

A Game Theoretic Model of a Protocol for Data Possession Verification*

Nouha Oualha, Pietro Michiardi and Yves Roudier
Institut Eurécom, Sophia Antipolis, France
{oualha, michiardi, roudier}@eurecom.fr

Abstract

This paper*discusses how to model a protocol for
the verification of data possession intended to secure a
peer-to-peer storage application. The verification
protocol is a primitive for storage assessment, and
indirectly motivates nodes to behave cooperatively
within the application. The capability of the protocol to
enforce cooperation between a data holder and a data
owner is proved theoretically by modeling the
verification protocol as a Bayesian game, and
demonstrating that the solution of the game is an
equilibrium where both parties are cooperative.

1. Introduction

The capabilities of today's multimedia enabled

mobile devices together with the need to ubiquitously
(and durably, contrary to peer-to-peer file-sharing)
access one's own data result in an increasing interest in
peer-to-peer data storage. Data storage applications are
evolving from a trusted infrastructure (e.g., as in
OceanStore [1]) to a self-organized architecture, the
larger scale of the system making it necessary to
implement data management services such as
distributed data storage in a cooperative fashion. Since
cooperation between nodes is not guaranteed, data are
exposed to new threats. Beyond malicious attacks, in
which nodes purely aim at disrupting the storage
service, self-organization results in a new form of
denial of service called selfishness: nodes may discard
some data they promised to store for other nodes in
order to gain resource for their own usage. Because of
the scattered nature and dynamics of storage, assessing
data availability is not an immediate operation,
contrary to observing packet forwarding for instance.
Several works have designed cryptographic
verification protocols in order to assess data possession
(e.g., [2], [3], [4], and [5]). However, not all of these

* This work was supported by the GET Initiative program on
autonomic and spontaneous networks, the PACALAB project, and
the ReSIST IST NoE.

approaches address selfishness, and those who do so do
not model cooperation.

We proposed a verification protocol for such peer-
to-peer storage applications based on probabilistic
challenge-responses between the data owner node and
the data holder node. This protocol makes it possible
for the data owner to react to the destruction of stored
data, as well as it implicitly motivates data holders to
keep the data in their storage space. The contribution
of this paper is the validation of this security primitive
with respect its cooperation enforcement function for
data storage. We use game theory to model
remuneration incentives based on such verifications.

The remainder of the paper is organized as follows.
Section 2 describes the protocol for verifying data
possession. Section 3 introduces the one-stage
Bayesian games that model it. Section 4 then presents
the repeated game that provides a more realistic model
of our protocol. These two sections illustrate how the
perfect Bayesian equilibrium, a solution of the game,
validates the verification protocol.

2. Probabilistically verifying data

possession

We consider a data storage application in which a

node may cooperatively store its personal data at
another node, taking advantage of the excess storage
space offered by the latter node. Most approaches to
distributed storage set on periodically verifying if data
holder nodes still possess the data they have stored,
thereby relying on a verification of data possession.

Such a verification protocol generally consists of
challenges with which the data owner node (called O
thereafter) regularly probes the data holder node
(called H). However, this periodic validation comes at
an additional communication and computational cost.
We suggested in [6] to address this concern through the
use of a probabilistic verification instead of a
deterministic one as do most of existent proposals.

The verification protocol summarized in Figure 1
comprises two phases:

Storage phase: The data is split into n indexed
chunks, which are then encrypted. Additionally, the
integrity of chunks is protected by “signing” the data:
digital signature may be used although expensive, but
may be replaced by less expensive methods like DES
symmetric encryption [7] with a secret key, or keyed
one-way hash function such as HMAC [8], or even
concentric encryption. Protected chunks are sent to H.

Challenge phase: O randomly chooses one index
corresponding to a data chunk (the probability to
choose this index the next time does not change) and
sends it to H. H answers with the corresponding chunk
and its signature. O verifies the validity of the
signature (and then, the chunk is of course deleted).
Since chunk indexes are chosen randomly, H should
keep all chunks stored to answer correctly all possible
challenges from O. The challenge operation is repeated
periodically until either O retrieves its data or it detects
that H has destroyed a data chunk.

Figure 1 Data storage and challenge phases

The verification protocol only requires O to have

the public key for the signature, or the secret key if
some form of hashing is used. The challenge phase
only verifies one data chunk, which makes it easier to
handle for environments with scarce resources.

