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1Institut Eurécom’s research is partially supported by its industrial members: BMW Group Com-
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Università di Roma Tre
Largo S. Murialdo, 00146 Roma, Italy

dipietro@mat.uniroma3.it

Pietro Michiardi Refik Molva
Institut Eurécom
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Abstract

Hop-by-hop data aggregation is a very important technique used to reduce the communication overhead and
energy expenditure of sensor nodes during the process of data collection in a wireless sensor network (WSN).
However, the unattended nature of WSNs calls for data aggregation techniques to be secure. Indeed, sensor nodes
can be compromised to mislead the base station by injecting bogus data into the network during both forwarding and
aggregation of data. Moreover, data aggregation might increase the risk of confidentiality violations: if sensors close
to the base station are corrupted, an adversary could easily access to the results of the “in network” computation
performed by the WSN; nodes can also fail due to random and non-malicious causes (e.g. battery exhaustion), hence
availability should be considered as well. In this paper we tackle issues that affect data aggregation techniques by
proposing a mechanism that: i) provides both confidentiality and integrity of the aggregated data so that for any
compromised sensor in the WSN the information acquired could only reveal the readings performed by a small,
constant number of neighboring sensors of the compromised one; ii) detects bogus data injection attempts; iii)
provides high resilience to sensor failures. Our protocol is based on the concept of delayed aggregation and peer
monitoring and requires local interactions only. Hence, it is highly scalable and introduces small overhead; detailed
analyses supports our findings.

Index Terms

Wireless Sensor Networks, Secure data aggregation, Attack-Resilient.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a collection of sensors characterized by a size that can range

from a few hundred sensors to a few hundred thousands or possibly more. A WSN can be deployed

in harsh environments to fulfil the requirements of both military and civil applications [1]. Due to the

lack of a network infrastructure, sensors build a wireless multi-hop network in an autonomous way.

Moreover, the power supply of each individual sensor being provided by a battery, both communication and

computation activities must be optimized. In particular, radio communications are more demanding than
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computational operations in terms of energy consumption [28], [24], [20]. To that effect, data aggregation

has been put forward as an essential technique to achieve power efficiency by reducing redundancy and

minimising bandwidth usage. Data aggregation consists of processing data collected by sensor nodes at

each intermediate node en route to the sink in order to minimising the number of messages transmitted

in the WSN.

The data sensed by a WSN is routed to a base station (BS) that can be viewed as a device that does not

suffer from the limitations of the sensors and that acts as a gateway towards the Internet. Sensor networks

must be robust and durable in order to overcome individual sensor failure due to either malicious (e.g.

destruction) or non-malicious (e.g. malfunctioning) events. Indeed, it is likely that WSNs will be deployed

in situations where an adversary may be motivated to disrupt the function of the network. For instance,

an adversary may compromise a node in the network and gain access to its keying material. Furthermore,

it is possible for a sensor to fail to properly execute the protocol due to HW or SW failures. In this

paper, we focus on security threats that mainly target the data aggregation mechanism in a WSN, namely:

confidentiality violations of the aggregate data sensed by the WSN and data poisoning attacks, aiming at

tampering with aggregate value computed by the WSN. The main contribution of our work is the design

of an aggregation protocol that is resilient to node exposures: compromising a node should not allow the

adversary to jeopardize the whole computation performed by the WSN.

We assume that sensors use symmetric key encryption to provide confidentiality [2], [5]. It is worth

noticing how key management impacts data aggregation. On one hand, providing all sensors with a single

shared key is not a robust solution, since a single node compromise would impact the security of the

whole WSN. On the other hand, pairwise key distribution as suggested in [8], is a more robust solution.

However, even in this case, if the adversary is able to compromise a single node that has aggregated

a sufficient amount of data, information leakage on the aggregated data becomes possible. Meanwhile

there is an inherent conflict between data confidentiality and data aggregation due to the fact that data

aggregation requires intermediate nodes to access data in cleartext in order to process it whereas data

confidentiality calls for end-to-end encryption of each data segment between the sensors and the sink.

