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The Challenges of Predicting Mobility

Jérôme Härri, Christian Bonnet and Fethi Filali

Abstract

In this report, we describe the challenges facing mobility prediction in
mobile networks and the potential benefit from its usage. We first describe
telecommunication areas, which are subject to, and potentially suffering from,
the mobility of network terminals. We then provide a related work on pre-
diction models illustrating previous successful attempts aimed at taming mo-
bility in cellular and mobile networks. Finally, we dissert on the potential of
the adaptation of such techniques to mobile ad hoc networks by describing
some successful application to routing and location management in ad hoc
networks.

Index Terms

Mobility and resource management, mobility prediction, prediction mod-
els, Kalman filters, auto-regressive models, particle filters, performance, cel-
lular networks, mobile networks, MANET.
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1 Introduction

Since the creation of modern telephony, telecommunication networks have
been developed in a static way, the mobility of users being negligeable with respect
to the new capacity to connect two remote customers. At the eve of the Internet,
we started to see the worldwide generalization of those static networks. However,
at the same time, the customers demand for a larger flexibility toward nomadic pat-
terns appeared, which placed mobility management within static networks as an
important improvement factor.

In parallel, wireless networks were developed which was the response of telecom-
munication operators for a growing demand of seamless mobility and wireless con-
nections. Cellular networks such as 1G, 2G or 3G have been designed with a clear
objective to offer a national mobile communication coverage, quickly increased
to a worldwide coverage with the introduction of roaming capabilities. However,
with the generalization, of data traffic on cellular networks, as well as the increas-
ing demand for improved throughput and security, mobility became a more serious
subject.

Mobility is indeed a serious factor contributing to the performance of mobile
telecommunication networks. It limits the capacity to maintain a connection, or
to guaranty a quality of service between two customers. Moreover, the significant
increase of the telecommunication customers dramatically increased the effect of
mobility on the network maintenance.

Studies have been produced on the effect of mobility on telecommunication
networks. Information Theory showed that mobility is able to increase the net-
work capacity by increasing the network spatial diversity, a feature actually long
known by epidemiologists studying virus propagations. However, this improve-
ment comes at the cost of unbounded delays making this improved capacity unus-
able on real network deployments, and which explains in part why communication
protocols are not taking advantage of the increased spatial diversity for communi-
cation improvements.

In most technologies used nowadays, networks are subject to terminal mobility.
This effect may be compared to a blind person evolving in our universe and trying
to discover its own representation with its stick. Our universe is indeed a knowl-
edge plane acquired with experience, while mobile and fixed network stations are
trying to blindly discover this universe using periodic transmission of beacon mes-
sages. Some protocols have been designed to reduce this drawback, yet without
being able to jump the fence and resolve it.

In this section, we present concrete examples of methods successfully devel-
oped for telecommunication networks in order to limit the effect of user mobility.
Then, in the second step, we re-introduce1 a breach in the way modern telecom-
munication network could be designed by illustrating that mobility may actually

1We use the term ”re-introducing”, as this way of thinking had already been proposed in the
past for the 2G and 2.5G cellular networks, but later forgotten in analysis of ad hoc and wireless
telecommunication networks.
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be tamed by predicting instead of being subject to it. For that matter, we describe
prediction models that are available, then we illustrate the application fields those
models may be used. Our objective is to clearly demonstrate and convince the
reader that efficient solutions exist which provides a better vision of the mobility
of network terminals.

2 Undergoing Mobility

As described in the previous section, telecommunication networks have always
been subject to mobility. A major task for telecommunication engineers is there-
fore to design technics reducing this drawback. For example, in cellular networks
GSM/UMTS, mobility management is handled differently whether the mobile ter-
minal in active communication or not.

For example, the only way to contact a mobile terminal in idle mode is by
paging it. In order to save network resource when the mobile terminal is not con-
nected, the base station only keeps a coarse vision of the zone where the mobile
terminal is. Accordingly, if the base station does not have any precise information
on where a mobile terminal is, it needs to page the whole network with all the la-
tency incurred by this method. Therefore, in order to reduce the drawbacks of this
approach, GSM/UMTS systems developed a hierarchical structure called Paging
Area (PA) including several Location Areas for the GSM or Routing Areas for the
UMTS. Thanks to this, the system limits its paging’s scope to the PA containing
the last LA/RA where the mobile terminal has last been attached. By using this
process, the system is able to save network resources and delay.

Instead, when the mobile terminal is actively communicating, the base station
needs to keep a very precise vision on the region where the terminal is located in
order to reserve network resources for future cell handovers. This procedure is
critical for the seamless functionality of cellular networks as no drop calls should
occur resulting from handovers. For that objective, the mobile terminal periodically
samples then transmits RSSIs of all base station beacons it receives to its connected
base station in order to obtain a coarse relative position estimates. Then, the mobile
terminal and the attached base station may coordinate with the next base station in
order to anticipate the handover and reserve the required network resources.

In the IP world, provisions have also been created in order to deal with mobility
or nomadism of IP terminals. The IPv4 and IPv6 networks developed algorithms,
called Fast Handover, limiting the packet losses generated by changes of covering
zones. Alerts are triggered when a node is approaching a new access router, which
creates alternate routes faster and re-routes packets even before the real hand-over
actually takes place. However, this system is resource consuming as it requires a
periodic tracking of access routers.

Ad hoc networks also had to quickly develop efficient methods to handle ter-
minals mobility. Globally, five different categories of protocols were designed:
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� Proactive Protocols– Similarly to static networks, those protocols build
routing tables providing a path to any accessible destination on the network.
Periodic beacon messages are triggered in order to adapt the backbone to
topology changes at the cost of a higher energy consumption and channel
occupancy. The two flagships in proactive routing protocols are the Wireless
Open Shortest Path First (W-OSPF) [1,2] and the Optimized Link State Rout-
ing (OLSR) [3, 4]. Indeed, after having developed many protocols, the com-
munity slowly started to converge to those two protocols, which are also the
only two candidate to the IETF standard track RFC for proactive routing in
Mobile Ad Hoc Networks (MANETs). Yet, the more the mobility increases,
the harder it becomes to maintain the routing tables. Accordingly, this ap-
proach has shown not to be very adapted to fast mobile networks. Recent
results also pointed out the relationship between performance and density,
arguing that proactive routing could only be efficient on dense networks.

� Reactive Protocols– In order to limit the waste of resources, reactive net-
works only open routes on demand. Thanks to this limitation, the mobility
of nodes not involved in the opened route does not influence network man-
agement. However, the mobility of nodes belonging to the opened route
reduces the performance of reactive networks. Local repairs are possible in
the case of a route failure and, in order to reduce the latency of a broken path,
reactive networks also use periodic beacon messages. In this category, the
Direct Source Routing (DSR) [5] protocol and the Ad hoc On Demand Dis-
tance Vector Routing (AODV) [6] are two potential candidate, although that
the IETF recently chose a modified and improved version of AODV called
Dynamic MANET On-demand (DYMO) [7] as the only candidate to IETF
standard track RFC for reactive routing in MANETs.

