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ABSTRACT

We study the capacity scaling of a system where a source
communicates to a destination with the help of several scat-
terers. Capacity expressions accounting for physical charac-
teristics of the environment (topology, frequency band...) are
provided and an asymptotic analysis is performed for an in-
creasing size of the dense scattering environment. The ca-
pacity is shown to reach a saturation level in the asymptotic
regime, suggesting a capacity-delay trade-off. Moreover the
saturation point depends on the positioning of scatterers, in
particular in wide band systems where topology impacts ca-
pacity in terms of both pathloss and delays. Waiting very long
for retransmissions from an infinite number of scatterers is
not worth and a few well located scatterers around source and
destination lead to better performances than more scatterers
uniformly distributed on a square area between source and
destination.

1. INTRODUCTION

The issue of how the performance of virtual MIMO systems
scale with the number of nodes or size of a network is a cru-
cial issue. It may turn out that virtual MIMO is only adapted
for short range communications and therefore that some kind
of hybrid virtual MIMO scheme with base stations and ad-hoc
networks will arise as the most convenient scheme. Since the
pioneering work by Gupta and Kumar [1] providing the ca-
pacity of a large ad hoc network with several Source-Destina-
tion pairs, several recent works [2], [3] studied capacity scal-
ing laws in large narrow-band networks: [2] proposed a hi-
erarchical cooperation protocol to achieve linear scaling of
capacity in the number of single-antenna nodes randomly dis-
tributed in an area, whereas the protocol in [3], for coopera-
tion between M-antenna source, destination and K relays in-
between, leads to a capacity scaling as C = (M/2) log K +
O(1). Nevertheless to the best of our knowledge, no previ-
ous work focused on the scaling of capacity in dense wide-
band – thus with high resolution in time and space – net-
works of dumb scatterers taking into account topology not
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only in terms of pathloss but also of multi-path. Moreover
the environment impact on the scaling laws, through reflec-
tions, diffraction effects... has never been studied in details,
although this aspect is used for example in MIMO commu-
nications to create different spatial multiplexing streams. We
would like here to go deeper in the analysis.

In this paper we analyze a system where a dense topology
of scatterers helps a source to communicate with a destina-
tion and we look at the network from a physical propagation
point of view : relays are modeled as dumb omnidirectional
scatterers, i.e. passive nodes without engineering capabilities
that simply scatter the incident electromagnetic wave com-
ing from source antenna. Capacity expressions are given as a
function of the physical characteristics of the network, includ-
ing topology and signal band. We study how capacity scales
when the size the network increases, as well as the point at
which asymptotic regime is reached depending on the nodes
positioning. Interestingly the asymptotic analysis, and simu-
lations in wideband systems, show that after a certain point,
capacity saturation occurs. This is due to the fact that sig-
nal contributions coming from peripheral nodes very far from
source and destination do not lead to much increased perfor-
mance, suggesting a capacity/delay trade-off, which may not
be the case when adding MIMO capability.

The rest of the paper is organized as follows. In section 2,
the network model is described before deriving the network
capacity in section 3. Numerical results are provided in sec-
tion 4 and lead to the concluding section 5.

2. SYSTEM MODEL

We focus on a geometrical network model by considering a fi-
nite square grid of scatterers, spaced by λs/2 = c/(2W ) ver-
tically and horizontally, where W is the sampling rate. Source
S and Destination D are located on vertices of the grid sepa-
rated by a distance d0 = mλs/2. The carrier wavelength will
be denoted λc = c/fc.

2.1. Scatterers Clustering

In a wide band system, resolution in time and space are high
and propagation delays cannot be neglected as in narrow band



systems. Indeed λs may be small compared to the distance
between communicating terminals, therefore a signal trans-
mitted during a given time-slot will not be received in the
same time-slot but later. To take into account propagation de-
lays, scatterers are grouped in Nclus clusters, depending on
the time-slot of reception of the scattered wave.

Fig. 1. Relaying Clusters

If we sample at W = c/λs, we can discriminate durations
greater than the time T = λs/c needed by the wave to propa-
gate along λs meters. Thus a cluster gathers scatterers whose
scattered waves are received by D during the same interval T .