Homomorphic encryption techniques appear to be the mandatory solution to this conflict since they allow

some operations to be performed on encrypted data. Hence, we resort to homomorphic encryption schemes

that allow sensors to perform the aggregation over encrypted data. In this case, single node compromise

does not cause any information leakage of the aggregated data [4].
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Our proposal at glance: In a standard tree-based data aggregation solution, each sensor node would

compute the aggregate sum of all its inputs one level down in the tree hierarchy and pass the computed

value up in the hierarchy. In our proposal, nodes perform delayed aggregation; each node aggregates the

encrypted values of sensed data provided by nodes down in the hierarchy and passes up in the hierarchy

a triplet that consists of: The result of the aggregate computation, the number of contributors to the

aggregate value, and the encryption of the node’s own reading. In addition to the basic data aggregation,

our proposal also involves a mechanism for integrity verification: some peer nodes of the WSN monitor the

data exchanged by neighboring nodes in order to perform the data aggregation operation and to compare

the result they compute with the aggregate value forwarded by their neighbors. Delayed aggregation thus

trades off a slight increase in communication overhead during the aggregation phase in return for the

capability to perform result-checking.

Contributions: This paper presents a data aggregation protocol based on additive homomorphic en-

cryption to provide data confidentiality. Furthermore, we introduce a local peer monitoring mechanism to

detect the injection of false data. In particular, the proposed protocol is:

• Secure, since in a successful attack on the aggregated data, an oblivious adversary has to compromise

at least a number of sensors proportional to the number of readings the aggregated data is composed

by;

• Efficient, since each sensor is required to perform only local communications to achieve the global

task carried out by the WSN;

• Robust with respect to both false data injection and confidentiality;

• Scalable, since the protocol continues to provide the above properties as the number of sensors in the

WSN increases. For instance, our protocol is still effective for a WSN composed of 65,516 sensors.

• Resilient: a node compromise would only compromise the node itself and its neighboring nodes:

This could provide access to the readings of these nodes, but not to the aggregated values received

by these nodes.

Organization: The paper is organized as follows: Section II reports on the related work in the field,

while Section III states the rationale and the assumptions our solution relies on. In Section IV we formalize

our security requirements, while in Section V we describe our secure data aggregation protocol. In Section

VI we discuss the properties provided by our protocol. Finally, Section VII presents some concluding

remarks.
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II. RELATED WORK

Early work in data aggregation for WSN assumed every node to be honest [13], [21]. This restrictive

assumption has been relaxed in [19], addressing the problem of a single compromised node. However,

the proposed protocol may be vulnerable if just a pair of parent and child nodes at the logical tree used

to convey data to the BS are compromised. Further, each aggregator sensor has to forward a number

of messages which is proportional to the number of contributors. The work in [5] enables the BS to

verify whether the aggregated value provided by the WSN is a good approximation of the values that are

actually collected by the sensors even when a fraction of the sensor nodes are corrupted. However, this

objective is achieved via interactive proof between the aggregators and the central server (BS). Hence,

due to the computational and communication cost incurred by this scheme the aggregators are less likely

to be common sensors. The work in [33] analyses the security of various aggregation functions that could

be used in WSN. The author describes attacks against these existing aggregation schemes and provides a

framework in which to evaluate the security of these schemes.

The Concealed Data Aggregation (CDA) concept was first introduced in [16], [17]. The CDA is a

solution for end-to-end encryption that uses homomorphic encryption functions to enforce secure data

aggregation in the context of WSNs. In [35] the CDA concept is further extended: The authors present

a generalization of the approach for a class of routing protocols and also propose a key predistribution

algorithm that limits the capability of an adversary to disrupt confidentiality of the aggregated data.

