
Aggregation Dynamics in Service Overlay Networks
Pietro Michiardi

Institut Eurecom, France
Email: michiardi@eurecom.fr

Paul Marrow, Richard Tateson and Fabrice Saffre
BT Group CTO, Pervasive ICT Research Center, UK

Email: First.Last@bt.com

Abstract— In this work we analyze the characteristics of service
overlay networks generated by uncoordinated service providers
that deploy different service replicas on overlay nodes across
the Internet. Our approach differs from previous works, that
generally rely on application-level routing, in that we allow
nodes to autonomously re-wire the service overlay to make it
capable of absorbing a heterogeneously distributed workload
that would otherwise result in some nodes with a specific service
being overloaded and others remaining idle. We provide a game
theoretic model of the overlay creation process and propose
several optimization methods to achieve Nash equilibrium topolo-
gies. Equilibrium overlays are characterized by interconnected
clusters of nodes that instantiate the same service replicas.
Hindered by the computational complexity of finding stable
wirings, we propose a simple distributed heuristic that allows
the study of overlay networks with a realistic size and with
several service instances. We show the ability of our re-wiring
strategy to promote the emergence of a clustered global topology
whilst running locally. We also argue that the lack of incentives
for nodes to participate in the overlay creation might lead to
several types of misbehavior, of which some representative cases
are analyzed. Finally, both scalability and diversity (in terms of
service instances) issues that might affect our distributed heuristic
are evaluated in detail.

I. INTRODUCTION

In recent years, the Internet has witnessed an evolution
towards a commercial infrastructure of service delivery, as op-
posed to its original intent of simply providing host connectiv-
ity. Different forms of overlay networks [1], [2], [4], [10], [14]
have been developed to offer attractive service provisioning
solutions, which are difficult to be implemented and deployed
at the IP-layer. These networks not only provide application-
level data routing but also value-added services, such as con-
tent distribution services, media compression/transcoding, lan-
guage translation, encryption or decryption services, etc... In
our work we address the realistic scenario where independent
and uncoordinated economic entities such as service providers
deploy and manage their service instances at multiple locations
on the Internet.

We term the logical connections among service provider
nodes a service overlay network. Overlay nodes offering one
or more services receive and process user requests that are
fulfilled until a finite service capacity that characterizes each
node is reached. In this context, issues of scalability and
load-balancing across service replicas become an important
domain of research, that has been recently addressed in the
literature for example in [16]. Although the literature is rich
in examples [3], [5], [6], [15] that achieve load balancing
in the traditional client-server model, in [16] the problem of

how load can be shared across service replicas in an overlay
network is treated as an overlay routing problem. On one
hand, previous works do not consider the costs of relaying
user traffic (requests and responses) that might affect the
latency of the service overlay. On the other hand, all current
efforts share a common characteristic that dictate an immutable
service overlay network wherein links are created based on the
existence of a service level agreement between overlay nodes.
Instead, in this work we propose a different approach wherein
each node participates to the construction (and maintenance)
of the service overlay so that an unevenly distributed workload
can be absorbed by the service overlay without relaying user
traffic in the overlay.

In particular, the focus of this paper is to study the
aggregation dynamics that arise in the context of service
overlay networks when nodes are involved in the process of
constructing the overlay in a distributed manner. We show that
the problem of service overlay construction can be casted as
a network creation game, first defined in [11]. We present
an overlay creation game that accommodates the service
load experienced by the nodes and we study equilibrium
overlay topologies that are built through their uncoordinated
interaction. In our work, we explore several methods for
obtaining stable solutions ranging from the traditional iterated
best response method (for which, inspired by the work in [12],
we also give an integer linear programming formulation) to a
constrained search method.

Our analysis on the service overlay creation game is hin-
dered by the complexity of computing the best response of a
node, which is proven to be NP-hard [11]. Hence, we present
a simple heuristic introduced in [17] based on a randomized
local algorithm that allows studying the emergence of service
overlays for systems with a realistic size.

In this work we analyze the ability of a selected set of
rules (based on our game theoretic formulation and on our
local heuristic) to foster self-organization of what is originally
a random graph into a structured network. Scalability issues
with respect to the key parameters of system size and diversity
(in terms of deployed services) are extensively discussed.

We demonstrate that both an overlay rewiring process
based on selfish decisions and on purely local decisions and
interactions can result in an efficiently organized structure
prone to achieve load-balancing without central planning. We
conclude by discussing the implications of some nodes acting
maliciously by not following our prescribed local algorithm.

The contributions of this paper can be summarized as

follows:

• we suggest a novel approach that lets nodes self-organize
in a service overlay network capable of absorbing a
heterogeneous workload generated by clients using the
overlay;

• we propose a game theoretic model of service overlay
construction wherein the uncoordinated strategic actions
of nodes result in a stable wiring of an initially random
overlay;

• we evaluate a decentralized heuristic, designed to over-
come the computational requirements of the game theo-
retic approach, that is capable of promoting the emer-
gence of a global overlay topology characterized by
clusters of nodes sharing similar traits;

• we study the impact of the lack of incentives for nodes
to participate in the re-wiring process of the overlay, and
suggest different misbehavior types.

