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ABSTRACT

We continue previous work [1] in which we analyzed the Mu-
tual Information of Frequency-Flat MIMO Channels with a
Block Fading model. Absence of Channel State Information
at Transmitter or Receiver (no CSIT/CSIR) was considered
there. It was shown that implicitly a (semi-blind) channel esti-
mate needs to be constructed that, in decision-feedback style,
depends on the past (detected) inputs and outputs (training
part) and on the future outputs (blind part).

On the other hand, for peak-power limited SISO frequency-
flat channels with stationary Gaussian fading, it has been shown
by Lapidoth [2] that at high SNR, the capacity is determined
by a pre-log factor that is equal to the bandwidth of frequen-
cies where the channel Doppler spectrum is zero (the comple-
mentary part of the Doppler bandwidth).

In this paper we extend Lapidoth’s result to MIMO chan-
nels with bandlimited stationary fading. At high SNR, the
absence of CSIR decreases the pre-log with a factor equal to
1 minus the average number of parameters per symbol period
that parameterize the channel. This reduction term is pro-
portional to the Doppler bandwidth and the number of trans-
mit antennas. We introduce channel parameterizations that
naturally induce a split in the transmitted symbols between
”learning” symbols (that carry loglog(SNR) information) and
”data” symbols (that carry log(SNR) information). The ca-
pacity pre-log factor is the proportion of ”data” symbols.

1. INTRODUCTION

Information theoretic bounds for different types of channels
have got utmost importance since the explosion of research
in MIMO promised new dimensions for data communication.
Such capacity bounds are very important in the sense that they
give the theoretical limits and motivate researchers to achieve
them in practical systems literally or asymptotically. The area
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of capacity analysis for non-coherent (no CSIR and no CSIT)
fading channels has received considerable attention in recent
years since the usual assumption of perfect CSIR is not true
in practical systems and channel realizations need to be esti-
mated for correct decoding of data.

Usually block fading models are assumed for obtaining
capacity bounds in the no CSIR (non-coherent) case. In the
standard version of this model [3], the fading remains con-
stant over blocks consisting of T symbol periods, and changes
independently from block to block. Capacity bounds are ob-
tained by introducing training segments in an ad hoc fashion.
For the standard block fading model, the capacity is shown
[3], [4] to grow logarithmically with SNR. Later Veeravalli
[5] allowed the fading to vary inside the block with a certain
correlation matrix characterized by a rank Q and showed for
SISO channels that the capacity pre-log is (1−Q/T ).

Non-coherent capacity has also been analyzed with the
channel fading process being symbol-by-symbol stationary.
In this model, fading is not independent but time selective
without block structure. Surprisingly at first, this model leads
to very different capacity results: contrary to log(SNR) capac-
ity growth in block fading channels, here the capacity grows
only double logarithmically with SNR at high SNR [6], [7],
[8] when the fading process is non-bandlimited, i.e. the chan-
nel prediction error is non-zero.

For symbol-by-symbol stationary Gaussian fading chan-
nels, if the Doppler spectrum is band-limited (limited sup-
port), then the fading process is called non-regular and the
prediction error using the infinite past is zero. Lapidoth [2]
studied the SISO case for this kind of fading processes show-
ing that capacity grows logarithmically with SNR and capac-
ity pre-log is the Lebesgue measure of the frequencies where
the spectral density of the fading process (Doppler spectrum)
has nulls.

Chen and Veeravalli [9] introduce a block-stationary chan-
nel model that can encompass both the per-symbol stationary
and block fading models. They obtain the SISO capacity pre-
log for both cases. They argue that the log(SNR) regime re-
sults from the rank deficiency of the correlation matrix of the
fading process (though bandlimited fading only leads to rank
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deficiency over a block as the block length goes to infinity).