The shortest distance to go from source to destination is
the straight path without reflection of length d0 and propa-
gation duration τ0 = d0/c = (m/2)T . Cluster ∆0 con-
tains the straight path from source to destination, as well as
the reflected paths received during the first time-slot TS0 =
[τ0, τ0 + T [. Those paths correspond to waves propagating
on a total distance, sum of the distances from S to the scat-
terer and from the scatterer to D, d

(s)
r + d

(d)
r ∈ [d0, d0 + λs[.

For i ≥ 1, Cluster ∆i contains only scattered waves, such
that (d(s)

r + d
(d)
r ) ∈ [d0 + iλs, d0 + (i + 1)λs[. Those waves

are received during the ith time-slot defined by TSi = [τ0 +
iT, τ0 + (i + 1)T [. For a scatterer k in cluster i, the propaga-
tion delay of the scattered wave from S to D via this scatterer
Rk,i will be denoted τk,i ∈ TSi. This duration consists of
three parts: τk,i = τ0 + iT + τ ′k,i with τ ′k,i ∈ [0, T [.

Fig. (1) illustrates the clusters in the case of a 13 × 13
grid and a source-destination distance d0 = 4 λs/2. A clus-
ter is geometrically represented by a surface bounded by two
ellipses whose focus are S and D, and whose equations are
given by d

(s)
r + d

(d)
r = d0 + iλs and d

(s)
r + d

(d)
r = d0 + (i +

1)λs.

2.2. Power Attenuation

To model the attenuation of propagating waves, the far field
propagation model holding for distances d � λc

2 π will be

considered. Since fc ≥ W/2 ⇔ λs ≥ λc/2, the far field
condition is fulfilled for distances d ≥ λs/2. The power re-
ceived by D depends on the path taken by the signal to reach
D: one-hop direct path from S to D without reflection or two-
hop-path from S to D via one scatterer. Multiple reflections
before reaching D are not taken into account.

If no reflection occurs, the direct received power [4,5] is :

Pd =
λ2

c

(4π)2 d2
0

Prad = K2
1

λ2
c

d2
0

Prad (1)

with Prad the power transmitted by the source antenna and
the constant K1 = 1/(4π). If one reflection occurs before
reaching D, according to the radar equation [4, 5] with omni-
directional antennas, the reflected power received by D is:

Pr =
λ2

c s

(4π)3 (d(s)
r d

(d)
r )2

Prad = K2
2

λ2
c

(d(s)
r d

(d)
r )2

Prad (2)

with s the radar cross section and K2 =
√

s/4πK1 =
√

s/(4π)3.

3. ANALYSIS

Matrices and vectors are represented by boldface uppercase.
AT , A∗, AH denote the transpose, the conjugate and the trans-
pose conjugate of matrix A whereas operator ∗ stands for con-
volution. det(A) stands for determinant of A, E is statistical
expectation and finally IN is the identity matrix of size N.

3.1. Signals Expressions in Time Domain

Source S produces a sequence s(t) =
∑N−1

n=0 sn δ(t− nT ) of
N complex symbols with unit energy ε = E[|s2

n|] = Prad at
rate W = 1/T and transmits a linearly modulated signal with
complex envelope x(t) = s(t)∗g(t) =

∑N−1
n=0 sn g(t− nT ),

where g(t) is the pulse shaping filter, satisfying the Nyquist
criterion

∫
g(t)g∗(t− kT )dt = δ0,k. We assume hereafter

that g(t) is the rectangle function of amplitude 1/
√

T over
[0, T [. The received signal at D is the superposition of the
signal coming directly from S and the signals scattered once:

y(t) =
Nclus−1∑

i=0

∑
k∈∆i

ak,i x(t− τk,i) + n′(t) (3)

where n’(t) is AGWN and coefficients ak,i are given by (1)
and (2):

ak,i =

{
K1

λc

d0
ejϕ0,0 for (k, i) = (0, 0) direct path

K2
λc

d
(s)
k,i d

(d)
k,i

ejϕk,i for (k, i) 6= (0, 0) reflected path

ϕk,i ∈ [0, 2π[ are phase shifts due to propagation and reflec-
tions. Phases can be modeled as independent random vari-
ables provided nodes are sufficiently spaced. If the network
becomes denser and denser, phases may not be independent



anymore but correlated and should be expressed in function
of optical path differences, which is out of the scope of this
paper. After matched-filtering, the received signal becomes:

r(t) = y(t) ∗ g∗(−t) + n(t)