The remainder of this paper is structured as follows: in
Section II we detail the system model and architecture; in
Section III we give a formal definition of the overlay creation
game while in Section IV we present the randomized local
search algorithm. In Section V we describe the numerical
evaluation of our model and present our results. We illustrate
related works in Section VI and conclude in Section VII.

II. UNCOORDINATED SERVICE OVERLAY CREATION

Inspired by the model proposed in [16], in Figure 1 we
show an example of a service overlay network: individual
service providers deploy their services at overlay nodes which
establish logical links to form an overlay network. In the figure
we show what we term exit nodes, that is those nodes that
receive client requests for a service or a set of services.

service 2

�
�
�
�

�
�
�
�

��
��
��
��
��

��

overlay nodes

service instances

overlay link

clients

exit
node

service 0

service 3

service 1

Fig. 1. System architecture under consideration with an example service
level path.

While there are several challenges, for example, in the con-
text of service composition [16] to enable rapid development
of new applications, in this paper we focus on the construction
and maintenance of the overlay network. We assume that
overlay creation is achieved by the uncoordinated interaction

of nodes that wish to minimize their cost, expressed in terms
link, communication and load, incurred in the creation and
maintenance of overlay links. Given a random unstructured
overlay network, the problem we address in this paper is to
find stable overlay configurations that take into account both
load and connectivity constraints. Note that in this work we
do not discuss mechanisms to dispatch user requests so as
to achieve a fair load balancing: the overlay creation process
should be seen as an optimization phase prior to the execution
of such a mechanism.

A. Assumptions

To improve the tractability of the problem, we limit the
scope of our study to physical topologies in which every
node can communicate with every other node, that is the
communication graph (i.e., the underlay physical network) is
connected.

With the aim of simplifying the problem formulation we
assume that only one service instance is deployed on each
overlay node. Hence, in the following a node is equivalent to
a service. We define a type ti associated with a node i as the
encoded description of the service that it can provide.

Every node i is characterized by a nominal capacity λ i
n

which defines the end-user request load a node can handle;
λi

c identifies the current load experienced by node i. In the
following we assume that:

Λn =
n∑

i=1

λi
n , Λc =

n∑

i=1

λi
c , Λc ≤ Λn (1)

Equation 1 simply states that the system is able to support
the requested load, that is, the system does not saturate. In this
work we assume no additional end-user requests to be made
at run-time.

III. OVERLAY CREATION GAME

In this Section we model overlay creation as a non-
cooperative game with n nodes (i.e, players) whose strategies
are to select which nodes to connect to. Our model extends
the one presented by Fabrikant et. al. in [11]. Formally, there
is a finite set of players N = {1, ..., n}, a finite set of
player types T = {t1, t2, ..., tn} and the strategy space of
player i ∈ N is the list of other players to connect to, i.e.,
the set Si = {(sij)j �=i|sij ∈ {0, 1}} where |Si| = 2(n−1).
Players simultaneously announce the list of other players with
whom they wish to be connected. Their decisions generate a
(directed) graph G(s) = (N, s): the direction of a link from
node i to node j indicates that node i will share its excess
load with node j. However, for communication purposes, the
link can be seen as bidirectional.

Note that this is a single-stage game with simultaneous an-
nouncements. Our game model requires complete information
of the service overlay graph as well as node types and assumes
players to be computationally unbounded. In the game, each
player selects its strategy to minimize its cost.

The cost incurred by player i when all other players adopt
strategy s−i is additive in the cost lj of a link to players

of different type, in the cost lj of a link to players of the
same type modulated by a threshold function based on load
information, as well as in the sum of the costs of reaching all
other players:

ci(s) = α
∑

j∈NBi

(1− δti,tj)lj + α σ(λi
c, λ

i
n)

∑

j∈NBi

δti,tj lj+

+
n∑

j=1

dG(s)(i, j) (2)

where NBi is the set of overlay neighbors for which a direct
link exists, dG(s)(i, j) is the shortest path distance from node
i to node j in the graph G(s), and δti,tj is the Dirac-Delta
function δti,tj = 1 if ti = tj and 0 otherwise.

The connection cost α represents the relative importance of
player i’s direct links to others and is the only parameter in
the model.

The function σ(λi
c, λ

i
n) is defined as follows:

σ(λi
c, λ

i
n) = 1− 1

1 + ek(λi
c−λi

n)
(3)

σ(λi
c, λ

i
n) is used to modulate the linking cost to a node

running a replica of the service instantiated in i. When λ i
c ≤

λi
n, linking costs can be easily reduced to the model defined by

Fabrikant in [11]. However, when λi
c ≥ λi

n link costs to other
nodes with the same instance of the overloaded service in i
significantly decrease. Hence, as long as node i can support
its current load, it will seek at minimizing communication
and linking costs; when the requests load λi

c approaches and
exceeds the threshold λi

n, node i will prioritize the creation
of links to overlay nodes that can support requests for the
overloaded service.

The total cost of the graph G is then defined as:

C(G) =
n∑

i=1

ci(s) (4)

We now define what constitutes a solution of the game, that
is, which overlay topologies result from the overlay creation
game. When networks arise from the unilateral action of
players, standard Nash equilibrium analysis can be informative
about the structure of the networks that emerge. Let s = sN =
(si, sN\i) and let ζ designate the set of all undirected networks
on N .

