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Abstract— MIMO broadcast channels with partial channel
knowledge at the transmitter are considered, obtained via limited-
rate feedback. Given a maximum orthogonality factor ε between
transmit beamforming vectors (ε = 0 if orthogonal beamforming)
and variable number of active beams, the design of scalar feed-
back metrics for user scheduling is studied. These metrics provide
an estimate of the received signal-to-noise plus interference ratio
(SINR) and can take the form of either an upper or lower
bound on the SINR. A closed-form expression for the sum-rate
is provided, showing the performance of each metric in different
scenarios. Analytical and simulation results are shown in order
to identify the regions where SDMA provides higher rates than
TDMA.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can signifi-
cantly increase the spectral efficiency by exploiting the spatial
degrees of freedom created by multiple antennas. The capacity
gain of multiuser MIMO systems is highly dependent on
the available CSIT. While having full CSI at the receiver
can be assumed, this assumption is not reasonable at the
transmitter side. Several limited feedback approaches have
been considered in point-to-point systems [1], [2], [3], where
each user sends to the transmitter the index of a quantized
version of its channel vector from a codebook. An extension
for MIMO broadcast channels is made in [4], in which each
mobile feeds back a finite number of bits regarding its channel
realization at the beginning of each block based on a codebook.
An SDMA extension of opportunistic beamforming [5] using
partial CSIT in the form of individual signal-to-interference-
plus-noise ratio (SINR) is proposed in [6], achieving optimum
capacity scaling for large number of users.

In this paper, we consider the finite rate feedback model of [4]
for the case when K ≥ M . In this scenario, information on
the channel direction is not sufficient in order to perform user
scheduling, and thus additional scalar metrics are fed back
to the base station, providing instantaneous channel quality
information (CQI).

In [7],[8] a simple scalar feedback metric is proposed for user
scheduling. A scheme with similar metric is also reported
in [9]. In this paper, we generalize these results to scalar
feedback metrics incorporating information on the number of
active beams and predertermined orthogonality properties of

the beamforming vectors. These metrics provide an estimate
of the received signal-to-noise plus interference ratio (SINR)
and can take the form of either an upper or lower bound on the
SINR. The advantages and disadvantages of such techniques
are presented, evaluating their performances in terms of sum
rate.

II. SYSTEM MODEL

We consider a multiple antenna broadcast channel consisting
of M antennas at the transmitter and K ≥ M single-
antenna receivers. The received signal yk of the k-th user is
mathematically described as

yk = hH
k x + nk, k = 1, . . . , K (1)

where x ∈ CM×1 is the transmitted signal, hk ∈ CM×1

is an i.i.d. Rayleigh flat fading channel vector, and nk is
additive white Gaussian noise at receiver k. We assume that
each of the receivers has perfect and instantaneous knowledge
of its own channel hk, and that nk is independent and
identically distributed (i.i.d.) circularly symmetric complex
Gaussian with zero mean and unit variance. The transmitted
signal is subject to an average transmit power constraint P ,
i.e., E{‖x‖2} = P . Let H ∈ CK×M refer to the concatenation
of all channels, H = [h1 h2 . . .hK ]H , where the k-th row is
the channel of the k-th receiver. Let S denote the set of users
selected for transmission at a given time slot, with cardinality
|S| = Mo, 1 ≤ Mo ≤ M . Then H(S), W(S), s(S), y(S)
are the concatenated channel vectors, beamforming vectors,
uncorrelated data symbols and received signals respectively
for the set of scheduled users S. When concatenating the
beamforming matrix W(S) prior to transmission, the signal
model can be described as follows

y(S) = H(S)W(S)s(S) + n (2)

The beamforming matrix is given by

W(S) = V(S)Λ(S)1/2 (3)

where the columns of V(S) are the normalized beamforming
vectors and Λ(S) is a diagonal power allocation matrix. At



the k-th mobile, the received signal is given by

yk =
√

P

Mo

∑
i∈S

hH
k wisi + nk, k = 1, . . . , K (4)

Hence, the SINR of user k is

SINRk =
|hH

k wk|2∑
i∈S,i�=k

|hH
k wi|2 +

Mo

P

(5)

We focus on the ergodic sum rate (SR) which, assuming
Gaussian inputs, is equal to

SR = E

{∑
k∈S

log [1 + SINRk]

}
(6)

III. LINEAR BEAMFORMING WITH LIMITED FEEDBACK

Joint linear beamforming and scheduling is performed in a
system where limited feedback is present at the transmitter
side. The feedback conveyed by each user to the base station
consists of channel direction information (CDI) based on a
predetermined codebook, and a scalar metric with channel
quality information (CQI) used to perform user scheduling.

