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Abstract— In this paper1, we explore the Information-
Theoretic Criteria, namely, Akaikes Information Criterion (AIC)
and Minimum Description Length (MDL) as a tool to sense
vacant sub-band over the spectrum bandwidth. The proposed
technique is motivated by the fact that an idle sub-band (Normal
process) presents a number of independent eigenvectors apprecia-
bly larger than for an occupied sub-band (Non-normal process).
It turns out that, based on the number of the independent
eigenvectors of a given covariance matrix of the observed signal,
one can conclude on the nature of the sensed sub-band. Our
theoretical result as well as the empirical results are first
applied on experimental measurement campaign conducted at
the Eurécom PLATON Platform. We then apply our method to
an IEEE 802.11b Wireless Fidelity (Wi-Fi) signal in order to
analyze the robustness of the proposed approach in presence of
increased levels of noise. We argue that the proposed sub-space
based techniques give interesting results in terms of sensing the
white space in the spectrum.

I. INTRODUCTION

Due to the increasing demand for additional bandwidth
increasing due to both existing and new services, spectrum
policy makers and communication technologists are seeking
solutions for this apparent spectrum scarcity. Meanwhile,
measurement studies have shown that licensed spectrum is
relatively unused across time and frequency [1]. To provide
the necessary bandwidth, a critical rethinking of the spectrum
regulatory requirements is essential. The FCC has recently
recommended that significantly greater spectral efficiency
could be realized by de-ploying wireless devices that can
coexist with the licensed (primary) users, generating minimal
interference while taking advantage of the available resources.
The current approach for spectrum sharing is regulated so
that wireless systems are assigned fixed spectrum allocations,
operating frequencies and bandwidths, with constraints on
power emission that limits their range.
Clearly, the introduction of this revolutionary paradigm
poses many challenges across all layers of a cognitive radio
system design, from its application to its implementation.
The spectrum usage is concentrated on certain portions of the
spectrum while a significant amount of the spectrum remains
unused. We have a basis for classifying the spectra into three
broadly defined types [2]:
1. Black spaces, which are occupied by high power interferes

1The work reported herein was also partially supported by the GRACE and
Cruise.

some of the time,
2. Grey spaces, which are partially occupied by low power
interferes,
3. White spaces, which are free, no one send information on
this band, but it is occupied by natural and artificial forms of
noise(e.g. thermal noise, transient reflections, etc.).
Black spaces is obvious forbidden to send on it because of
the high power interferes, so the whites and the Grey spaces
are the candidates for use by unlicensed operators.

Spectrum sensing has been identified as a key enabling
cognitive radio to not interfere with primary users, by
reliability detecting primary users signals. So sensing
requirements are based on primary user modulation type,
power, frequency and temporal parameters.
Spectrum sensing is often considered as a detection problem.
Many techniques were developed in order to detect the
holes in the spectrum band. Focusing on each narrow band,
existing spectrum sensing techniques are widely categorized
into energy detection [3] and feature detection [4]. The
recent work on detection of the primary user has generally
adopted this technique. However, the performance of the
energy detector is susceptible to unknown or changing noise
levels and interference. In addition, the energy detector
does not differentiate between modulated signals, noise,
and interference but can only determine the presence of
the signal. It does not work if the signal is direct-sequence
or frequency hopping signal, or any time varying signal.
Thus, the energy detector is prone to the false detection
triggered by the unintended signals [5]. On the other hand,
cyclostationary models have been shown in recent years to
offer many advantages over stationary models [4]. Thus,
cyclostationary feature detection performs better than the
energy detector. However, it is computationally complex and
requires significantly long observation time.

In this paper, we use an information-theoretic based
sub-space analysis for the detection of vacant sub-bands
in the spectrum. The proposed technique hinges on the
assumption that the Normal process is known to have
full rank covariance matrix. Accordingly, we investigate
the number of independent diversity branches2, possibly
the number of significant eigenvalues, determined by the

2denoted as stochastic Degrees of Freedom (DoF) in the following.



value which minimizes the Akaikes Information Criterion
(AIC) and/or the Minimum Description Length (MDL) and
conclude on the nature of the sensed sub-band. In other words,
a sub-band is said to be idle if the number of independent
eigenvectors tends to be appreciably large with respect to the
other sub-bands.

The rest of the paper is organized as follows: In Section
II, we briefly present the model structure adopted throughout
this work. The sub-space based detection is introduced in
Section III. In Section IV, we present results from empirical
and Section V concludes the paper.