Definition 1: A network G(s) ∈ ζ is a Nash equilibrium
network if there exists a strategy s that supports G(s) where
ci(s) ≤ ci(s′i, sN\i)∀i ∈ N and s′i ∈ Si.

A. Game optimization process

In this Section we describe three alternative methods that
we used to find stable overlay configurations as described in
Definition 1. The three methods under investigation share a
common algorithmic structure shown in Algorithm 1 1. The

1For clarity of exposure nodes execute the algorithm sequentially. In our
implementation nodes execute the algorithm in random order.

algorithm accepts as input the total number of nodes N that
form the service overlay network, the number of edges E for
each node i and the total number of types T̂ in the overlay. We
then generate a random initial overlay configuration and store
it as an adjacency matrix. The algorithm outputs a selfishly
optimized adjacency matrix where Strategy∗ indicates the
best response for a node in each iteration. We use a stop
criterion based on the definition of the Nash Equilibrium given
in Section III.

Algorithm 1: Game Optimization Algorithm

Input: N , E, T̂
Output: UpdateAdj
Adj ← generateRandomOverlay(N, E);
TypeV ector← generateRandomTypes(T̂);
UpdateAdj ← Adj;
StopCriteria← 0;
TotalCost← 0;
iteration← 0;
while StopCriteria = 0 do

iteration← iteration + 1;
for i← 1 to N do

CurrentCost← evaluateCost(i, UpdateAdj);
StrategySpace←
generateSSpace(i, UpdateAdj);
Strategy∗ ← −1;
foreach Strategy ∈ StrategySpace do

TmpMatrix← UpdateAdj;
TmpMatrix(i, :)← Strategy;
CostNew ← evaluateCost(i, TmpMatrix);
if CurrentCost − CostNew > 0 then

CurrentCost← CostNew;
Strategy∗ ← Strategy;

end
end
if Strategy∗ �= −1 then

UpdateAdj(i, :)← Strategy∗;
end
TotalCost(iteration)←
TotalCost(iteration) + CurrentCost;

end
if
TotalCost(iteration)← TotalCost(iteration− 1)
then

StopCriteria← 1;
end

end

In the following we detail three alternative approaches that
differ in the way the strategy space available at each overlay
node is generated. Our first method is based on an integer
linear programming (ILP) formulation of the overlay creation
game. This method provides exact solutions to the overlay
creation game. In the second method we exhaustively explore
all the possible strategies available to a player, which will then
select the best response to all other players actions. Although

very simple to implement, the computational complexity of
this approach is an obstacle the study of service overlay when
the number of nodes is high. Lastly, we present a variation
of the iterated best response method wherein we restrict the
strategy available to a node at each round. This method allows
to increase the number of nodes participating in the rewiring
of the overlay at the cost of finding a selfishly optimized
overlay which do not always meet the Nash condition given
in Definition 1.

1) ILP formulation: In this Section we formulate of the
overlay creation game based on the work presented in [12].
The following general method is used to obtain the best
response of a node i when the degree of the connections
established by that node (i.e., the out-degree) is bounded by
ki. A wiring for a node i can be defined using n − 1 binary
unknowns Yl, 1 ≤ l ≤ N , l �= i: Yl = 1 iff i wires to l, and
0 otherwise. Define also the binary unknowns X lj : Xlj = 1
iff i has l as a first-hop neighbor on a shortest path to j. Let
G(s)−i = G(s)− si denote the residual graph obtained from
G(s) by taking away node i’s outgoing links. A best response
for node i under residual graph G(s)−i can be obtained by
solving the following Integer Linear Program (ILP):

minimize :

ci(G(S)−i, X) =
n∑

j=1,j �=i

pij

n∑

l=1,l �=i

Xlj · (α + dG(s)−i
(l, j))

subject to :
n∑

l=1,l �=i

Xlj = 1, ∀j �= i;
n∑

l=1,l �=i

Yl = ki; Xlj ≤ Yl, ∀l, j �= i;

(5)

where pij = 1 iff ti �= tj and pij = σ(λi
c, λ

i
n) iff ti = tj .

Furthermore, dG(s)−i
(i, j) is the shortest path distance from

node i to node j in the residual graph G(s)−i.
Although the ILP formulation of the selfish optimization

problem, as well as the limit on the out-degree of a node
help in improving the algorithm execution time, we note
that the overlay creation game is hindered by the number
of times the Dijsktra algorithm needs to be executed for the
evaluation of the cost associated to each feasible strategy. As a
consequence, when the number of nodes that form the overlay
and the number of service types instantiated on each node
increase substantially, the optimization framework adopted in
this Section cannot be used.

2) Exhaustive search, Iterated Best-response: Ideally, all of
the strategy space available to a node should be examined to
determine the action(s) yielding the lowest cost, as defined in
Equation 2. The method presented in this Section enumerates
for every node i, all the connection vectors that are within
the feasible region of the optimization problem and associates
a cost computed using Equation 2. Node i will select the
connection vector (the strategy) that minimizes its cost. This

simple approach limits the size of the network that can be
studied, as the time complexity to find all possible strategies
a node can have is exponential with the number of nodes (the
problem is somehow similar to [11], where it is shown that
computing the Nash equilibria for the network creation game
is NP-hard).