� Geographic Routing– It is a stateless approach where no backbone or route
is generated. Instead, geographic information of the destination and interme-
diate nodes are used in order to wisely choose the best candidate to forward
a packet toward the intended destination. Those protocols are based on two
functions: the greedy forwarding and the recovery. Indeed, each node receiv-
ing a packet will try to chose the best candidate among its neighbors with the
maximum progress toward the destination node. This is the greedy forward-
ing phase and Most Forward within Radius [8] is the technique most widely
used in order to find the best progress. But in some cases, the packet falls
in some local maxima, where not any single node in the neighborhood may
bring any potential progress toward the destination. Accordingly, a recovery
phase is triggered, where the packet is sent back until an alternate candi-
date is found. This is the recovery phase and use mostly Face Routing [9]
pp. 389-394 to circumvent the local maxima. The first and still pioneer
protocol in this field is the Greedy Perimeter Stateless Routing (GPSR) [10]
protocol, but some extension and improvements in the two phases have been
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suggested ( [9] Sect. 12.4). Nodes mobility still alters the precision of geo-
localization information, potentially reducing the performance of the geo-
graphic forwarding approach. The strong requirement of the availability of
a geo-localization system was the major justification for the IETF for not
pushing this approach for standardization. Yet, the stateless feature of geo-
graphic routing made them good candidates for routing in Vehicular Ad Hoc
Networks, where GPS systems are commonly accepted.

� Fish-Eye Routing– In order to deal with the lack of precision of geographic
information, mobility is handled in a different way whether the destination
node is far or close from the intermediate or sender node.

– Locally: Frequent position updates of all neighboring nodes are trig-
gers as mobility has a significant local influence.

– Remote: Only a coarse mobility maintenance is triggered as the remote
mobility does not have a significant influence on a local decision.

The Fisheye State Routing (FSR) [11] protocol or the Landmark Routing
(LANMAR) [11], two proactive approach, are two example, where a node
keeps up to date state information about all nodes in its inner circle (or land-
mark), while the accuracy of such information decreases as the distance in-
creases. Even if a node does not have an accurate state information about
distant nodes, packets will be routed correctly because the route information
becomes more and more accurate as the packet gets closer to the destina-
tion. Another proactive protocol in this category is called Distance Routing
Effect Algorithm for Mobility (DREAM). It is based on location information,
and adapt its location update to both mobility rate and distance. Finally, a
reactive approach called Location-Aided Routing (LAR) [11], also based on
location information, has been developed, where each node maintains the
location about nodes it is aware of with respect of the distance. The farer
is the node, the larger is area and then, on demand, orients route requests
toward the area where the destination node is.

� Hybrid Routing– This is the last category of protocols which mixes the
proactive approach for local routing and reactive even geographic approach
for distance routing. Most of the protocols developed in this category either
create local zones, clusters, or trees and uses a reactive routing strategy to
route between them. The Zone Routing Protocol [12], or the Hybrid Ad Hoc
Routing Protocol [13] are examples of this approach.

Although some techniques have been developed to reduce the impact of nodes mo-
bility, it still has a major impact on the performance of routing protocols. And sim-
ilarly to the topology management approaches previously described, all are subject
to mobility and non negligeable resources are dedicated to maintaining the stability
of the network backbone or routes with respect to mobility. These resources could
be better used if the mobility could be used as an asset instead of a drawback.

4



3 Predicting Mobility

An alternative to the methods described in the previous section is to try to
predict users mobility. Indeed, by again considering the example of blind persons,
what differentiate us from them is first our global long range vision, and second
our capacity to predict and anticipate the evolution of our environment. Similarly,
mobility prediction techniques could be used in order to improve the management
of mobile networks.

Definition 1 (Mobility Prediction) Capacity to evaluate a future position given
past positions.

Mobility Prediction is actually a very ancient technique used by the first sailors
to navigate on seas and oceans. In marine literature, this technique is better known
as Dead Reckoning. Using instruments measuring:

� the initial point

� the azimuth, or headings (Astrolab, Sextant, Compas)

� the speed (Chip log, Tachometer, Anemometer, Doppler sonar)

� the time (Astrolab, Chronograph)

the dead-reckoning technique is able to obtain the current position and the dis-
tance travelled since the last known position. Inertial system are able to improve
the precision of dead-reckoning techniques for systems that are not able to receive
satellite signals. Nowadays, a large variety of navigational methods are still based
on dead-reckoning, varying from under-water navigation, spatial navigation, mis-
sile guidance and tracking. More generally, in any domain where a knowledge of
the trajectory taken by a system is vital, mobility prediction is used.

In telecommunication network management, resources are shared in order to
benefit to the widest set of users. And those resources are allocated depending on
the density of users. Yet, mobility makes this management random and inefficient.
The knowledge of the trajectory taken by users may be very useful in order to
improve the resource management of mobile telecommunication networks. This is
also a significant motivation for the study of mobility prediction techniques in the
field of telecommunication networks.

3.1 Available Localization Techniques

On periodic position reassessments, mobile terminals using algorithms based
on mobility prediction techniques must acquire their position. It is therefore nec-
essary to obtain a sporadic access to a geo-localization system. Three categories of
geo-localization algorithms exists:

5



� Satellite Systems (GPS or Galileo): It is a widely diffused system, which
guaranties a precise localization (

�
1m) at a low cost. However, the acqui-

sition time may be long ( � 30s), it also consumes a non negligeable energy,
and requires access to satellite signals.

� Beacon Systems (GSM): The precursor of GPS localization, and an alterna-
tive to situation when the GPS signal is not available. However, the precision
cannot challenge the GPS system.

� Hybrid Systems:

– Inertial Systems: Contain a set of accelerometers, gyroscopes and guid-
ance algorithms able to provide the velocity, orientation, and angular
velocity of a mobile system by measuring the linear and angular ac-
celerations applied to the system in an inertial reference frame. If cal-
ibrated on known positions and velocities, the inertial system is then
able to estimate a mobile system complete trajectory.

– GPS Systems: Compute position, velocity, acceleration, and use com-
plex mobility prediction techniques when the signal is not available.

– GSM Systems: Uses all available techniques or triangulation or multi-
lateration in cellular networks: Angle of Arrival (AOA), Time Differ-
ence of Arrival (TDOA), Enhanced Cell Identification (E-CID), Uplink
Time Difference of Arrival (E-TDOA), Enhanced Observed Time Dif-
ference (E-OTD), or A-GPS.

