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Abstract 
 

This paper*discusses how to model a protocol for 
the verification of data possession intended to secure a 
peer-to-peer storage application. The verification 
protocol is a primitive for storage assessment, and 
indirectly motivates nodes to behave cooperatively 
within the application. The capability of the protocol to 
enforce cooperation between a data holder and a data 
owner is proved theoretically by modeling the 
verification protocol as a Bayesian game, and 
demonstrating that the solution of the game is an 
equilibrium where both parties are cooperative.  
 
1. Introduction 

 
The capabilities of today's multimedia enabled 

mobile devices together with the need to ubiquitously 
(and durably, contrary to peer-to-peer file-sharing) 
access one's own data result in an increasing interest in 
peer-to-peer data storage. Data storage applications are 
evolving from a trusted infrastructure (e.g., as in 
OceanStore [1]) to a self-organized architecture, the 
larger scale of the system making it necessary to 
implement data management services such as 
distributed data storage in a cooperative fashion. Since 
cooperation between nodes is not guaranteed, data are 
exposed to new threats. Beyond malicious attacks, in 
which nodes purely aim at disrupting the storage 
service, self-organization results in a new form of 
denial of service called selfishness: nodes may discard 
some data they promised to store for other nodes in 
order to gain resource for their own usage. Because of 
the scattered nature and dynamics of storage, assessing 
data availability is not an immediate operation, 
contrary to observing packet forwarding for instance. 
Several works have designed cryptographic 
verification protocols in order to assess data possession 
(e.g., [2], [3], [4], and [5]). However, not all of these 
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approaches address selfishness, and those who do so do 
not model cooperation.  

We proposed a verification protocol for such peer-
to-peer storage applications based on probabilistic 
challenge-responses between the data owner node and 
the data holder node. This protocol makes it possible 
for the data owner to react to the destruction of stored 
data, as well as it implicitly motivates data holders to 
keep the data in their storage space. The contribution 
of this paper is the validation of this security primitive 
with respect its cooperation enforcement function for 
data storage. We use game theory to model 
remuneration incentives based on such verifications.  

The remainder of the paper is organized as follows. 
Section 2 describes the protocol for verifying data 
possession. Section 3 introduces the one-stage 
Bayesian games that model it. Section 4 then presents 
the repeated game that provides a more realistic model 
of our protocol. These two sections illustrate how the 
perfect Bayesian equilibrium, a solution of the game, 
validates the verification protocol.  

 
2. Probabilistically verifying data 

possession 
 
We consider a data storage application in which a 

node may cooperatively store its personal data at 
another node, taking advantage of the excess storage 
space offered by the latter node. Most approaches to 
distributed storage set on periodically verifying if data 
holder nodes still possess the data they have stored, 
thereby relying on a verification of data possession.  

Such a verification protocol generally consists of 
challenges with which the data owner node (called O 
thereafter) regularly probes the data holder node 
(called H). However, this periodic validation comes at 
an additional communication and computational cost. 
We suggested in [6] to address this concern through the 
use of a probabilistic verification instead of a 
deterministic one as do most of existent proposals.  

The verification protocol summarized in Figure 1 
comprises two phases: 



 

Storage phase: The data is split into n indexed 
chunks, which are then encrypted. Additionally, the 
integrity of chunks is protected by “signing” the data: 
digital signature may be used although expensive, but 
may be replaced by less expensive methods like DES 
symmetric encryption [7] with a secret key, or keyed 
one-way hash function such as HMAC [8], or even 
concentric encryption. Protected chunks are sent to H. 

Challenge phase: O randomly chooses one index 
corresponding to a data chunk (the probability to 
choose this index the next time does not change) and 
sends it to H. H answers with the corresponding chunk 
and its signature. O verifies the validity of the 
signature (and then, the chunk is of course deleted). 
Since chunk indexes are chosen randomly, H should 
keep all chunks stored to answer correctly all possible 
challenges from O. The challenge operation is repeated 
periodically until either O retrieves its data or it detects 
that H has destroyed a data chunk. 

 

 
Figure 1 Data storage and challenge phases  

 
The verification protocol only requires O to have 

the public key for the signature, or the secret key if 
some form of hashing is used. The challenge phase 
only verifies one data chunk, which makes it easier to 
handle for environments with scarce resources. 

In this protocol, the selfish node may be depicted as 
a node destroying a portion of data chunks, as example 
the holder node destroys k chunks over the n chunks, 
r=k/n. So, the holder can answer correctly to 
challenges with probability (1-r).  

The following sections analyze how the proposed 
verification protocol helps enforcing cooperation. 

