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Abstract— We investigate the design of a wireless sensor
network (WSN), where distributed source coding (DSC) for pairs
of nodes is used. More precisely, we minimize the compression
sum rate for noiseless channels and the sum power for noisy
orthogonal channels in a context of pairwise DSC. In both cases,
the minimization can be separated into a matching problem and a
pairwise rate-power control problem (that admits a simple closed-
form solution). Using this separation, we obtain an optimization
procedure of polynomial (in the number of nodes in the network)
complexity. Finally, we show that the overall optimization can
be readily interpreted. For noiseless channels, the optimization
matches close nodes whereas, for noisy channels, there is a
tradeoff between matching close nodes and matching nodes with
different distances to the sink. We provide examples of the
proposed optimization method based on empirical measures. We
show that the matching technique provides substantial gains in
either storage capacity or power consumption for the WSN.

I. I NTRODUCTION

We consider a wireless sensor network (WSN) where spa-
tially distributed sensors (or sensor nodes) gather data and send
them to a common center (or sink) in order to monitor some
physical or environmental phenomenon [1], [8]. A design issue
for such a WSN is to maximize the network lifetime while
dealing with low-cost sensors exhibiting limited capabilities
in terms of processing (computation capabilities, memory) and
communication (power).

A naive approach consists in transmitting all the data
measured by the sensors directly to the sink. This approach
suffers two sub-optimalities:(1) First due to spatial correlation
between the measured data, the sufficient amount of data to
transmit from the nodes to the sink can be reduced (from
the sum of individual entropies to the joint entropy). There-
fore taking into account the correlation between the nodes,
communication power and spectral ressource can be saved.
(2) Second the Distributed source coding (DSC) (aka. Slepian
Wolf coding) theorem [12] states, that this reduced amount
of data can be sent without explicit cooperation between the
nodes. Therefore using DSC techniques can save not only
some ressource (no communication between the nodes) but
also some processing (data of other nodes are not processed at
a node). More precisely, in DSC, the only knowledge required
at each node is the rate at which this node needs to compress
its data. Note that all the processing complexity is transferred
to the sink, since to achieve optimal compression without
encoding cooperation, joint decoding has to be performed.

Therefore, in the context of WSN, optimal strategies has
been proposed in the literature based on DSC coding [5],
where an optimal DSC coding for all the nodes is assumed.

1This work is supported by the Network of Excellence in Wireless Com-
munications (NEWCOM), E. C. Contract no. 507325.

However most existing DSC schemes concern two correlated
sources. First attempt to design codes for multiple (binary)
sources has been proposed in [14] but it suffers some loss
wrt to the optimal compression rate. Therefore it is also of
interest to consider DSC coding for pairs of nodes. This
strategy is referred topairwise DSCin the following. Note
that pairwise DSC is close to the idea of clustering nodes as in
in-network aggregation [7]. There is however some difference
between the two approaches: in in-network aggregation, nodes
need to communicate their data to their neighbors, and then
a decision whether to compress or concatenate the data is
taken, based on the correlation between the data. In contrast,
pairwise DSC avoids transmission between nodes, correlation
measurement and strategy optimization at the nodes. The only
information required at each node, is the power and rate at
which to compress the data but not the global strategy. Another
reason for considering pairwise DSC is its flexibility. A system
designed with DSC for two sources is more flexible than
a multiple source code, since the whole code may not be
changed if one node disappears. Therefore, we focus in this
paper on pairwise DSC coding. This raises a new question:
how to optimally match the paired nodes. We address this
problem in two different communication scenarios.(i) Perfect
node-sink channels. In that context, the goal is to maximize
the storage capacity.(ii) Orthogonal noisy channels. In that
case, source channel separation holds [2] and we optimize the
compression rates and the node matching in order to minimize
the total used power.

Main contributions of the paper.First we model the de-
sign of a pairwise DSC scheme in a WSN. Then we show
that the optimization of the pairwise DSC strategy can be
separated into a matching problem and a pairwise rate-power
control problem (that admits a simple closed-form solution).
Using this separation, we obtain an optimization procedure
of polynomial (in the number of nodes in the network)
complexity. Finally, we show that the overall optimization can
be readily interpreted. For noiseless channels, the optimization
matches close nodes whereas for noisy channels, there is a
tradeoff between matching close nodes and matching nodes
with different distances to the sink.