3.2 Mobility Prediction Models

Mobility prediction models has nothing new, and working on this field could
look like trying to reinvent the wheel. Indeed, they have initially been developed
for tracking purposes in the 60s in cellular Networks since 1995. More complex
models have later been used in order to be applied to cellular systems requiring
a quality of service such as the Wireless ATM network. The complexity and the
precision of those models culminated around the year 2001, but unfortunately were
forgotten afterward as illustrated in Fig. 12. In fact, it took a long time to the
mobile ad hoc network community to understand that mobility prediction was as
important as it used to be for cellular network. But then, only simplistic models
were re-introduced, as if the whole past literature has either been forgotten, or
judged too complex for the needs. However, we started to see a growing popularity
in complex iterative models in recent work and expect this popularity to further
increase in the near future. This section aims at recalling and putting back into
the light the different orientations taken by the community in order to tame the
mobility of mobile terminals.

2This figure has been obtained based on the number of google hits using keywords Trajectory,
Prediction, Tracking, Mobility and estimated based on the complexity of each solutions and the initial
publication year.
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Figure 1: Evolution of the Popularity of Prediction Techniques

3.2.1 Deterministic Models

Deterministic mobility prediction models may be a first order model, only con-
sidering the position and a fixed velocity, but more higher order models have also
been designed, including acceleration and a time-varying velocity.

The mostly known and used deterministic model is the first order kinetic model
illustrated in Fig. 2(a).��� ������	��

������������������ ����� � ���!���� �"� �#��$ �%$ �& ��' ��( � ( � � (1)

A direct application of (1) is to compute the kinetic distance or the estimated con-
nection time between two nodes

�
and ) . The kinetic distance is computed as

follows *,+-/. ��(0�1� *,+.2- ��(0�3�54 �6� ������ . ��(7� � �8� ������ - ��(7��4 ++� 9 �!� . � � -� . � � - � � � $ %. � $ %-$ &. � $ &- � ' (8:
+

� ; -/. ( + �=< -/. (/�?> -/.A@ (2)

Considering B as nodes maximum transmission range, as long as

* +-/. ��(0�AC B + ,
nodes

�
and ) are neighbors. Therefore, solving*,+-/. ��(0� � B + � D; -/. ( + ��< -/. (/�?> -/. � B + � D @ (3)

gives
(7EGF�H6I-/. and

(6J H-/. as the time intervals during which nodes



and K remain
neighbors (see Fig 2(b)).

In cases where the velocity is not constant, a second order prediction model
based on the Euler motion law is used.
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(a) First Order Prediction Model (b) Link Duration (LD) between nodes P
and Q

Figure 2: First Order Prediction Model and its Application to Link Duration

�� $ � ��� � �� ; � ' (2� �� $ � (4a)�6� ������ � ��� � �� �� ; � ' ( + � �� $ � ' (2� �6� �� � � � (4b)

Although vehicular motions involve impulsive forces (such as sudden braking),
a constant acceleration is usually accepted in high speed mobility networks. How-
ever, a piecewise constant acceleration is used in practice. In both cases, (4) may
be used to predict a future position based on some kinetic information. (4) may be
solved by substitution.�8� ������ ����� � �� ' � �� $ � ��� � �� $ ���( ' ( + � �� $ � ' (2� �6� ������ �� � �� $ ����� � �� $ ���� ' (/� �8� ������ � (5a)

Accordingly, position predictions are calculated using a velocity one step ahead,
which forces us to have two samples of past velocities and two piecewise constant
accelerations in order to predict the future position.�� $ � � �� $ ���2� � �� ;�� ���2�
	�� � ' ��( � � ( ���2� � (6a)�� $ ����� � �� $ � � �� ; �
� � � ���
	 ' ��( � ��� � ( � � (6b)�8� ������ ����� � � �� $ ����� � �� $ ���� ' ��( ����� � ( � �2� ��� ������ � (6c)

where
�� ; � ���2�
	�� �

and
�� ; �
� � �����
	

are the constant acceleration during the time
intervals � ( ���2� @ ( ��� and � ( � @ ( ������� respectively.

If the acceleration is constant between two sampling intervals, the velocity in-

creases linearly with time and the approximation � �� ������� � � � �� ��� �+ � 4 �� $ ��� �� 4 is

8



exact. If not, we need to sample the velocity at the mid-interval and use a vari-
ation from 4 called the Feynman-Verlet model. The leap-frog algorithm may be
appropriately used in this case.�� $ � � �� � �� ; � ' ( � � �� $ ��� �� (7a)��� ������ � ��� � �� $ ��� �� ' (2� �6� �� � � � (7b)

Changes in position are calculated using a velocity that is half a step ahead in
time. Likewise, changes in velocity are calculated using an acceleration which is
half a step ahead in time. Position and acceleration are therefore in-phase, while
velocity is out of phase with position and acceleration.

The leap-frog algorithm owes its simplicity to the fact that stepping the velocity
half step out of phase with the position and acceleration provides midpoint values
for both (7a) and (7b) and thus provides more accurate results than the Euler model.
Fig. 3 illustrates both approaches.

(a) Euler Model (b) Feynman Model

Figure 3: Second Order Constant Acceleration Prediction Models

3.2.2 Stochastic Models

Stochastic models do not aim at obtaining an exact prediction, but rather a
correct one with high probability. Stochastic models may be easily used to add an
uncertainty to deterministic predictions. But a more important use is to model
unknown parameters in the state equations or to take into account the model’s
prediction error. In many cases, it is both. For example, tracking-based auto-
regressive processes (AR) use white noise to model the AR prediction errors, and
the estimation of the states, such as position or velocity, is often accomplished
using Kalman Filters. Even if position or velocity are obtained without error, the
AR process still provides predictions with some errors. Now, if errors are added to
the positions or velocities, the performance may decrease drastically. Accordingly,
in most applications, joint optimization is applied to obtain good predictions. In
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the rest of the section, we provides examples and related work using stochastic
prediction models.

Approaches for mobility tracking mostly rely on Autoregressive processes [14,
15], Kalman Filtering [16–19], semi-Hidden Markov [20–22] models, or Particle
Filtering [23–26]. Two measurements have been mostly used in the literature, the
Received Signal Strength Indicator (RSSI) or the Time or Arrival (TOA), but GPS
positioning is experiencing a growing interest from the community as a mean to
reduce the measurement error.

The first and most straightforward model is to weight a deterministic prediction
by the probability the prediction still exists. It is defined as follows� B�� ��� J H���� ��(0�3��� B�� ��	�
 J ��(0� ' � �
� � J � J������������ 	 (8)

where� B�� ��	�
 J ��(0���
Deterministic Mobility Prediction at time

(
� �
� � J � J������������ 	 �

Stochastic validity of the prediction parameters� �
Stability of the mobility parameters (also called Predicability)( ��� I! #" 
 �
Latest sampling time of the mobility parameters

As mentioned in the beginning of this section, Autoregressive (AR) Models also
falls in the stochastic class. A white Gaussian noise with zero mean $ is used to
model the AR prediction error, and the mobility state of the process is estimated
using Kalman or Particle Filters.

An auto-regressive model of order % defines the & J � value as a weighted sum
of the % previously measured ones and is defined as

'�( �*)!+��  , �.-�� ) � '/( �  � $ ( (9)

where $ ( is an independent identically distributed noise with zero mean.
Creixell and Sezaki [14] proposed to model pedestrian trajectories using first

order auto-regressive process (AR(1)) for the velocity and the azimuth. They used
Least Square Lattice filters (LSL) to solve their model and obtained fairly good
predictions up to 10 simulation step ahead.