 
3. Game theoretic model 

 
The verification protocol described above is 

modeled using the analytical framework of game 
theory [9]. Game theory provides a language to 
describe, analyze, and understand strategic scenarios. 
In our model we assume the presence of two players 

(also termed actors) involved in the strategic process of 
deciding whether to cooperate or not on one hand, and 
to punish or reward on the other hand.  

Our game models how incentives can be built based 
on the regular verification of the correct storage of 
data, as promised by holders. Cooperation incentives 
are expressed as remunerations: H is rewarded for a 
correct response while it is charged when responding 
incorrectly. The game however does not model nodes 
that decline storage requests from data owners, nor any 
case of a cooperative peer transferring data it stores to 
other peers when it plans a forthcoming disconnection. 

The outcome of this modeling is the validation of 
the existence of cooperation equilibria after a series of 
probabilistic verifications, and the evaluation of the 
parameters to be taken into account to design proper 
incentives. Two games are introduced that respectively 
model the holder's strategy and the owner's strategy. 

 
3.1. Game elements 

 
The essential elements of our model are: 

- Players: the individuals who make decisions: data 
owner and data holder. A player is assumed 
“rational”, i.e., a player is a participant in the game 
and whose goal is to choose the actions that 
produce his most preferred outcomes. 

- Payoffs: the numeric values assigned to the 
outcomes produced by the various combinations of 
actions. Payoffs represent the preference ordering 
of players over the outcomes. 

- Information: information set for a player 
summarizes what the player knows when it gets to 
make a decision. 

- Chance: probability distribution over chance 
events. We represent chance events by a random 
move of nature which is a pseudo-player whose 
actions are purely mechanical and probabilistic. 

 
3.2. Game models 

 
The storage protocol is modeled as a Bayesian 

game. In such a game, information about the 
characteristics of other players is incomplete, and 
nature is introduced as a player for modeling 
uncertainty. 

Figure 2 illustrates the structure of our one-stage 
game in the extensive form (in the form of a tree where 
there is a complete description of how the game is 
played over time). A one-stage game corresponds to 
the phase of one challenge conducted by O towards H. 
Notations used in figures are explained in Table 1.  

The parameters G, R, R’ and D, in Table 1, are 
measured in the same units, e.g., the number of data 
bytes or data chunks stored. Also regarding data stored 



 

in a distributed fashion, we presume that the remote 
storage space has more value than local storage space, 
which explains that G>R>D.  

 
Table 1  Notations 

Notations Explication 
O data owner Players 
H data holder 
M malfunction of H Errors 
N normal function of H 
C H is cooperative 
S H is selfish Types 
F H is faulty 
s succeed O’s challenge Signals 
f fail O’s challenge 
rw reward H 
fg do not do anything Actions 
pn punish H 
G distributed storage gained by O  
D supplementary storage provided by H 
R reward charge, such that R>S>0 

Payoffs 

R’ punishment charge, such that G-R>R’>0  

q probability of challenge’s success for a selfish 
holder H Chance 

d Probability of hardware failure (for H) 
 

 
 

Figure 2 Modeling the holder strategy 
 

The game (depicted in Figure 2) models the fact 
that the holder H may follow two possible strategies, or 
in game theoretical terms, be of two types: cooperative, 
that is, it will store an owner’s data until its retrieval; 
or selfish, that is, it will destroy data chunks with 
probability 1-q. These types are respectively referred 
as “C” and “S”. If H chooses the type “C”, it succeeds 
in answering a challenge requested by O as modeled by 
the emission of signal “s”. However, it may fail 

because of a hardware crash or error for instance, 
which occurs with probability d, and is modeled by the 
emission of signal "f". The failure to answering a 
challenge is either an incorrect response to the 
challenge or, more frequently, no response at all (after 
some time-out). If H chooses type “S”, it may 
successfully answer a challenge only with a probability 
equal to q(1-d). Otherwise, it will behave like a faulty 
peer. In addition, real faults may still happen with 
probability d. the owner O is not informed about H’s 
type, which is why O cannot distinguish between “C” 
and “S” despite the fact that H's signal is seen by O. 
Such situations that cannot be discriminated belong to 
the same so-called “set of information”. The two sets 
of information I and II depicted in the game diagram 
correspond respectively to success and failure signals.  

In this paper, we will consider a simplified version 
of the game of Figure 2, in which the risk of hardware 
failure for H is simply neglected (d=0). This 
simplification allows easier computations in the next 
sections, while focusing on holder strategies. 
 

