Effect)
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G.1 Scenario Characteristics

In this Chapter, we consider squared urban areas of 1000x1000m constituted of three
different cluster categories: downtown, residential and suburban. The different obstacle
densities for these three categories are summarized in Table VI-2(b). Fig. VI-4 displays
an example of an urban graph used in this Chapter. The simulation parameters are given
in Table VI-1. We tested each protocol with a spatial model composed of 30% of traffic
lights and 70% of stop signs. Finally, each road is composed of 2 lanes in order to let
cars overtake if necessary.

Road Segment

Fig. VI-4. Illustration of an urban graph used for the simulations

Vehicles are randomly positioned on intersections. Then, each vehicle samples a de-
sired speed and a target destination. After that, it computes the shortest path to reach
it, taking into account single flow roads. Eventually, the vehicle moves and acceler-
ates to reach a desired velocity according to street regulations. When a car moves near
other vehicles, it decelerates to avoid the impact or it tries to overtake them. When
it is approaching an intersection, it first acquires the state of the traffic sign. If it is a
stop sign or if the light is red, it decelerates and stops. If it is a green traffic light, it
slightly reduces its speed and proceeds to the intersection. At target destination, the car
decelerates, stops, and then samples a new destination. The different parameters for
the micro-model are given in Table VI-2(a).

We decompose our performance analysis into five different scenarios, where parame-
ters are fixed according to Table VI-4. In the first scenario, we want to see the influence
of the average velocity. Next, we analyze the effect of different lengths of road seg-
ments and also on the clustering effect at intersections. Finally, we study the data traffic
rate and the network local density. We use the word "local" density, as it represents the
density measured at the intersections and not the average density.

Each point is the average of 10 samples, while the error bars represent a 95% confi-
dence interval. We also point out that in all first three scenarios, we maintain the same
average density, as we want to exhibit results not related to an increased density. Fi-
nally, for each scenario, we first simulated AODV for the RWM [164] and the VMM
with IDM-LC, and then AODV and OLSR but only for VMM with IDM-LC. Accord-
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Network Simulator ns-2.27
Mobility Models RWM [164], VanetMobiSim (VMM) IDM-LC

AODV Implementation AODV-UUê �?íMí K « { � ¹ Interval 3s
OLSR Implementation NRLOLSRê �?íMí K {l­ � z Interval 0.5sñ È {G­ � z Interval 2s

Simulation time 1000s
Simulation Area 1000m x 1000m grid

Number of Nodes 10 H 80
Tx Range 100m

Speed Uniform
Density ª2¯ K ����
Ç� ½ d z « ° _ � �û¬« � £ d ­ « � £Data Type CBR

Data Packet Size 512 bytes
MAC Protocol IEEE 802.11 DCF

MAC Rate 2 Mbits/s
Confidence Interval 95%

TABLE VI-1. SIMULATION PARAMETERS

Param Description Value
a Maximum Comfortable Acceleration 0.9 ú ìÑ
 c
b Maximum Comfortable Deceleration 0.5 ú ìÑ
 c
l Vehicle Length 5m
 �k{�} Minimum Congestion Distance 2m
t Safe headway time 1.5sq �l« ¹ Maximum safety deceleration 4 úéìÁ
 c
p Politeness 0.5p�~ � Lane Change Threshold 0.2 ú ìÑ
 cñ ­ R _ � ~ Traffic Light Transition 30s

(a) Micro-model

Clusters #obstacles
per ��
�
Ñú c #cluster per�)
Á
�
Ñú c cluster ratio

Downtown 50 4 10%
Residential 12.5 4 40%
Suburban 2.5 4 50%

(b) Macro-model

TABLE VI-3. VEHICULAR MOBILITY MODEL PARAMETERS
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ingly, we are able to see the effect of realistic urban motions on the parameters and on
the performances.

Finally, we would like to emphasize that all simulations have been obtained on sparse
networks, as it will be the major case in early stage of VANETs2, and that an increased
density could only further improve the performance of AODV and OLSR. Moreover,
this allowed us to illustrate that the particular urban vehicular mobility patterns are
able to locally reduce this sparseness and therefore increase the performance of routing
protocols.

Before moving to the metric definition, we would like to more precisely describe two
scenarios that are novel to performance evaluation in mobile ad hoc networks. Indeed,
urban mobility generates particular motion patterns that cannot be accurately illustrated
by standard scenarios such as velocity, node density or data traffic. We therefore need
urban specific performance evaluation scenarios.

The first scenario is road segment length scenario. By increasing the length of road
segments from >Ñ
 m to ë�
Á
 m, we actually model urban traffic distribution observed
from small roads in highly urban areas to highways in major commuting corridors. By
fixing the average desired velocity and increasing the road length, we increase the time
spent by vehicles on the road elements, which in turn reduces the clustering effect and
also increases the real vehicular speed. In order to see the sole effect of the length of
road segments and not network disconnections, we maintain a fixed node density and
increase the transmission range accordingly.

The second scenario is the cluster effect scenario. We increase the number of vehicles
in the urban area, while reducing the transmission range in order keep the average
network density constant (in terms of average number of neighbors per vehicles). We
indeed want to spot out results solely dependent on the urban traffic distribution and
not on effects on the MAC layer or on routing protocols from an increased number of
neighbors. The average road length in this scenario is set to �?>Ñ
 m. By increasing the
number of vehicles and keeping fixed the average road length, we actually increase the
interaction of each car with its environment, which in turn limits its ability to reach a
desired speed and accordingly reduces the real speed.

G.2 Metrics Definitions

We measured several metrics for MANETs routing that are mostly influenced my mo-
bility:� Packet Delivery Ratio (PDR)– It is the ratio between the number of packets de-

livered to the receiver and the number of packets sent by the source.� Delay– It measures the average end-to-end transmission delay by taking into
account only the packets correctly received.� Hop Count– It represents the number of hops that a packet has taken before it
has been correctly delivered.

2We only expect a slow increase of VANET ready vehicles.
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TABLE VI-4. SIMULATION SCENARIOS

G.3 Influence of Vehicular Mobility Patterns on AODV

In Fig. VI-5(a), we see that for VMM3, the average velocity does not have any effect
on the PDR, which is a surprising result since the velocity is a common metric in
performance evaluation, and previous results have shown that AODV was sensitive to
it. On the other hand, the performances with RWM are influenced by the velocity
and differ significantly from those with VMM. Indeed, we see in Fig. VI-5(b) that an
increasing velocity worsens the delay for the RWM, but does not significantly impact
the VMM. Similarly, Fig. VI-5(c) illustrates how a higher velocity reduces the number
of hops for VMM, but does not conclusively affect RWM.

Actually, the explanation for this behavior comes from the micro-model and its inter-
action with the spatial environment. Indeed, when modeling smooth transitions and re-
alistic interactions with urban traffic regulations, a fixed initial velocity does not make
any sense. Instead, we define an average desired velocity a driver aims at reaching
with a smooth acceleration. However, this desired velocity is subject to speed limi-
tations that cannot be exceeded, or subject to obstacles that reduces vehicle speed or
even forces it to stop. Accordingly, there is no guarantee that this velocity can even be
reached during the simulation. And, as it can be seen in Fig. VI-3(a), the real speed
is stable with respect to the average velocity, and significantly lower than the desired
velocity, which explains the relative stability of AODV with VMM.

In the next set of simulations, we illustrate the effect of the average length of road
segments on the performance of AODV using the road segment length scenario de-
scribed in Section G.1. We illustrate in Fig. VI-6(a) how a longer road segment im-
pacts AODV’s PDR. As we could expect, RWM is not influenced by longer road seg-

3In the remainder of this Chapter, we will refer only to the mobility model for actually mentioning AODV
using the mobility model
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ments. However, AODV’s PDR with VMM is significantly improved. Fig. VI-6(b) and
Fig. VI-6(c), shows that the length of road segments also influences the delay and the
number of hops of AODV. Not only can we see that the average segment length has
an effect on the performance of AODV, but also that the difference between VMM and
RWM is not negligible. As VMM models more realistic motion patterns than RWM,
we expect the performances in Fig. VI-6 for VMM to be closer to reality. Consequently,
the length of road segments in urban scenarios should not be neglected. The reason for
the bad performance of AODV with RWM comes from the sparseness (average low
density) of the network. But as the road segment length increases, the dynamism of the
network in urban areas helps AODV to improve its performance. However, as it can be
seen in Fig. VI-6(c), this improvement is only local as the number of hops is reduced.
Basically, we can deliver more packets, but only to source-destination nodes around a
similar intersection.