Zaidi and Mark [15] also used a first order auto-regressive model (AR(1)) but
used Yule-Walker formulation in order to estimate

)
and error coefficients of the

AR(1) process. Unlike [14], the mobility state are not obtained from mobility
traces, but are measured using RSSI (Received Signal Strength Indicator) or TOA
(Time of Arrival) and then approximated using Kalman Filters. They validated
their approach by comparing it against real sets of data.

Another model is called the Gauss-Markov prediction model and has been pro-
posed in [27]. It first models a node’s velocity as a time-correlated Gauss-Markov
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random process. In discrete time, it computes the predicted velocity based on the
previous value and a Gaussien iid process

� � & �3�*) � ( �2� � ��� � ) ���,����� � � )
+
� ( �2� (10)

with the Gauss-markovien auto-correlation process
�
		��� �3��
 � � ��(7� � ��(���� � � ��� � �
��� ��� ��� + (11)

where
) � � �
��� ���� �

Memory size�
+

�
Variance of the v(t) process� �
Expectation of the v(t) process

� ( �
Gaussien IID Process

Their numerical results have demonstrated the importance of the performance gain
of prediction-based approaches, but also confirmed that the performance of such
approach is directly proportional to the predictability of a node’s mobility pattern.
That was also our intuition and was the justification of our predictability analysis
in [28].

While deterministic models are able to model quite fairly first order or sec-
ond order kinetic models with constant accelerations, a velocity subject to an un-
known acceleration, or known but non-constant acceleration requires the use of
more complex stochastic models. Many studies of position tracking in wireless
networks exist, most of them deploying some form of Kalman filtering to the posi-
tion tracking problem. However, in recent years, it has been noted that the sequen-
tial Monte Carlo processing filters, better known as the Particle Filter, can provide
an improved performance in the non-linear and non-Gaussian noise tracking prob-
lem [29].

Central to all navigation and tracking applications is the motion model to which
various kind of model based on filters can be applied. Models that are linear in the
state dynamics and non linear in the measurements are often considered:

' J ��� � � ' J ���
��� J ��� E�� J (12a)
� J � � � ' J �2� � J (12b)

where

' J �
state vector� J �
measured input

� J �
unmeasurable input or faults toward the measured input

� J �
measurement

� J �
measurement error
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An independent distributions may usually be assumed for � J , � J , ' + with known
probability densities % 
�� , % E � , and % %�� , respectively, not necessarily Gaussian. The
difference between the applications based on (12) mainly lies in the different means
to obtain the measurement equation (12b).

Liu and al. [16] proposed a mobility model for wireless ATM networks based
on a dynamic linear system model in wich the mobility state consists of the po-
sition, velocity and acceleration of the mobile terminal. Originally introduced by
Singer [30], the system can capture a wide range of realistic user mobility patterns.
The measurement is based on an estimated position obtained by the RSSI (received
signal strength indicator) from three different base stations, and the state vector is
given by �' ��(7�3� � ' ��(7�/��� � ��(7�2��� B ��(7� (13)

where

��� 9�� DD �
: � �	� � 9�
 DD 


:
� � 9 D �� D : 
 � 9 D � :

and where

' ��(7����� � ��(7� �� ��(0�6�,��(0� �� ��(7��
�� �
Node

�
mobility vector

� ��(7� � � � % ��(7��� & ��(0� � � �
Node

�
deterministic acceleration commandB ��(0�3� � B % ��(0� B & ��(0� � � �

Node
�

random acceleration

The structure of the model, illustrated in Fig. 4, manages to replace a time vary-
ing acceleration with a semi-Markov based acceleration commands and a random
acceleration component. This filter is resolved using Kalman Filtering techniques.

Figure 4: Structure of the Stochastic Micro-Prediction Model

A key observation is that the process
� ( is a semi-Markov process. Therefore,

accurate estimation of
� ( should exploit its semi-Markov characterization. Yu and

Kobayashi [20, 21] developed an efficient algorithm for estimating the parameters
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of a hidden semi-Markov Model (HSMM), a generalization of a similar approach
for Hidden Markov Models (HMM), and its application to position tracking. Zaidi
and Mark [22] also used the same idea to obtain the acceleration command

� ( with
a HSMM estimator while using a Kalman Filter to estimate the mobility states.
Thanks to this hybrid approach, their solution outperformed Liu’s work [16] in
terms of prediction errors by a factor of 5.

Zaidi et al. [19] later generalized their approach and proposed to first prepro-
cess the RSSI with an average Filter to obtain coarse position estimates, and second
to decouple the mobility state estimates ' ��(0� from the estimation of the discrete
command process

� ��(0�
. They illustrated how their approach was able to follow

mobile trajectories more accurately than in Liu’s work.
Pathirana et al. [17] proposed a modification to Liu’s work and used a Ro-

bust Extended Kalman Filter (REKF) approach in order to improve the prediction
accuracy, processing efficiency, and more important, to include non-linearities to
the model. Accordingly, no assumption are made on the measurement equation
or the system dynamics, and thus could be able to better model sharp turns and
log-normal or Nakagami propagation models popular in the modeling of Vehicular
Network.

Another mean to solve the motion model described in (12), without using
REKF or more complex systems, is by means of Bayesian recursive filtering, also
called Particle Filtering. The optimal Bayesian Filter in the case of (12) is given be-
low and is composed of a prediction step and an update step. If the set of available
observations at time

(
is given by� J � � � + @ 'G'G' @ � J � @

then the Bayesian solution to compute the posterior distribution % � ' J ����� � J � of the
state vector, given past observations, is given by

% � ' J ����� � J � � � % � ' J ����� ' J @ � J � % � ' J � � J � (16a)� � % � ' J ����� ' J � % � ' J � � J � � ' J (16b)� � % E � � ���E � ' J ��� � � ' J � �
��� J � � % � ' J � � J � � ' J (16c)

% � ' J � � J � � % � � J � ' J � % � ' J � � J �2� �
% � � J � � J �2� � (16d)

where we assume that both the initial probability density of state % + , and the density
% � ' J � � J � at time step

(
are known and % � � J � � J �2� � � > J .

In the case the motion model is as 12a and the update equation is as 12b, (16)
may be rewritten
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% � ' J ����� � J � � � % E � � � �E � ' J ��� � � ' J � �
��� J � � % � ' J � � J � � ' J (17a)

% � ' J � � J � � % 
�� � � J � � � ' J �7� % � ' J � � J �2� �> J (17b)

The particle filter can be considered as an approximation to a sequential solu-
tion to the above equations. It achieves this by representing the posterior density
with some random weighted samples, called the Particles. A typical particle filter
algorithm consists of 5 steps that we shortly describe next.