2. SYSTEM MODEL

We consider a MIMO fading channel whose time-k output
Yk ∈ CN is given by

Yk = HkXk + Zk (1)

where Xk ∈ CM denotes the time-k channel input vector and
the fading matrix Hk ∈ CN×M represents the time-k fading
matrix and Zk ∈ CN denotes the additive gaussian noise vec-
tor. Here C denotes the complex field and, M and N repre-
sent the number of transmit and receive antennas respectively.
We assume that the zero-mean circularly complex Gaussian
noise is spatiotemporally white with spatial covariance matrix
IN , which represents the N ×N identity matrix. The channel
fading process {Hk} is assumed to be stationary, ergodic and
with finite second order moment, i.e. E[||Hk||2] < ∞. We
take the fading process to be strictly bandlimited, so it is a
non-regular stochastic process with limited Doppler spectrum
support. Moreover we impose the restriction that the support
is of size 1/D for each channel entry, where D is an integer
(extensions to a rational D are possible). Sometimes we will
be working over a block of D symbol times. In that case the
joint description of (1) over D symbol periods becomes

Yk = HkXk + Zk . (2)

We adopt the convention of representing the variables for D-
symbol block as boldface letters. Here Yk and and Zk have
lengths N × D, Xk is of length M × D and
Hk = blockdiag(HkD, HkD+1, HkD+2, ...HkD+D−1).

For the input power constraint, we typically choose to
work under the peak power constraint as normally commu-
nication systems are peak-power limited in practice. Thus
power at all transmitting antennas can never exceed SNR,
the peak power, thus

XH
k XH

k ≤ SNR . (3)

Throughout this paper, (.)T and (.)H will denote transpose
and Hermitian transpose operators respectively.

The capacity pre-log is normally defined as

PreLog = lim
SNR→∞

C(SNR)
log(SNR)

. (4)

We define a new capacity parameter which may help us bet-
ter understand the asymptotic capacity reduction when CSIR
is not available. It is called Asymptotic Capacity Reduction
Factor (ACRF) and is defined as

ACRF = lim
SNR→∞

CNO−CSIR(SNR)
CCSIR(SNR)

. (5)

Thus the ACRF is the ratio of non-coherent capacity to coher-
ent capacity at very high values of SNR.

3. NON-COHERENT CAPACITY BOUNDS

The capacity is calculated from the well-known expression

C = lim
n→∞

1
n

sup
pn

x

I(X1:n; Y 1:n) (6)

where the maximization is done over all input distributions
which satisfy the power constraint. The mutual information
in the above expression can be decomposed as follows

I(X1:n; Y 1:n) = I(X1:n
d , X1:n

t ; Y 1:n
d , Y 1:n

t )

= I(X1:n
t ; Y 1:n

d , Y 1:n
t )︸ ︷︷ ︸

I1

+ I(X1:n
d ; Y 1:n

d , Y 1:n
t |X1:n

t )︸ ︷︷ ︸
I2

(7)

The subscripts t and d denote ”training” and ”data” respec-
tively, and superscript 1 : n shows that the length of the
sequence ranges from 1 to n. Training and data here can
be time multiplexed (in which case also the outputs get time
multiplexed) or superimposed or a combination of both. Or
training and data can more generally live in two complemen-
tary subspaces. The term ”training” here may be mislead-
ing. Indeed, also the ”training” symbols carry information.
Nevertheless, apart from data transmission they also allow the
channel to be estimated, with channel estimates that serve as
a basis for the complementary ”data” symbols. To diminish
the confusion, we shall instead call these ”training” symbols
”learning” symbols. In suboptimal approaches, these learning
symbols may get replaced by classical traning symbols.

3.1. Capacity Lower Bound

For the lower bound on the capacity, we can consider X1:n
t

as pure training sequence, so information I1 goes to zero.
But this known training sequence allows channel estimation
with finite estimation error covariance so that the effect of
this channel estimation error, when the channel estimate gets
used in the data part (and no other information gets used for
the estimation of the channel), is at worst a finite increase of
the effective noise power. Hence the difference of I2 from
the full CSIR case is at most some finite constant. Hence the
prelog of I2 is that of the full CSIR case, which leads to

ACRF = 1 − training size

training size + data size
where the ”size”s should be interpreted as the dimensions of
the corresponding subspaces. But for this, the training length
should be sufficient to allow deterministic identifiability of
the channel, meaning that if the channel is considered as a de-
terministic signal, it should be identifiable with zero error in
the absence of noise. Hence we get for the overall capacity:

ACRF ≥ 1 − learning size

learning size + data size



3.2. Capacity Upper Bound

For the upper bound on the channel capacity, we cannot ig-
nore the capacity associated to X1:n

t . Now, since Xt and Yt

live in corresponding subspaces whereas Yd lives in an or-
thognal subspace, I1 = I(X1:n

t ; Y 1:n
d , Y 1:n

t ) = I(X1:n
t ; Y 1:n

t ).
Now, as long as the the size of the learning part is not more
than the smallest possible size that allows channel identifia-
bility, then we are in the ”regular” case of Lapidoth [6] and
the capacity I1 grows with SNR at most as
(learning size) log log(SNR), hence its prelog is zero. For
an upper bound on I2, we can just take the full CSIR as-
sumption leading to a capacity growth with a prelog equal
to the data size. As a result we get for the overall capacity:

ACRF ≥ 1 − learning size

learning size + data size
.

Combining lower and upper bound, we get equality for ACRF.
Finer Analysis of I2: a decomposition leads to

I2 =
n∑

i=1

I(X i
d; Y

1:n
d , Y 1:n

t |X1:n
t , X1:i−1

d ) (8)

(this decomposition is not necessarily in time, it can also be
along a subspace basis). This sum term indicates that for the
detection of each of the data symbols in SISO or vector Xd in
MIMO case, we can use the channel estimate from the learn-
ing part and use all previously detected input symbols. Fur-
thermore the presence of all output symbols stresses the need
to do blind channel estimation to fully exploit the information
present in that term as discussed in [1]. This indicates that to
get the actual capacity, and in particular the proper constant
term at high SNR, one needs to performs semi-blind channel
estimation within the data subspace, since based on past in-
put and output and future output. The future output may give
important channel information, especially in the multiple re-
ceive antenna case. In any case, whether the channel estimate
is based on the ”learning” input and output only or whether
it is based on full semiblind information does not change the
prelog factor, but only an additive constant in the asymptotic
capacity. So, to summarize, in the no CSIR case, the input can
be split into a ”learning” subspace and its orthogonal com-
plement, the ”data” subspace. The ”learning” subspace is of
minimal dimension to just allow deterministic identifiability
of the channel and hence corresponds to the ”regular” case in
Lapidoth’s terminology and carries information of the order
of loglog(SNR). The ”data” subspace is the main subspace
for transmission of data and its reduced dimension represents
the reduced prelog factor.

4. CAPACITY PRE-LOG FOR SISO SYSTEMS

In this section, we give two approaches which show us the ca-
pacity limit in high SNR regime and even enable us to achieve
the capacity pre-log.

4.1. Sub Sampling Approach

Fig. 1. Subsampling Grid.

As Doppler spectrum is band-limited to 1/D, so we can
downsample with the integer downsampling factor D accord-
ing to Nyquist’s theorem. Thus we get a grid as shown in the
figure 1. Over the downsampled instants, we transmit learn-
ing symbols known to the receiver and rest are the data sym-
bols. So there is one learning symbol after each (D-1) data
symbols. Thus over a block of D symbols, we have D predic-
tion problems, (D-1) of which are singular, i.e. the prediction
error will go to zero in the absence of noise and D-th predic-
tion error is a white noise at sub-sampled rate (1/D).

σ2 = exp
∫ 1/2D

−1/2D
lnShh(f)df (9)

Channel estimates on learning grid may be obtained by causal
linear prediction and for the data grid they can be obtained by
non-causal LMMSE Wiener filtering. Because of the pres-
ence of additive noise, prediction will not be perfect. The er-
ror in channel estimation has its worst effect when it is white,
so in this case it gets added up with the white noise already
present. This reduces the effective SNR at the receiver and
causes a shift in the curve of capacity versus SNR but the
slope of this curve remains unchanged corresponding to ca-
pacity pre-log.