II. MODEL STRUCTURE

The radio channel measurement system used in this paper
were conducted using Eurécom PLATON Platform [6]. The
PLATON Cards operate in the 1.9 GHz UMTS-TDD band
using a bandwidth of 5 MHz. In this paper, we focus our
analysis on one UMTS-TDD frame composed by 15 slots.
Each Time Slot (TS) contains 5120 samples. The transmitted
signal is convolved with a multi-path channel and a Gaussian
noise is added. The received signal is first synchronized then
equalized through a matched filter. The output of the matched
filter is then down-sampled by a factor of 2xSF (spreading
factor) to compensate for the up-sampling and spreading. In
order to have an idea on the shape of the signal after passing
through the channel, we plot the received signal in the time
domain (see figure 1). It is clear that only the 1st and the 12th

Time Slot contain data. The remaining TS are idle.
As the effective channel, i.e., the physical channel in

conjunction with transmit and receive filters, is always band
limited, it can be described in terms of samples h[.] of the
continuous-time impulse response. Therefore, we consider the
discrete-time complex baseband equivalent channel with input-
output relation given by:

y(n) =
L−1∑
l=0

hls(n − l) + w(n); (1)

where s(n) denotes the nth transmitted signal assumed to be
scalar complex, h denotes the discrete-time impulse response
of the effective channel of L taps, w(.) is the circularly
additive Gaussian noise and y(.) is the resulting output signal.
Given the proposed channel structure, let us introduce the
associated model when a set of observations is made available.
We may then write:

y = As + w (2)

Where
• yH = [y(t1)...y(tN )] is the vector of observations, with

H denoting the conjugate transpose, N is the number of
observations, and y(ti) denoting the observation at instant
ti,

• A is the NxL channel matrix,
• The signal s is a Lx1 vector, and S is the covariance

matrix of the signals, i.e., S = E[s sH ],

• The noise w is a Nx1 vector assumed to be complex,
stationary, and ergodic Gaussian vector process, indepen-
dent of the signals, with zero mean and covariance matrix
given by σ2I, where σ2 is an unknown scalar constant
and I is the identity matrix.

We further assume that the number L(L < N) of signals
are Gaussian random processes, with zero mean and positive
definite covariance matrix. It follows from the assumptions
above that the covariance matrix of y(.) is given by:

R = Ψ + σ2I (3)

where
Ψ = ASAH (4)

The problem here is that the covariance matrix R is unknown
in practice. When estimated from a finite sample size N , we
can not estimate the exact values of the eigenvalues, thus
making it difficult to determine the number of DoF merely
by observing the eigenvalues.
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Fig. 1. The received signal with 15 TS, duration = 10 ms.

III. SENSING INFORMATION-THEORETIC CRITERIA BASED

In this section, we present a new approach to detect the idle
sub-bands based on the applications of the Information Theo-
retic Criteria introduced by Akaike (AIC) in [7]. The proposed
approach was recently used in the literature to estimate the
number of significant eigenvalues of the covariance matrix of
a given observation vector in [8]. As stated before, we will first
present and analyze the corresponding results obtained from
the channel measurements conducted at Eurécom and compare
them to simulated 802.11b signals [9].

A. The Information Theoretic Criteria

The information theoretic criteria was first introduced by
Akaike in [7] for model selection. Schwartz [11] addresses
the following general problem:
Given a set of observations yH(t) = [y(t1)...y(tN )]. Assuming
a family of models, select the model which best fits the data.
Akaike’s proposal is to select the model which minimizes the
AIC criterion defined by [10]:

AIC = −2 log f(y|θ̂) + 2k (5)



where θ̂ is the maximum likelihood estimate of the parameter
vector θ and k is the biais correction. Inspired by Akaike
work, Schwartz and Rissanen have an approach quite different.
Schwartz approached the problem by a bayesian arguments.
However Rissanen based his work on information theoretic
arguments. It turns out that in the large-sample limit, both
Schwartz’s and Rissanen’s approach yield the same criterion,
given by [10]:

MDL = −2 log f(y|θ̂) +
k

2
log N (6)

B. Sub-space based technique

In this section, we apply the information theoretic criteria to
detect the number of DoF of a given observation vector. Our
review of the basics of eigenvector technique follows Wax and
Kailath [10]. As stated before, regarding the N observations
y(t1), ..., y(tN ), we can not exactly estimate the values of the
eigenvalues, thus making it difficult to determine the number
of DoF. From our covariance matrix model given by equation
(3) and (4), let us consider the following family of covariance
matrices

R(k) = Ψ(k) + σ2I (7)

Where Ψ(k) denotes a semi-positive matrix of rank k, and σ2

denotes an unknown scalar. Note that k ranges over the set
of all possible number of DoF, i.e. k = 0, 1, ..., N − 1. Using
linear algebra, we can express R(k) as

