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The Fast Subsampled-Updating

Fast Transversal Filter

(FSU FTF) RLS Algorithm

Dirk T.M. Slock and Karim Maouche

Abstract

We present a new fast algorithm for Recursive Least-Squares (RLS) adaptive �ltering that uses
displacement structure and subsampled updating. The FSU FTF algorithm is based on the Fast
Transversal Filter (FTF) algorithm, which exploits the shift invariance that is present in the RLS
adaptation of a FIR �lter. The FTF algorithm is in essence the application of a rotation matrix to
a set of �lters and in that respect resembles the Levinson algorithm. In the subsampled updating
approach, we accumulate the rotation matrices over some time interval before applying them to
the �lters. It turns out that the successive rotation matrices themselves can be obtained from a
Schur type algorithm which, once properly initialized, does not require inner products. The various
convolutions that thus appear in the algorithm are done using the Fast Fourier Transform (FFT).
For relatively long �lters, the computational complexity of the new algorithm is smaller than the one
of the well-known LMS algorithm, rendering it especially suitable for applications such as acoustic
echo cancellation.

R�esum�e

Nous pr�esentons un nouvel algorithme rapide des moindres carr�es r�ecursifs (MCR), bas�e sur la
structure de d�eplacement et la mise �a jour sous-�echantillonn�ee. Le FSU FTF est d�eriv�e �a partir de
l'algorithme FTF qui exploite une certaine propri�et�e d'invariance sous l'op�eration de d�ecalage qui
est inh�erente au �ltrage adaptatif par les MCR. L'algorithme FTF peut être vu comme l'application
d'une matrice de rotation �a un ensemble de �ltres et s'apparente de ce point de vue �a l'algorithme
de Levinson. Dans une approche de mise �a jour du �ltre adaptatif sous-�echantillonn�ee, nous accu-
mulons pendant un bloc d'�echantillons les matrices de rotation successives puis, nous appliquons
la matrice r�esultat aux �ltres. Ces matrices de rotation peuvent être obtenues en utilisant une
proc�edure de type Schur. On �evite ainsi les calculs de produits scalaires, sauf pour l'initialisation
de cet algorithme FTF-Schur. Les convolutions qui apparaissent ainsi �a di��erents endroits dans
l'algorithme sont e�ectu�ees �a l'aide de la Transform�ee de Fourier Rapide (TFR). Pour des �ltres
relativement longs, la complexit�e du nouvel algorithme est plus faible que celle du LMS, ce qui le
rend tr�es adapt�e pour la r�esolution de probl�emes tels que celui de l'annulation d'�echo acoustique.
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1 Introduction

Adaptive �ltering algorithms consist of a joint-process or �ltering part, in which �rst of all an

error signal is computed as the di�erence between the desired-response signal and the output

of the adaptive �lter, computed with the latest estimate of the �lter coe�cients. Then this

error signal is multiplied with a gain vector to form the gradient in the �lter update equation.

In the RLS algorithm [2], the gain vector is the product of the Kalman gain and a likelihood

variable. In the conventional RLS algorithm, these quantities are computed from the sample

covariance matrix, the inverse of which is updated via the Riccati equation. This requires

O(N2) computations for a FIR �lter length equal to N . Fast RLS algorithms such as the

Fast Transversal Filter (FTF) algorithm [1] exploit a certain shift invariance structure in the

input data vector, which is inherited by the sample input covariance and crosscorrelation

matrices. Using this shift-invariance, the gain update part of RLS becomes a prediction part

(involving forward and backward prediction problems) in FTF, the complexity of which is

reduced fromO(N2) to O(N). Other fast RLS algorithms such as the Fast Lattice (FLA) and

Fast QR (FQR) algorithms [2],[5] also provide the same �ltering error signal, but replace the

transversal �lter coe�cients by a transformed set of parameters as in the square-root Kalman

�ltering/RLS algorithms.