1. Initialization: Generate ' � +�� % %�� , 
 � � @ 'G'G' @ � . Each sample of the state
vector is referred to as a particle.

2. Measurement Update: At each particle position, the assigned weight of each
particles is updated and normalized according to a likelihood function (based
for example on RSSI cumulative distribution).

� �J � � �J �2� % � � J � ' �J �
� � � � �

� � � �J
This is the update step of the Bayesian recursive filtering.

3. Resampling: P particles are replaced from the set of particles based on the
weights. This step is necessary in order to avoid a high concentration of
probability mass at a few particles.

4. Prediction Move the particle forward according to the adopted Model (12a
for instance). This step is therefore the prediction step of the Bayesian re-
cursive filtering. The particles are now referred to as predicted particles.

5. Let
( � � ( � �

and iterate item 2).

There is a large literature of successful use of Particle Filtering methods to
solve positioning, tracking or navigation, and it is hard to be exhaustive. The major
difference between different approaches are usually the measurement step or the
Resampling Phase.

For example, Yang and Wang [23] also illustrated the inaccuracy of Liu’s work
and proposed an alternative estimation scheme based on a sequential Monte Carlo
(SMC) Filtering. The SMC can achieve better performance than the Liu’s filtering,
but is computationally intensive and hence might not be suited for real-time trajec-
tory predictions. Zaidi et al. [19] later showed that the SMC was outperformed by
their Modified Kalman Filtering approach.

Gustafsson et al. [24] proposed a framework for positioning, navigation and
tracking problems using particle filters. They showed a clear improvement in per-
formance in real-time, off-line, on real data and in simulation environments com-
pared with existing Kalman filter-based solutions in term of convergence time and
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precision. By using Rao-Blackwellization, authors also managed to reduce the
increased computational complexity of the Particle filter approach compared to
Kalman Filters.

Mihaylova et al. [25] two other Sequential Monte Carlo algorithms, a Particle
Filter and a Rao-Blackwellised Particle Filter, have also been presented. In contrast
to previous work [16, 19, 23], the mobility tracking is formulated as an estimation
problem of a hybrid system, where a base state vector is continuously evolving,
and a mode state vector which may undergo abrupt changes. This formulation
together with the Monte Carlo approach showed it could reduce the computational
complexity and provide efficient mobility tracking.

Sha et al. [26] described another Particle Filtering approach for position track-
ing in Wi-Fi networks under the assumption of log-normal fading and with inter-
mittent GPS information signaling. They obtained a factor 2 improvement against
a stand alone Wi-Fi-based localization and could obtain real-time positioning in
hybrid Wi-Fi and GPS systems.

3.2.3 History-based Models

Those models are usually used to predict the terminal macro-mobility, or the
cell to cell mobility. Indeed, repetition of routine movements allows to more easily
learn the users preferred paths.

One method to characterize users mobility regularities is to record a set of User
Mobility Patterns stored in a profile for each user and indexed by the occurrence
time (see Fig. 5(a)). The major difficulty is to assess the sensitivity between the
UMP and the User Actual Path (UAP). Indeed, is a UAP which diverges from the
UMP by a single cell a small variation of the same path, or a totally new path not
reported in the profile ?

Different approaches have been proposed [16, 31–33] in the past. We illustrate
here the solution presented in [16], where the authors successfully used approxi-
mate pattern-matching techniques to find the UMP that fits best to a UAP. For ex-
ample, if a UMP is described by a cell sequence

� ; � ; + 'G'G' ; ���2� ; � ; ����� 'G'G' ; ( � , then
the authors modelled the regular movement of a mobile user as an edited UMP by
allowing the following legal options:

� inserting a cell
>

at position



of the UMP gives UAP:
� ; � ; + @ 'G'G' ; ���2� > ; � ; � ��� 'G'G' ; ( �

� deleting the cell
; � at position



of the UMP gives UAP:

� ; � ; + @ 'G'G' ; ���2� ; ����� 'G'G' ; ( �
� changing a cell

; � to another cell
>

gives UAP:
� ; � ; + @ 'G'G' ; ���2� > ; ����� 'G'G' ; ( �

Figure 5(b) gives an example a UMP
>��G> + >��G>��

and its edited UAP
>��G>�� >�� >��G>	�

,
which can be obtained by changing

>#+
to
> �

and inserting
> �

.
The degree of resemblance of a UAP with a UMP is measured by the edit dis-

tance a finite string comparison metric. The simplest way to find this distance is
by determining the smallest number of insertion, deletion and changes by which
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two cell sequences can be made alike. If the edit distance is less than a matching
threshold

(
, an approximately matched UMP is found, indicating the general mov-

ing intention of the user and the macro-prediction may be done accordingly. For
example, in Fig. 5(b), the

��� � � has clearly a smaller edit distance than
��� � +

compared to the
� � �

.
��� � � is therefore selected as general moving intention

of the user.

(a) Macro-model (b) Example with 2 Po-
tential UMPs

Figure 5: Global Mobility Model

In the next example, another way to benefit from mobility patterns repetition is
by modeling by them by sequence of stationary events generated using a Markovien
process of order m. In other words, the new event may be generated as a function
of the m previous events.� � $ " � I ��� � � " � I ��� � $ � � � � 'G'G' $ " � � " 'G'G' $ " � I � � " � I � (18a)� � � $ " � I ��� � � " � I ��� � $ " � � " 'G'G' $ " � I � � " � I � (18b)

where $ � are the states of the system, which may be represented by a cell, or an
occupied road segment.

A representation of (18) may be obtained by a trie or a digital search tree,
where every node represents a context $�� � � � � $�� �2� � � � �2� 'G'G' $ � � � � and
stores its last symbol along with the relative frequency of its appearance at the
context of the parent nodes. Obviously, the depth of the trie is the order of the
Markovien process and, as we move down the trie, we restrict our uncertainty to
finally converge to a next event prediction when we reach a leaf. The performance
of the prediction is therefore the trie’s ability to add a new event to the frequency of
an already existing node (reducing the uncertainty) and not to create a new branch
(an unpredicted event).

The Uncertainty of a new event based on a sequence of past events is called the
Entropy in Information Theory, and the optimal prediction of the future state may
then be obtained from algorithms minimizing this entropy. The Lempel-Zif (LZ78)
algorithm is a good choice in order to generate an optimal dictionary of observed
paths and a reduced search trie.
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Figure 6 illustrates an example of the trie representation of a movement history;	;	;	< ; < < < < < ;	;	< > > ��� > < ;	; ;	;
with a second order Markov Process and its improve-

ment using the LZ78 algorithm. This algorithm creates the dictionary
;

,
;	;

,
<
,
; <

,< <
,
< < ;

,
;	< >

,
>
,
�
,
� >

,
< ;

,
; ;	;

and only adds a new branch by concatenating a new
entry � with a symbol � already contained in it.