= s(t) ∗ g(t) ∗ g∗(−t) ∗
Nclus−1∑

i=0

∑
k∈∆i

ak,i δ(t− τk,i)︸ ︷︷ ︸
h(t−τ0)

+ n(t)

r(t) = h(t) ∗ s(t− τ0) + n(t) (4)

where we define the scatterers network equivalent channel by:

h(t) =
Nclus−1∑

i=0

∑
k∈∆i

ak,i g(t− τk,i + τ0) ∗ g∗(−t) (5)

Time shift τ0 in equation (4) illustrates the minimum propa-
gation delay corresponding to direct path. D starts receiving
signals only τ0 seconds after S started emitting. The introduc-
tion of τ0 in the definition of h simplifies notations since all
the delays τk,i = τ0 + iT + τ ′k,i contain τ0.

By sampling at rate W = 1/T , the received sequence is
the convolution between the symbol sequence and the channel
impulse response (CIR):

rl = r(lT ) =
N−1∑
n=0

snh(lT − nT − τ0) + n(lT ) (6)

=
N−1∑
n=0

snhl−n−m/2 + nl =
Nclus∑
n=0

hn sl−n−m/2 + nl

The sum in (6) is finite and contains only Nclus + 1 non null
terms, since the CIR has finite length Nclus + 1 (proof and
coefficient hl expression in appendix A). Because of the min-
imum propagation delay τ0 = mT/2, the m/2 first samples
r0 = ...rm/2−1 = 0 are null.

Under matrix notation, the system can be reduced to the
equation RN = HN SN + NN , where SN = [s0, ..., sN−1]T ,
NN = [n0, ..., nN−1]T , RN = [rm/2, ..., rN+m/2−1]T are
columns of size N and the channel is represented by N ×N
lower triangular banded Toeplitz matrix :

HN =



h0 0 . . . . . . . . . 0
...

. . . . . .
...

hNclus

. . . . . .
...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 hNclus

. . . h0


N×N

(7)

3.2. Asymptotic analysis for Capacity expression

The capacity of the grid of scatterers is defined [6] as:

C = lim
N→+∞

W

N
log2 det ( IN +

ε

Wσ2
HN HH

N ) (8)

Using Toeplitz and circulant matrices properties, we show in
appendix B that:

C = lim
N→+∞

W

N

N−1∑
k=0

log2(1 +
ε

Wσ2
|λk,N |2) (9)

where {λk,N}k∈[0,N−1] are given by the N -point DFT of the
first column of HN .

Expressing the average capacity in terms of the network
physical characteristics is intricate. Nevertheless Jensen’s in-
equality allows to give an upperbound (10) to the average ca-
pacity C̄ = Eh[C] in function of physical characteristics of
the network. Besides at low SNR ρ = ε

σ2 , using Taylor ex-
pansion of the log around zero at order 1 and performing some
tedious manipulations of (8), that we skip for sake of concise-
ness and readability, C̄ can be written as in (11). They illus-
trate the SNR gain due to scatterers in function of the topol-
ogy and the system band . We would like to point out that
those formulas are valid for any topology and are not specific
to the grid model, nor to the λs/2-node spacing.

4. SIMULATIONS AND RESULTS

In this section, numerical results illustrate the growth of av-
erage capacity when the number of scatterers increases. We
consider a wide band system with W = 2GHz and a carrier
fc = 2GHz, at SNR ρ = 10dB, for different values of dis-
tance d0. Scatterers are located on the vertices of a square grid
covering an area of 21λs/2 × 21λs/2. Nevertheless we con-
sider that the line (SD) does not contain any scatterer, since
when three nodes are aligned, one link among the links S-R,
S-D, R-D is blocked.