II. SENSOR NETWORK MODEL AND PROBLEM STATEMENT

We consider a network withN nodes all communicating
to a single sink. LetN be the set of sensor indices:N =
{1, . . . , N}. The data to be sent from nodei ∈ N to the sink
are modeled as the realizations of a discrete random variable
denotedXi taking its value in the alphabetX. Ri [resp.,Pi]
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denotes the rate (in bits per source symbol) [resp., the power]
at which nodei sends data.

The data of all the nodes are compressed without loss
with a pairwise DSC scheme. More precisely the data are
encoded separately at each node but decoded (jointly) by
pairs of nodes. This approach is suboptimal in comparison
to the joint decoding of the data of all nodes but is motivated
by the availability of efficient DSC schemes for two sources
(see references in [6]). This raises the question of optimally
partitioning the nodes into pairs, which can be modeled as the
selection of an optimal2-partition defined below.

Definition 1: A 2-partition P is a partition ofN s.t. the
cardinality of each subset is 2, except for a set that contains
only one element ifN is odd. An element of 2-partition is
called a pair (even for the left alone node).
Let S denote the set of all possible 2-partitions.

Property 1: The total number of 2-partitions is:

|S| =
{

(N − 1)!! if N is even
(N)!! if N is odd

where(N − 1)!! = (N − 1)(N − 3) . . . 5.3.1 [13].
The problem we address in this paper is how to send the

data (measured by the sensors) to the sink without loss. In
a pairwise DSC scheme, the design parameters are: the 2-
partition, the compression rates and for noisy channels the
powers used to send the data. The cost function is application
and communication dependent. In the following, we consider
different communication scenarios (noiseless and noisy) and
define the related cost functions.

III. PERFECT NODE-SINK CHANNELS

In this section, we assume that each node can communicate
directly to the sink and that the channels between each node
and the sink are perfect. In this context, we want to maximize
the storage capacity of each node (sensors and sink) without
losing any information. Since pairwise DSC is used, the rates
of each pair of nodes are constrained to lie in the so-called
Slepian and Wolf region [12]: two nodesi, j can separately
code their source symbols without loss of information if their
compression rates (in bits per source symbol) belong to the
Slepian and Wolf regionSWij defined as:

SWij
∆=



(Ri, Rj) :

Ri ≥ H(Xi|Xj)
Rj ≥ H(Xj |Xi)

Ri + Rj ≥ H(Xi, Xj)



 (1)

Fig. 1 represents the set of rate pairs(Ri, Rj) for which
lossless compression is possible. The region in dark grey
corresponds to separated source coding (separated encoding
and decoding). TheSWij region corresponds to DSC (i.e.
separated encoding but joint decoding) and includes the dark
and light grey region. DSC allows smaller rates (shown in
light grey): this reduces the total amount of data to be sent
or stored for the same amount of information captured by the
WSN.

Hence, from the definition of the DSC rate region (1), the
sensor network pairwise optimization for noiseless channels
can be rewritten as Problem 1.

SWij

separated source
coding region

RiH(Xi)H(Xi|Xj)

Rj

H(Xj)

H(Xj |Xi)

Fig. 1. Slepian Wolf region

Problem 1: The maximization of the storage capacity over
all individual rates and over all 2-partitions under the con-
straint of lossless pairwise DSC coding reads:

({R∗i }N
i=1, P

∗) = arg min
{Ri}i, P∈S

∑

(i,j)∈P

Ri + Rj

subject to ∀ (i, j) ∈ P, (Ri, Rj) ∈ SWij

At first sight, this problem looks exponentially hard due to
the large number of possible 2-partitions (see Property 1).
However, Proposition 1 and its Corollary 1 show that in fact
it has polynomial complexity.

Proposition 1: Separation of rate allocation and 2-partition
selection. The storage capacity maximization (Problem 1) can
be separated in a rate allocation over all possible distinct
unordered pairs and a selection of the best partition. First,
the rate allocation:∀ (i, j) ∈ N2 s.t. i < j

T ∗ij = arg min
Tij∈SWij

Tij(1) + Tij(2) (2)

whereTij = (Ri, Rj) denotes a rate pair andTij(1) = Ri

[resp.,Tij(2) = Rj ] the first [resp., second] element of the
pair. Then, the 2-partition optimization:

P∗ = arg min
P∈S

∑

(i,j)∈P

T ∗ij(1) + T ∗ij(2) (3)

Proof: See [11].
Corollary 1: The storage capacity maximization under loss-

less pairwise DSC coding is polynomial in the number of
sensor nodes.