3) Local search, Iterated Best-response: The following
method builds on the Iterated Best-response approach but
limits the strategy space of a node i to its (overlay) two-
hop neighborhood. The function that associates a cost to each
feasible strategy is the one defined by Equation 2. Node i will
select the connection vector (the strategy) that minimizes its
cost. It should be noted that this local search strategy may
converge to overlay configurations that do not meet the Nash
conditions. Each node periodically performs two operations: a
Link Drop and a Link Add operations. The link drop procedure
computes the cost for node i when each of its neighboring
node is dropped. If the difference between the cost c i of the
current configuration and the new configuration without the
dropped link is positive, node i updates its neighborhood by
dropping the link to the node yielding the lowest cost. We
describe the link drop procedure in Algorithm 2.

Algorithm 2: Link Drop procedure for node i

Input: i, OverlayAdjMatrix
Output: UpdateAdj
CurrentMatrix← OverlayAdjMatrix;
NodeToDrop← −1;
CurrentCost← evaluateCost(i, CurrentMatrix);
MinCost← CurrentCost;
foreach j ∈ CurrentMatrix(i, :) do

tmpMatrix← CurrentMatrix;
tmpMatrix(i, j)← 0;
CostNew← evaluateCost(i, tmpMatrix);
if MinCost− CostNew > 0 then

MinCost← CostNew; NodeToDrop← j;
end

end
if NodeToDrop �= −1 then

UpdateAdj(i, NodeToDrop)← 0;
end

Using the link addition procedure node i randomly selects
a 2-hop neighbor, that is the neighbor of a node to which she
has a direct link, that is not the node dropped with the link
drop procedure. If the cost ci evaluated by adding a link to
the randomly selected node decreases, then node i updates its
current connections by adding a (direct) link to the randomly
selected node. We describe the link addition procedure in
Algorithm 3.

Note that, as opposed to the method described in Section
III-A.2, the selfishly constructed overlay graph depends on the
initial number of links E established by each node.

Algorithm 3: Link Add procedure for node i

Input: i, OverlayAdjMatrix
Output: UpdateAdj
CurrentMatrix← OverlayAdjMatrix;
CurrentCost← evaluateCost(i, CurrentMatrix);
j ←
rand(getTwoHopNeighbors(i, CurrentMatrix));
tmpMatrix← CurrentMatrix;
tmpMatrix(i, j)← 1;
CostNew ← evaluateCost(i, tmpMatrix);
if CurrentCost− CostNew > 0 then

UpdateMatrix(i, j)← 1;
end

IV. LOCAL RE-WIRING OF THE SERVICE OVERLAY

The optimization method exposed in Section III-A.3 appears
to be very close to a local heuristic, given the structure of
Algorithms 2 and 3. However, we cannot adopt this method
for the implementation of a distributed algorithm to achieve
overlay rewiring: indeed, the hidden characteristic of this
method is that local decisions taken by the nodes depend on the
cost function defined in Equation 2, which in turns depends on
the entire overlay graph. In this section we design a completely
distributed algorithm that mimics the behavior of the method
discussed in Section III-A.3, but which uses local information
only. Precisely, we focus on a a very simple algorithm that
ignores the costs defined in Equation 2 and that is inspired
by the procedures of adding and dropping one overlay link
described in the previous Section.

Hence, the goal of this Section is to study the emergence
of a given global topology arising from local decision-based
rewiring of the service overlay. The literature is rich of local
algorithms capable of promoting the emergence of networks
characterized by some global properties, one of the most
prominent examples being the ”preferential attachment” rule
proposed in [7] that produces scale-free topologies character-
ized by a power-law distribution of node degree. However,
these algorithms often assume that global knowledge of the
network topology (assumption that we also make in our game
theoretical model) is available at each node.

In contrast, in this Section we assume that nodes do not
have a global view of the system topology nor of the global
service type distribution and we study the properties of overlay
topologies obtained using a simple heuristic that stems from
our game theoretic formulation of the problem.

In Section IV-A we detail our algorithm, called RLS (that
we first introduced in [17]), based on randomized local search
while in Section IV-B we outline possible attacks to the normal
execution of the algorithm.

A. Randomized local search (RLS)

Given an initial service overlay configuration, nodes exe-
cute a distributed algorithm based on local information only,
restricting the visibility of a node in a similar way to the

one described in Section III-A.3. We introduce three node
roles: the initiator, the mediator and the target role. Initiators
and mediators interact so as to match the type associated
to the initiator and the target nodes, at the expense of the
mediator node that loses one connection. The effect of this
rewiring strategy is that the node degree of the initial overlay
configuration is preserved. The details of the randomized local
search algorithm are given in Algorithm 42.