We further carry on the analysis of urban traffic distribution and its effects on AODV
using the cluster effect scenario as described in Section G.1. In Fig. VI-7(a), we de-
pict the effect of traffic clusters at intersections, a parameter that does not influence
RWM. The PDR is reduced, since it has an impact on the spatial distribution of the
vehicles. This observation is corroborated by looking at Fig. VI-7(b), where we see
the increasing end-to-end delay, and at Fig. VI-7(c), where the hop count is reduced as
the network is only able to deliver data to vehicles in nearby clusters. Again, besides
the influence of the parameters on the performances, we see a major performance gap
between VMM and RWM. We therefore illustrate how this new parameter is also able
to control the performance of AODV for realistic mobility patterns in a way that is not
possible by standard parameters. Similarly to the road segment length scenario, the
reason for the bad performance of AODV with RWM comes from the sparseness (aver-
age low density) of the network. But as cluster effect is increased, the local aggregation
around each intersection helps AODV to improve its performance.

G.4 Performances of AODV and OLSR under Vehicular Mobility
Patterns

In the previous section, we illustrated how realistic vehicular mobility patterns had a
non negligible impact on AODV, as its performance was significantly improved. We
can extrapolate that OLSR could also have different performance results under ve-
hicular mobility patterns. We are now therefore interested in conducting a full scale
performance evaluation of AODV and OLSR in order to see how they behave in urban
environment, and see if conclusions reached in previous studies are still valid.

As we showed in the previous section that the average velocity had no effect on AODV,
we only decompose our performance analysis into four different scenarios, where pa-
rameters are fixed according to Table VI-4. In the first scenario, we want to see the
influence of the average length of road segments. Then, in the second scenario, we an-
alyze the clustering effect at intersections, while in the third scenario, we are interested
in the data traffic rate. Finally, in the last scenario, the objective aims at observing the
effect of the network density. Each point is the average of 10 samples, while the error
bars represent a 95% confidence interval.

We illustrate, on the first set of simulations, the effect of the average road element
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length on the performance of AODV and OLSR using the road segment length scenario
as described in Section G.1. On Fig. VI-8(a), we see that OLSR PDR is less sensitive
to the road length than AODV’s. As we decrease the length of road segments, the
distribution of vehicles on the simulation area becomes more and more clustered on
intersections, and AODV is more dependent to this effect than OLSR. On Fig. VI-8(b),
AODV’s control packets drop as the length of road elements increases. AODV RO ends
up being

B > % lower than OLSR. As we see, OLSR control traffic may be assumed to be
independent of the road length, as it is only dependent to network density or velocity.
Moreover, the increase in the average speed is too limited to have a direct impact on
it. On the other hand, the improved spatial distribution has a major impact on AODV
as it improves the dissemination of buffered active routes at intermediate nodes, which
in turn reduces the number of control packets required to open a route to a destination
vehicle. And as we reduce the amount of control packets to open a route, the delay
can also be significantly improved as it can be seen in Fig. VI-8(c), where AODV’s
end-to-end delay for clustered urban networks is 4 times larger than OLSR’s, but ends
up being identical for larger road lengths.

We further carry on the analysis of urban traffic distribution and its effects on AODV
and OLSR using the cluster effect scenario as described in Section G.1. On Fig. VI-
9(a), we see that neither AODV nor OLSR outperforms the other in term of PDR.
Although both protocols are sensitive to urban traffic, OLSR is less dependent to this
clustering effect as it accentuates its gap with AODV as the number of vehicles in-
creases. In Fig. VI-9(b), we find a similar results as Fig VI-8(b) where AODV produces
less control traffic than OLSR in a non-clustered urban environment, a situation that is
reversed for clustered urban environments. Similarly, the AODV’s end-to-end delay is
significantly increased by an increased clustering effect at intersections.

In both sets of simulations, we however could not see a clear effect of the acceleration,
resp. deceleration rate on AODV or OLSR’s performance. This comes from the homo-
geneous distributions of vehicles. Indeed, VMM is not able to model heterogeneous
vehicles with different accelerations ( p ), resp. deceleration ( q ) rates. And the advan-
tage of an increase ( p ) or ( q ) is only beneficial if other vehicles have lower ones. We
postpone this analysis to future work.

After having analyzed the effect of urban traffic distribution on the performance of
routing protocols, we now illustrate the direct influence of data traffic rate and node
density (in terms of average number of neighbors per vehicle) on AODV and OLSR
performance. As we want to model urban environments, we fix the average road length
to >Á
 m and restore the transmission range to �)
Á
 m. Fig. VI-10(a) shows the average
PDR against the CBR throughput. The first observation we can make is that OLSR out-
performs AODV on average by

� 
Á
 %. This is a direct consequence from the previous
analysis, which showed that AODV is clearly penalized by the non-uniform distribu-
tion of vehicles in the urban environment (see Fig. VI-8(a)). The second observation
we can make is that, although both protocols experience a performance decay with the
increase of the data traffic rate, the decay is less pronounced for AODV. When the rate
of route discoveries is small, so is the probability for intermediate nodes to know an ac-
tive route to a destination node. Consequently, a large number of AODV route requests
(RREQ) must travel up to the destination node. However, as the data rate increases, so
does the chance for intermediate nodes to have cached active routes, while OLSR must
completely reconfigure its routing tables, a procedure that further restricts the channel
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access and reduces active routes for data traffic.

The Routing Overhead (RO) is depicted in Fig. VI-10(b). We actually see that OLSR
control traffic is always lower than AODV’s, since the cost of repeated route discovery
procedures in AODV introduces a large control traffic overhead. Note that this result is
consistent with Fig. VI-11(b) as we used a network local density of � � for this scenario.
We also observe that the control traffic of OLSR exhibits the expected characteristics
of being independent of the data traffic rate. At very high data rates, the AODV’s RO
drops significantly, a feature that could be explained by the saturation of the MAC
layer.

Finally, we show in Fig. VI-10(c) that OLSR consistently presents the lowest delay,
regardless of data traffic. This may be explained by the fact that OLSR, as a proactive
protocol, has a faster processing at intermediate nodes. When a packet arrives at a
node, it can immediately be forwarded or dropped. In reactive protocols, if there is no
route to a destination, packets to that destination will be stored in a buffer while a route
discovery is conducted. Accordingly, the performance improvement in terms of delay
raises up to 3 times between AODV and OLSR.

In the next set of figures, we display results obtained for the fourth scenario. Node den-
sity is defined as a node’s average number of neighbors and is computed as mentioned
in Table VI-1. Similarly to Fig. VI-10(a), Fig. VI-11(a) shows that OLSR outperforms
AODV by up to almost ëÁ
�
 % for highly dense networks. In order to analyze this graph,
we divide the graph in three regions: locally supra-critical, critical, and super-critical
4 densities. We use the term locally because, due to the clustering effect, the network
may not be connected even with a high density of nodes. However, within each clus-
ter, supra-critical, critical, and super-critical densities appear, which create locally
connected components of varying size. In the supra-critical density ( J nbrs/vhcl and
below), OLSR is able to benefit from an increasing network density, whereas AODV
has a stable PDR. When cars are aggregating in intersections, the MPR nodes become
more stable, which increases the stability of OLSR and helps improving OLSR PDR.
Then, above a critical density ( J - �)
 nbrs/vhcl), OLSR’s shows initial signs of de-
crease. Indeed, in the super-critical category, as the density of car locally increases,
the periodic maintenance of OLSR reduces its capability of accessing the channel for
data traffic, while AODV’s RREQ packets have a high chance to find a close inter-
mediate node with an open route. An interesting remark may be made by comparing
Fig. VI-9(a) and Fig. VI-11(a). We see on Fig. VI-9(a) that AODV’s PDR is penalized
by the clustering effect, at a constant network density. Accordingly, AODV is able to
improve its PDR as we increase the network density, but the increased cluster effect
reduces its performance. As the configurations used to obtain the results displayed in
Fig. VI-11(a) include both the influence of the increased number of neighbor and the
non-uniform distribution of urban traffic, the effects are mutually exclusive and result
to almost stable PDRs.