Proof: From Proposition 1, the joint optimization sep-
arates into a rate allocation with complexityO(N2) and
a partition optimization. The latest is a classical problem
in combinatorial optimization, where it is known under the
name of weighted matching for non-bipartite graph [9]. Its
complexity can be lowered toO(N3) [4].

IV. N OISY NODE-SINK CHANNELS

In this scenario, the channels between the nodes and the sink
are noisy. More precisely, we assume independent additive
white Gaussian noise (AWGN) channels. We also assume
orthogonality in the channel access (no internode interference).
This orthogonality can be achieved through protocols (CSMA)
or multiple access techniques (such as TDMA, FDMA or
orthogonal CDMA). The capacity of the Gaussian channel
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(between nodei and the sink) with transmit powerPi and
channel gainγi is

Ci(Pi)
∆= log2(1 + γiPi)

wherePi represents the cost of sendingCi bits (per transmis-
sion) over the channel with gainγi. Notice that the function
Ci(x) = log2(1 + γix) depends oni upon γi. We further
assume that the channel gains{γi}i are fixed quantities, known
by the sink.

Due to power limitation at the sensors, the transmit power
is constrained by a so called peak power constraint:∀ i, Pi ≤
Pmax. In this context, a natural cost function is the sum
power that needs to be minimized. The constraints for this
minimization are: the above mentioned peak power constraints
and the asymptotically (in the size of the data length) small
error probability.

We now detail the vanishing error probability constraint.
Under the assumption of orthogonal channels, DSC and chan-
nel coding separation holds [2]. Therefore, the achievable
(for vanishing error probability) rate region for distributed
separated or joint source-channel coding1 coincide. More
precisely, for two sources, it is the set of rates(Ri, Rj) lying
in the intersection of the Slepian Wolf regionSWij (1) and
of the TDMA capacity regionCij defined as:

Cij(Pi, Pj)
∆=

{
(Ri, Rj) :

Ri ≤ Ci(Pi)
Rj ≤ Cj(Pj)

}
(4)

This achievable rate region (for distributed separated or joint
source and channel coding) is the darker grey region on
fig. 2. Hence, the sensor network pairwise optimization for

SWij

capacity region Cij

Cij ∩ SWij

RiH(Xi)H(Xi|Xj) Ci

Rj

H(Xj)

H(Xj |Xi)

Cj

Fig. 2. Slepian Wolf and capacity regions

orthogonal noisy channels can be stated as follows.
Problem 2: The minimization of the transmit sum-power

that achieves rates with vanishing error probability in a
pairwise-distributed separated source and channel coding
scheme2 can be written as:

({R∗i }i, {P ∗i }i, P
∗) = arg min

{Ri}i,{Pi}i,P∈S

∑

(i,j)∈P

Pi + Pj

subject to ∀ (i, j) ∈ P, (Ri, Rj) ∈ SWij ∩ Cij(Pi, Pj)
∀ i ∈ N, Pi ≤ Pmax

1separatedrefers to separation of source and channel coding, whereas
distributedrefers to separation of the processing between the sensor nodes.

2Recall that for orthogonal channels, this scheme has same achievable rate
region as the pairwise-distributed joint source and channel coding scheme

Before we discuss the solution (see Section IV-B), let us first
simplify the problem.