Init


a(10)
 b(8)
 d(2)
c(3)


a(6)
 b(3)
 a(3)
 b(4)
 c(1)


a(3)
 b(2)
 a(1)
 b(1)
 c(1)
 a(2)
 b(1)
 a(1)
 b(2)
 c(1)


b(1)
c(1)
d(1)


a(1)
 d(1)
d(1)


c(1)
 d(1)


b(1)
 c(1)


(a) Classical Trie

Init


a(5)
 b(4)
 d(2)
c(1)


a(2)
 b(2)
 a(1)
 b(2)


a(1)
 c(1)
 a(1)


c(1)


(b) Lempel-Zif Trie

Figure 6: Trie Representation of a Movement History modeled by a Markovie
Process of order 2

The idea of using the LZ78 algorithm in order to reduce the uncertainty has
been originally presented by Bhattacharya and Das [34] for Location Management
under the name LeZi-Update. An extension to Handover prediction in Wireless
Networks, which has been introduced in [35], is presented next.

By representing the state sequences as
� @�� � @�� + @ 'G'G' � ( @ 
 , where

�
is a new

call, � � is the

 J �

handoff, and



is the end of call, we can generate the prediction
tree illustrated in Fig. 7. Each sequence of events

� @�� � @�� + @ 'G'G' � ( @ 
 during the
lifetime of a call corresponds to a substring in the Ziv-Lempel algorithm.

Each node builds a tree based on the sequence of events. For example, in
Fig. 7, the Lempel-Zif algorithm found 3 substrings which ended at time slot 2, 3
substrings which contained a handover to cell b also at time slot 2, and where all of
them ended right after the handover, or 15 substrings which contained a handover
at time slot 1 etc...

When the mobile requests a new call in cell
;

in the time interval 9:00-9:01
a.m., we can use the statistics preserved in the node’s mobility trie to predict the
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probabilities of the next possible events of this mobile. From the root’s point of
view, it will terminate the call without handoffs in the 2nd time slot with probability
of ������� , handoff to cell b in the 2nd time slot with probability of

� ����� . Then,
depending on the next event, we go down the tree following the sequence of events
in order to refine the predictions. If one prediction error occurs, the tree is updated.

Figure 7: Example of a Lempel Zif tree predicting the time slot of either the end of
call or a handoff

This kind of repetition also allows to successfully use fuzzy logic algorithms.
In the following example, authors in [36] used a Neuro-Fuzzy Inference Model
(NFIS), which is based on an IF, THEN}rule whose consequence is a real num-
ber.This model provides the inference structure that avoids the time-consuming
process of defuzzification in an inference procedure. The form of fuzzy IFTHEN
rules is as follows:

� ��� � 
 �
	�� ' � ��� � � ; & � 'G'G' '�
 ��� �
 @�� � 
 � � ��� � (19)

where

' � 'G'G' ' 	 �
input variable� �
 �
A fuzzy set for input variable ' 
 in the


 J �
fuzzy rule� 
 �

A real number for output variable in the

 J �

fuzzy rule

Given the real-value input vector �' � � ' � @ ' + 'G'G' ' 	 � , the real-value output of
the fuzzy model is inferred as follows:

����	�� � � � �' � � ' � @ ' + 'G'G' ' 	 � �3� � (��- + � � � �� (��- + � � (20)

where

� � � 	�

 -�� ��� �� � '�
 ���

Fuzzy membership function of the Fuzzy set
� �


� � �� �
Fuzzification function (triangular, trapezoid, Gaussian)
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Then, the prediction is as follows:

��� 	�� � � J
� @ � J� @ 'G'G' � J � � 	 �2�
	� � � � J ���

� (21)

where
� J
� is the state k a time t.

� J
� may contains a set of parameters such as

velocity, acceleration or azimuth.
In [37], the sectorization-based prediction model has been proposed which has

been applied to cellular networks. It is mostly a refinement from the basic reg-
ular path prediction model where a next cell is predicted based on a sequence of
previous visited cells. Depending on predefined sectors in a cell, a node will be
more likely to move the cell adjacent to its sector, or move to another sector. Fig. 8
illustrates the sectors in a cellular network.

Figure 8: The Cell Sector Numbering Schema

Figure 9: Sectorized Mobility

Based on the cell sector numbering schema, a history-based sectorized mobility
is generated as illustrated in Fig. 9, where the probability to be at position � after� movements is given by��� � � �3� � � %

�� � � � I 	 ��� � % � �� � � � I 	
� �+ � � � � ��� � � �+ � � � � ��� � (22)

where % is the probability to leave the cell.
Another approach introduced in [38] is the Shadow Cluster model, which is

also a refinement from the basic regular path prediction model. Its concept is that
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any active wireless device establishes an influence on cells in the vicinity of its
location and its direction of travel. The cells currently being influenced are said to
form a Shadow Cluster because the region of influence follows the movement of
the active device like a shadow. Fig. 10 illustrates this approach, where the shaded
areas compose the shadow cluster centered in cell

�
.

Figure 10: Shadow Clusters Produced by an active mobile terminal

Complex stochastic techniques are used to compute the active mobile probabil-
ities to generate the shadow clusters. In [39], Akyldiz and Wang further improved
the Shadow Cluster approach to consider aggregate history and a stochastic model
of cell residence time to shrink the region considered for shadow clusters.

Finally, another particular class of history-based model uses Neural Networks.
In those models, information is gathered in order to train the neural network, which
then is able to predict a particular future state of the network. Based on the se-
quence of input vectors during the training period, back-propagation is used to
update and improve the weights of the neural networks layers. Depending on the
needed complexity, such neural network may have several hidden layers. Fig. 11
illustrates an example of the multi-later neural network with back-propagation.

Figure 11: A Multi-later Neural Network with Back-propagation
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where ��� �
State of node i� �
Decision (Handover, Link duration)

� �
Real Value during training

� � �
Weight correction during training

In Capka and Boutaba [40], the moving trajectory of a mobile node is deter-
mined as a sequence of base stations the node has been attached to. The neural
network is trained with sequences observed in the past in order to detect the cur-
rent movement pattern and improve network management.

Shang et al. [41] developed a clustering-based protocol using wavelet neural
network, where a wavelet function replaces the Sigmoid function in conventional
neural networks. They showed that this approach resulted in more stable clusters
than LowID or MaxConn3.

3.2.4 Hierarchic Models

This last category includes the most precise models ever developed at this time.
Indeed, hierarchic models usually include a micro-prediction algorithm coupled
with a macro-prediction schema. Most of the time, we find stochastic models for
the micro-prediction, and history-based models for the macro-prediction. Those
models are not only capable of predicting with a very high precision the sequence
of cells a user will use in the future, but also the time it will reach the limit of each
cell.

4 Network Algorithms using Prediction Models

In this section, we describe the divers application domains where mobility pre-
diction schemes has been successfully adapted to mobile ad hoc networks.

Figure 12 illustrates domains where prediction models could be applied in mo-
bile ad hoc networks. In most of those domains, protocols have been developed
which significantly improved the network performance.