In [10],[8], we have pursued an alternative way to reduce the complexity of RLS adaptive

�ltering algorithms. The approach consists of subsampling the �lter adaptation, i.e. the LS

�lter estimate is no longer provided every sample but every L � 1 samples (subsampling fac-

tor L). This leads to the Subsampled-Updating RLS (SU RLS) algorithm, which nevertheless

provides exactly the same �ltering error signal as the RLS algorithm. The computational

complexity of the SU RLS algorithm is certainly not reduced w.r.t. to that of the RLS algo-

rithm. However, in the SU RLS algorithm the Kalman gain and the likelihood variable are

L � N and L � L matrices resp. which, due to the shift invariance present in the problem,

exhibit a low displacement rank. Hence, by using the displacement structure and the FFT

(when computing convolutions), we have derived a fast version of SU RLS that we have called

the FSU RLS algorithm.
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Here, we propose a dual strategy, see Fig. 1. Namely, after having exploited shift-invariance

in the RLS algorithm to obtain the FTF algorithm, we shall apply subsampled updating to the

estimation of the �lters involved. The starting point is an interpretation of the FTF algorithm

as a rotation applied to the vectors of �lter coe�cients. Using the �lter estimates at a certain

time instant, we compute the �lter outputs over the next L time instants. Using what we

shall call a FTF-Schur algorithm, it will be possible to compute from these multi-step ahead

predicted �lter outputs the one step ahead predicted �lter outputs, without updating or using

the �lters. These quantities will allow us to compute the successive rotation matrices of the

FTF algorithm for the next L time instants. Because of the presence of a shift operation

in the FTF algorithm, it turns out to be most convenient to work with the z-transform of

the rotation matrices and the �lters. One rotation matrix is then a polynomial matrix of

order one, and the product of L successive rotation matrices is a polynomial matrix of order

L. Applying the L rotation matrices to the �lter vectors becomes an issue of multiplying

polynomials, which can be e�ciently carried out using the FFT.

The subsampled updating technique turns out to be especially applicable in the case of

very long �lters such as occur in the acoustic echo cancellation problem. The computational

gain it o�ers is obtained in exchange for some processing delay, as is typical of block processing.

In order to formulate the RLS adaptive �ltering problem and to �x notation, we shall �rst

recall the RLS algorithm.

2 The RLS Algorithm

An adaptive transversal �lterWN;k forms a linear combination of N consecutive input samples

fx(i�n); n = 0; : : : ; N�1g to approximate (the negative of) the desired-response signal d(i).

The resulting error signal is given by

�N(ijk) = d(i) +WN;kXN (i) = d(i) +
N�1X
n=0

W n+1
N;k x(i�n) (1)

where XN (i) =
h
xH(i) xH(i�1) � � � xH(i�N+1)

iH
is the input data vector and superscript

H denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N
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transversal �lter coe�cientsWN;k =
h
W 1

N;k � � �WN
N;k

i
are adapted so as to minimize recursively

the following LS criterion

�N(k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN (i)k2 + �k+1� kWN �W0k2�N
)

=
kX
i=1

�k�i k�N(ijk)k2 + �k+1� kWN;k �W0k2�N
(2)

where � 2 (0; 1] is the exponential weighting factor, � > 0, �N = diag
n
�N�1; : : : ; �; 1

o
,

kvk2� = v�vH, k:k = k:k
I
. The second term in the LS criterion represents a priori information.

For instance, prior to measuring the signals, we may assume that WN is distributed as WN �
N
�
W0; R

�1
0

�
, R0 = ���N . The particular choice for R0 will become clear in the discussion

of the initialization of the FSU FTF algorithm. Minimization of the LS criterion leads to the

following minimizer

WN;k = �PH
N;kR

�1
N;k (3)

where

RN;k =
kX
i=1

�k�iXN (i)X
H
N (i) + �k+1��N

= �RN;k�1 +XN (k)XH
N (k) ; RN;0 = R0 = ���N

PN;k =
kX
i=1

�k�iXN (i)d
H(i) � �k+1��NW

H
0

= �PN;k�1 +XN (k)dH(k) ; PN;0 = �R0W
H
0

(4)

are the sample second order statistics. Substituting the time recursions for RN;k and PN;k

from (4) into (3) and using the matrix inversion lemma [3, pg 656] for R�1N;k, we obtain the

RLS algorithm:

eCN;k = �XH
N (k)�

�1R�1N;k�1 (5)

�1N (k) = 1 � eCN;kXN (k) (6)

R�1N;k = ��1R�1N;k�1 � eCH
N;kN (k)

eCN;k (7)

�pN(k) = �N(kjk�1) = d(k) +WN;k�1XN (k) (8)

�N(k) = �N(kjk) = �pN(k) N (k) (9)

WN;k = WN;k�1 + �N(k) eCN;k (10)

6



where �pN(k) and �N(k) are the a priori and a posteriori error signals (resp. predicted and

�ltered errors in the Kalman �ltering terminology) and one can verify (or see [1]) that they

are related by the likelihood variable N (k) as in (9).