A. Optimization separation

Proposition 2: Separation of rate-power allocation and 2-
partition selection. The sum-power minimization (Problem 2)
can be separated in:
(i) a rate-power allocation over all possible distinct unordered
pairs:∀ (i, j) ∈ N2 s.t. i < j

Q∗
ij = arg min

Qij

Qij(3) + Qij(4) (5)

subject to (Qij(1), Qij(2)) ∈ SWij ∩ Cij(Qij(3), Qij(4))
Qij(3) ≤ Pmax

Qij(4) ≤ Pmax

whereQij = (Ri, Rj , Pi, Pj) denotes the four design para-
meters. The two first parameters of the quadruple are the rates
Qij(1) = Ri, Qij(2) = Rj , whereas the two last represent
the powers:Qij(3) = Pi, Qij(4) = Pj .
(ii) a 2-partition optimization:

P∗ = arg min
P∈S

∑

(i,j)∈P

Q∗ij(3) + Q∗ij(4) (6)

Proof: Same proof as for Proposition 1.
Corollary 2: The sum power minimization under lossless

pairwise-distributed separated source and channel coding is
polynomial in the number of sensor nodes.

Proof: Same proof as for Corollary 1).

B. Sum of 2 powers minimization

In this section, we solve problem (5), a convex optimization
problem of four variables. First, we show that the number
of variables can be reduced to two (Lemma 1) and then to
one (Lemma 2). In order to keep track of the meaning of
the variables (which simplifies the proofs of the two lemmas),
we shall use the notationRi, Rj , Pi, Pj instead ofQij . This
introduces no confusion, since the pair(i, j) is fixed in (5).

Lemma 1:The minimum power is achieved on the bound-
ary Pi = 2Ri−1

γi
[resp.,Pj = 2Rj−1

γj
].

Proof: (5) is a convex optimization problem. The opti-
mum occurs either at a stationary point or on the boundaries.
Since there is no stationary point (linear function), the opti-
mum occurs on a boundary s.t.Pi is minimum. It follows that

P ∗i = 2R∗i −1
γi

. Similarly, we can show thatP ∗j = 2
R∗j−1
γj

.
From Lemma 1, the rate-power optimization(ii) in Proposi-
tion 2 can be rewritten as:

Q∗ij = arg min
Qij

2Q∗ij(1) − 1
γi

+
2Q∗ij(2) − 1

γj
(7)

subject to (Qij(1), Qij(2)) ∈ SWij ∩ Cij(Pmax, Pmax)

The following lemma allows to further reduce the number
of variables.

Lemma 2:The minimum power is achieved on the lineRi+
Rj = H(Xi, Xj).

Proof: By contradiction. See [11].
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Finally, the rate-power allocation can be reformulated as a
convex optimization problem of one variable:

Q∗
ij(1) = arg min

Ri

2Ri − 1
γi

+
2H(Xi,Xj)−Ri − 1

γj
(8)

subject tolb ≤ Ri ≤ ub

where

ub ∆= min
(
H(Xi),Ci(Pmax)

)

lb ∆= max
(
H(Xi|Xj),H(Xi, Xj)− Cj(Pmax)

)

From Q∗
ij(1), all other variables can be deduced:

Q∗ij(2) = H(Xi, Xj)−Q∗ij(1)

Q∗ij(3) = 2
Q∗ij(1)−1

γi

Q∗ij(4) = 2
Q∗ij(2)−1

γj

Moreover, (8) admits a closed form explicit solution:

Q∗
ij(1) =





lb if r < lb
r if lb ≤ r < lb
ub if r < ub

(9)

where

r
∆=

1
2

(
H(Xi, Xj) + log2

γi

γj

)

a) Case without peak power constraint.:Notice that the
solution detailed above encompasses the case without peak
power constraint by lettingPmax tends to+∞.

b) Solution interpretation.:This results admits a nice
interpretation. If we don’t take into account the rate constraints
(Slepian Wolf and capacity region) and peak power constraints,
the optimal rate allocation reads

R∗i = 1
2

(
H(Xi, Xj) + log2

γi

γj

)

R∗j = 1
2

(
H(Xi, Xj) + log2

γj

γi

) (10)

Moreover, if these rates are feasible, the optimal sum power
is

2

√
2H(Xi,Xj)

γiγj
− 1

γi
− 1

γj
(11)

Therefore the 2-partition optimization matches pairs in order
to minimize:

P∗ = arg min
P∈S

∑

(i,j)∈P

√
2H(Xi,Xj)

γiγj
(12)

In general, the joint entropyH(Xi, Xj) decreases with the in-
ternode distance. Therefore, the minimization of an increasing
function of joint entropies would rather match close pairs. On
the other hand, the minimization of

∑
(i,j)∈P

1√
γiγj

tends to
match pairs with differentγ, where the channel gainγ depends
on the distance between a node and the sink. It follows that
this would rather match nodes that have different distances to
the sink.
The overall optimization (12) is therefore a tradeoff between
matching close nodes and matching nodes with different
distances to the sink. A way to achieve this is to place nodes on
a radius emanating from the sink. This fact is fully illustrated
by our experiment later.