Another work [4], leveraging the key concepts introduced in [16], [17], introduces a new scheme

that addresses both confidentiality issues and efficient data-aggregation algorithms. This scheme relies on

a simple but provably secure homomorphic encryption function. However, some drawbacks affect this

scheme: first, it is not robust against node compromise, that is a single node failure can disrupt the whole

WSN computation; second, the data packet size is not optimal; finally, there is the need to piggyback

toward the BS either the IDs of all nodes that contributed to the computation or the IDs of the nodes that

did not contribute.

Recently, in [6] the authors presented the first algorithm for provably secure hierarchical in-network

data aggregation. The proposed algorithm incurs a node congestion message overhead of O(∆ log2 n),

where and ∆ is the maximum degree of any node in the aggregation tree. The main algorithm is based

on performing the SUM aggregation securely by first forcing the adversary to commit to its choice

of intermediate aggregation results, and then having the sensor nodes independently verify that their
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contributions to the aggregate are correctly incorporated. However, while this proposal achieves integrity,

the confidentiality of the aggregated value is not addressed. In this scheme, the closer to the BS the

compromising nodes, the more information is leaked to an adversary. Adding confidentiality to the

proposed scheme, while retaining integrity, is not addressed. A further contribution to the field of data

aggregation in WSN is in [3], where the authors present a novel outlier elimination technique designed for

sensor networks. This technique is called RANBAR and it is based on the RANSAC (RANdom SAmple

Consensus) paradigm —a well-known in computer vision and in automated cartography—. The proposed

RANBAR algorithm is capable to handle a high percent of outlier measurement. However, their proposal

rely on a strong preassumption, namely that the sample is i.i.d. in the unattacked case. Further, this latter

proposal, as the former one, does not address the confidentiality of the aggregated data.

Our proposal takes the structure of the aggregation tree as given and leverages results that allow to

establish pairwise keys between nodes in the WSN. One method for constructing an aggregation tree

is described in TaG [28] while, as for pairwise key establishment, following the seminal work in [12],

several solutions nowadays exist, which provide a secure pairwise key establishment [2], [38], [8].

Finally, note that a form of delayed aggregation — as expressed in the previous section— was used in

[18] and [6] with totally different goals: in the former paper to implement a quantile summary algorithm;

in the latter to balance the path length in the aggregation tree.

III. SYSTEM MODEL

A. Adversary model

We identify the objectives that an adversary has in thwarting a WSN as twofold:

• The adversary could be interested in eavesdropping the aggregated value computed by a relevant

fraction of the nodes in the WSN. Note that this scenario can easily occur within the data aggregation

framework, in which a hierarchy is imposed over nodes. Indeed, the impact of a node compromise

increases as the distance of that node from the BS decreases;

• The adversary could provide the BS with bogus data, so that the decision process of the BS could be

possibly disrupted or subverted towards incorrect decisions. This goal has been described in [5] as a

stealthy attack, i.e., to cause the querier to accept a false aggregate that is higher or lower than the

true aggregate value. It is out of the scope of the paper to consider denial-of-service (DoS) attacks

where the goal of the adversary is to prevent the querier from getting any aggregation result at all.
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Furthermore, any maliciously induced extended loss of service is a detectable anomaly which will

(eventually) signal the presence of the adversary; subsequent protocols or manual intervention are

assigned the task to resolve the problem.

Finally, note that the injection of bogus or forged data also depletes the constrained resources of

sensor nodes, shortening the network lifetime. Hence, data injection attacks must be detected as

early as possible.

In this paper we consider an adversary able to compromise any sensor in the WSN. In particular, we

refer to the oblivious adversary: At each step of the attack sequence, the next sensor to be tampered with

is chosen randomly among the ones that have yet to be compromised. This adversary model is has been

adopted also in [4], [12], [8], [26] to cite a few.

B. Sensor failure model

Sensors can fail due to either malicious (e.g. destruction, capture and re-programming) or non-malicious

(e.g. malfunctioning, battery exhaustion) events. For the latter case, we assume that a sensor uf can fail

with a probability fp which is equal for every sensor and does not depend on the history of sensor failure

or compromise. That is, Pr[uf fails|ui1 , . . . , uij already failed∨uh1 , . . . , uhm already compromised] =

Pr[uf fails] = fp. We refer to this model as random failure model.