Mobility prediction techniques have been successfully applied to the following
domains:

� Connection Management:

– KADER [42]: This protocol generates a connected forest using a non-
periodic maintenance strategy. Its Performance is similar to other topol-
ogy control algorithms, yet at a drastic reduction of the maintenance
overhead.

3LowID is a clustering technique where a node with the lowest ID is elected as cluster head, while
MaxConn elects a node with the maximum connectivity as clusterhead
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Figure 12: Classification of the Applicability of Prediction Techniques

– Kinetic MultiPoint Relays (KMPR) [43]: The KMPR protocol elects
MPR nodes depending on their predicted nodal degree. The KMPR
protocol is able to reduce the MPR protocol maintenance overhead by
60% and the delay by 25

� Location Management:

– Dead Reckoning-Based Location Service [44]: This model adjusts the
periodic dissemination of geographic information based on a first order
deterministic mobility prediction model.

– Mobility Prediction-based GLS [45]: Improves the Grid Location Server
(GLS) by adapting the periodic location maintenance with two pre-
diction models deterministic first order and history-based first order
Markovien.

– Predictive Location Service (PLS) [46]: This approach only uses a first
order deterministic prediction model, but manages to reduce the loca-
tion errors and the maintenance overhead of GLS.

� Link Availability:

– Mobility Prediction-based Position-based Forwarding (MP-PBF) [47]:
This approach improves the accuracy of the general PBF protocol by
relaying packets depending the predicted position of the intermediate
nodes with respect to the predicted position of the destination.

– Predictive Location Aided Routing (P-LAR) [48] : This approach sec-
torizes nodes mobility. The cost of routes establishment is largely
lower than LAR.

– Prediction-based Link Availability (PB-LA) [49]: Uses a deterministic
first order prediction model to efficiently predict the link duration be-
tween two nodes. When used in conjunction with the DSR protocol,
the performance is significantly improved.
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– Context Aware Routing (CAR) [50]: Uses a Stochastic model based on
Kalman Filters in order to predict mobility in sporadically connected
networks. It illustrated its benefit compared with traditional epidemic
routing.

� Route Availability:

– Distance Vector with Mobility Prediction (DV-MP) [51]: Represents
the link cost as the predicted link duration for Distance-Vector ap-
proaches, and improves their performance with respect to conventional
Distance-Vector protocols or LAR.

– Kinetic Minimum Spanning Trees (KMST) [52]: KMST uses a stochas-
tic prediction model in order to build a Spanning Tree using a non-
periodic maintenance strategy.

– Dead-Reckoning Model (DRM) [53]: The DRM improves the perfor-
mance of DSR by using the prediction of links duration instead of the
hop count as the cost metric.

– Reliable On-Demand Routing Protocol (RORP) [54]: This approach
opens routes with weight set to the minimum link duration of each link
comprised in the route. Then, the source chooses the route based on
the maximum link duration.

– AODV MOvement Prediction Routing (AODV-MOPR) [55]: In AODV-
MOPR, nodes selected to establish a route from a source to a destina-
tion node are selected depending on their similar direction and velocity.
This generates a 7% improvement in AODV route stability.

– Kinetic Link State Routing (KLSR) [56]: Used in conjunction with
KMPR, KLSR is able to use the actual and predicted future MPR selec-
tors in order to build an optimal routing table containing not only actual
but also future optimal paths, without requiring the periodic broadcast
of Topology Control (TC) messages.

5 Conclusion

Telecommunication networks have long been subject to the effect of user mo-
bility. In order to reduce this drawback on cellular networks (PCS, GSM), mobility
prediction models have been created and successfully tested. Among other exam-
ples, this approach was seen as a way to provide some kind of quality of service
to Wireless ATM networks. However, the prediction approach lost its popularity
as those telecommunication networks were replaced by new systems such as 3G or
wi-fi networks.

The subject reclaimed its popularity when mobility became again a major
source of waste of network resource. For instance, predicting mobility in mobile
ad hoc networks is seen as a mean to make such system scalable.
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A large literature reading illustrates the advantage of mobility prediction mod-
els for mobile ad hoc network. However, unlike their counterpart in cellular net-
works, almost none of them use complex schemes. At the eve of mesh and vehic-
ular networks, it would be interesting to reintroduce such approach. Moreover, the
effect of prediction models on the physical or the Mac layer have not been studied
yet.
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ović, Ed. Wiley, 2006, ch. 12, pp. 381–415.

[10] et al.. B. Karp, “Greedy perimeter stateless routing (gpsr),” http://www.icir.
org/bkarp/gpsr/gpsr.html).

[11] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (lar) in mobile ad hoc
networks,” in Proc. of the 4th annual ACM/IEEE international conference on
Mobile computing and networking (MOBICOM’98), 1998, pp. 66–75.

24



[12] Z. H. et al., “Zone routing protocol (zrp),” July 2002, internet Draft, http:
//tools.ietf.org/id/draft-ietf-manet-zone-zrp-04.txt(work in progress).

[13] N. Nikaein, C. Bonnet, and N. Nikaein, “Hybrid ad hoc routing protocol
(harp),” in Proc. of the International Symposium on Telecommunications
(IST’01), 2001.

[14] W. Creixell and K. Sezaki, “Mobility prediction algorithm for mobile ad hoc
network using pedestrian trajectory data,” in Proc. of the IEEE International
Region 10 Conference (TENCON’04), November 2004.

[15] Z. Zaidi and B. Mark, “Mobility estimation based on an autoregressive
model,” 2004, submitted to IEEE Transactions on Vehicular Technology, Jan.
2004. (Pre-print) Available at URL: http://mason.gmu.edu/zzaidi.

[16] T. Liu, P. Bahl, and I. Chlamtac, “Mobility modeling location tracking and
trajectory prediction in wireless atm networks,” IEEE Journal on Selected
Areas in Communications, vol. 16, no. 6, pp. 922–936, 1998.

[17] P. Pathirana, A. Savkins, and S. Jha, “Robust extended kalman filter based
technique for location management in pcs networks,” Elsevier Computer
Communications, vol. 27, pp. 502–512, 2004.

[18] I. G. et al., “Enhancement to rss based indoor tracking systems using kalman
filters,” in Proc. of the Global Signal Processing Conf. (GSPx), April 2003.

[19] Z. Zaidi and B. L. Mark, “Real-time tracking algorithms for cellular networks
based on kalman filtering,” IEEE Transactions on Mobile Computing, vol. 4,
no. 2, pp. 195–208, March-April 2005.

[20] S.-Z. Yu and H. Kobayashi, “An integrated mobility and traffic model for
resource allocation in wireless networks,” in 3rd ACM Workshop on Wireless
Mobile Multimedia, 2000, pp. 39–47.

[21] ——, “A hidden semi-markov model with missing data and multiple observa-
tion sequences for mobility tracking,” ACM Signal Processing, vol. 83, no. 2,
pp. 235–250, February 2003.

[22] B. L. Mark and Z. Zaidi, “Robust mobility tracking for cellular networks,” in
Proc. of IEEE International Conference on Communications (ICC’02), May
2002.