The next figure depicts the RO of OLSR and AODV as a function of the node density.
We can see on Fig. VI-11(b) that, as we would expect, both ROs increase with the
density. We clearly see a transition threshold for the control traffic generated by OLSR
and AODV. For node densities below J nbrs/vhcl, the control traffic overhead of AODV

4Critical, supra-critical or super-critical are usual terms employed in percolation theory, referring to
supra- or super- critical node densities for a network to percolate.
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is smaller than OLSR. However, as the density increases, the cost of repeated route
discovery procedures in AODV introduces a large control traffic overhead, and OLSR
ends up outperforming AODV up to �)
Á
 %.

Finally, Fig. VI-11(c) depicts the end-to-end packet delay. As the access to the channel
becomes harder, the delay can be lowered when a RREQ finds an intermediate node
with an active route. However, the penalty for not finding any intermediate node be-
comes prohibitive as the network becomes locally saturated. On the other hand, routes
that OLSR could maintain despite the congested channel are ready to use.

H CONCLUSION

In this Chapter, we first illustrated how vehicular ad hoc networks in urban environment
experience particular motion patterns which cannot be properly described by standard
parameters. Indeed, the traffic regulations and the vehicles characteristics handled by
the VanetMobiSim Model (VMM) create a clustering effect at intersection. This effect
has remarkable properties on the spatial and temporal distribution of vehicles. The first
one is that neither initial nor maximum velocity have a total influence on the real veloc-
ity in urban environments. Indeed, due to the interactions with the spatial environment
and other neighboring cars, vehicles experience a non negligible speed decay. Then, a
second property is the non-uniform distribution of urban traffic which locally increases
the density of vehicles, and therefore improve the performance of routing protocol in
sparse networks conditions.

As neither the average velocity, nor the average density are able to control the spatial
and temporal dependences generated by realistic urban vehicular motion patterns, we
defined new meaningful parameters such as the average length of road segments, the
acceleration or the clustering effect. By representing the true parameters of the topol-
ogy or the mobility patterns, we illustrated how they have a significantly larger impact
on the performance of AODV.

Another observation is that not only these new parameters are able to remarkably de-
scribe urban motions, but also these urban motions actually improve the performances
of AODV, as they are significantly increased compared to those with Random Way-
point. These parameters become therefore an important key to more realistic perfor-
mance evaluations of vehicular ad hoc networks in urban environments. Indeed, the
road segment length helps to increase the dynamism of urban networks, while the clus-
ter effect generates "hot spots" at intersections.

We then evaluated OLSR and AODV against urban-specific metrics such as road seg-
ment lengths or non-uniform urban traffic distribution, and against regular metrics such
as network density and data traffic rate. The obtained results we found showed that the
performance of AODV is significantly influenced by the non-uniform distribution of
urban traffic that is experienced in urban environments. We showed how OLSR out-
performs AODV for almost all performance metrics we used. OLSR may be seen as
another possible good candidate for VANETs routing protocols in urban environments.
This result is in complete contrast to previous studies, which have either concluded, at
best, that reactive protocols were almost identically performing, or even outperforming
proactive schemes. The main conclusion from this Chapter is that urban environments
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with realistic mobility patterns have a major impact on VANETs routing protocols.

The interest for position-based routing protocols has been growing fast recently. In
future work, we plan to investigate the effect of VanetMobiSim on protocols such as
the Greedy Perimeter Stateless Routing (GPSR) [11] or the Locally Optimal Routing
Algorithm (LORA) [180] in future performance evaluations, as previous works on this
field have stated they might be more suited to vehicular networks.
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Abstract— In this Chapter, we apply Kinetic Graphs to broadcasting and routing in MANETs.
We discuss the improvements that multipoint relays may experience by the use of Kinetic Graphs.
Multipoint Relaying (MPR) is a technique to reduce the number of redundant retransmissions
while diffusing a broadcast message in the network. The algorithm creates a dominating set
where only selected nodes are allowed to forward packets. Yet, the election criteria is solely
based on instantaneous nodes’ degrees. The network global state is then kept coherent through
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periodic exchanges of messages. We propose in this Chapter a novel heuristic to select kinetic
multipoint relays based on nodes’ overall predicted degree in the absence of trajectory changes.
Consequently, these exchanges of messages may be limited to the instant when unpredicted topol-
ogy changes happen. Significant reduction in the number of messages are then experienced, yet
still keeping a coherent and fully connected multipoint relaying network. Finally, we present
simulation results illustrating that our approach is significantly better than the MPR algorithm
in terms of network coverage, number of multipoint relays, flooding capacity. More interesting,
this is even obtained with a drastic reduction of the number of messages exchanged during the
process.

Keywords— Broadcast, Kinetic Multipoint Relay, Mobility Prediction, Mobile Ad Hoc Net-
works.

MOBILE Ad Hoc Networks (MANETs) is an emergent concept in view for infr-
astructureless communication. These networks rely on radio transmissions, but

with the lack of infrastructures, flooding (distributing information to each and every
node in the network in an uncontrolled way) happens to be a key part of informa-
tion dissemination. In wireless networks and particularly when the network is dense,
the overhead due to this kind of information dissemination may become prohibitive.
Despite its simplicity, flooding is very inefficient and can result in high redundancy,
contention and collision. This is the main motivation for many research teams that
have proposed more efficient flooding techniques whose goal is to minimize the num-
ber of retransmissions while attempting to deliver packets to each node in the network.
Different approaches of flooding techniques and broadcasting control protocols exist
and are listed in [145, 181].

Multipoint relaying (MPR, [182]) provides a localized way of flooding reduction in
a mobile ad hoc network. Using 2-hops neighborhood information, each node deter-
mines a small set of forward neighbors for message relaying, which avoids multiple
retransmissions and blind flooding. MPR has been designed to be part of the Opti-
mized Link State Routing algorithm (OLSR, [4]) to specifically reduce the flooding of
TC messages sent by OLSR to create optimal routes. Yet, the election criteria is solely
based on instantaneous nodes’ degrees. The network global state is then kept coherent
through periodic exchanges of messages. Some studies showed the impact of periodic
beacons, which could be compared to increasing the probability of transmission, in
802.11 performances [183], or the effects of beaconing on the battery life [184]. This
denotes that these approaches have major drawbacks in terms of reliability, scalability
and energy consumptions. The next step to their evolution should therefore be designed
to improve the channel occupation and the energy consumption.

A SUMMARY OF CONTRIBUTION

In this Chapter, we propose to improve the MPR protocol by using Kinetic Graphs.
First, we expose convergence issues for MPR and OLSR which have to be resolved
prior to the use of the Kinetic approach. Then, we introduce the Kinetic Multipoint
Relaying (KMPR) protocol which heuristic selects kinetic relays based on the nodes
actual and future predicted nodal degrees. We compare KMPR and MPR with mobil-
ity patterns defined by the RWM and VanetMobiSim. We chose to also include the
RWM as it will show an upper bound on the performance improvements of KMPR, as
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unlike VanetMobiSim mobility patterns, the RWM may be adequately predicted. We
show that, in both cases, KMPR is able to improve the flooding reduction at a lower
maintenance overhead and more interesting, with a drastically improved delay.

We then propose to study the benefits OLSR may have from the use of KMPR. More
precisely, we show that thanks to KMPR’s improved topology knowledge, OLSR’s
Packet Delivery Ratio (PDR) and the Route Error Ratio (RER) are significantly im-
proved. By the low topology maintenance overhead induced by KMPR, OLSR also
obtains a better channel access for packet routing.

B ORGANIZATION OF WORK

The rest of the Chapter is organized as follows. Section C describes serious conver-
gence issues in the original MPR that need to be solved priorly to adapting Kinetic
Graphs. In Section D, we propose to improve the MPR protocol by employing the ki-
netic graph approach with link weights represented by kinetic nodal degrees. Finally,
Section E proposes to study the benefits OLSR may have from the use of KMPR and
Section F concludes the Chapter.

C CONVERGENCE ISSUES IN MPR

The optimal objective in Kinetic Graphs is to be able to get rid of proactive mobility
maintenance beacons. In other words, once the network made the predictions, no fur-
ther updates are needed. The corollary to this approach is that topology information
are not periodically broadcast and that the network must converge in a single logical
iteration1. The convergence process must therefore follow a predefined sequence of
message exchanges and processing where any deviation leads to data inconsistency.
In this section, we discuss one particular issue in OLSR that has long been occulted,
and which had been a heavy burden to our approach to Kinetic Graph for MPR: its
convergence.