We note that a sensor that fails is less harmful from the point of view of security for our scheme, as

compared to a sensor that has been captured and reprogrammed.

We also make the conservative assumption that once a sensor fails, it can be considered as corrupted

by the adversary. The consequence is that if we can prove our protocol to be resilient to the adversary

model with probability (1-ε), then the resilience in the random failure model is at least (1-ε).

C. Aggregation function

In this paper we follow the idea first introduced in [19] and consider the value computed (in a distributed

way) by the WSN as the result of a function that accepts as inputs the readings of a reasonable portion

of the sensors the WSN is composed of.

In this work we focus on the mean value of the readings, as it has been done for example in [4] and

[33]. This choice allows to compare our results with previous work on secure data aggregation, and in

particular with [4].
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Note that if the data to be sensed is constrained within some range (min,max), then a single sensed

data lies within this interval. In the following, the peer monitoring nodes will leverage this observation

(bounding check), even if our proposal could be adopted when bounds on the sensed data cannot be

assumed.

D. Network setup

We consider a large sensor network with densely deployed nodes. Due to dense deployment, nodes may

have overlapping sensing ranges, hence events can be detected by multiple nodes providing a certain level

of redundancy in sensed data. As in other data aggregation protocols, e.g. [19], we assume a topological

tree rooted at the base station, as the one presented in [27]. There are various methods for constructing

the aggregation tree based on different application requirements [37], [36], [28]. Our solution does not

rely on a specific tree construction algorithm.

Note that data aggregation requires all sensors to send their data to the BS within the same sampling

period. Hence, in the following we assume that sensors have loosely synchronized clocks [11], [14], [15],

[32] and the aggregation scheme to operate in rounds. Time synchronization has been leveraged to design

several solutions for security in WSN, like [31], [5], [38].

As a direct consequence of the high density and redundancy in data acquisition that characterizes the

WSN network under investigation, in our model we assume the existence of a mechanism that assigns a

certain portion of sensors to cover the role of peer monitoring nodes. Peer monitoring nodes are used to

verify that the aggregation process is carried out correctly, i.e. they detect the subversive activity aiming

at compromising the integrity of the aggregated data. Peer monitors are selected during the setup of the

topological tree to achieve data aggregation, wherein nodes usually take up the role of data aggregators

(see Section V). It should be noted that the mechanism used to designate roles should not statically assign

the function carried out by a sensor node: A sensor could play different roles at different instant of time.

However, for the sake of clarity, we assume roles to be static in the following discussion.

When taking up the role of a peer monitor a sensor exploits the broadcast nature of radio communications

and process messages that are not originally destined to it, instead of discarding them. Note that a node

assigned to this role does not bear any additional energetic costs, in terms of communication, as compared

to any other node in the network. Indeed, all active nodes receive (and spend energy to do so) any message

sent within their wireless transmission range. Peer monitors are asked to support only a small additional
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Fig. 1. Sketch of the aggregation protocol: aggregators, contributors and peer monitoring nodes on a partial tree.

overhead (which is analyzed in Section VI-E) that is the trade-off we have to accept to provide data

integrity.

E. Sketch of the protocol

In this section we provide an overview of the aggregation protocol (see Figure 1), which is described

in more detail in section V. A Sensor can be either an aggregator or a peer-monitor.

During the ith round, the aggregator ua —assuming the aggregator has j contributors— combines the

aggregated values Acq ,i (q = 1 . . . j) with each contribution scq ,i to generate a new aggregated value Aa,i;

Then, node ua will invoke its sensing function, and will encrypt the sensed data (sa, i). Node ua will then

send to the aggregator ub up in the hierarchy the triple < sa,i, Aa,i, na,i >, where na,i is the number of

sensors that contributed to Aa; Note that if the aggregator is a leaf in the tree hierarchy, it will send the

triple < sa,i, 0, 0 >. In the following, to ease the notation, we will not report the second index relative to

the current round, unless required by the context.