Algorithm 4: Randomized Local Search Algorithm
Input: N , E, T , MaxIterations
Output: UpdateAdj
Adj ← generateRandomOverlay(N, E);
Type V ector← generateRandomTypes(T);
UpdateAdj ← Adj;
StopCriteria← 0;
while StopCriteria = 0 do

iteration← iteration + 1;
for i← 1 to N do

mediator← rand(getOneHopNeighbors(i));
while isempty(target)&&TypeV ector(i) �=
TypeV ector(target) do

target←
rand(getOneHopNeighbors(mediator));

end
% Initiator adds link to Target
UpdateAdj(i, target)← 1;
UpdateAdj(target, i)← 1;
% V.1: Initiator removes link to Mediator
UpdateAdj(i, mediator)← 0;
UpdateAdj(mediator, i)← 0;
% V.2: Mediator removes link to Target
UpdateAdj(target, mediator)← 0;
UpdateAdj(mediator, target)← 0;

end
if iteration = MaxIterations then

StopCriteria← 1;
end

end

In Algorithm 4 we sketch two variants of our method: in the
first, the Initiator and Mediator nodes lose their connections
when a matching node is found, in the second, the Mediator
and the Target nodes lose their connections.

B. Rational attacks

Provided that there is no incentive for nodes to take up
the role of Mediators, what is the impact of node misbehavior
during the execution of the randomized local search algorithm?
We try and address this question in the following.

Lack of incentives to follow the rules prescribed by the
RLS algorithm are a direct consequence of the fact that a
Mediator node might be reluctant to give up a connection (be

2For clarity of exposure nodes execute the algorithm sequentially. In our
implementation nodes execute the algorithm in random order.

it with the Initiator or the Target) if this might be harmful for
subsequent iterations of the algorithm in which the Mediator
could switch to the role of Initiator. As an illustrative example
consider the scenario in which two node types are present in
the service overlay. If the Initiator and the Mediator share the
same type, then there is no incentive for them to interact. If
the Initiator and Mediator are of different type, for the simple
fact of giving up a connection to the Initiator, the Mediator
can preclude the possibility of gaining a new neighbor with
the same type when its turn to be an Initiator arrives. The
same apply if a connection with the Target node is lost.

We thus identified two simple mediator misbehaviors that
we describe next:

• Misbehavior 1: the Mediator systematically ignores
switch requests by Initiators;

• Misbehavior 2: the Mediator systematically fails in pro-
viding the Initiator with a Target sharing the same type.

We analyze the effects of these two node misbehavior when
a fixed fraction of the overlay populations is misbehaving in
Section V.

V. NUMERICAL EVALUATION

In this section we present the experimental setup used
to characterize service overlays created both by the selfish
optimization algorithm presented in Algorithm 1 (together
with Algorithms 2 and 3) and by the RLS algorithm outlined
in Algorithm 4. Our goal is to compute the Nash equilib-
ria topologies of the overlay creation game and the stable
topologies of the randomized local search algorithm using the
methods described in Section III-A.2 and in Section IV. The
overlay network graph G(s) is represented by an adjacency
matrix.

A. Experimental set-up

The initial conditions of the optimization problem are given
by a set of N nodes, a node type vector that identifies which
services are instantiated on the N nodes and a randomly
generated service overlay. We used several models to generate
an initial random deployment of the service overlay, but in
this Section we will focus on k-regular graphs where the
number of randomly chosen outgoing links E is a simulation
parameter. We define a maximum number (T̂) of different
services available in the overlay and uniformly distribute
them on the nodes. For every simulation run we randomize
on the initial service overlay: in the following all plots are
the results of several (50) algorithm executions, while the
graphical representation of an overlay depicts an instance of
a stable topology.

B. Metrics

In this work we are interested in studying the graph proper-
ties of the equilibrium service overlay. In Section V-C and
Section V-D and we evaluate the node degree distribution
that characterize the final stable configuration of the service
overlay, when relevant. Furthermore, we study the overlay
homogeneity, defined as the fraction of links connecting two

overlay nodes of the same type. The homogeneity metric
indicates to some extent the clustering degree of the overlay:
values close to one are preferred over values close to zero.

C. Results for the selfish optimization algorithm

In this Section we discuss on the service overlay topologies
that have been obtained with the local best response algorithm
discussed in Section III-A.3. For illustrative purposes, we
focus on overlay networks with T̂ = 2 types in the system
and we assign equal nominal service capacities to each node,
that is λi

n = λn∀i ∈ {N}\{i, j}, except for two nodes of each
of the two types in the system that have a significantly higher
nominal capacity. We expect these two nodes to have a high
number of incoming links, as this implies current request load
to be shared from an overloaded node to a high capacity node.
The request load λi

c assignment is λi
c = λc = 2 · λn∀i ∈ N .

We specify the linking cost defined in Equation 2.
Figure 2(a) shows the initial service overlay topology where

N = 30 nodes are randomly deployed with E = 4 links per
node. Node types are uniformly distributed, and two random
nodes of different type are assigned a high nominal capacity,
λc = 100: in Figure 2 node 1 and 16 are high capacity nodes.
The wiring cost has been set to α = 100.