Authors in [185] claimed that 75% of MPRs were elected on the first MPR step and
during the first logical iteration. However, as we will see, this usually requires several
physical steps for nodes to obtain correct neighborhood information and accurately
elect MPRs. In between, we find suboptimal MPRs, links and neighborhood inconsis-
tency. A more alarming convergence issue, which may occurs even when the election
has been correctly performed, is the loss of critical packets. They represent packets
containing the logical status of links. This loss, which is due to synchronous transmis-
sions, buffer overflows or other channel considerations, leads to network inconsistency.
However, this issue has been occulted in the past by relying on multiple retransmissions
and the apparent convergence of OLSR. Yet, we have no guarantee that the routes ob-
tained by OLSR have been build only on correct information. Therefore, OLSR may
even not be fully operational for large and dense mobile networks.

We consider convergence as the number of steps needed to make the protocol end.

1A logical iteration is defined as an iteration of the targeted protocol (which may include several message
exchanges).
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Still, we must distinguish logical from physical steps. In order to elect a MPR node,
it usually takes 2 logical steps, recursively performed until all two hops neighbors are
covered. The physical steps are MPR’s ability to notify the elected MPR nodes of their
election. Indeed, in a perfect environment, MPR converges after successfully having
notified all its MPR nodes of their respective elections. OLSR converges when all TC
messages containing the MPR Selectors have been spread on the entire network.

While it is hard to quantify the latter case, simulations we performed showed that the
former is very critical. As a matter of fact, in our implementation, we limited the
physical steps for MPR election to a single one. Nodes gather information on their
neighbors, perform the two steps of the original heuristic of MPR, and notify their
respective MPR nodes. In a perfect environment, all this should be far enough to
make the protocol converge. Yet, we noticed that packet losses and the order of packet
receptions were altering the whole process.

Let us first consider the order of packet decoding. In OLSR RFC3626 [4], upon re-
ception of a packet, a node first considers in that order, Asymmetric links, Symmetric
links, MPR links and Lost links, and in the order of the increasing node ID. A typical
example of such decoding problem is as follows. Consider the configuration depicted
in Fig. VII-1. Depending on the order of the decoding of the message sent by node

�
to node ë , important logical data will be ignored.

2

4

4

1 3

1 3
Asym Sym

Asym

Sym

Asym

Fig. VII-1. Illustration of OLSR convergence issues

For example,� Node ë first decodes the Asymmetric link between node
�

and node � . Yet,
since node

�
is also an Asymmetric neighbor to node ë and cannot have 2-hop

neighbors, this logical status is discarded. The Symmetric logical status of the
link between node

�
and node I is also ignored if decoded before node ë decode

the Asymmetric link between node
�

and node ë .
We can find several other message discarding problems that are connected to the mes-
sage decoding order, either within similar or different statuses. Yet, this is more an
implementation issue than a MPR misconception. Unfortunately, several implementa-
tions of OLSR, including OLSR dæmons, ignore this problem and rely on multiple re-
transmissions to correct this issue. Consequently, several physical iterations are needed
for each node to elect the correct MPRs and reach optimality.

A solution to solve this problem is to first decode the sender status, whether it is Asym-
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metrical, Symmetrical, MPR or Lost, then decode the node’s own status, and finally
decode the rest of the data contained in the message. For example, if node ë first de-
codes the status of its link with the sender of the message (node

�
), then node ë is

able to extract its 2-hops neighbors logical status and does not discard packets due to
inconsistent configurations.

Then, another serious issue that cannot be improved by a particular implementation is
network inconsistency due to message losses. We consider here two kinds of message
losses for MPR. In order of their importance: messages containing links physical sta-
tus, and messages containing links logical status. While the former naturally represents
the channel status, the latter is what we call critical packets. Actually, the weakest link
in OLSR comes from the strongest link of MPR. MPR flooding optimality comes from
its selective retransmission. However, this is a very critical issue since perfect flooding
for MPR and efficient routes for OLSR highly depend on this particular feature. If non-
accurate MPR selectors are obtained and propagated due to the losses of those critical
packets, MPR nodes will not be coherent with the topology, MPR flooding stops being
efficient and OLSR establishes suboptimal routes.

Therefore, incorrect decoding and the losses of critical packets bring serious conver-
gence issues that we depicted in Fig. VII-2. The following results were obtained using
the Naval Research Laboratory ns-2 implementation of the OLSR protocol [186]. The
following results were obtained by measuring the metrics after the population of �Á

nodes were uniformly distributed in a ½ëêò¾ grid, were ½ and ¾ depend on the re-
quired density of nodes.Each node has a transmission range of

� >Á
Ñú . The density is
obtained by the following formula ª2¯ K ����
�� ½ d z « ° _ � �ø d ® . We normalized the density with
respect to the density of nodes obtained with �Á
 nodes distributed in a N�
Á
Ñú ê B 
Á
Áú
grid, each one having a

� >Ñ
Áú transmission range. As we want to show convergence
issues, we simulated OLSR on a static network without traffic. We are convinced that
nodes mobility and traffic will even worsen our results. Finally, the convergence time
is defined as the time before all nodes obtain symmetric links to all of their neighbors,
while the MPR convergence time is defined as the time before all selected MPR nodes
have been correctly notified of their status by all MPR Selector nodes. The number
of iterations is similar to the MPR convergence time, but measured in terms of logical
iterations.

On Figure VII-2(a), we see that MPR needs on average ë seconds to converge, before
which non-stable MPRs are elected. We also see on the same figure that no stable
and optimal MPRs are obtained before I seconds on average. Therefore, OLSR cannot
expect to create stable routes during this time interval. We also show in Figure VII-2(b)
the average number of iterations before MPR converges. We see that MPR needs on
average

B
iterations before being able to provide OLSR with accurate topological data.

These observations are important since they are obtained based on a static network. If
we consider mobility, each time the topology is changed, OLSR looses between ë to I
seconds before being able to reorganize its routes2. Moreover, these results also show
that in highly mobile or heavy loaded networks, OLSR never completely converges as
one might expect.

For the analysis performed in this Chapter, we corrected the message decoding issue.
However, the loss of critical packets is still an issue to KMPR. Yet, thanks to the Ki-

2We do not consider OLSR own link state convergence time which also increases this time
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Fig. VII-2. Illustration of the Convergence of OLSR

netic approach, we reorganize the MPRs less frequently and therefore we lower the
dependency to the convergence time.

D KINETIC MULTIPOINT RELAYING

Once the convergence issues described in the previous section had been solved, we
were ready to use mobility predictions and Kinetic Graphs on MPR. In this section, we
propose to improve the MPR protocol by using Kinetic Graphs. We introduce the Ki-
netic Multipoint Relaying (KMPR) protocol which heuristic selects kinetic relays based
on nodes actual and future predicted nodal degrees, called Kinetic Nodal Degree intro-
duced in Section E.2. Based on that, periodic topology maintenance may be limited
to the instant when a change in the neighborhood actually occurs. Our objective is to
show that this approach is able to significantly reduce the number of messages needed
to maintain the backbone’s consistency, thus saving network resources, yet with similar
flooding properties as the regular MPR.

D.1 Short Background on Broadcasting in Mobile Ad Hoc Networks

In [181], the authors propose another designation for broadcasting techniques. They or-
dered them in four classes Simple flooding; Probability-based; Area-based and Neigh-
bor knowledge. While simple flooding, as its name indicates, simply floods packets in
the network, the Probability-based approach makes a node forward a packet with a par-
ticular probability. The Area-based approach lets a node decide to forward a packet if
it brings the best progress in its area, while finally the network-based approach, which
MPR belongs to, uses the neighborhood knowledge in order to adequately choose the
best relays. This approach has later been adopted by [145] in the author’s survey of
broadcasting and topology control protocols. This Chapter presents these protocols
mainly into two classes: centralized, and localized; the latter being further differenti-
ated into Distributed Connected Dominated Set (CDS), Low weighted structures and



D Kinetic Multipoint Relaying 175

Forwarding approach. Though non scalable, global methods are helpful since local-
ized protocols can be an adaptation from protocols developed for the centralized class.
For example, [142] creates a distributed version of the well known minimum spanning
tree (MST) obtained in centralized protocols. Finally, a large survey on Dominating
sets used to improve broadcasting is provided in [187], and a survey on multipoint
relay-based broadcast schemes may be found in [188].