Peer monitoring sensors uw,i, which we describe in details in Section V-A, receive the same data as the

aggregator and act as independent verifiers checking if the aggregator correctly executed the aggregation

function over the received values.

IV. SECURITY REQUIREMENTS

We have identified the following requirements for secure data aggregation protocols:

• Confidentiality: as discussed in III-C, confidentiality of the aggregated data is a fundamental property

of a secure aggregation protocol;

• Resilience: As sensors have a short lifetime, data aggregation protocols need to be designed to be

resilient to sensor failure;
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• Scalability: As the size of a WSN can vary over time, secure aggregation protocols should scale with

the number of sensors;

• Efficiency: As stated in Section III-A resources, e.g. energy and bandwidth, are scarce in a WSN.

An efficient protocol for secure data aggregation should perform an early detection of false data

injection1.

A. Data confidentiality

In this subsection we introduce the cryptographic primitives used in the following. Our focus here is

on a homomorphic encryption scheme allowing arithmetic operations to be performed on ciphertexts.

Formally, let Enc() denote a probabilistic encryption scheme. Let M be the message space and C the

ciphertext space such that M is a group under operation
⊕

and C is a group under operation
⊗

. Enc()

is a (
⊕

,
⊗

)-homomorphic encryption scheme if for any instance Enc() of the encryption scheme, given

c1 = Enck1(m1) and c2 = Enck2(m2), there exists a key k such that c1

⊗
c2 = Enck(m1

⊕
m2).

To provide data confidentiality we will adopt and modify the additively homomorphic encryption scheme

presented in [4]. In this scheme Enc(m1, r1, p) = m1+r1 (mod p), where m1 is the message to encrypt, r1

is the key, and p is the modulus over which the sum is computed. The aforementioned encryption scheme

supports additively homomorphic encryption operations since Enc(m1, r1, p)+Enc(m2, r2, p) = (m1 +r1

(mod p)) + (m2 + r2 (mod p)) = m1 + m2 + r1 + r2 (mod p) = Enc(m1 + m2, r1 + r2, p).

In the present work, the key ri is generated by a sensor via a stream cipher keyed with the secret key

ki and the unique identifier (id) of the message to encrypt. While in the work presented in [4] the secret

key ki associated to a sensor is shared only between the sensor and the BS, in our work the secret key

ki is also shared among neighboring sensors. In Section II we pointed to recent techniques to implement

pairwise secret sharing in a WSN.

It should be noted that the homomorphic encryption function used in this work could be inspired by

other solutions as well, like the one in presented in [9], which has also been adopted in [35].

B. Key setup

We now discuss on the cryptographic key setup that we assume in our system. We assume sensor

nodes to share pairwise secret keys with their physical neighbors, and that each sensor node can establish

a pairwise shared key with another node that is multiple hops away. The pairwise key establishment

1It is outside the scope of this paper to study the actions to be taken upon a detection event.
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schemes proposed in [26] or in [8] where two nodes only need to know their IDs to establish a shared

key can be used to achieve our requirements. We stress that both of these works have been shown to be

affordable for sensor networks in terms of computational constraints and communication overheads.

As in [4], we also assume each sensor node ui to be capable of generating a keystream ri by using a

stream cipher, such as RC4, keyed with the sensor’s secret key ki and a unique message identifier id. The

secret key ki is pre-computed and shared (in a secure way) between sensor ui, the BS and all neighbors

of ui. Node ui can share the key ki with its neighborhood using the pairwise key it shares with each of

its neighbors.

Before proceeding any further, we wish to point out that the key setup discussed in this section appears

to be subject to the following attack. Distributing secret keys to a neighborhood implies that an adversary

may compromise a single sensor and be able to recover a number of keys (ki, ri) that is equal to the size

of the neighborhood. In Section VI-B we show that although we cannot prevent this kind of attack, our

scheme bounds the impact of such an attack to the neighborhood of the compromised node, while still

providing guarantees on the confidentiality of the aggregated data.