R(k) =
k∑

i=1

(λi − σ2)ViV
H
i σ2

where λ1, ..., λk and V1, ..., Vk are the eigenvalues and eigen-
vectors, respectively, of R(k). The AIC and the MDL criteria
are given by [10] and [11]:

AIC = −2 log

 ∏p
i=k+1 l

1
p−k

i
1

p−k

∑
i=k+1 pli

(p−k)N

+2k(2p−k) (8)

While the MDL criterion is given by

MDL = − log

 ∏p
i=k+1 l

1
p−k

i
1

p−k

∑p
i=k+1 li

(p−k)N

+
k

2
(2p− k) log N

(9)
The number of significant eigenvalues is determined by the
value that minimizes the AIC and/or the MDL. We plot, the
computed number of DoF obtained by AIC and MDL criterion
following equation (8) and (9) respectively.

Figure 2 depicts the behavior of the AIC and MDL curves as
function of the eigenvalue index. Remember that the number
of significant eigenvalues (or the DoF) is given by the index of
the AIC, respectively MDL, following respectively, equation
(8) and (9). As a matter of fact, we remark that two curves
decrease with respect to the eigenvalue index until they reach
a minimum value. This is due to the fact that, for first
indexes, the signal is correlated and consequently the two
curves decrease. On the other hand, when the TS is occupied
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Fig. 2. The AIC and MDL of the UMTS Time Slot 1 (data).
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Fig. 3. The AIC and MDL of the UMTS Time Slot 3 (noise).

(TS 1 and TS 12), we notice that the number of DoF is clearly
smaller than the dimension of the covariance matrix N =
1000. In figure 3, we investigate the information-theoretic
behavior when the TS is assumed to be idle. As expected,
the two curves increase with respect to the eigenvalue index.
In fact, as the TS is idle (noise), the number of DoF is always
performed due to the fact that samples are uncorrelated.

On the other hand, by observing figure 2, the minima seem
to lie in an extremely flat region of the function and the
feeling is that the proposed approach is extremely sensitive.
It would thus be interesting not to perform an optimization
based on real-world measurements only, but also based on
simulated data in order to analyze the robustness of the
proposed approach in presence of increased levels of noise.
Figure 4 depicts the behavior of the AIC and MDL curves for
the 802.11b WiFi signal for different SNR and for N=1000.
Notice here that the the proposed approach is more robust
than for the UMTS signal especially for the AIC criterium.
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Fig. 4. The AIC and MDL of WiFi signal at 10 dB.

Moreover, we can pointed out that both AIC and the MDL
criteria give the same number of significant eigenvalues for
SNR = 10 dB. However, as for the case of the UMTS signal,
we remark that in in the presence of increased levels of noise
(i.e. when the SNR = 0 dB), the two curves increase as
function of the eigenvalue index. Due to the lack of space,
we will not present these consistencies here and the reader is
referred to the reference [12].

IV. EMPIRICAL TECHNIQUE

In the previous section, we explored the information theo-
retic criteria to determine the number of significant eigenvalues
of a given observation vector. Let us now use a different
method based on an empirical approach. Our method is based
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Fig. 5. Number of the significant eigenvalues per Slot.

on the eigenvalues decomposition following equation (7).
Since our UMTS frame is divided into 15 slots, we compute
the covariance matrix for each slot. We determine the empirical
CDF of the eigenvalues of each slot, and based on these CDFs,

we can find the number of the significants eigenvalues that
capture a certain level of the signal energy. The number of the
significant eigenvalues that capture 85% and 98% of the total
energy for each slot of the signal is captured by the figure 5. As
expected, we see that the numbers of significant eigenvalues
for the 1st and the 12th TS are clearly lower than for the other
idle TS even by capturing 80% of the energy. Notice here that
the proposed empirical strategy is consistent even for lower
energy thresholds. This result is very interesting since by only
determining the number of DoF which capture a fraction of the
energy, a cognitive user can deduce the nature of the sensed
signal.

V. CONCLUSION

In this paper, we proposed a new sensing technique based on
a sub-space approach. We investigated Information-Theoretic
Criteria (AIC and MDL) and the empirical technique with
respect to UMTS real-world measurements as well as to
simulated WiFi signals in order to analyze the robustness of
the proposed approach in presence of increased levels of noise.
We analyze their respective potential to sense idle part of
the spectrum and it was shown that the proposed sub-space
technique presents very promising issues within the framework
of blind sensing. As a future work, it is of major interest to
generalize the problem to study the performances of such an
approach to heterogeneous networks in a wide-band context
[12].
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