Figure 2(b) shows that high capacity nodes have a high num-
ber of incoming links, while all other nodes sharing the same
type are highly connected3. This is a direct consequence of
the cost function of Expression 2: when a node is overloaded,
the cost to connect to other nodes of the same type goes to
zero, while communication costs still have an impact on the
selection of which node is best to connect to. Figure 2(b)
clearly shows two highly connected clusters of nodes sharing
the same type. This new overlay configuration is prone to be
used as a basis for a load dispatching mechanism and link
directions indicate that excess load will flow towards nodes
with high nominal capacity. It should be noted that the selfishly
constructed overlay graph allows messages (e.g. maintenance
or discovery signaling) to be exchanged by any node at a
minimum cost.

The results presented in this Section are in line with those
obtained using the simplified method (RLS), that are we
extensively reported in the following Section.

D. Results for the randomized local search

This Section summarizes the results for the global self-
aggregation dynamics arising from the RLS algorithm de-
scribed in Section IV. Scalability issues with respect to key
parameters such as system size and diversity (in number of
types) are extensively studied. Lastly we show the impact of
node misbehavior on self-aggregation dynamics.

1) Impact of the initial random overlay structure: Figure
3 show, for a sufficient number of time-steps for the graph
to be stable, respectively the aggregated service overlay graph
(Figures (a) and (d)), the node degree distribution (Figures
(b) and (e)) and the homogeneity (Figures (c) and (f)) for

3In the Figure, a link without direction is a bidirectional link.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17
18

19 20

21

22

23

24

25

26

27

28

29

30

(a) (b)

Fig. 2. Rewiring process for the local iterated best response algorithm: initial (left) and equilibrium (right) topologies.

an overlay comprised of N = 500 nodes and T = 3 types.
The simulation parameter is the number of random edges E
assigned to each node during the system bootstrap.

Figures 3(c, f) show that the configuration of the initial
overlay has a negligible impact on the convergence speed to
a homogeneous network (in the sense of the definition given
in section V-B) and the final homogeneity attained.

2) Impact of the system size and system diversity: In
this section we show the sensitivity of the randomized local
algorithm to variations in the system size and diversity, when
N = 500, T = 3 and E = 6.

Figure 4 a) shows the impact of the system size on the
dynamics of aggregation in terms of system homogeneity.

We observe that Algorithm 4 may support service overlay
comprised of a very high number of nodes without the con-
vergence speed being affected by the system size, confirming
that our simple re-wiring strategy is highly scalable.

In Figure 4 b) we show the impact of the number of types in
the system, that is the number of different services instantiated
in the service overlay, on the homogeneity of the system.

Figure 4 b) indicates that increasing the number of service
types deployed on the overlay may lead to very slow con-
vergence times: results can improve when the initial random
overlay is highly connected, at the risk of obtaining an final
overlay with disconnected domains.

3) Impact of node misbehavior: In this section we assume
a service overlay formed by N = 500 nodes (when not
specified otherwise) with an initial number of edges E = 6 per
node. We study the convergence speed of Algorithm 4 varying
both the system size and diversity when a fraction of the
population is misbehaving following the two models discussed
in Section IV-B. In out analysis we vary the (fixed) fraction
of misbehaving nodes m in the set m = {0.2, 0.5, 0.8}, but
we plot only results for the two extreme cases for clarity of
presentation.

In Figure 5(a,b) we show the impact of an increasing
fraction of misbehaving nodes of type 1 when the number
of nodes is a fixed parameter and we increase the number of

service types instantiated in the overlay.
Figure 6(a,b) shows the impact of misbehaving nodes of

type 2 under the same simulation settings described above.
When mediator nodes systematically fail in responding to

requests made by initiators wishing to connect to nodes of
similar type, the apparent effect as shown in Figure 5(a,b) is a
slow convergence speed to a clustered overlay. Only when
a very high fraction of nodes misbehave the performance
degrades significantly from the case when no illegitimate node
are present in the overlay.

The effects of a mediator providing a wrong target to the
initiator are more pronounced: even a small fraction of mis-
behaving nodes of type 2 can disrupt the correct functioning
of Algorithm 4, as shown in Figure 6(a,b). Clusters of nodes
sharing the same service instance, thus being able to absorb
the workload of overloaded nodes, are hardly formed.

In both cases of Figures 5 and 6, the negative effects of a
malicious activity are proportional to the number of service
types instantiated in the overlay.

In Figures 7(a,b) and 8(a,b) we show the impact on the
system size of an increasing fraction of misbehaving nodes
of type 1 and type 2 when we vary the (fixed) fraction of
misbehaving nodes m.

By observing Figures 7(a,b) and 8(a,b), we conclude that
when the system size scales up to a high number of par-
ticipants, the effects of both types of misbehavior are less
pronounced, although the second type of misbehavior is more
disruptive.