V. THE AGGREGATION PROTOCOL

As discussed in section III, we assume the WSN to be organized in a logical tree with peer monitoring

and aggregator roles assigned. In this section, we focus on the normal operation of the aggregation protocol.

A snapshot of the tree hierarchy, with examples of aggregators and peer monitors can be found in Figure

1. Furthermore, data aggregation is assumed to be performed so as to obtain the mean value of the data

sensed by the WSN.

Note that all operations shown in the sequel of this section are performed modulus p, where p is a

suitable prime number.

Aggregator: As sketched in section III-E, the core idea of the protocol proposed in this work is that

the aggregator sensor ua does not compute the mean on its own reading, but only uses the readings of

its contributory sensors (that is, the aggregators one level down in the tree-aggregation hierarchy). The

encrypted reading of sensor ua (sa) will be aggregated by the sensor ub towards which sensor ua is

contributor, as imposed by the logical aggregation hierarchy.

For each contributing sensor ucq (q = 1 . . . j), aggregator ua receives the triple < scq , Acq , ncq >, where

scq is the encrypted reading of contributing sensor ucq , Acq is the received aggregated value computed by

ucq and ncq is the number of contribution that generated the aggregated value Acq .
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Sensor ua then ”unfolds” the aggregated data received by every contributing sensor and includes the

readings received by every ucq to the new aggregated value:

Aa =

∑j
q=1(Acq ∗ n−1

cq
) +

∑j
q=1 scq

nA

where:

na = nc1 + . . . + ncj
+ j.

During the computation of the aggregated data, two cases may occur: either all sensors sent their

contribution, or some sensors (ucm) did not send their contribution. In the latter case, ua adds to the

aggregated function the key (rcq ) these sensors would have sent if the communication had taken place.

Finally, ua sends to the sensor up in the hierarchy its current reading encrypted with the random data

ra, the aggregated value Aa and the number of contributors so far (na). Note that, unlike the algorithm

proposed in [4], we introduce a division (mod p). The division is equivalent to compute the inverse of

the number nA and to perform a modular multiplication; however, note that the modulus is relatively

small, hence the implementation of the extended Euclidian algorithm is quite efficient [22]. The pseudo

code of the steps executed by sensor ua is reported in Algorithm 1.

A. Peer monitoring sensors

As discussed in Section III-D, the role of peer monitoring nodes (termed uw in the sequel of this

section) is to verify that an aggregator sensor ua correctly performed the aggregation function. Figure 1

shows a snapshot of the aggregation hierarchy and two peer monitors, uw1 and uw2 .

Before delving into the details of the peer monitoring operation we first give a definition.

Definition 1: Peer monitoring set. Given an aggregator sensor ua we define the set of peer monitoring

nodes associated to sensor ua, termed W(ua), as the set of size d of nodes that are within the wireless

radio range of ua and that are not part of the aggregation tree.

We assume the set W(ua) to be built during the construction of the aggregation topology and to be

known by ua and by all uw ∈ W(ua). We further assume that the set of sensors that are supposed to

contribute with their data to node ua (as dictated by the aggregation topology) is also known by all

uw ∈ W(ua).
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Algorithm 1: The aggregation algorithm executed by ua.
Aggregate(contributors list : ID list)

Input : The list of the sensors that are contributors of ua (contributors list).
Output: The encrypted locally sensed data (sa), the locally computed aggregated value Aa, and the

number of contributors na to the aggregated data.

ncq : [1 . . . n], contrib list = contributors list ;
while True do

contrib list = contributors list ;
tmp = 0; na = 0 ;
while not (contrib list = ∅) do