About these learning symbols in the grid, we don’t specify
them to be perfectly known to receiver before transmission.
They may be learning symbols in the true sense that they are
known to receiver before transmission or they may be coming
from a low rate stream which allows decoding even in the
absence of CSIR. In this case, this data stream would have its
capacity growth like loglog(SNR), but once detected, these
symbols act as training symbols for the pure data symbols.
Either way, whether it is pure training or low rate stream, it
will give capacity pre-log of zero. Thus in a straight forward
manner, the fraction (1 − 1/D) is left for data transmission
where we will have non-causal channel estimates from this
learning grid. So this number gives us pre-log of SISO system
and ACRFSISO = (1 − 1/D).

This subsampling approach makes causal estimates over
the learning grid and for data grid, channel estimate corre-
sponding to each data symbol is obtained by non-causal es-
timates over the learning grid and causal estimates over the
previously detected symbols.



4.2. Learning and Data Subspaces

Fig. 2. Learning and Data Subspaces

We can vectorize our channel with D elements in each
vector. Corresponding to this vector channel, input vector X
may have D dimensioinal subspace. We could make an ar-
rangement so as to use one dimension for learning and rest
of (D-1) dimensions as data. The one dimensional subspace
used by the learning should have its projection orthogonal to
the projection of (D-1) dimensional subspace used by data. If
we put power constraint over input vector X , then we need to
optimize the power between data and learning part but we put
the constraint separately over both so X is also peak power
contrained.

X = [At Ad]
[

Xt

Xd

]
(10)

where At and Ad are special matrices such that their projec-
tions are orthogonal, i.e. [At Ad] is unitary.

PAt = P⊥
Ad

(11)

where PA = A(AHA)#AH , and (.)# denotes Moore-Penrose
pseudo-inverse. So the received signal is

Y = HAtXt + HAdXd + V (12)

Receiver can recover learning symbols as the subspaces spanned
by learning and data are orthogonal. Here again, the learn-
ing sub-space may have true training symbols or they may
be coming from a low rate stream. But the situation is same
as it was in the subsampled scheme. Continuously we have
1/D resource usage as a training or low rate data transmission
which gives us capacity pre-log of zero, but for the rest 1 −
1/D resource, channel estimates are available from the learn-
ing sub-space so communication becomes coherent for this
resource and we get capacity increase of log(SNR), and hence
capacity pre-log and ACRF both are equal to 1− 1/D. There
is again reduction in effective SNR because of noisy channel
estimation causing shift in the capacity curve but leaving the
capacity pre-log unharmed.

For this scheme, channel estimation is purely causal. Chan-
nel estimate at each symbol instant is obtained by previously
received learning symbols and previously detected data sym-
bols. Thus it differs from subsampling approach due to its
causal functionality.

5. CAPACITY PRE-LOG FOR MIMO SYSTEMS

In this section, we give the MIMO extensions to the schemes
we proposed for SISO case in the previous section.

5.1. Sub Sampling Approach

With the same reasoning as in the SISO case, as Doppler spec-
trum is band-limited to 1/D for each channel entry, we down-
sample with the integer downsampling factor D according to
Nyquist’s theorem. But as it was shown by Hassibi [10], to
properly estimate the MIMO channel matrix, we need learn-
ing length in symbol periods equal to the number of transmit
antennas. Therefore in a group of D transmissions, we need
to transmit learning for M symbol times. So in the very be-
ginning, there is a multiplicative factor of (1 − M/D) with
the capacity as in a group of D transmissions, M carry only
the learning symbols. But these transmissions allow us to
make channel estimates. Channel estimates on this learn-
ing grid may be obtained by causal linear prediction and for
the data grid they can be obtained by non-causal LMMSE
Wiener filtering. In fact capacity decomposition done in sec-
tion 3 shows us that this channel estimation should be based
upon all learning symbols and previously detected data sym-
bols. Thus for the rest of the symbol intervals in the block,
we have coherent scenario which helps us achieve the capac-
ity pre-log of min(M, N). Thus capacity pre-log for this
MIMO system turns out to be min(M, N) ∗ (1 − M/D)
and ACRFMIMO = (1 − M/D). ACRF clearly shows that
Doppler bandwidth gets multiplied by the number of anten-
nas, causing greater capacity reduction as compared to SISO
systems.