In such systems, design of appropriate scalar metrics in scenar-
ios with realistic number of users and average SNR values re-
mains a challenge. These metrics must contain information of
the users’ channel gains as well as channel quantization errors,
as discussed in [10]. If the users have additional knowledge
of the beamforming technique used at the transmitter side,
an estimate on the multiuser interference at the receiver can
be computed. This information can be encapsulated together
with the channel gain, quantization error and average noise
power into a scalar metric ξ, which consists of an estimate
on the SINR. In our work, we consider such scalar feedback
strategies, as discussed in detail in next section. User selection
is carried out based on these metrics and the users’ spatial
properties, obtained from channel quantizations.

As simple transmission technique we consider transmit
matched filtering (TxMF), which consists of using as nor-
malized beamforming vectors the quantized channel directions
of users scheduled for transmission. The normalized channel
vector of user k to be quantized is hk = hk/ ‖hk‖, which
corresponds to the channel direction. A B-bit quantization
codebook Vk is considered, containing L = 2B unit norm
vectors in CM , which is assumed to be known to both the
receiver and the transmitter. Similarly to [2], [3], we assume
that each receiver quantizes its channel to the vector that
maximizes the inner product

vk = arg max
v∈Vk

|hH

k v|2 = arg max
v∈Vk

cos2(∠(hk,v)) (7)

Each user sends the corresponding quantization index back to
the transmitter through an error-free and zero-delay feedback

TABLE I

OUTLINE OF SCHEDULING ALGORITHM

MS
Compute & Feedback ξk

quantization index i ∈ {1, . . . , L}
BS

Initialize Set S = ∅
Loop For i : 1 . . . Mo repeat

Set ξi
max = 0

Loop For k : 1 . . .K, k /∈ S repeat

If ξk > ξi
max and

∣∣vH
k vj

∣∣ ≤ ε ∀j ∈ S
ξk → ξi

max and ki = k
Select ki → S

channel using B bits. Note that this model is equivalent to the
finite rate feedback model proposed by [2],[4].

The optimal vector quantizer is difficult to find and the solution
to this problem is not yet known. As codebook design goes
beyond the scope of the paper, we adopt the geometrical
framework presented in [3]. The resulting quantization error is
defined as sin2 θk = sin2(∠(h̄k,vk)) = 1−∣∣h̄H

k vk

∣∣2 [3], [11],
where vk is the quantized channel direction of user k. Using
this framework, the cumulative distribution function (CDF) of
the quantization error is given by [3], [11]

Fsin2 θk
(x) =

{
δ1−MxM−1 0 ≤ x ≤ δ
1 x > δ

where δ = 2−B/(M−1).

Let the orthogonality factor ε denote the maximum degree
of non orthogonality between two unit-norm vectors. The
columns of the normalized beamforming matrix V(S) are
constrained to be ε-orthogonal and thus

∣∣vH
i vj

∣∣ ≤ ε ∀ i, j ∈ S.
An outline of the proposed scheduling algorithm is shown in
Table I. In case Mo users with ε-orthogonality can not be
found, the algorithm stops and distributes the power equally
among the scheduled users, setting Mo = |S|. Note that
this greedy algorithm is equivalent to the one proposed in
[12], [13], [14]. The first user is selected from the set Q0 =
{1, . . . , K} as the one having the highest channel quality, i.e.,
k1 = arg maxk∈Q0 ξk. For i = 1, . . . , Mo − 1, the (i + 1)-th
user is selected as ki+1 = argmaxk∈Qi ξk among the user set
Qi =

{
1 ≤ k ≤ K : |vH

k vkj | ≤ ε, 1 ≤ j ≤ i
}

.

The number of active beams for transmission Mo and orthogo-
nality factor ε are system parameters fixed by the Base Station
(BS) that can be adapted in order to maximize the system sum
rate.
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Fig. 1. Sum rate as a function of the alignment (rho) for M = 4 antennas,
variable number of active beams Mo, orthogonality factor ε = 0.1 and
SNR = 10 dB.