3 The Fast Transversal Filter Algorithm

The FTF algorithm e�ciently exploits the shift-invariance present in the adaptive FIR �l-

tering problem, which translates into a low displacement rank of R�1N;k. The computational

complexity of the FTF algorithm is 7N in its most e�cient form. The developments in this

paper are immediately extendible to the multichannel case starting from the multichannel

FTF algorithm [1],[7]. However, we shall restrict the formulas to the single-channel case for

notational simplicity. The algorithm can be described in the following way, which emphasizes

its rotational structure:26666666664

h eCN;k 0
i

AN;k

BN;k

[WN;k 0]

37777777775
= �k

26666666664

h
0 eCN;k�1

i
AN;k�1

BN;k�1

[WN;k�1 0]

37777777775
�N (k) = ��N (k�1) + eN (k) epHN (k)

�N (k) = ��N (k�1) + rN (k) rpHN (k)

N (k) = �N�N (k) =�N (k) (11)

where AN;k and BN;k are the forward and backward prediction �lters, epN (k) (eN(k)) and

rpN (k) (rN (k)) are the a priori (a posteriori) forward and backward predition errors and �N (k)

and �N(k) the corresponding prediction error variances. �k is a 4 � 4 rotation matrix given

by

�k = �4
k �

3
k �

2
k �

1
k (12)
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where the four 4� 4 matrices �i
k i = 1; 2; 3; 4 are

�4
k =

26666666664

1 0 0 0

0 1 0 0

0 0 1 0

�N (k) 0 0 1

37777777775
�3
k =

26666666664

1 0 0 0

0 1 0 0

rN (k) 0 1 0

0 0 0 1

37777777775

�2
k =

266666666664

1 0
rpN (k)

��N (k�1) 0

0 1 0 0

0 0 1 0

0 0 0 1

377777777775
�1
k =

266666666664

1 � epN (k)

��N (k�1) 0 0

eN (k) 1 0 0

0 0 1 0

0 0 0 1

377777777775
: (13)

The likelihood variable N(k) can also be computed in two other ways [7] and we shall use one

of these further on. In order to compute the rotation matrices, one must obtain the a priori

errors epN (k) ; rpN (k) and �pN (k) which are the outputs at time k of the �lters AN;k�1; BN;k�1

and WN;k�1.

4 The FTF-Schur Algorithm

Now we introduce subsampled updating and from the �lters at time instant k�L, we want to
obtain the �lters at time instant k. This will require the rotation matrices and hence the a

priori errors in that time range. We shall show that these quantities can be computed without

generating the intermediate �lter estimates using a FTF-Schur algorithm.

Let us introduce the negative of the �lter output

bd p
N (k) = d (k)� �pN (k) (14)

bdN (k) = d (k)� �N (k) : (15)

Consider now the following set of �ltering operations

FL (k)
4

=

26666666664

�HN;L;k

ep HN;L;k

rp HN;L;k

� bd p H
N;L;k

37777777775
4

=

26666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�L

[WN;k�L 0]

37777777775
XH
N+1;L;k (16)
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where

XN+1;L;k = [XN+1(k�L+1) � � �XN+1(k)]
H (17)

is the L � (N+1) Toeplitz input data matrix. FL(k) is a 4 � L matrix the rows of which

are the result of the �ltering of the data sequence fx(j) ; j = k�N�L+1; � � � ; kg by the four

�lters of the FTF algorithm as indicated in Fig. 2. �N;L;k is the output of the Kalman gain

and epN;L;k and rpN;L;k are respectively the vectors of forward and backward prediction errors

epN;L;k =

2666664
eHN(k�L+1jk�L)

...

eHN(kjk�L)

3777775 ; rpN;L;k =

2666664
rHN (k�L+1jk�L)

...

rHN (kjk�L)

3777775 : (18)

The last row of FL(k) corresponds to the (multi-step ahead predicted) adaptive �lter outputs

� bd p
N;L;k = �pN;L;k � dL;k =

2666664
� bdHN (k�L+1jk�L)

...