We decided to chose the MPR protocol due to its locality, simplicity and its diffusion,
as it is used by the OLSR [4] and is also a candidate for Wireless OSPF [2].

D.2 Basic Idea

Multipoint relaying (MPR, [182]) provides a localized way of reducing the number of
redundant retransmissions while diffusing a broadcast message in the network. Using
2-hops neighborhood information, the algorithm creates a dominating set where only
selected nodes are allowed to forward packets. MPR has been designed to be part of
the Optimized Link State Routing algorithm OLSR [4] to specifically reduce the flood-
ing of TC messages sent by OLSR to create optimal routes. Yet, the election criteria
is solely based on instantaneous nodal degrees. The network global state is then kept
coherent through periodic exchanges of messages. Some studies showed the impact of
periodic beacons, which could be compared to increasing the probability of transmis-
sion, in 802.11 performances [183], or the effects of beaconing on the battery life [184].
This denotes that these approaches have major drawbacks in terms of reliability, scal-
ability and energy consumptions. The next step to their evolution should therefore be
designed to improve the channel occupation and the energy consumption.

In this section, we propose to improve the MPR protocol by employing the kinetic
graph approach with link weights represented by kinetic nodal degrees. We introduce
the Kinetic Multipoint Relaying (KMPR) protocol which heuristic selects kinetic relays
based on nodes actual and future predicted nodal degrees. Based on this, periodic
topology maintenance may be limited to the instant when a change in the neighborhood
actually occurs. Our objective is to show that this approach is able to significantly
reduce the number of messages needed to maintain the backbone’s consistency, thus
saving network resources, and this with a better flooding efficiency than the regular
MPR protocol.

We describe next the protocol for the construction of the kinetic backbone. Specifica-
tions for the neighborhood discovery and aperiodic maintenance are similar to those
described for Kinetic Graphs in Chapter III.

D.3 Kinetic Multipoint Relays

In this section, we describe the Kinetic Multipoint Relaying (KMPR) protocol. It is
mainly extracted from the regular MPR protocol. Yet, we adapt it to deal with kinetic
nodal degrees.

We recall here the definition of the kinetic nodal degree. Considering ¯hq|uÑ
 R as the total
number of neighbors detected in node

L
’s neighborhood at time � , we define
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(VII-1)

as node
L
’s kinetic degree function, where ��y)z�{�}ç

and �l~ {ç represent respectively the time
a node � enters and leaves

L
’s neighborhood. Then, the kinetic degree is obtained by

integrating (VII-1)�b �zZ R , �G8Õ� Ö �~ { ç ³ ° c z � �²ç ³ # , ��� �|�~A� , F p�� , � F �Gy)z�{�}ç 8G8 � ��� �|�~A� , p2� , � F � ~ {ç 8G8 8 �
(VII-2)

To select the kinetic multipoint relays for node
L
, let us call the set of 1-hop neighbors

of node
L

as Ý ,ML 8 , and the set of its 2-hops neighbors as Ý c ,/L 8 . We first start by giving
some definitions.

Definition 2—Covering Interval: The covering interval is a time interval during which
a node in Ý c ,ML 8 is covered by a node in Ý ,/L 8 . Each node in Ý c ,ML 8 has a covering inter-
val per node

L
, which is initially equal to the connection interval between its covering

node in Ý ,ML 8 and node
L
. Then, each time a node in Ý c ,ML 8 is covered by a node inÝ ,/L 8 during a given time interval, this covering interval is properly reduced. When the

covering interval is reduced to ç , we say that the node is fully covered.

Definition 3—Logical Kinetic Degree: The logical kinetic degree is the nodal degree
obtained by (VII-2) but considering covering intervals instead of connection intervals.
In that case, �Gy)z|{G}ç

and �k~ {ç will then represent the time interval during which a node� Ë Ý c ,ML 8 starts and stops being covered by some node in Ý ,ML 8 .
The basic difference between MPR and KMPR is that unlike MPR, KMPR does not
work on time instants but on time intervals. Therefore, a node is not periodically
elected, but is instead designated KMPR for a time interval. During this interval, we
say that the KMPR node is active and the time interval is called its activation.

The KMPR protocol elects a node as KMPR a node in Ý ,/L 8 with the largest logical
kinetic degree. The activation of this KMPR node is the largest covering interval of its
nodes in Ý c ,/L 8 .
Algorithm 5 Kinetic Multipoint Relaying (KMPR)

Require: Begin with an empty KMPR set.
1: Compute the logical kinetic degree of each node in Ý ,/L 8 .
2: Add in the KMPR set the node in Ý ,ML 8 that has the maximum logical kinetic

degree. Compute the activation of the KMPR node as the maximum covering
interval this node can provide. Update all other covering intervals of nodes inÝ c ,ML 8 considering the activation of the elected KMPR, then recompute all logical
kinetic degrees. Finally, repeat this step until all nodes in Ý c ,/L 8 are fully covered.
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Then, each node having elected a node KMPR for some activations is then a KMPR
Selector during the same activation. Finally, KMPR flooding is defines as follows:

Definition 4—KMPR flooding: A node retransmits a packet only once after having re-
ceived the packet the first time from an active KMPR selector.

D.4 Performance Evaluation

We implemented the KMPR protocol under ns-2.29 and used the NRL-OLSR [186]
implementation for comparison with KMPR. We measured several significant metrics
for MANETs: The effectiveness of flooding reduction, the delay before the network
receives a broadcast packet, the number of duplicate packets and finally the routing
overhead. Similarly to Chapter VI, we used a square simulation area of

� 
Á
Á
 ê � 
Á
�

with a node density of JÁ¯hq|uÑ
?ì�¯ K ��� . For the initial results, the mobility model we used
is the Steady State Random Mobility Model (RWM) [164], where we made nodes av-
erage velocity vary from >�ú ìÑ
 to

� 
ÁúéìÁ
 . Then, we used VanetMobiSim on the same
simulation area and for the same simulation parameters. Please refer to the configura-
tion described in Chapter VI for the configuration of both ns-2 and VanetMobiSim. As
we wanted to illustrate the effect of mobility, we did not include pause time between
trajectory changes. Finally, we simulated the system for ��
Á
�
 for RWM, and ��
�
Á
�
 for
VanetMobiSim, where we discarded the first N�
Á
�
 required to reach a pseudo steady
state.
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Fig. VII-3. Illustration of the flooding reduction of MPR and KMPR for the RWM

Figure VII-3 illustrates the flooding reduction of MPR and KMPR. We can see that
even though MPR is already a good algorithm to reduce network flooding, KMPR is
able to further improve it. Indeed, the broadcast is reduced by 40% on average com-
pared to MPR. As explained in Section C, we corrected convergence issues of the
original MPR algorithm. Therefore, as it converges faster, it is able provide more accu-
rate relays. A second reason comes from the mobility predictions generated by KMPR.
It is indeed able to proactively maintain the MPR nodes with respect to mobility.

On Figure VII-4, we depicted the broadcast efficiency of MPR and KMPR. In the
simulations we performed, we measured the broadcast efficiency as the time a packet
takes before being correctly delivered to the entire network. As we can see, KMPR
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Fig. VII-4. Illustration of the broadcast efficiency of MPR and KMPR for the RWM

has a delivery time ��
 times faster than MPR. Similarly to the flooding improvement,
as KMPR converges faster and needs less maintenance duty cycles, optimal MPRs
are always available. Morevoer, as we will see in the next figure, KMPR’s backbone
maintenance is significantly less than MPR. Therefore, the channel access is faster and
the probability of collisions is decreased.This is a significant illustration of the benefit
of Kinetic Graphs to the MPR protocol.