 
 

Figure 3 Modeling the owner strategy 
 

The game model of Figure 2 is a sequential game 
with asymmetric distribution of information, since the 
holder H is informed about its type, but the owner O is 
not informed. However, O can probabilistically 
determine H's type based on its prior beliefs, such 
beliefs typically reflecting H’s reputation. With every 
verification performed, O updates its beliefs according 
to Bayes’ formula. To describe O’s prior beliefs about 
H’s type, we derive a second game model depicted in 
Figure 3. This model is a typical signaling game, that 
is, players have asymmetric information. The game is 
modeling the owner strategy: the game will use signals 
based on H's type as determined by the Nature. H, the 
informed player, has different types given by nature; 



 

while H knows its type, O does not. Based on the 
knowledge of its own type, H sends signals which O 
can observe but which do not provide perfect 
information about H's type. In our model for instance, 
the set of information III may describe a cooperative or 
selfish H, and the set IV may describe a selfish or 
faulty H. 
 
3.3. Equilibria 

 
The solution of the game, which constitutes player's 

best response to the actions of the other player, is 
called an equilibrium. The following sections define 
the Nash equilibrium and the perfect Bayesian 
equilibrium of the game. 
 
Nash Equilibrium: Nash Equilibrium is the set of 
players’ strategy choices where no player can benefit 
by changing its strategy while the other player keeps its 
strategy unchanged. To define the Nash equilibrium of 
the game, the normal form of the game of Figure 2 
(which lists each player’s strategies and the payoffs 
that result from each possible combination of choices) 
is presented below in Table 2. 
 

Table 2 Normal form of the game of Figure 2 
O  

rw pn 
C (R-D, G-R) (-R’-D, R’) H 
S (R-qD, - R) (-R’-qD, R’) 

 
We assume that G-R > R’. If H chooses the type “C”, 

then O, by strict dominance, chooses the action “rw” 
because the payoff associated to “rw” (=G-R) is higher 
than the payoff associated to “pn” (=R’). By choosing 
“rw”, the better response by H is “S” because R-D<R-
qD, and so, O will prefer to choose “pn” because 
R’>0>-R. At this point, neither O or H can have a 
benefit by changing to another strategy. So, (“S”, “pn”) 
is a Nash equilibrium. The normal form game leads to 
an equilibrium where non-cooperation is the best 
response for players. 

Compared to the extensive form game, the normal 
form game lacks the information on whether O is 
informed or not about the type of H. The view of 
incomplete information is not represented within the 
normal form. Another equilibrium, the perfect 
Bayesian equilibrium, takes into account this view. 

 
Perfect Bayesian Equilibrium. A perfect Bayesian 
equilibrium is a strategy profile σ*=(σ1*,σ2*) and 
posterior beliefs µ(·|m) such that: 

1. ∀type t, )),,((maxarg *
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1 21
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Finding the perfect Bayesian Equilibrium of the 
game means finding the following probabilities ([10]): 
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Thus, the belief update equations are as follows: 
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Expected O’s payoffs for each signal sent by H is 

given by: 
']'))()(/()([),,(s)U|(t 122 RRRqSpCpCGputs

t

+−−+=  ∑ σµ

222 '),,(f)U|(t wRtf
t

=  ∑ σµ  

There are two case solutions: 
Case 1: if 0'))()(/()( ≥−−+× RRSpCpCpG , then σ2* 
is maximized for u1=1 and w2=1. Because R+R’-D>0, 
σ1* is maximized for q=1. The perfect Bayesian 
equilibrium is the strategy where: 

1)|(*
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1)|(*
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The equilibrium of the game leads to a strategy 
where O and H cooperate. 
Case 2: if 0'))()(/()( <−−+× RRSpCpCpG , then σ2* 
is maximized for w2=1 only. The choice of u1 is 
dependent on q and vice versa. If u1=0, then σ1 is 
maximal for q=0, and for q=0, σ2 is maximal for u1=1, 
and for u1=1, σ1 is maximal for q=1, however, for q=1, 
σ2 is maximal for u1=0, and so on. There is no perfect 
Bayesian equilibrium for this case. 

 
4. Repeated game 

 
We analyze a class of repeated games in which the 

informed player's type is persistent and the history of 
actions is perfectly observable. This context rightly 
represents the periodic iteration of the verification 



 

protocol performed by the owner node to assess 
whether the holder node is still storing the data it 
promises to store. The analyzed repeated game is the 
game of Figure 2 and Figure 3 iterated while 
maintaining H’s type. These games are played for 
finite times, but no player knows the exact game 
termination time. The probability p captures the 
probability of “natural” termination of the repeated 
game (e.g., loss of connection between O and H). 
Additionally, the owner node O has the possibility to 
stop the repeated game if it detects the selfishness or 
the failure of H (H is of type “S” or “F”). The payoff at 
the ith period is designated by gi=(gi

H, gi
O). The sum of 

per-period payoffs is given by: 
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4.1. Action profiles  
 
From the signals sent per-period by H, O may infer 

the type of H. There are three distinct possible action 
profiles: 

1. (s, rw), (s, rw), (s, rw), … 
2. (f, pn)  
3. (s, rw), (s, rw), …, (s, rw), (f, pn)  
At the first round, if the signal is “f”, O infers that 

the type of H is either “S” or “F”, for both cases it is 
better to play the action “pn”. If the signal is “s”, then, 
the best response of O is to play “rw”. If the signal 
changes to “f”, O concludes that H is of type “S” and 
the action played is “pn”.  