5.2. Learning and Data Subspaces

For this approach, we consider a block of D symbol periods.
First we vectorize our channel matrix in a vector of length
M ×N and then combine D of them in a long vector. So now
the length of this vector channel is M × N × D.

hk = vec(Hk)
hk′ = [hk′D, hk′D+1, hk′D+2, ...hk′D+D−1]T (13)

X = [At Ad]
[

Xt

Xd

]
(14)

where bold faced letters show that we are working over block
of D-symbol period and At and Ad are special matrices such
that their projections are orthogonal, i.e. [At Ad] is unitary.
The received signal can be expressed as

Y = HAtXt + HAdXd + V (15)

The matrices At and Ad can further be expressed as

At = [IM 0]T︸ ︷︷ ︸
Bt

⊗IM Ad = [0 ID−M ]T︸ ︷︷ ︸
Bd

⊗IM (16)



Furthermore these can be expressed as

Ct = Bt ⊗ IN Cd = Bd ⊗ IN (17)

Then at the receiver side, because of orthogonal projections
learning and data dimensions can be separated.

Yt = CH
t Y = CH

t HAtXt + CH
t V (18)

Yd = CH
d Y = CH

d HAdXd + CH
d V (19)

Input vector X for D symbol times will have length M × D
and will span M ×D dimensional subspace as we mentioned
in our D-symbol model in equation 2. Now out of these
M × D dimensions available, we use M × M dimensional
subspace for learning which will enable us to have sufficiently
accurate channel estimation because at receiver from Yt chan-
nel estimates can be obtained and rest of M × (D − M) di-
mensional subspace will carry data.

For the vector of channel coefficients over D-symbol pe-
riod, if we consider a MIMO auto-regressive (AR) model of
infinite order

hk′ =
∞∑

i=1

Uihk′−i + h̃k′ (20)

The covariance matrix R of prediction error h̃k′ will have its
rank M × M .

The M × M dimensional subspace used by learning will
be orthogonal to M × (D − M) dimensional subspace used
by data. In case of no noise, it will allow perfect estima-
tion of channel, but noise presence gives error in estimation.
But transmission over the data subspace behaves like coher-
ent communication. But learning subspace will introduce a
capcity reduction factor ACRFMIMO = (1 − M/D) and
we will get the capacity pre-log of min(M, N) ∗ (1−M/D)
from the data subspace.

We have seen in MIMO case that ACRFMIMO = (1 −
M/D). Thus we remark that Doppler bandwidth gets multi-
plied with the number of transmitting antennas causing more
capcity reduction.

6. CONCLUDING REMARKS

We have shown the capcity pre-log for SISO and MIMO chan-
nels. Moreover our presented two schemes help achieve this
pre-log in practical systems. A striking observation is that the
systems with M transmit antennas should be varying M times
more slowly as compared to the systems with only one trans-
mit antenna in order to have comparable capacity reduction in
case of no CSIR.

7. REFERENCES

[1] M. Abdelkader and D. Slock, “Mutual information with-
out channel knowledge at the receiver,” SPAWC 2003,

4th IEEE Workshop on Signal processing advances in
wireless communications, June 15-18, 2003 - Rome,
Italy.

[2] A. Lapidoth, “On the asymptotic capacity of stationary
gaussian fading channels,” IEEE Trans. on Information
Theory, vol. 51, pp. 437–446, February 2005.

[3] T. Marzetta and B. Hochwald, “Capacity of a mobile
multiple-antenna communications link in rayleigh flat
fading,” IEEE Trans. on Information Theory, vol. 45,
pp. 139–157, January 1999.

[4] L. Zheng and D. N. C. Tse, “Communication on the
grassmann manifold: A geometric approach to the non-
coherent multiple-antenna channel,” IEEE Trans. on In-
formation Theory, vol. 48, pp. 359–383, February 2002.