VI. RELATED WORK

Traditional load balancing has a long history in distributed
systems literature. A small sample of previous results, that
focus on coordinated and often centralized solutions, includes
the following: [15] investigates the online assignment of unit
length jobs under the L∞ norm; [3] considers off-line assign-
ments of unit length jobs; [5] consider greedy assignments
of weighted jobs under the Lp norm, where the client-server
graph is complete bipartite while [6] considers arbitrary client-
server graphs and uses the L2 norm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

80

81

82

8384

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121122

123

124

125 126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171
172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190 191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209
210

211

212

213

214

215

216
217

218

219 220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307308

309

310

311

312

313

314

315

316

317

318

319

320
321

322

323

324

325
326

327

328

329

330
331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392393

394

395

396397

398

399

400

401402

403

404

405

406
407

408

409

410

411

412

413

414

415

416

417

418

419

420

421
422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440
441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466
467 468

469

470

471

472

473474

475

476

477

478

479

480
481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

496

497

498

499

500

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node degree

C
D

F
 o

f n
od

e
de

gr
ee

Node degree frequqncy − RLS Algorithm, E=5

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1
Evolution of homogenity − RLS Algorithm, E=5

Timesteps

H
om

og
en

ei
ty

(a) (b) (c)

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55 56

57

58

59

60

61

62

63

64
65

66

67

68

69

70

71
72

73

74

75

76 77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
127

128

129

130

131

132

133

134

135

136

137

138

139
140

141

142

143

144

145

146

147

148

149
150

151

152

153

154

155

156

157

158

159

160161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194
195

196

197

198

199

200

201

202

203

204

205

206

207

208

209210 211
212

213

214

215

216

217
218

219

220

221

222

223

224225

226

227

228

229

230

231

232

233

234

235

236
237

238

239

240

241

242

243

244

245

246

247 248

249

250

251252 253

254255

256

257

258

259

260

261

262

263 264

265

266

267

268

269

270

271

272

273274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321
322 323

324

325

326

327

328

329

330

331

332

333

334

335336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352353
354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375 376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399
400

401

402

403

404
405

406

407

408

409

410
411

412

413

414

415

416417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455456
457

458

459

460

461

462

463

464

465

466

467
468

469

470

471

472

473

474

475

476

477

478

479 480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node degree

C
D

F
 o

f n
od

e
de

gr
ee

Node degree frequqncy − RLS Algorithm, E=6

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

0.9

1
Evolution of homogenity − RLS Algorithm, E=6

Timesteps

H
om

og
en

ei
ty

(d) (e) (f)

Fig. 3. Stable service overlays (left), Node degree distribution (middle) and Homogeneity plots for overlays with E = 5 (first row) and E = 6 (second
row).

0 50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scalability analysis − RLS Algorithm, E=6

Timesteps

H
om

og
en

ei
ty

N=50

N=100

N=200

N=500

N=1000

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Diversity analysis − RLS Algorithm, E=6

Timesteps

H
om

og
en

ei
ty

T=3

T=5

T=10

T=15

(a) (b)

Fig. 4. Impact of system scalability (a) and diversity (b) on the randomized local search algorithm.

Uncoordinated load balancing has been studied, using game
theory for example, in [18], [19]. Congestion games are at the
heart of these works: uncoordinated, selfish clients compete
to select servers providing the lowest response time (latency).
Client latencies are related to the server loads. Server response
time is assumed to be inversely proportional to the speed of
the server, but grows with the p-th power of the number of
users connected to the server. As we point out in Section
I this framework is not suitable to meet the connectivity
requirements of the service overlay.

The work presented in [16] from which we borrow the
system model achieves load balancing among service replicas
through overlay routing. The link metric adopted to select
overlay service paths is inversely proportional to the capacity
available at nodes on the service path. Note that load infor-

mation is disseminated in the overlay so as to update the link
cost metric.

The works that are closely related to ours are presented
in [8], [9], [11], [13]. Fabrikant et. al. first present the
network creation game that they use to characterize Internet
topologies [11]. Their model accounts for link creation and
communication costs and the resulting graph is generated
by the unilateral interaction of selfish players. This model
is extended in [9], where the authors consider equilibrium
topologies that arise from the bilateral interaction of selfish
players; in their model, link cost is paid by both vertices of
an edge in the equilibrium graph. [8] presents an extension of
the basic model in [11] wherein an application-level routing
overlay is constructed by selfish overlay nodes. In [13], the
authors study a class of simple protocols that aim to self-

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Diversity analysis − RLS Algorithm, E=6, m=0.2

Timesteps

H
om

og
en

ei
ty

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Diversity analysis − RLS Algorithm, E=6, m=0.8

Timesteps

H
om

og
en

ei
ty

(a) (b)

Fig. 5. Impact of an increasing fraction of misbehaving nodes of type 1 on the randomized local search algorithm for a service overlay with different number
of service types (T̂).

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Diversity analysis − RLS Algorithm, E=6, m=0.2

Timesteps

H
om

og
en

ei
ty

T=3

T=5

T=10

T=15

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Diversity analysis − RLS Algorithm, E=6, m=0.8

Timesteps

H
om

og
en

ei
ty

T=3

T=5

T=10

T=15

(a) (b)

Fig. 6. Impact of an increasing fraction of Misbehaving nodes of type 2 on the randomized local search algorithm for a service overlay with different number
of service types (T̂).