The number of scatterers is increased in two different ways:

• Centered-Grid Positioning : Nr scatterers are uni-
formly distributed on the vertices of a grid of size

√
Nr×√

Nr, centered on the midpoint I between S and D.
Increasing Nr corresponds to increasing the edge of
the square grid. The average capacity (9) obtained by
Monte-Carlo simulations over many independent chan-
nel realizations as well as Jensen’s upperbound (10) are
plotted in fig. (2) for the centered grid positioning.

• Optimal Positioning : Considering a grid 21× 21, we
select the Nr optimal vertices , i.e. the positions that
give the highest capacity for a given number Nr of scat-
terers. Increasing Nr corresponds to adding a scatterer
at the available vertex which gives the next highest in-
crease of capacity. Jensen’s upperbound (10) only is
plotted in this case in fig. (2).

As the number of scatterers increases, capacity saturation
occurs, since signals coming from peripheral nodes very far
from source and destination lead to small contributions, sug-
gesting a capacity/delay trade-off: after a certain point, the



C̄ ≤ W log

(
1 +

ρ

W

(
K2

1

λ2
c

d2
0

+ K2
2

λ2
c

λ2
s

Nclus−1∑
i=0

∑
k∈∆i

((i + 1)λs + d0 − d
(s)
k,i − d

(d)
k,i )

2 + (iλs + d0 − d
(s)
k,i − d

(d)
k,i )

2

(d(s)
k,id

(d)
k,i )2

))
(10)

At low SNR: C̄ ≈ ρ

ln 2

(
K2

1

λ2
c

d2
0

+ K2
2

λ2
c

λ2
s

Nclus−1∑
i=0

∑
k∈∆i

((i + 1)λs + d0 − d
(s)
k,i − d

(d)
k,i )

2 + (iλs + d0 − d
(s)
k,i − d

(d)
k,i )

2

(d(s)
k,id

(d)
k,i )2

)
(11)

increase in capacity resulting from retransmissions from far
nodes is not worth the time wasted waiting for those retrans-
missions. With respect to the case without scatterers, the level
of saturation corresponds to a 30% increase in capacity at
d0 = 3λs and 40% at d0 = 5λs.

Fig. 3 shows how the contribution to SNR of each scat-
terer depends on its position. Scatterers positions affect the
capacity not only in terms of path loss but also of delay, lead-
ing to a notable difference between performances in the centered-
grid case and the optimal positioning case. A few scatterers
well located, close to source or destination according to fig.
(3), lead to better performances than a great number of scat-
terers uniformly distributed between source and destination.

5. CONCLUSION

In this contribution, the scaling behavior of capacity in a dense
scattering network is analyzed from a physical point of view,
taking into account characteristics such as topology and trans-
mission band. Asymptotic analysis shows that capacity satu-
rates when the size of the network increases and that topology
affects the saturation point, in particular in wide band systems
where the impact of topology on capacity is not only a matter
of pathloss but also of delays that cannot be neglected. Ca-
pacity saturation suggests a capacity/delay trade-off : it is not
worth waiting for infinite retransmissions and a few well lo-
cated scatterers around source and destination lead to better
performances than more scatterers uniformly distributed on a
square area centered between source and destination.

A. PROOF OF FINITE LENGTH OF CIR

The channel impulse response is defined by the coefficients:

hl = h(lT ) =
Nclus−1∑

i=0

∑
k∈∆i

ak,i

∫
g(τ − τk,i + τ0)g∗(τ − lT )dτ

(12)
By definition with a rectangle transmitting filter, the integral
in (12) is non null for a finite set of values of l, more precisely
l ∈ [0, Nclus], as shown hereunder:∫

g(τ − τk,i + τ0) g∗(τ − lT )dτ

=
∫

g(τ) g∗(τ + τ ′k,i − (l − i)T )dτ

= f
(1)
k,l δi−l + f

(2)
k,l−1 δi−l−1 (13)

with τ ′k,i ∈ [0, T [, and f (1) and f (2) are defined by:

for i ∈ [0, Nclus − 1] and k ∈ ∆i,

f
(1)
k,i =

∫
g(τ) g∗(τ + τ ′k,i)dτ = 1− τ ′k,i/T (14)

f
(2)
k,i =

∫
g(τ) g∗(τ − T + τ ′k,i)dτ = τ ′k,i/T (15)