� bdHN (kjk�L)

3777775 : (19)

The �rst column of FL (k) is

FL (k) uL;1 =

26666666664

1� �1N (k�L)
epN (k�L+1)
rpN (k�L+1)
� bd p

N (k�L+1)

37777777775
(20)

where uL;n is the L�1 vector with 1 at the nth position and 0 elsewhere. So with the quantities

in FL (k) uL;1 and using the recursions for �N , �N and �1N , viz.

�N (k�L+1) = ��N (k�L) + epN (k�L+1) N (k�L) epHN (k�L+1) (21)

�N (k�L+1) = ��N (k�L) + rpN (k�L+1) N (k�L+1) rpHN (k�L+1) (22)

�1N (k�L+1) = �1N (k�L) + epHN (k�L+1) epN(k�L+1)
��N (k�L) � rpHN (k�L+1) rpN (k�L+1)

��N(k�L) (23)

it is possible to construct �k�L+1. Now we rotate both expressions for FL(k) in (16) with
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�k�L+1 to obtain �k�L+1FL(k) which equals26666666666666666666664

h eCN;k�L+1 0
i

AN;k�L+1

BN;k�L+1

[WN;k�L+1 0]

37777777777777777777775

XH
N+1;L;k =

2666666666666666664

�HN;L�1;k �

eN (k�L+1) ep HN;L�1;k

rN (k�L+1) rp HN;L�1;k

� bdN (k�L+1) � bd p H

N;L�1;k

3777777777777777775

:

(24)

Or we can write more compactly

S (�k�L+1 FL(k)) = FL�1(k) (25)

where the operator S(M) stands for: shift the �rst row of the matrix M one position to the

right and drop the �rst column of the matrix thus obtained. Now this process can be repeated

until we get F0(k) which is a matrix with no dimensions. So the same rotations that apply to

the �lters at times k�l; l = L�1; : : : ; 0, also apply to the set of �ltering error vectors Fl(k)

over the same time span. Furthermore, at each rotation instance, the rotation parameters can

be calculated from the �rst column of Fl(k) and some auxiliary scalars (�, � and ). Inner

products (�ltering operations) are only needed for the initialization (computation of FL(k)).

This is the FTF-Schur algorithm, which contrasts with the Levinson-style FTF algorithm in

(11).

5 The FSU FTF Algorithm

Once we have computed the L consecutive rotation matrices with the FTF-Schur algorithm,

we want to apply them all at once to obtain the �lters at time k from the �lters at time k�L.
Due to the shift of the Kalman gain in (11), we need to work in the z-transform domain. So
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we shall associate polynomials with the �lter coe�cients as follows26666666664

eCk (z)

Ak (z)

Bk (z)

Wk (z)

37777777775
=

26666666664

h eCN;k 0
i

AN;k

BN;k

[WN;k 0]

37777777775

26666666664

1

z�1

...

z�N

37777777775
: (26)

Hence (11) can be written in the z-transform domain as26666666664

eCk (z)

Ak (z)

Bk (k)

Wk (z)

37777777775
= �k

26666666664

z�1

1

1

1

37777777775

26666666664

eCk�1 (z)

Ak�1 (z)

Bk�1 (z)

WN;k�1 (z)

37777777775
: (27)

It appears natural to introduce

�k (z) = �k

26666666664

z�1

1

1

1

37777777775
: (28)

Now, in order to adapt the �lters at time k from the ones at time k�L, we get straightforwardly26666666664

eCk (z)

Ak (z)

Bk (k)

Wk (z)

37777777775
= �k;L (z)

26666666664

eCk�L (z)

Ak�L (z)

Bk�L (z)

WN;k�L (z)

37777777775
(29)

where

�k;L (z) = �k (z)�k�1 (z) � � ��k�L+1 (z) : (30)

As mentioned before, the successive rotation matrices can be obtained via the FTF-Schur

algorithm with a computational complexity of 2:5L2 operations (counting only the most sig-

ni�cant term as we often do), which takes into account the fact that a rotation matrix in

factored form as in (13) only contains �ve non-trivial entries. Now also remark that �k;L (z)

11



has the following structure

�k;L (z) =

26666666664

� � � 0

� � � 0

� � � 0

� � � 1

37777777775
(31)

where the stars stand for polynomials in z�1 of degree at most L. Taking into account these

two remarks, the accumulation of the successive rotation matrices to form �k;L (z) takes 7:5L2

operations.