[23] Z. Yang and X. Wang, “Joint mobility tracking and hard hand-off in cellular
networks via sequential mote carlo filtering,” in Proc. of the IEEE INFO-
COM, June 2002.

[24] F. G. et al., “Particle filters for positioning, navigation, and tracking,” IEEE
Transactions on Signal Processing, vol. 50, no. 2, pp. 425–437, February
2002.

25



[25] L. M. et al., “Mobility tracking in cellular networks with sequential monte
carlo filters,” in Proc. of the IEEE International Conference on Information
Fusion, July 2005.

[26] Z. Shah and A. Malaney, “Particle filters and position tracking in wi-fi
networks,” in Proc. of the 63rd Vehicular Technology Conference (VTC’06
spring), vol. 2, 2006, pp. 613–617.

[27] B. Liang and Z. Haas, “Predictive distance-based mobility management for
pcs networks,” IEEE Transactions on Networking, vol. 11, no. 5, pp. 1–15,
October 2005.

[28] J. Härri and C. Bonnet, “A lower bound for vehicles’ trajectory duration,” in
Proc. of the 62nd Vehicular Technology Conference (VTC’05 fall), 2005.

[29] J. Krumm, “Probabilistic inferencing for location,” in Proc. of Location-
Aware Computing, October 2003.

[30] R. Singer, “Estimating optimal tracking filter performance for manned ma-
neuvering targets,” IEEE Transactions Aerospace and Electronic Systems,
vol. 6, pp. 473–483, July 1970.

[31] G. Liu and G. Maguire, “A class of mobile motion prediction algorithms for
wireless mobile computing,” vol. 1, no. 2, 1996, pp. 113–121.

[32] A regular path recognition method and prediction of user movements in wire-
less networks, 2001.

[33] J.-M. François and G. Leduc, “An entropy-based knowledge spreading and
application to mobility prediction,” in Proc. of the 1st ACM/e-NEXT Interna-
tional Conference on Future Networking Technologies (CoNext’05), 2005.

[34] A. Bhattacharya and S. Das, “Lezi-update: An information-theoretic ap-
proach to track moble users in pcs networks,” ACM Wireless Networks
(WINET), vol. 8, no. 2-3, pp. 121–135, 2002.

[35] F. Yu and V. Leung, “Mobility-based call admission control and bandwidth
reservation in wireless cellular networks,” Elsevier Computer Networks,
vol. 38, pp. 577–589, 2001.

[36] J. G. et al., “Restoration scheme of mobility databases by mobility learning
and prediction in pcs networks,” IEEE Journal on Selected Area in Commu-
nications (JSAC), vol. 19, no. 10, pp. 1962–1973, 2001.

[37] R. Chellappa, A. Jennings, and N. Shenoy, “The sectorized mobility predic-
tion algorithm for wireless networks,” in Proc. of the Int’l Conference on
Information and Communication Technologies, 2003.

26



[38] D. Levine, I. Akyildiz, and M. Naghshineh, “A resource estimation and call
admission algorithm for wireless multimedia networks using the shadow clus-
ter concept,” IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp. 1–12,
February 1997.

[39] I. Akyildiz and W. Wang, “The predictive user mobility profile framework
for wireless multimedia networks,” IEEE/ACM Transactions on Networking,
vol. 12, no. 6, pp. 1021–1035, December 2004.

[40] J. Capka and R. Boutaba, Mobility Prediction in Wireless Networks, ser. Lec-
ture Notes in Computer Science. Springer, 2004, vol. 3271, pp. 320–333.

[41] Y. Shang, W. Guo, and S. Cheng, Clustering Algorithm Based on Wavelet
Neural Network Mobility Prediction in Mobile Ad Hoc Network, ser. Lecture
Notes in Computer Science. Springer, 2005, vol. 3498, pp. 391–396.

[42] J. Haerri, N. Nikaein, and C. Bonnet, “Trajectory knowledge for im-
proving topology control in mobile ad-hoc networks,” in Proc. of the 1st
ACM/e-NEXT International Conference on Future Networking Technologies
(CoNext’05), 2005.

[43] J. Haerri, F. Filali, and C. Bonnet, On the application of mobility predic-
tions to multipoint relaying in MANETs: kinetic multipoint relays, ser. Lec-
ture Notes in Computer Science. Springer, 2005, vol. 3837, pp. 143–155.

[44] V. Kumar and S. Das, “Performance of dead-reckoning based location service
for mobile ad hoc networks,” ACM Wireless Communications and Mobile
Computing Journal, vol. 4, no. 2, pp. 189–202, March 2004.

[45] S. S. et al., “A comparative study of mobility prediction schemes for gls
location service,” in Proc. of the IEEE Vehicular Technology Conference
(VTC’04)Conference, 2004.

[46] X. Luo, T. Camp, and W. Navidi, “Predictive methods for location services
in mobile ad hoc networks,” in Proc. of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05), 2005.

[47] T. K. et al., “Dead-reckoning for position-based forwarding on highways,” in
Proc. of the 3rd International Workshop on Intelligent Transportation (WIT
2006), 2006.

[48] C. Doss, R. A. Jennings, and N. Shenoy, “Mobility prediction based routing
for minimizing control overhead in mobile ad hoc networks,” in Proc. of the
International Conference on Wireless Networks (ICWN’04), 2004.

[49] S. Jiang and D. He, “A prediction-based link availability estimation for rout-
ing metrics in manets,” IEEE/ACM Transaction on Networking, vol. 13, no. 6,
pp. 1302–1312, 2005.

27



[50] M. Musolesi, S. Hailes, and C. Mascoloy, “Adaptive routing for intermittently
connected mobile ad hoc networks,” in Proc. of the 6th IEEE IEEE Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM’05), 2005.

[51] W. Su, S. Lee, and M. Gerla, “Mobility prediction in wireless networks,”
in IEEE Military Communication Conference (MILCOM), vol. 1, 2000, pp.
491–495.

[52] C. Gentile, J. Haerri, and R. E. V. Dyck, “Kinetic minimum-power routing
and clustering in mobile ad-hoc networks,” in Proc. of the IEEE Vehicular
Technology Conference (VTC’02 Fall)Conference, 2002.

[53] A. Agarwal and S. R. Das, “Dead reckoning for mobile ad hoc networks,” in
Proc. of the 2003 IEEE Wireless Communications and Networking Confer-
ence (WCNC’03), 2003.

[54] N. Wang and S. Chang, “A reliable on-demand routing protocol for mobile ad
hoc networks with mobility prediction,” Elsevier Computer Communications,
vol. 29, pp. 123–135, 2005.

[55] H. Menouar, M. Lenardi, and F. Filali, “A movement prediction-based routing
protocol for vehicle-to-vehicle communications,” in Proc. of the 1st Interna-
tional Vehicle-to-Vehicle Communications Workshop (V2V-COM’05), 2005.

[56] J. Haerri, F. Filali, and C. Bonnet, “Kinetic link state routing,” Institut
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