V. A SENSOR NETWORK EXAMPLE

In order to illustrate, the gain achieved by a pairwise sensor
network optimization, we consider a WSN in a bounded
square area where sensors are randomly placed. A sink is
placed at the center. We consider AWGN channels between
the nodes and the sink and assume that the channel gain is
inversely proportional to the square distance between the nodes
communicating together.

We consider the entropy model of [10] based on empirical
measure of daily rainfall precipitation. All individual entropies
are assumed equal. The joint entropy of two sources is a
function of the individual entropy, of a coefficientc that
captures the correlation, and of the distancesdij between the
sources:

H(Xi, Xj) = H(Xi) +

(
1− 1

1 + dij

c

)
H(Xi) (13)

The sensors lie in a bounded area such that the coordinates
of each sensor are in[0, 1]2. The coefficientc captures the
correlation. We choosec = 1, such that if 2 sensors are distant
by 1 (2 corners of the area), then the joint entropy is3

2 the
individual entropy. We therefore consider a highly correlated
sensor network.

Reduction of compression sum rate and sum power.Figure 3
shows the optimization results for 200 sensors and a sink
placed at the center of the area. The numerical results (in
terms of rate or power) are given in the title of each figure. For
perfect channels, Fig. 3(a) shows that the pairwise optimization
helps to reduce by half the sum rate: 104 instead of 200, for
the naive case (all nodes communicate to the sink). This result
is independent of the individual entropyH(Xi), sinceH(Xi)
is a scaling factor in the model (13) of the joint entropy. For
noisy channels (Fig. 3(b) (c)), the reduction of sum power
is even more important than the reduction of rate due to the
exponential behavior of the power wrt to the rate (from 36727
to 1261 forH(Xi) = 10 (b), and from 36 to 13 forH(Xi) = 1
(c)). The effect of the peak power constraint is illustrated in
(d) (compare (b) with (d)). In this case, the constraint is so
low that no communication is possible between some nodes
and the sink: more precisely, for some nodes, there exists no
other node s.t. the achievable region (see Fig. 2) is non-empty.
Therefore, these nodes are not connected in (d).

Matching result.For perfect channels, the minimization of
the compression sum rate rather matches closest neighbors
(see Fig. 3(a)), which is very intuitive since the joint entropy
H(Xi, Xj) decreases with the internode distance.
For noisy channels, due to the tradeoff between matching close
nodes and matching nodes with different distances to the sink,
the matched pairs are located on a radius emanating from
the sink, as explained in section IV-B.b). Fig. 3 (b) and (c)
highlight this observation. In these figures, we decrease the
value of the entropyH(Xi), s.t. the matching is more due to
the influence of theγ (in (c) than in (b)) and therefore distant
nodes are matched together in (c).
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VI. CONCLUSION

We investigated the design of a wireless sensor network,
where distributed source coding (DSC) is used in order to
compress the data. Since most existing DSC schemes concern
two correlated sources, we focused on pairwise DSC, where
the compression is performed for pairs of nodes. This raised a
new problem: the optimal matching of nodes in order to save
the resources of the network. More precisely, we minimized
the compression sum rate for noiseless channels and the sum
power for noisy orthogonal channels in a context of pairwise
DSC and obtained an optimization procedure of polynomial (in
the number of nodes in the network) complexity. Finally, we
showed that for noiseless channels, the optimization matches
close nodes whereas, for noisy channels, there is a tradeoff
between matching close nodes and matching nodes with
different distances to the sink. Numerical results showed that
the pairwise strategy can save about half the amount of data
to be sent.
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Fig. 3. WSN with 200 sensors (x) and 1 sink (o) placed at the center. 2
matched nodes are linked by a line. Matching results for (a) perfect channel.
Then, noisy channel without peak power constraint, and individual entropy is
10 in (b), and 1 in (c). Then, noisy channel with peak power constraint 10,
and individual entropy 10, in (d).
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