IV. SCALAR FEEDBACK METRICS

In this section, we present the design guidelines of scalar
feedback metrics based on an estimate of the expected SINR.
Knowledge of the channel realization, quantization error, av-
erage transmit power, noise power, orthogonality factor ε and
number of active beams Mo can be combined at the receiver
in order to obtain a lower bound on the SINR. In [15], a metric
containing these elements is proposed, which consists of an
exact lower bound with the purpose of avoiding outage events
in the communication. Here we consider instead a statistical
lower bound which provides tighter bounds on the average
SINR and thus higher performance for user scheduling.

Including the system parameters ε and Mo in the SINR feed-
back has advantages and disadvantages. As we show through
simulations, taking into account ε in the SINR computation
may mask the contribution of the channel gains in the SINR
expression, hence reducing the benefits of multiuser diversity.
However, this loss is negligible for practical number of active
users. On the other hand, computing an SINR lower bound can
be beneficial from the network point of view. The total amount
of feedback overhead can be reduced by appropriately setting
minimum desired SINR thresholds. Hence, in a practical
system each user may send feedback to the base station only
if a minimal QoS can be guaranteed. Scalar feedback without
encapsulated ε and Mo information is also presented, in the
form of an upper bound on the SINR.

Metric I: Lower Bound on SINR

For user k and index set S, the multiuser interference
can be expressed as Ik(S) =

∑
i∈S,i�=k

P
Mo

|hH
k vi|2 =

P
Mo

‖hk‖2
Ik(S), where Ik(S) denotes the interference over

the normalized channel hk. Define IUBk
as the upper bound on

Ik and θk = ∠(hk,vk). Based on the work developed in [10]
for arbitrary orthogonality between beamforming vectors, we
propose a metric which, when averaged over the statistics of
‖hk‖ and cos θk, yields a lower bound on the average SINR.
The proposed feedback metric for the k-th user is given by

ξI
k =

‖hk‖2 cos2 θk

‖hk‖2
IUBk

+ Mo

P

(8)

where

IUBk
= αk cos2 θk + βk sin2 θk + 2γk sin θk cos θk (9)

and
αk = (Mo−1)2

M−1 ε2

βk = (Mo−1)
M−1 [1 + (Mo − 2)ε]

γk = (Mo−1)2

M−1 ε

(10)

Metric II: Upper Bound on SINR

As a particular case of the above metric, we consider ε = 0 and
Mo = M in the metric computation, which can be interpreted
as an upper bound on the SINR when equal power allocation
is performed at the transmitter. The resulting metric becomes

ξII
k =

‖hk‖2 cos2 θk

‖hk‖2 sin2 θk + M
P

(11)

which was proposed in parallel in [7], [8], [9].

In Fig. 1, an approximated bound on the system sum rate is
plotted as a function of the alignment ρ = cos θk, computed
as SR ≈ Mo log(1 + ξI

k). The system under consideration
is assumed to have M = 4 antennas, ε = 0.1 and average
SNR = 10 dB. The sum rate is evaluated for different
number of active beams to observe the impact of appropriately
choosing Mo. The system with Mo = 1 exhibits better
performance for low and intermediate values of ρ, i.e. TDMA
provides higher rates than SDMA in most cases. Only for
large values of ρ, Mo > 1 provides higher rates, which in
practice occurs for large number of quantization bits B or large
number of users K . Since the amount of bits B is generally
low due to bandwidth limitations, SDMA will be chosen over
TDMA when Mo > 1 users with small quantization errors can
be found, with higher probability as the number of users in
the cell increases. As the parameter ε increases, the crossing
points of the curves in Fig. 1 shift to the right and thus the
range for which TDMA performs better also increases. This
is due to the fact that the bound in ξ I

k becomes looser for
increasing ε values. As shown in this example, for ε > 0 there
exist M possible modes of transmission, i.e. Mo = 1, . . . , M .
However, for the case of ε = 0 as considered in ξ II

k , it can be
proven that the modes of transmission exhibiting higher rates
are reduced to 2, namely Mo = 1, M .



V. LOWER BOUND ON THE SUM RATE

Denoting the lower bound on SINR of equation (8) as s, we
derive an approximation on its CDF using mathematical tools
from [16], which is given by

Fs(s) ≈ 1 − e
−Mos

P(1−αs)

δM−1 (1 + m)M−1
(12)

where m =
2γs

�
γs+

√
γ2s2+(1−αs)βs

�
+(1−αs)βs

(1−αs)2

Note that the CDF above is a generalization for arbitrary ε and
Mo of the CDF derived in [8]. Let the ordered variate s i:K

denote the i-th largest among K i.i.d. random variables. From
known results of extreme order statistics [17], we have that the
CDF of s1 = max