In the two previous Figures, we have shown that KMPR could significantly improve
the flooding reduction as well as the broadcast delay. Now, in Fig. VII-5, we illus-
trate another benefit of KMPR: its low maintenance overhead. Indeed, since KMPR
uses mobility predictions and does not rely on periodic maintenance, the routing over-
head may be reduced by 70% as it may be seen on Fig. VII-5(a). We also show on
Fig. VII-5(b) the number of hello messages which drops dramatically with KMPR, yet
still preserving the network’s consistency. We can moreover see that, as mobility in-
creases, the predictability is reduced and reduces the performance of the predictions.
Accordingly, KMPR maintenance overhead tends to converge to MPR’s, as Kinetic
Graphs degenerate to static graphs when predictions are either wrong or impossible to
obtain.
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Fig. VII-5. Illustration of the network load for MPR and KMPR for the RWM
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Figure VII-6 illustrates the Unconnected Dominating Set Ratio. All results obtained so
far has been averaged over tests when all nodes could obtain a copy of the broadcast
packet (we discarded tests where at least one node could not get the broadcast packet).
Yet, as one can imagine, mobility and maintenance traffic either spatially or tempo-
rally disconnect the Connected Dominating Set created by MPR. This figure therefore
illustrates the ratio of runs which showed a disconnected graph with respect of the total
number of runs. It is also straightforward from this figure to see that, as KMPR is less
sensitive to mobility and has a reduced channel occupation, these temporal or spatial
disconnections are significantly reduced, further improving the reliability of KMPR.
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Fig. VII-6. Illustration of Unconnected Dominating Set Ratio with respect to Mobility
for the RWM

All Figures we have presented yet have been obtained using the regular Random Way-
point Mobility model. We illustrated in Chapter V and Chapter VI its lack of realism
on Mobility Patterns and also on Routing Protocols. In order to further analyze KMPR
using more realistic mobility scenarios, we also simulated KMPR and MPR using ve-
hicular patterns. As the RWM may be adequately predicted, results for RWM may
be seen as upper bounds (resp. lower bounds depending on the criterion), whereas
predicting VanetMobiSim motion patterns is much harder, thus leading to reduced per-
formance.

In Fig. VII-8, we depict KMPR and MPR’s behaviors under a vehicular mobility model.
Similar to the previous Figures, Fig VII-8(a) shows the drastic reduction of KMPR’s
backbone maintenance, as well as KMPR’s improved broadcast delay. KMPR reduces
the maintenance overhead on average by 40%, while the broadcast delay is reduced by
a factor of 10 times. The flooding reduction illustrated in Fig VII-8(c) and Fig. VII-8(d)
is also improved, even though the confidence intervals are large. Indeed, the broadcast
efficiency is subject to a non negligeable variance mostly due to the particular urban
topology. Indeed, as we can expect from the spatial distribution illustrated in Chap-
ter V, the broadcast efficiency will drastically change if the broadcasting vehicle is in
a clustered intersection or on a road segment, as the density and the velocity impact it.

Finally, we again depict in Fig. VII-7 the unconnected dominating set ratio. As men-
tioned before, due to the particular spatial distribution of cars creating clusters at inter-
sections and a sparse connectivity in between, frequent disconnections occur for MPR.
KMPR is also subject to this disconnection but is able to adapt to dynamic configu-
rations much faster and therefore improves the stability of its connected dominating
set.
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Fig. VII-7. Illustration of Unconnected Dominating Set Ratio with respect to Mobility
for the VanetMobiSim

In this section, we have illustrated how MPR could be successfully improved by the
use of Kinetic Graphs. We also showed that even though the prediction schema is not
in adequacy with the vehicular motion patterns, the use of the Kinetic Degree instead of
a Kinetic Distance is able to limit the scope of the prediction error. KMPR is therefore
also efficient when used on vehicular motion patterns.

We chose not to test KMPR with respect to the network density, as the problematic of
this work is mobility and not density or scale. As the number of MPR nodes for a static
configuration behaves as

+-,°¯V ����¯h
 L � Â 8 , and as MPR is a degenerated case of Kinetic
MPR, we expect the scale of KMPR to be similar to MPR.

In the next section, we will use the OLSR protocol on top of KMPR, and will see
how OLSR is able to benefit from KMPR’s improved backbone maintenance for the
maintenance and efficiency of its routing tables.

E APPLICATION OF KMPR TO OLSR

In this section, we propose to study the benefits OLSR may have from the use of
KMPR. More precisely, we show that thanks to KMPR’s improved topology knowl-
edge, OLSR’s Packet Delivery Ratio (PDR) and the Route Error Ratio (RER) are sig-
nificantly improved. By the low topology maintenance overhead induced by KMPR,
OLSR also obtains a better channel access for packet routing. However, as results will
show, the collaboration of OLSR and KMPR is also victim of its own success. Indeed,
since the packet dropped rate is reduced, a significantly larger number of packets are
buffered for transmission after channel access. And it is of public notoriety that the
802.11b MAC protocol does not scale either with the number of nodes or the size of
uncoordinated traffic. However, the channel access and contention is not in the scope
of this work and we will only consider the routing features in this Chapter. Our objec-
tive is to show that after being under study for MPR, mobility prediction is also able to
improve OLSR.
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Fig. VII-8. Illustration of the broadcast efficiency of MPR and KMPR under vehicular
mobility
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E.1 Basic Idea

Although deeply interleaved together, OLSR and MPR have two independent tasks.
The role of MPR is to provide a optimized flooding control mechanism, while OLSR’s
task is to create routing tables. Both protocols have their own comparison criteria and
can be independently compared and improved. We can imagine to use OLSR with a
different flooding reduction algorithms, or make AODV benefit from MPR to reduce
the diffusion of RREQ messages.

As a matter of fact, the research community interested in improving OLSR already
successfully tested it with different flooding reduction algorithms, such as NS-MPR,
S-MPR, MPR-CDS, and E-CDS [189, 190, 191]. They all reached the same conclusion
that although creating a larger set of relays, the original MPR protocol reaches a higher
broadcast throughput than other tested flooding control algorithm and is better suited
for OLSR.

This was our motivation for using MPR in order to adapt the mobility prediction tech-
nique and also a justification for testing KMPR with OLSR as we do in this Chapter.

E.2 KMPR applied to OLSR

In order to construct and maintain its routing tables, OLSR periodically sends link state
information in the network. The interaction between OLSR and MPR is therefore that
OLSR benefits from MPR flooding to reduce the redundant transmission of identical
TC packets (also known as the Broadcast Storm Problem).

KMPR creates a set of KMPR selectors and their respective activations. Compared to
MPR, the difference is that KMPR has computed actual and future KMPR selectors.
Each KMPR selector and its relaying capability will be activated when its activation
becomes valid.

Accordingly, we can see that OLSR can be easily adapted to use KMPR instead of
MPR. It will still periodically send topology messages and the forwarding decision is
simply kept transparent to it. Indeed, each OLSR TC message is forwarded by KMPR
according to Definition 4. Although KMPR uses activations in order to maintain its
set of KMPR selectors, each forwarding decision will be taken by each node based on
Fig VII-9.

Upon convergence, KMPR provides OLSR with a table of ready-to-use KMPR selec-
tors. These are similar to MPR selectors with the exception that they are not periodi-
cally elected, but are valid for a time interval. Although KMPR is a per-event protocol
and no periodic maintenance is performed, OLSR still keeps its periodical feature. Ac-
cordingly, OLSR will simply consider KMPR Selectors as simple MPR Selectors and
will propagate them in the network using TC messages. No particular modifications
are needed for OLSR to run on top of KMPR.
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Fig. VII-9. Illustration of the fowarding decision of KMPR

E.3 Performance Evaluation

We implemented the OLSR-KMPR protocol under ns-2 and compared it with OLSR-
MPR. The global parameters we used for the simulations are given in Table VII-1. We
measured several significant metrics for MANETs routing:� Packet Delivery Ratio (PDR)– It is the ratio between the number of packets de-

livered to the receiver and the expected number of packet sent.� Route Error Ratio (RER)– It represents the ratio between the number of packets
dropped due to the lack of valid routes, and the total number of packet sent.� Routing Overhead Ratio (ROR)– It represents the ratio between the number of
routing bytes and total number of bytes correctly received.� Delay- It measures the average end-to-end transmission delay.

Finally, we decomposed our performance analysis in three different scenarios, were we
fixed the parameters according to Table VII-2. In the first scenario, we want to see the
influence of an increased data rate, whereas in the second scenario, the objective is to
test the influence of network mobility.