As a result of the structure displayed in (31), the product in (29) represents 12 convolutions

of a polynomial of order L with a polynomial of order N . These convolutions can be done using

fast convolution techniques [4]. In the case we consider, in which the orders of the polynomials

are relatively large, we will implement the convolutions using the FFT technique. In that case

the complexity for the update of each one of the four �lters is 3(1+2N+1
L

)FFT (2L)+2 (N + 1))

(multiply/add) operations plus 6 (N + 1) additions (FFT (m) denotes the computational com-

plexity for computing a FFT of length m, and we assume that L is a power of 2 and that

N+1
L

is an integer). The computation of FL(k) in (16) can also be done with the FFT and

one should compute the FFTs of the �lters only once. In the Overlap-Save method, the data

matrix is decomposed into N+1
L

blocks of L � L Toeplitz matrices, which are then embed-

ded into 2L � 2L Toeplitz matrices. Note that at time k, only the most recent 2L samples

of the input signal, corresponding to the new L � L block in the data matrix, have to be

Fourier transformed. The other parts have been computed at previous instants (see [8] for

more details). The resulting FSU FTF algorithm is summarized in Table I.

The initialization of the algorithm is done with the soft constraint initialization technique

[1]. The additon of the soft constraint to the LS cost function as shown in (2) can be interpreted

as the result of an unconstrained LS problem where the input signal is equal to
p
� at time

k = �N and zero at all other time instants before time k = 0. Hence the FSU FTF algorithm
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departs from the following initial conditions

WN;0 = W0

AN;0 = [1 0 � � � 0] ; �N (0) = �N�

BN;0 = [0 � � � 0 1] ; �N (0) = �

eCN;0 = [0 � � � 0] ; N (0) = 1

(32)

With this initialization at k = 0, the corresponding initial sample covariance matrix is indeed

R0 = ���N .

6 Concluding Remarks

The complexity of the FSU FTF is O((8N+1
L

+17)FFT (2L)
L

+32N
L
+10L) operations per sample.

This can be very interesting for long �lters. For example, when (N;L) = (4095; 256); (8191; 256)

and the FFT is done via the split radix (FFT (2m) = mlog2(2m) real multiplications for real

signals) the multiplicative complexity is respectively 1:1N and 0:74N per sample. This should

be compared to 7N for the FTF algorithm, the currently fastest RLS algorithm, and 2N for

the LMS algorithm. The number of additions is somewhat higher. The cost we pay is a

processing delay which is of the order of L samples. We have simulated the algorithm and

have veri�ed that it works. Preliminary experience appears to indicate that the numerical

behavior of the algorithm may require further attention. This is not a surprising fact since

the accumulation of round-o� errors in the original FTF algorithm is known to be unstable

[7]. One way to overcome this drawback is to use a rescuing procedure (see [1],[6],[8]). A more

elaborate investigation of the numerical issues is the subject of ongoing research. In [10],[9],[8],

we have introduced the FSU RLS algorithm, an alternative algorithm with a very similar com-

putational complexity, but a very di�erent internal structure. These developments leads us

to conjecture that perhaps a lower bound on computational complexity has been reached for

RLS algorithms when the subsampled updating strategy is applied and when the �lters to be

adapted are relatively long.
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Table I: the FSU FTF Algorithm

# Computation Cost per L samples

1

26666666664

�HN;L;k

ep HN;L;k

rp HN;L;k

� bd p H
N;L;k

37777777775
=

26666666664

h
0 eCN;k�L

i
AN;k�L

BN;k�L

[WN;k�L 0]

37777777775
XH
N+1;L;k (5 + 4N+1

L
)FFT (2L) + 8N

2 FTF-Schur Algorithm:

Input: �N;L;k; e
p
N;L;k; r

p
N;L;k; � bd p

N;L;k

Output: �k�i (z) i = L�1; � � � ; 0 2:5L2

3 �k;L (z) =
L�1Y
i=0

�k�i (z) 7:5L2

4

26666666664

eCk (z)

Ak (z)

Bk (z)

Wk (z)

37777777775
= �k;L (z)

26666666664

eCk�L (z)

Ak�L (z)

Bk�L (z)

WN;k�L (z)

37777777775
(12 + 4N+1

L
)FFT (2L) + 24N

Total cost per sample (17 + 8N+1
L

)FFT (2L)
L

+ 32N
L
+ 10L
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