In this protocol, the selfish node may be depicted as
a node destroying a portion of data chunks, as example
the holder node destroys k chunks over the n chunks,
r=k/n. So, the holder can answer correctly to
challenges with probability (1-r).

The following sections analyze how the proposed
verification protocol helps enforcing cooperation.

3. Game theoretic model

The verification protocol described above is

modeled using the analytical framework of game
theory [9]. Game theory provides a language to
describe, analyze, and understand strategic scenarios.
In our model we assume the presence of two players

(also termed actors) involved in the strategic process of
deciding whether to cooperate or not on one hand, and
to punish or reward on the other hand.

Our game models how incentives can be built based
on the regular verification of the correct storage of
data, as promised by holders. Cooperation incentives
are expressed as remunerations: H is rewarded for a
correct response while it is charged when responding
incorrectly. The game however does not model nodes
that decline storage requests from data owners, nor any
case of a cooperative peer transferring data it stores to
other peers when it plans a forthcoming disconnection.

The outcome of this modeling is the validation of
the existence of cooperation equilibria after a series of
probabilistic verifications, and the evaluation of the
parameters to be taken into account to design proper
incentives. Two games are introduced that respectively
model the holder's strategy and the owner's strategy.

3.1. Game elements

The essential elements of our model are:

- Players: the individuals who make decisions: data
owner and data holder. A player is assumed
“rational”, i.e., a player is a participant in the game
and whose goal is to choose the actions that
produce his most preferred outcomes.

- Payoffs: the numeric values assigned to the
outcomes produced by the various combinations of
actions. Payoffs represent the preference ordering
of players over the outcomes.

- Information: information set for a player
summarizes what the player knows when it gets to
make a decision.

- Chance: probability distribution over chance
events. We represent chance events by a random
move of nature which is a pseudo-player whose
actions are purely mechanical and probabilistic.

3.2. Game models

The storage protocol is modeled as a Bayesian

game. In such a game, information about the
characteristics of other players is incomplete, and
nature is introduced as a player for modeling
uncertainty.

Figure 2 illustrates the structure of our one-stage
game in the extensive form (in the form of a tree where
there is a complete description of how the game is
played over time). A one-stage game corresponds to
the phase of one challenge conducted by O towards H.
Notations used in figures are explained in Table 1.

The parameters G, R, R’ and D, in Table 1, are
measured in the same units, e.g., the number of data
bytes or data chunks stored. Also regarding data stored

in a distributed fashion, we presume that the remote
storage space has more value than local storage space,
which explains that G>R>D.

Table 1 Notations

Notations Explication
O data owner Players
H data holder
M malfunction of H Errors
N normal function of H
C H is cooperative
S H is selfish Types
F H is faulty
s succeed O’s challenge Signals
f fail O’s challenge
rw reward H
fg do not do anything Actions
pn punish H
G distributed storage gained by O
D supplementary storage provided by H
R reward charge, such that R>S>0

Payoffs

R’ punishment charge, such that G-R>R’>0

q probability of challenge’s success for a selfish
holder H Chance

d Probability of hardware failure (for H)

Figure 2 Modeling the holder strategy

The game (depicted in Figure 2) models the fact
that the holder H may follow two possible strategies, or
in game theoretical terms, be of two types: cooperative,
that is, it will store an owner’s data until its retrieval;
or selfish, that is, it will destroy data chunks with
probability 1-q. These types are respectively referred
as “C” and “S”. If H chooses the type “C”, it succeeds
in answering a challenge requested by O as modeled by
the emission of signal “s”. However, it may fail

because of a hardware crash or error for instance,
which occurs with probability d, and is modeled by the
emission of signal "f". The failure to answering a
challenge is either an incorrect response to the
challenge or, more frequently, no response at all (after
some time-out). If H chooses type “S”, it may
successfully answer a challenge only with a probability
equal to q(1-d). Otherwise, it will behave like a faulty
peer. In addition, real faults may still happen with
probability d. the owner O is not informed about H’s
type, which is why O cannot distinguish between “C”
and “S” despite the fact that H's signal is seen by O.
Such situations that cannot be discriminated belong to
the same so-called “set of information”. The two sets
of information I and II depicted in the game diagram
correspond respectively to success and failure signals.

In this paper, we will consider a simplified version
of the game of Figure 2, in which the risk of hardware
failure for H is simply neglected (d=0). This
simplification allows easier computations in the next
sections, while focusing on holder strategies.