Then combining (12) and (13) leads to the coefficients:

h0 = h
(1)
0 =

∑
k∈∆0

ak,0 f
(1)
k,0 (16)

hl = h
(1)
l + h

(2)
l−1 , for l ∈ [1, Nclus − 1]

=
∑

k∈∆l

ak,l f
(1)
k,l +

∑
k∈∆l−1

ak,l−1 f
(2)
k,l−1

hNclus
= h

(2)
Nclus−1 =

∑
k∈∆Nclus−1

ak,Nclus−1 f
(2)
k,Nclus−1

Indeed, h is the superposition of two FIR h(1) and h(2), of
length Nclus−1, shifted by T with respect to each other. Thus,
h is of length Nclus.

B. PROOF OF CAPACITY EXPRESSION (9)

{HN}N∈N forms a sequence of banded Toeplitz matrices of
order Nclus+1 (non null coefficients). We study their asymp-
totic behavior, i.e. for N � Nclus. As in [7] we define:

• the circulant matrix GN associated to HN :

GN =



h0 0 . . . 0 hNclus
. . . h1

...
. . . . . . . . . . . .

...

hNclus

. . . . . . . . . hNclus

0
. . . . . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . . . . 0 hNclus

. . . h0


N×N

• the sequence {AN}N∈N of hermitian matrices AN =
HN HH

N with non negative eigenvalues sets {αk,N}k∈[0,N−1]

• the sequence {BN}N∈N of hermitian matrices BN =
GN GH

N with non negative eigenvalues sets {βk,N}k∈[0,N−1]



Fig. 2. Capacity in function of the number of scatterers

According to lemma 4.2 in [7], HN and GN are asymp-
totically equivalent, as well as HH

N and GH
N . Thus, by the-

orem 2.1.(3) in [7], their products are asymptotically equiv-
alent: AN = HN HH

N ∼ GN GH
N = BN and by theorem

2.1.(6), there are finite constant m and M such that m ≤
αk,N , βk,N ≤ M . In particular AN and BN are nonnegative
definite, so 0 ≤ αk,N , βk,N ≤ M .

The capacity (8) can be written:

C = lim
N→+∞

W

N

N−1∑
k=0

log2(1 +
ε

Wσ2
αk,N ) (17)

From (17) we define the function F (u) = log2 ( 1 + ε
Wσ2 u),

continuous on ] − Wσ2

ε ,+∞[ and thus on the interval [0,M ]
bounding the eigenvalues αk,N and βk,N . {AN}N∈N and
{BN}N∈N being asymptotically equivalent sequences of her-
mitian matrices, theorem 2.4 of [7] allow to conclude that:

lim
N→+∞

1
N

N−1∑
k=0

F (αk,N ) = lim
N→+∞

1
N

N−1∑
k=0

F (βk,N ) (18)

and rewrite the capacity (17):

C = lim
N→+∞

W

N

N−1∑
k=0

log2(1 +
ε

Wσ2
βk,N ) (19)

Now GN is a circulant matrix, thus diagonalizable in the
Fourier basis, leading to the diagonal matrix CN = FN GN F−1

N =
diag(λ0,N , . . . , λN−1,N ) and the eigenvalues {λk,N}k∈[0,N−1]

given by the DFT of the first column of GN :

[λ0,N , ..., λN−1,N ]T = FN [h0, ..., hNclus−1, 0, ..., 0]T(N×1)

Fig. 3. Contribution to SNR of scatterers vs. their position

where FN = ( e−
j2π(n−1)(ν−1)

N )n,ν∈{1...N} is the N -point
DFT matrix. Expressing BN in function of CN gives

BN=F−1
N CN CH

N FN = F−1
N diag(|λ0,N |2, . . . , |λN−1,N |2)FN

so that βk,N = |λN,k|2, which substituted in (19) leads (9).
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