1≤i≤K
si:K is Fs1 = (Fs(s))K . According to

the proposed user selection algorithm, the SINR of the first
selected user is the maximum SINR over K i.i.d. random
variables. However, at the i-th selection step (i-th beam) the
search space gets reduced since the ε-orthogonality condition
needs to be satisfied. Hence, the i-th user is selected over
Ki i.i.d. random variables yielding a CDF for the maximum
SINR given by Fsi = (Fs(s))Ki . Its mean value can be
approximated as

E(si) ≈
∫ 1/α

0

1 − (Fs(s))Kids (13)

An approximation of Ki can be calculated through the prob-
ability that a random vector in CM×1 is ε-orthogonal to a set
with i−1 vectors in CM×1, which is equal to Iε2(i,M−i) [13],
Ix(a, b) being the regularized incomplete beta function. By
using the law of large numbers [14], we can find the following
approximation:

Ki ≈ KIε2(i − 1, M − i + 1) (14)

Using Jensen’s inequality and solving the integral in equation
(13) for the CDF of s described in (12), we obtain the
following sum-rate approximation as a function of ε and M o

RMo≈
Mo�
i=1

log2

�
1+

Ki�
n=1

(−1)n−1

δn(M−1)

�
Ki

n

�
1

α

�
1+

Cn

α
e

Cn
α Ei

�
−Cn

α

���
(15)

where C = Mo

P + (M − 1)β, α and β are as described in
equation (10) and the exponential integral function is used,
defined as Ei(x) =

∫ ∞
−x

e−t

t dt. Note that, as a particular case
of the equation above, a simpler expression can be derived for
Mo = 1, given by

R1 ≈ log2

[
1 +

K∑
n=1

(−1)n−1

δn(M−1)

(
K

n

)
P

n

]
(16)

In Fig. 2 the approximated sum rate is plotted as a function
of the number of active beams Mo and orthogonality factor
ε, for K = 35 users, SNR = 10 dB and a simple codebook

with B = 1 bit. Note that, in this particular scenario, TDMA
provides better rates than SDMA regardless of the value of ε.
In this context, the number of users is too low to favor SDMA
transmission, which is consistent with the results obtained in
previous section. It can be easily verified from equations (15)
and (16) that given an arbitrary ε, SDMA outperforms TDMA
asymptotically with the number of users K

lim
K→∞

RMo

R1
= Mo (17)

VI. NUMERICAL RESULTS

In this section, we evaluate through simulations the sum rate
performance of the systems based on metrics I and II, for
M = 3 antennas and B = 6 bits. The system using metric I
is assumed to appropriately set Mo and ε both for transmision
and metric computation, maximizing the sum rate for each
K and SNR pair. On the other hand, the scheme with metric
II uses optimal ε values in each scenario. For comparison,
the performances of random beamforming [6] and TxMF
with perfect CSIT and exhaustive-search user selection are
provided.

Fig. 3 shows a performance comparison in terms of sum rate
versus number of users for SNR = 10 dB, in a cell with
realistic number of active users. The scheme based on metric
I (lower bound) provides slightly better performance than the
one using metric II, exploiting the benefits of having variable
number of active beams.

Fig. 4 shows similar performances for the schemes with metric
I and II in the low-mid SNR region, in a setting with K = 10
users. Since in the simulated system the number of codebook
bits B is not increased proportionally to the average SNR,
as discussed in [4], the scheme using metric II (Mo = M )
exhibits an inteference-limited behavior, flattening out at high
SNR. As the SNR increases, the scheme using metric I
converges to a TDMA solution, i.e. choosing Mo = 1, which
provides linear growth with the SNR.

VII. CONCLUSIONS

We studied a multiple antenna broadcast channel in which
partial CSIT is conveyed via a limited rate feedback chan-
nel. We presented scalar feedback metrics which, combined
with efficient joint scheduling and linear beamforming, can
achieve a large portion of the optimum capacity by exploiting
multiuser diversity. As shown through simulations, the scalar
metric based on an SINR lower bound provides better sum
rates than the one based on an upper bound, provided that the
number of active beams and ε-orthogonality is appropritely
set in each scenario. In addition, feedback based on an SINR
lower bound can easily enable the possibility of reducing the
amount of feedback overhead by setting minimum desired
SINR thresholds.
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Fig. 2. Sum rate as a function of the orthogonality factor ε and number of
active beams Mo for K = 35 users, SNR = 10 dB and B = 1 bit.
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