Figures VII-10 and VII-11 illustrate the Route Error Ratio (RER) of OLSR. The route
error ratio represents the ratio between the number of packets which could not find a
correct route and the total number of packet sent. We can see that OLSR-KMPR man-
aged to only have 6% of route errors, while OLSR cannot go below 14%. As expected,
due to the increased channel access, the route errors are bigger when more sources are
sending CBR traffic in the case of OLSR. Since KMPR requires less channel access
to maintain its backbone, it is then less penalized when the channel is saturated. Av-
eraged on the CBR rates the sources, the route error ratio is 14% for OLSR and 7%
for OLSR-KMPR, which is

�
times less than the regular OLSR. This feature is due

to the improved topology knowledge KMPR is able to maintain. Thanks to mobility
prediction, KMPR always knows where its neighbors are, thus is able to keep accurate
neighborhood information. Consequently, KMPR is able to provide OLSR with more
stable and reliable routes.
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Network Simulator ns-2.29
OLSR Implementation NRLOLSR [186]

Simulation time 100s
Simulation Area 2000m x 2000m grid

Tx Range 250m
Mobility Model Steady State RWM

Node Speed Uniform
Network Density ª2¯ K ����
t� ½ d z « ° _ � �û « � £ d ­ « � £Data Type CBR
Data Packet Size 512 bytes
MAC Protocol IEEE 802.11 DCF

MAC Rate 2 Mbits/s
Confidence Interval 95%

TABLE VII-1. SIMULATION PARAMETERS

Scenarios Data Rate Network Mobil-
ity

Nodes
Density

Data Rate 
HG 
KJ Mbits/s to
�

Mbits/s
��
 m/s JOG B

Network
Mobility


OG J Mbits/s > m/s to �)> m/s JHG B
TABLE VII-2. SIMULATION SCENARIOS
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Fig. VII-10. Illustration of the Route Error Ratio given the CBR rate with 10 CBR
sources
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Fig. VII-11. Illustration of the Route Error Ratio given the CBR rate with 20 CBR
sources
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Fig. VII-12. Illustration of the Routing delay given the CBR rate for 10 CBR sources

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

CBR intervals in [s] 

P
ac

ke
t D

el
ay

 

OLSR−KMPR
OLSR−MPR
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As we could expect from results in Section D.4, the low broadcast delay of KMPR
should impact on OLSR routing. We can clearly see this effect on Fig VII-12 when
only 10 CBR sources are used. OLSR is able to obtain an average 80% reduction of
the Packet Delivery Delay for low throughput. Yet, either when the CBR throughput or
the number of CBR sources saturates the network as in Fig VII-13, the routing delay is
slightly bigger for OLSR-KMPR than for regular OLSR. However, unlike OLSR, this
delay is mostly generated by saturated relaying queues. One reason for this effect may
be that, as the broadcast is reduced, coordinated unicast traffic like CBR is able to be
transmitted more efficiently on the OLSR or OLSR-KMPR routes and saturating the
transmitting queues.
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Fig. VII-14. Illustration of the Packet Delivery Ratio given CBR Traffic

In Fig. VII-14, we depicted the main results of this work, that is the improved Packet
Delivery Ratio (PDR) of OLSR-KMPR compared to regular OLSR. The packet deliv-
ery ratio (PDR) is the ratio between the number of packets delivered to the receiver with
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the expected number of packet it should have received, which is a fair measurement of
a protocol efficiency. We can see on Fig. VII-14 that the PDR of OLSR-KMPR is
improved compared with OLSR. This figure shows that by using mobility predictions,
OLSR-KMPR manages to have an average packet delivery ratio increased by 50%. The
packet delivery ratio is also not influenced by increased CBR sources or rates. How-
ever, as we can see for high CBR throughput, both OLSR and OLSR-KMPR suffer
from a dramatic drop of PDR when the CBR rate increases above a certain threshold.
However, this particularity is not linked to the routing capabilities of those protocols,
but to the wireless channel access limitations.
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Fig. VII-15. Illustration of the Routing Overhead Ratio given CBR Traffic

Figure VII-15 shows the Routing Overhead Ratio (ROR) induced by OLSR-KMPR
and the regular OLSR. The routing overhead ratio is the ratio between the routing
packets and total number of packet sent on the network. It represents the cost of using a
particular protocol for routing in ad hoc networks. As we mentioned in the Introducing
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section, OLSR-KMPR is able to improve OLSR properties at virtually no extra cost.
Fig. VII-15(a) and Fig. VII-15(b) are the illustration of this argument. Indeed, we can
see that the routing overhead of OLSR-KMPR is less than that of the regular OLSR,
yet maybe not as high as expected. The reason is that even though OLSR-KMPR has
a lower maintenance overhead, it also transmits more traffic as we illustrated in the
previous paragraphs. Therefore, the routing overhead ratio is reduced. However, we
must put this effect in perspective to the improved Packet Delivery Ratio.
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Fig. VII-16. Illustration of the performance of OLSR-KMPR and regular OLSR given
the velocity for the RWM

Finally, as we are testing the performance of mobility prediction for OLSR, we finally
test OLSR-KMPR for different mobility values. In Fig. VII-16 and Fig. VII-17, we
illustrate the effect of mobility on the previous performance criteria. Although the RER
and the PDR seems not to be significantly influenced by nodes mobility, the routing
delay and the routing overhead ratio are. However, this behavior is not particular to the
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Fig. VII-17. Illustration of the performance of OLSR-KMPR and regular OLSR given
the velocity for the RWM
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use of mobility predictions. However, what is particular to mobility prediction is that
OLSR-KMPR performs always better than the regular MPR under various mobility
scenarios. And it is particularly true for route errors and packet deliveries. The RER is> times smaller than regular OLSR, while the PDR is increase by ��
 %.

F CONCLUSION

In this chapter, we applied an original approach for applying mobility predictions to
Mobile Ad Hoc Networks (MANET) called the Kinetic Graphs. The objective was
to construct and maintain a topology or routing structures without relying on peri-
odic maintenance. The approach is independent of the criteria used in order to build
the backbone, and various approaches may be tested. Accordingly, we developed a
criterion less sensitive to inaccurate prediction models called the Kinetic Degree and
adapted the Kinetic Graph approach to the Multipoint Relaying protocol (MPR).

A major issue in Kinetic Graph which is independent of the metric or the prediction
method is the need for protocols to converge in a single logical iteration as no extra
beacons will be sent in case information is lost due to improper handling of messages
at the protocol side. This was a major setback when we designed KMPR, as MPR
showed serious convergence issues which we had to correct before being able to obtain
a stable backbone using a minimum number of messages.

We first illustrated the convergence issues of OLSR by observing that MPR needs on
average ë seconds to obtain symmetric links to all its neighbors, and cannot compute
stable MPRs before I seconds on average. In number of iterations, this mean that MPR
needs at least

B
iterations before being able to provide OLSR with MPR selectors. We

later proposed solutions to correct this issue, including selective decoding and adaptive
retransmission techniques.

Then, we presented an promising approach for improving the well-known MPR pro-
tocol by using mobility predictions. We showed that the Kinetic Multipoint Relaying
(KMPR) protocol was able to meet the flooding properties of MPR, and this by reduc-
ing the MPR maintenance overhead by 70% and MPR broadcast delay 10 times faster
under random motions.

We furthermore tested the KMPR protocol under realistic vehicular motions, and could
also show that KMPR managed to reduce the channel access by 60% for vehicular
motion. At the same time, the broadcast delay could be reduced by 25%, and this with
an improved flooding reduction with respect to MPR.

Then, we presented a study of the application of Mobility Predictions to the OLSR
protocol. We showed that OLSR packet delivery ratio may be improved by a factor of>Á
 % to �Á
 %, while the route error can be between

�
and � times smaller. More inter-

esting, these improvements are obtained at virtually no extra cost since OLSR-KMPR
routing overhead ratio is smaller that OLSR. We consequently illustrated that, after
having been studied in other fields of mobile ad hoc networking, mobility predictions
are also an interesting technique to improve proactive routing protocols, and that more
specifically, OLSR performances may be significantly improved by the use of KMPR
and Kinetic Graphs.
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There are other advanced MPR algorithms, such as NS-MPR, S-MPR, MPR-CDS,
or E-CDS (see [188]). It could be interesting as future work to see the comparisons
between KMPR-OLSR and these advanced MPR-OLSR solutions. Another future
promising work is to further reduce any periodic maintenance and try to use the Kinetic
Multipoint Relays and their activations in order to suppress periodic TC messages. In
such approach, that could be named Kinetic Link State Routing (KLSR), Kinetic Graphs
will have been totally adapted, as no periodic maintenance, either from MPR or OLSR,
will be required for efficient routing in MANET.
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CHAPTER VIII

Conclusion

Wireless Ad Hoc Networks are an extreme configuration of wireless networks, which
do not relay on any fixed or wired infrastructure, and where terminals are self-configuring
in order to provide distributed multi-hop wireless communications. The lack of infras-
tructure or coordinator favors chaotic situations generating a large waste of critical
resources.