[5] Y. Liang and V. V. Veeravalli, “Capacity of noncoherent
time-selective rayleigh-fading channels,,” IEEE Trans.
on Information Theory, vol. 50, pp. 3095–3110, Decem-
ber 2004.

[6] A. Lapidoth and S. Moser, “Capacity bounds via duality
with applications to multi-antenna systems on flat fading
channels,” IEEE Trans. on Information Theory, vol. 49,
pp. 2426–2467, October 2003.

[7] T. Koch and A. Lapidoth, “The fading number and de-
grees of freedom in non-coherent mimo fading chan-
nels: a peace pipe,” IEEE International Symposium on
Information Theory, vol. 52, pp. 437–453, September
2005.

[8] A. Lapidoth and S. Moser, “The fading number of
single-input multiple-output fading channels with mem-
ory,” IEEE Trans. on Information Theory, vol. 52, pp.
437–453, February 2006.

[9] J. Chen and V. V. Veeravalli, “Capacity results for block-
stationary gaussian fading channels,,” IEEE Interna-
tional Symposium on Information Theory, vol. 50, pp.
3095–3110, July 2006.

[10] B. Hassibi and B. M. Hochwald, “How much training
is needed in multiple-antenna wireless links?,,” IEEE
Transactions on Information Theory, vol. 49, pp. 2058–
2080, April 2003.


	Index
	SPAWC 2007 Home Page
	Conference Info
	Welcome Message
	SPAWC 2007 Organizing Committee
	SPAWC 2007 Technical Program Committee
	Conference Program at a Glance
	SPAWC 2007 Sponsors

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X
	Y
	Z

	Sessions
	Monday, 18 June 2007
	M2A-Performance Analysis and Capacity
	M2B-Cooperative Transmission and Reception Schemes - 1
	M3A -SPECIAL SESSION-3G Evolution - HSPA, LTE and Beyond
	M3B-Signal Processing Tools for Ad Hoc, Multi-Hop, and Sens ...
	M5A-Multiple Access and Broadcast Channels, Multi-User Rece ...
	M5B-Equalization, Detection, and Decoding
	M5C-Cooperative Transmission and Reception Schemes - 2

	Tuesday, 19 June 2007
	T2A-Smart Antennas, MIMO Systems, and Space-Time Coding - 1
	T2B-Cross-Layer Issues: From Physical to Networking Layers
	T3A -SPECIAL SESSION-Advances in Multiuser MIMO
	T3B-Acquisition, Synchronization, and Tracking
	T5A-Smart Antennas, MIMO Systems, and Space-Time Coding - 2
	T5B-Modeling, Estimation and Equalization of Time-Varying C ...
	T5C-Mobile Positioning, Direction Estimation, and Tracking

	Wednesday, 20 June 2007
	W1 - PLENARY-Advanced Network Calculus for Interference Functions ...
	W2A-Smart Antennas, MIMO Systems, and Space-Time Coding - 3
	W2B-Single-Carrier, Multi-Carrier, and Multi-Rate Systems
	W3A-Signal Separation, and Interference Rejection
	W3B-Spread-Spectrum Systems and Ultra-Wideband Radio


	Papers
	All Papers
	Papers by Session

	Topics
	Smart antennas, MIMO systems, and space-time coding
	Fundamental limits on capacity and performance analysis
	Single-carrier, multi-carrier, and multi-rate systems
	Multiple access and broadcast channels, multi-user receivers
	Mobile location
	Cross-layer issues: from physical to networking layers
	Signal processing tools for ad hoc, multi-hop, and sens ...
	Cooperative transmission and reception schemes
	Cognitive radio
	Time, frequency, spatial, multi-user diversity in fadin ...
	Ultra-wideband radio
	Modeling, estimation and equalization of time-varying c ...
	Signal separation, and interference rejection
	Acquisition, synchronization, and tracking (data aided  ...
	Spread-spectrum systems
	Source-channel coding
	Iterative (turbo) decoding, Monte Carlo signal processing
	Topics in wired-line: signal processing for power-line  ...

	About
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configuration and Limitations

	Search
	Current paper
	Presentation session
	Abstract
	Authors
	Umer Salim
	Dirk Slock