0 50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scalability analysis − RLS Algorithm, E=6, m=0.2

Timesteps

H
om

og
en

ei
ty

N=50

N=100

N=200

N=500

N=1000

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scalability analysis − RLS Algorithm, E=6, m=0.8

Timesteps

H
om

og
en

ei
ty

N=50

N=100

N=200

N=500

N=1000

(a) (b)

Fig. 7. Impact of an increasing fraction of Misbehaving nodes of type 1 on the randomized local search algorithm for different sizes of the service overlay.

organize P2P networks into clusters of altruistic nodes that
help each other to complete jobs requiring diverse skills. The
authors also use a modeling approach akin to game theory,

but explore the emergence of clusters when peers mimic the
strategies of neighboring nodes. Our work is in line with
[13] regarding the definition of a method where nodes select

0 50 100 150

0.4

0.5

0.6

0.7

0.8

0.9

1
Scalability analysis − RLS Algorithm, E=6, m=0.2

Timesteps

H
om

og
en

ei
ty

N=50

N=100

N=200

N=500

N=1000

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scalability analysis − RLS Algorithm, E=6, m=0.8

Timesteps

H
om

og
en

ei
ty

N=50

N=100

N=200

N=500

N=1000

(a) (b)

Fig. 8. Impact of an increasing fraction of Misbehaving nodes of type 2 on the randomized local search algorithm for different sizes of the service overlay.

behaviors for the good of the overlay even though their actions
are based on individual greedy utility maximization.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a game theoretic model and
a distributed algorithm for the formation of service overlay
network. We analyzed three methods to attain equilibrium
overlay topologies based on variants of the iterated best
response algorithm and on an ILP formulation. The game
theoretic analysis presented in the first part of this work
allowed to formalize the problem of the overlay creation and
characterize its structure, while providing intuitive results.
However, the optimization methods proposed using the game
theoretic framework had the underlying problem of requiring
the global knowledge of the overlay graph. Hence, with the
goal of presenting a fully distributed algorithm and improving
the computational tractability of the service overlay formation
process we proposed a local heuristic which mimics the game
theoretic approach and studied the emergence of structured
overlay topologies, wherein nodes sharing similar traits ag-
gregated to form clusters. We studied the scalability of our
heuristic and the impact of the system diversity, showing that
node aggregation based on service types is efficient even when
the system is large and when the number of different service
instances is high. As a glimpse to another problem akin to a
game theoretic formulation we studied aggregation dynamics
when a fraction of overlay nodes misbehave following differ-
ent models and showed that node misbehavior due to lack of
incentives may jeopardize the aggregation process. As part of
our future work, we seek to enrich our approach by assuming
a time-varying workload and study overlay creation in the
context of repeated games. We intend to explore incentive
mechanisms to foster the participation of overlay nodes in the
aggregation process.

ACKNOWLEDGMENTS

This work has been partially funded by the Integrated
Project CASCADAS (FET Proactive Initiative, IST-2004-2.3.4

Situated and Autonomic Communications) within the 6th IST
Framework Program.

REFERENCES

[1] Planet lab. http://www.planet-lab.org/.
[2] Snap: Structured overlay networks application platform.

http://www.planet-lab.org/.
[3] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation

schemes for scheduling. In Proc. of ACM SODA, 1997.
[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient overlay networks. In Proc. of ACM SOSP, 2001.
[5] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load

balancing in the lp norm. Algorithmica, 29:422–441, 2001.
[6] A. Awerbuch, A. Azar, E. F. Grove, P. Krishnan, M. Y. Kao, and J. S.

Vitter. Load balancing in the lp norm. In Proc of IEEE FOCS, 1995.
[7] A. L. Barbasi, R. Albert, and H. Jeong. Mean-field theory for scale-free

random networks. Physica, A 272:173–187, 1999.
[8] B-G. Chun, R. Fonseca, I. Stoica, and J. Kubiatowicz. Characterizing

selfishly constructed overlay routing networks. In Proc. of IEEE
INFOCOM, 2004.

[9] J. Corbo and D. Parkes. The price of selfish behavior in bilateral network
formation. In Proc. of ACM PODC, 2005.

[10] Z. Duany, Z. Zhangy, and Y. T. Houz. Service overlay networks: Slas,
qos and bandwidth provisioning. In Proc. of IEEE ICNP, Paris, France,
November 2002.

[11] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and
S. Shenker. On a network creation game. In Proc. of ACM PODC,
2003.

[12] N. Laoutaris, G. Smaragdakis, A. Zestravos, and J. W. Byers. Implica-
tions of selfish neighbor selection in overlay networks. In Proc. of IEEE
Infocom, 2007.

[13] A. Marcozzi and D. Hales. Emergent social rationality in a peer-to-peer
system. Technical report, Department of Computer Science, University
of Bologna, 2006.

[14] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In Proc. of IPTPS, Cambridge, MA,
USA, March 2002.

[15] S. Philips and J. Westbrook. Online load balancing and network flow.
In Proc. of ACM STOC, 1993.

[16] B. Raman and R. H. Katz. Load balancing and stability issues in
algorithms for service composition. In Proc. of IEEE INFOCOM, 2003.

[17] F. Saffre, J. Alloy, M. Shackelton, and J. L. Deneubourg. Self-
organized service orchestration through collective differentiation. IEEE
Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,
26(6):1237–1246, 2006.

[18] S. Suri, C. D. Toth, and Y. Zhou. Selfish load balancing and atomic
congestion games. In Proc. of SPAA, 2004.

[19] S. Suri, C. D. Toth, and Y. Zhou. Uncoordinated load balancing and
congestion games in p2p systems. In Proc. of HOT-P2P, 2004.