Figure 3 Modeling the owner strategy

The game model of Figure 2 is a sequential game
with asymmetric distribution of information, since the
holder H is informed about its type, but the owner O is
not informed. However, O can probabilistically
determine H's type based on its prior beliefs, such
beliefs typically reflecting H’s reputation. With every
verification performed, O updates its beliefs according
to Bayes’ formula. To describe O’s prior beliefs about
H’s type, we derive a second game model depicted in
Figure 3. This model is a typical signaling game, that
is, players have asymmetric information. The game is
modeling the owner strategy: the game will use signals
based on H's type as determined by the Nature. H, the
informed player, has different types given by nature;

while H knows its type, O does not. Based on the
knowledge of its own type, H sends signals which O
can observe but which do not provide perfect
information about H's type. In our model for instance,
the set of information III may describe a cooperative or
selfish H, and the set IV may describe a selfish or
faulty H.

3.3. Equilibria

The solution of the game, which constitutes player's

best response to the actions of the other player, is
called an equilibrium. The following sections define
the Nash equilibrium and the perfect Bayesian
equilibrium of the game.

Nash Equilibrium: Nash Equilibrium is the set of
players’ strategy choices where no player can benefit
by changing its strategy while the other player keeps its
strategy unchanged. To define the Nash equilibrium of
the game, the normal form of the game of Figure 2
(which lists each player’s strategies and the payoffs
that result from each possible combination of choices)
is presented below in Table 2.

Table 2 Normal form of the game of Figure 2
O

rw pn
C (R-D, G-R) (-R’-D, R’) H
S (R-qD, - R) (-R’-qD, R’)

We assume that G-R > R’. If H chooses the type “C”,

then O, by strict dominance, chooses the action “rw”
because the payoff associated to “rw” (=G-R) is higher
than the payoff associated to “pn” (=R’). By choosing
“rw”, the better response by H is “S” because R-D<R-
qD, and so, O will prefer to choose “pn” because
R’>0>-R. At this point, neither O or H can have a
benefit by changing to another strategy. So, (“S”, “pn”)
is a Nash equilibrium. The normal form game leads to
an equilibrium where non-cooperation is the best
response for players.

Compared to the extensive form game, the normal
form game lacks the information on whether O is
informed or not about the type of H. The view of
incomplete information is not represented within the
normal form. Another equilibrium, the perfect
Bayesian equilibrium, takes into account this view.

Perfect Bayesian Equilibrium. A perfect Bayesian
equilibrium is a strategy profile σ*=(σ1*,σ2*) and
posterior beliefs µ(·|m) such that:

1. ∀type t,)),,((maxarg *
11

*
1 21

tU σσσ σ∈

2. ∀signal m,)),,()|((maxarg 22
*

22 ∑∈
t

tmUmt σµσ σ

3. ∑ ××=
'

**)'|()'()|()()|(
11 t

tmtptmtpmt σσµ

Finding the perfect Bayesian Equilibrium of the
game means finding the following probabilities ([10]):

1)|(*
1 =Csσ 0)|(*

1 =Cfσ

qSs =)|(*
1σ qSf −= 1)|(*

1σ
0)|(*

1 =Fsσ 1)|(*
1 =Ffσ

1
*
2)|(usrw =σ 0)|(1

*
2 == vsfgσ 11

*
2 1)|(wuspn =−=σ

0)|(2
*
2 == ufrwσ

2
*
2)|(vffg =σ 22

*
2 1)|(wvfpn =−=σ

Thus, the belief update equations are as follows:
))()(()()|(qSpCpCpsC ×+=µ

))()(()()|(qSpCpqSpsS ×+×=µ
0)|(=sFµ 0)|(=fCµ

))()1()(()1()()|(FpqSpqSpfS +−×−×=µ
))()1()(()()|(FpqSpFpfF +−×=µ

H’s payoffs corresponding to each type is given by:
DRRRuC −−+×= ')'(),,(U 1

*
11 2

σσ

221
*

11 ']'')'([),,(U
2

wRDRwRRRuqS ×−−−×++××= σσ

2
*

11 '),,(U
2

wRF ×−= σσ
Expected O’s payoffs for each signal sent by H is

given by:
']'))()(/()([),,(s)U|(t 122 RRRqSpCpCGputs

t

+−−+= ∑ σµ

222 '),,(f)U|(t wRtf
t

= ∑ σµ

There are two case solutions:
Case 1: if 0'))()(/()(≥−−+× RRSpCpCpG , then σ2*
is maximized for u1=1 and w2=1. Because R+R’-D>0,
σ1* is maximized for q=1. The perfect Bayesian
equilibrium is the strategy where:

1)|(*
1 =Ssσ 0)|(*

1 =Sfσ
1)|(*

2 =srwσ 0)|(*
2 =sfgσ 0)|(*

2 =spnσ
0)|(*

2 =frwσ 0)|(*
2 =ffgσ 1)|(*

2 =fpnσ
)'/()'()(/)(RRRRGCpSp +−−≤

The equilibrium of the game leads to a strategy
where O and H cooperate.
Case 2: if 0'))()(/()(<−−+× RRSpCpCpG , then σ2*
is maximized for w2=1 only. The choice of u1 is
dependent on q and vice versa. If u1=0, then σ1 is
maximal for q=0, and for q=0, σ2 is maximal for u1=1,
and for u1=1, σ1 is maximal for q=1, however, for q=1,
σ2 is maximal for u1=0, and so on. There is no perfect
Bayesian equilibrium for this case.

4. Repeated game

We analyze a class of repeated games in which the

informed player's type is persistent and the history of
actions is perfectly observable. This context rightly
represents the periodic iteration of the verification

protocol performed by the owner node to assess
whether the holder node is still storing the data it
promises to store. The analyzed repeated game is the
game of Figure 2 and Figure 3 iterated while
maintaining H’s type. These games are played for
finite times, but no player knows the exact game
termination time. The probability p captures the
probability of “natural” termination of the repeated
game (e.g., loss of connection between O and H).
Additionally, the owner node O has the possibility to
stop the repeated game if it detects the selfishness or
the failure of H (H is of type “S” or “F”). The payoff at
the ith period is designated by gi=(gi

H, gi
O). The sum of

per-period payoffs is given by:
))1(,)1((

00
∑∑

∞

=

∞

=

−−=
i

O
i

i

i

H
i

i gpgpg

4.1. Action profiles

From the signals sent per-period by H, O may infer

the type of H. There are three distinct possible action
profiles:

1. (s, rw), (s, rw), (s, rw), …
2. (f, pn)
3. (s, rw), (s, rw), …, (s, rw), (f, pn)
At the first round, if the signal is “f”, O infers that

the type of H is either “S” or “F”, for both cases it is
better to play the action “pn”. If the signal is “s”, then,
the best response of O is to play “rw”. If the signal
changes to “f”, O concludes that H is of type “S” and
the action played is “pn”.

4.2. Numerical evaluation of the repeated

game framework

The games of Figure 2 and Figure 3 are iterated and

evaluated within different scenarios. The evaluation is
performed using a custom simulator, and games’
parameters are measured in MB (Mega Bytes) unit (1
MB=106 bytes). The evaluated scenarios permit to
define additional requirements on the values of the
reward returned R, the punishment charge R’, and the
impact of the probability p on the cooperativeness of
the holder.

At first, we consider the repeated game of Figure 2.
H chooses the strategy that maximizes its payoff. To
make H choose the type “C” over “S”, its outcome by
choosing “C” must be higher than its outcome
choosing “S”. For this, the reward R must be bigger
than a minimum value. R must verify a minimum
threshold to motivate the cooperation of H, this
minimum is depicted in Figure 4. This figure shows as
well that it is possible to confine the incentives to
rewarding the cooperative player. But then, the
minimum threshold for the reward R increases.

The beneficial impact for H when increasing the
probability p (q low) is illustrated in Figure 5. We
notice that for p roughly bigger than 0.6, H must
strategically choose to be selfish with a ratio q very
low (=0.1), however, for p less than 0.6, a high ratio q
(=0.9) is better for H. This demonstrates that the
repetition of the game motivates the holder H to
cooperate (q approximating 1).

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Storage cost D
M

in
im

um
 r

eq
ui

re
d

re
w

ar
d

in
ce

nt
iv

e
R

R' =0
R' =10
R' =20
R' =30
R=D

Figure 4 Minimum threshold for reward R over
storage cost D, for various values of
punishment incentive R’. G=30, p=0.2, q=0.5.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Probability p

A
ve

ra
ge

 H
's

 p
ay

of
f (

ov
er

 1
00

0
ite

ra
tio

ns
)

q=0.1
q=0.3
q=0.5
q=0.7
q=1

Figure 5 Average selfish H payoffs over the
probability p, for various values of q. G=30,
R=20, R’=5, S=10.