 
4.2. Numerical evaluation of the repeated 

game framework 
 
The games of Figure 2 and Figure 3 are iterated and 

evaluated within different scenarios. The evaluation is 
performed using a custom simulator, and games’ 
parameters are measured in MB (Mega Bytes) unit (1 
MB=106 bytes). The evaluated scenarios permit to 
define additional requirements on the values of the 
reward returned R, the punishment charge R’, and the 
impact of the probability p on the cooperativeness of 
the holder.  

At first, we consider the repeated game of Figure 2. 
H chooses the strategy that maximizes its payoff. To 
make H choose the type “C” over “S”, its outcome by 
choosing “C” must be higher than its outcome 
choosing “S”. For this, the reward R must be bigger 
than a minimum value. R must verify a minimum 
threshold to motivate the cooperation of H, this 
minimum is depicted in Figure 4. This figure shows as 
well that it is possible to confine the incentives to 
rewarding the cooperative player. But then, the 
minimum threshold for the reward R increases. 

The beneficial impact for H when increasing the 
probability p (q low) is illustrated in Figure 5. We 
notice that for p roughly bigger than 0.6, H must 
strategically choose to be selfish with a ratio q very 
low (=0.1), however, for p less than 0.6, a high ratio q 
(=0.9) is better for H. This demonstrates that the 
repetition of the game motivates the holder H to 
cooperate (q approximating 1).   
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Figure 4 Minimum threshold for reward R over 
storage cost D, for various values of 
punishment incentive R’. G=30, p=0.2, q=0.5. 
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Figure 5 Average selfish H payoffs over the 
probability p, for various values of q. G=30, 
R=20, R’=5, S=10. 
 

At this point, we consider the repeated game of 
Figure 3. In the previously studied one stage game, we 
put forward the inequality, for which we have a perfect 
Bayesian equilibrium where both O and H cooperates,  

)'/()'()(/)( RRRRGCpSp +−−≤ . However for the 
repeated game, this inequality does not exactly hold. 
Figure 6 demonstrates that there exists a given ratio of 
prior beliefs p(S)/p(C) such that above this ratio O 
must not cooperate (i.e., O must stop the game by 



 

playing the action “pn”, for punishment). For example, 
for the given particular game’ parameters, if 
p(S)/p(C)=4 (e.g., p(S)=0.4 and p(C)=0.1),  O must 
play “pn” because its average payoff if it plays other 
than “pn” is less than R’=5. 
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Figure 6 Average O’s payoffs over prior beliefs 
on type “S”, varying prior beliefs over type 
“C”. G=30, R=20, R’=5, D=10, p=0.2, q=0.5. 
 
4.3. Summary 

 
The repeated game of Figure 2 represents an 

interaction between a data owner and a data holder 
from a data holder perspective. For this repeated game, 
we aim to encourage the cooperation of the holder by 
making its cooperative behavior the best strategically 
choice to make. For this, we showed the inequalities 
that the reward R and the punishment R’ should verify. 
We demonstrated as well that it is possible to restrict 
the incentives to simply rewarding the holder (R’=0). 
Besides, the result on the probability p shows that 
iteration of the game favors the cooperativeness of H. 
On the other hand, the repeated game of Figure 3 
illustrates the interaction of a data owner with a holder 
from the owner perspective. For this repeated game, 
we aim, this time, to guide the owner in choosing the 
best response to holder actions based on the prior 
beliefs about this very holder. These prior beliefs 
correspond to holder reputation. Using numerical 
results, it is possible to define which actions the owner 
must follow for a given ratio p(S)/p(C). 

 
5. Conclusion 

 
In this paper we proposed a verification protocol as 

a means to construct a periodic cooperation detection 
mechanism in the context of peer-to-peer distributed 
storage for wireless ad hoc networks. The protocol was 
designed to indirectly motivate nodes to behave 

cooperatively. The inherent incentive compatibility 
property of the proposed protocol was theoretically 
validated using a game theoretical model. We showed 
that the Bayesian game model of our protocol allows 
solutions where both parties of the game are 
cooperative.  

As future work, we plan to construct the whole 
mechanism of cooperation enforcement, and to validate 
the mechanism by means of realistic simulation 
scenarios and results obtained from a real 
experimentation. 
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