Creating and maintaining a structure in an ad hoc network requires localized and dis-
tributed approaches. Many different propositions have been done in order to build an
efficient backbone only based on local information. However, almost none of them
explicitly considered the mobility of the nodes part of the backbone.

Yet, mobility is a major source of burden for the maintenance of the structure. In-
deed, localized protocols are not sufficient in order to efficiently maintain structures
in mobile wireless ad hoc networks, as mobility makes this structure adapted to past
configurations only. Therefore, a periodic maintenance has to be created in order to
adapt the backbone to the mobile topology. Moreover, depending on the dynamic of
the network, the local maintenance becomes resource demanding.

This Doctoral Thesis focused on studying and improving mobility management in ad
hoc networks using Kinetic Graphs. This approach employs efficient localized methods
as well as kinetic structures in order to efficiently construct and maintain a communi-
cation backbone in mobile wireless ad hoc networks. We studied the strong required
interaction between modeling and predicting mobility in order to efficiently adapt Ki-
netic Graphs to wireless ad hoc broadcasting and routing protocols, even on the very
challenging vehicular networks.



194 Chapter VIII. Conclusion

A OUTLOOK OF THE WORK

We presented an original approach for applying mobility predictions to Mobile Ad Hoc
Networks (MANET) called the Kinetic Graphs. The objective was to construct and
maintain topologies or routing structures without relying on a periodic maintenance.
The approach is independent of the criteria used to build the backbone, thus various
approaches could be tested.

The Kinetic Graph approach is a framework constituted of a neighborhood discovery
phase, of a trajectory estimation phase, of a graph construction based on a time varying
link weight, and finally of an aperiodic neighborhood maintenance. During the neigh-
borhood discovery phase, we chose to transmit geo-localization information as a mean
to generate the mobility predictions. However, the periodic transmission of those in-
formation generates a non negligeable overhead, which we reduced by the introduction
of a geo-localization compression method.

We then described two possible link weights as criteria for the graph constructions:
Kinetic Distance and Kinetic Nodal Degree. While the former is able to generates
energy efficient topology control graphs, the latter is more resilient to prediction errors.

Mobility prediction errors actually depends on four criteria: realism, adequacy, pre-
dictability, and similarity. We showed how Kinetic Graphs were able to reduce the
prediction errors simply to realism and adequacy, at the cost of a performance related
to the predictability. Therefore, in order to reduce these errors, we first neglected re-
alism and generated a prediction model in total adequacy with the Random Waypoint
Model (RWM). Yet, the efficiency of Kinetic Graphs still depends on the predictability
of the motion patterns, in our case those obtained from the RWM.

We therefore performed a study of this predictability and illustrated how the RWM,
paradoxically, had a predictability of � ëÁ
�
 for reasonable configuration motion pa-
rameters. This outcome justified to further study the benefit of Kinetic Graphs in
MANETs.

Accordingly, we developed the Kinetic Degree and adapted it to the Multi-point re-
laying protocol. The Kinetic Multipoint Relaying (KMPR) protocol uses an heuristic
which selects kinetic relays based on the nodes actual and future predicted nodal de-
grees. Based on that, periodic topology maintenance may be limited to the instant when
a change in the neighborhood actually occurs. We showed how this approach was able
to significantly reduce the number of messages needed to maintain the backbone’s
consistency, thus saving network resources, with an improved flooding efficiency com-
pared to the regular the MPR protocol. We also showed how the OLSR could positively
benefit from KMPR in order to improve routing efficiency.

Although being motivating, it was also clear that the prediction model was able to bring
significant improvements, not only due to the prediction algorithm itself, but also due
to the lack of realism of random models. Indeed, vehicles for instance, have specific
movements not well described by actually mobility models. Another important aspect
we illustrated between modeling and predicting mobility was the relationship between
prediction schema and realistic motion patterns. If a prediction model fits to a mobility
model which is not realistic, it will not be able to accurately predicts realistic motion
patterns. Yet, realism depends on the application.
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We therefore chose to adapt our prediction schema to vehicular mobility for various
reasons, among them was the improved predictability of vehicles, the availability of
GPS coordinates and synchronization, or simply to the wide range of applications based
on vehicular motions. As available mobility models were not able to generate realistic
vehicular traffic, we created VanetMobiSim, a freely available generator of realistic ve-
hicular movement traces for telecommunication networks simulators. VanetMobiSim
has been validated first by illustrating how the interaction between featured macro- and
micro-mobility was able to reproduce typical phenomena of vehicular traffic. Then,
the traces generated by VanetMobiSim were formally validated against those obtained
from CORSIM, a benchmark traffic generator in transportation research.

We moreover depicted how the realistic motion patterns created by VanetMobiSim af-
fected the node’s velocity, and how new parameters became necessary to evaluate the
performance of routing protocols in Vehicular Ad Hoc Networks (VANETs), and eval-
uated the performance of two ad hoc routing protocols, AODV and OLSR, in realistic
urban scenarios.

Finally, we used the realistic vehicular motion patterns on KMPR. Even though we ex-
pected the first order prediction model used by KMPR not to be sufficient to accurately
predict complex vehicular mobility, we proved that it was not the case and Kinetic
Graphs were able to significantly improve the MPR and OLSR protocols even with
vehicular motion patterns.

This last outcome concluded our research on modeling and predicting mobility in wire-
less ad hoc networks, as we showed how by realistically modeling, then devising an
efficient mobility prediction schema, we could successfully adapt the Kinetic Graph
approach to ad hoc broadcasting and routing protocols, and reduces the important ef-
fect of mobility on their performance.

B FUTURE WORK

Based on the results we obtained in this Doctoral Thesis, significant new research orien-
tations could be envisioned. First, as described in this work, the efficiency of prediction
schemes for Kinetic Graphs depends on the adequacy between the kinematic model and
the motion patterns. In this thesis, we only used a first order kinematic model, yet we
employed Kinetic Degrees in order to limit the prediction errors. However, as illus-
trated in Chapter II, powerful prediction schemes have been devised in the past, and
which could be successfully applied to ad hoc networks. Based on a particular efficient
prediction schema, it would be interesting to analyze the predictability of vehicular
motion patterns. We could therefore reach the optimal Kinetic Graph behavior with a
perfect adequacy, a perfect realism, and a large predictability.

In this Doctoral work, we provided two time varying link weights which could be used
as criteria for building kinetic graphs. We developed KADER based on the kinetic
distance, and KMPR based on the kinetic degree. Yet, other solutions may be foreseen.
For example, the Localized Minimum Spanning tree creates a structure based on local
and distributed spanning trees. As each node builds a Euclidian Spanning Tree, we
could use the Kinetic Distance in order to create a Kinetic Localized Spanning Tree
(KLMST). Or, more generally, it would be interesting to adapt the Kinetic Degree to
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any ad hoc protocol using nodal degrees as a decision criterion. We illustrated how
both criteria could be successfully adapted to wireless ad hoc networks, but we also
think that the Kinetic Graph approach also has promising potentials in other fields.

During our research work, we also developed a realistic vehicular mobility model and
validated it against a benchmark traffic generator.A very important factor when simu-
lating highly mobile networks is the radio propagation model. Results obtained without
accounting for the impact of large obstacles, such as buildings, on the radio signal prop-
agation can hardly be realistic. Studying this aspect would also be challenging, as it
would be possible to benefit from the availability of a detailed topology description
to introduce a new component in VanetMobiSim, for instance, capable of generating
radio propagation information for network simulators.

Moreover, VanetMobiSim is at this time not capable of interacting with a network
simulator. As vehicular applications are purposely targeted at altering trajectories based
on unexpected events, such as accidents, traffic jams, or simply advertisement, the
network simulator and the mobility simulator should be closely interlinked.

Finally, a more general consideration is that the study of mobility is a challenging
task that is impossible to completely fulfill. Engineers and researchers always inspired
themselves from Mother Nature for solutions to human problems. For example, the
Neural Network research field aims at trying to synthetically recreate the behavior of
neuronal cells to improve artificial intelligence. Human beings are evolving in a con-
stantly moving environment, and even without knowing it, they perform basic mobility
predictions on a daily basis. For example, they predict their mobility and that of others
when they try to find a short cut on their daily compute, or more dangerously as a way
to drive closer to neighboring cars. Mobility prediction is a natural reflex and studying
it could provide solutions to otherwise unsolvable problems.
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