At this point, we consider the repeated game of
Figure 3. In the previously studied one stage game, we
put forward the inequality, for which we have a perfect
Bayesian equilibrium where both O and H cooperates,

)'/()'()(/)(RRRRGCpSp +−−≤ . However for the
repeated game, this inequality does not exactly hold.
Figure 6 demonstrates that there exists a given ratio of
prior beliefs p(S)/p(C) such that above this ratio O
must not cooperate (i.e., O must stop the game by

playing the action “pn”, for punishment). For example,
for the given particular game’ parameters, if
p(S)/p(C)=4 (e.g., p(S)=0.4 and p(C)=0.1), O must
play “pn” because its average payoff if it plays other
than “pn” is less than R’=5.

0 0.1 0.2 0.3 0.4 0.5
-10

-5

0

5

10

15

20

25

30

35

p(S)

O
's

 a
ve

ra
ge

 p
ay

of
fs

 (o
ve

r
10

00
 it

er
at

io
ns

)

p(C)=0.05
p(C)=0.1
p(C)=0.2
p(C)=0.3
p(C)=0.4
p(C)=0.5

Figure 6 Average O’s payoffs over prior beliefs
on type “S”, varying prior beliefs over type
“C”. G=30, R=20, R’=5, D=10, p=0.2, q=0.5.

4.3. Summary

The repeated game of Figure 2 represents an

interaction between a data owner and a data holder
from a data holder perspective. For this repeated game,
we aim to encourage the cooperation of the holder by
making its cooperative behavior the best strategically
choice to make. For this, we showed the inequalities
that the reward R and the punishment R’ should verify.
We demonstrated as well that it is possible to restrict
the incentives to simply rewarding the holder (R’=0).
Besides, the result on the probability p shows that
iteration of the game favors the cooperativeness of H.
On the other hand, the repeated game of Figure 3
illustrates the interaction of a data owner with a holder
from the owner perspective. For this repeated game,
we aim, this time, to guide the owner in choosing the
best response to holder actions based on the prior
beliefs about this very holder. These prior beliefs
correspond to holder reputation. Using numerical
results, it is possible to define which actions the owner
must follow for a given ratio p(S)/p(C).

5. Conclusion

In this paper we proposed a verification protocol as

a means to construct a periodic cooperation detection
mechanism in the context of peer-to-peer distributed
storage for wireless ad hoc networks. The protocol was
designed to indirectly motivate nodes to behave

cooperatively. The inherent incentive compatibility
property of the proposed protocol was theoretically
validated using a game theoretical model. We showed
that the Bayesian game model of our protocol allows
solutions where both parties of the game are
cooperative.

As future work, we plan to construct the whole
mechanism of cooperation enforcement, and to validate
the mechanism by means of realistic simulation
scenarios and results obtained from a real
experimentation.

6. References

[1] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.

Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An architecture for globalscale persistent
storage. In Proceedings of the Ninth international
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000),
November. 2000.

[2] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard, “A Cooperative Internet Backup Scheme”, In
Proceedings of the 2003 Usenix Annual Technical
Conference (General Track), pp. 29-41, San Antonio,
Texas, June 2003.

[3] G. Caronni and M. Waldvogel. Establishing Trust in
Distributed Storage Providers. In Third IEEE P2P
Conference, Linkoping, March, 2003.

[4] Y. Deswarte, J.-J. Quisquater, and A. Saïdane. Remote
Integrity Checking. In Proceedings of Sixth Working
Conference on Integrity and Internal Control in
Information Systems (IICIS), 2004.

[5] D. G. Filho, P. S. L. M. Barreto. Demonstrating data
possession and uncheatable data transfer. In IACR
Cryptology ePrint Archive, 2006.

[6] N. Oualha and Y. Roudier. Probabilistically secure
cooperative distributed storage. Technical Report RR-
07-188, Institut Eurécom, February 2007.

[7] National Bureau of Standards. Data Encryption
Standard. Federal Information Processing Standards
Publication No. 46, , January 15th, 1977.

[8] M. Bellare, R. Canetti, and H. Krawczyk. HMAC:
Keyed-Hashing for Message Authentication. RFC 2104,
Internet Engineering Task Force, February 1997.

[9] Theodore L. Turocy and Bernhard von Stengel. Game
theory. Cdamresearch report lse-cdam-2001-09,
London School of Economics, October 2001.

[10] Farhad Ghassemi. Signaling games, 2006. Available:
http://www.cs.ubc.ca/~kevinlb/teaching/cs532a%20-
%202006/Projects/FarhadGhassemi.pdf.