Receive(ucq ∈ contrib list, < scq , Acq , ncq >, time out) ;
if time out then

for each ucq ∈ contrib list do
rcq = generate(ucq) ;
tmp = tmp + rcq ;
contrib list = contrib list\{ucq} ;

end
else

contrib list = contrib list\{ucq} ;
inv = inverse(ncq , p) ;
tmp = tmp + Acq ∗ inv + scq (mod p) ;
na = na + ncq + 1;

end
end
inv = inverse(na, p);
Aa = tmp ∗ inv (mod p) ;
\∗ sensing phase \∗ ;
sa = sense() ;
ra = generate(ua) ;
sa = sa + ra (mod p) ;
Send(ub, < sa, Aa, na >) ;

end

By exploiting the broadcast nature of radio communications, a peer monitoring sensor uw ∈ W(ua)

might be able to receive the same data transmitted to the node ua. Hence, uw could perform the same

checks of ua (e.g. checking bounds) and could further check if the aggregated data computed by ua

matches with its own computed aggregated value. However, due to the relative distance between nodes,

a monitoring node might not be in the transmission range of sensor uc thus being unable to receive the

data sent to ua by uc
2. In the following, we distinguish between the case in which a peer monitor has all

the contributor nodes in its communication range (direct observation) and the case in which this is not

possible.

2For example, sensor uw2 in Figure 1 cannot overhear data sent by uc1 to ua.
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For the case wherein direct observation is possible, let us consider the aggregating sensor ua. Suppose

that sensor uc sends its reading (sc) together with the aggregated data Ac and the number of sensors that

contributed to Ac (< sc, Ac, nc >) to sensor ua. A peer monitoring node uw overhears all messages sent

by sensor uc and performs exactly the same computations that take place at ua. When ua sends its triple

< sa, Aa, na > upstream, uw is able to verify whether the aggregated value Aa sent by ua matches its

locally computed value Aâ. Moreover, the peer monitoring node will also perform a check: on the data

reading, assessing whether this data follows in the expected bounds; on the number of contributors so far,

that should not exceed n, or some other finer value, if available. Note that should not it be possible to

perform these two checks (for instance, the sensed data cannot be bound, or the value n is unknown to

the peer monitoring), our proposal for the integrity of the aggregated data would still stood.

When direct observation is not possible, the normal execution of the aggregation protocol should be

slightly modified. First, observe that if the contribution of a sensor uc cannot be observed by a peer

monitoring node uw, then uc can reach uw within at most two hops. Indeed, by definition, nodes uc and

uw are in the communication range of ua. In this case, besides its normal operation, an aggregator node ua

is asked to act as a relay node, retransmitting all data required by the peer monitoring node uw to verify

the validity of aggregation. Data relaying may be subject to integrity attacks, hence each contributor uc

appends to the message sent to the aggregator sensor ua an HMAC keyed with the pairwise key uc shares

with uw. We recall now that our protocol, as well as all aggregation protocols available in the literature,

works in rounds (synchronization is required). This implies that a peer monitoring sensor uw is able to

detect if an aggregator node ua did not abide to the protocol, failing to forward all contributions to uw.

Note that a peer monitoring sensor uw will raise an alarm if an expected contribution was not received. It

is out of the scope of this paper detail how to deal with such an anomaly, but a possible solution could be

to remove the misbehaving sensor from the WSN when the number of its missing contributions exceeds

a given threshold. The pseudo code of a peer monitoring sensor is reported in Algorithm 2.

One could argue that having a sensor ua acting as a relay node for a fraction of contributor sensors

that cannot be monitored may imply a significant overhead. However, as discussed in Section VI-E, an

aggregator will be asked forward a number of messages proportional to the number of its contributors,

that is a constant, small number of nodes. This induce a communication overhead that is reasonably low

as compared to the benefits offered by our scheme.

Moreover, in Section VI-B we focus on those attacks performed by malicious peer monitoring nodes
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that do not fall in our adversary model but need to be discussed for the sake of completeness.

B. Features provided by the protocol

In this section we highlight the features of the proposed aggregation protocol, while a detailed analysis

is developed in Section VI.

• With the proposed aggregation protocol there is no need to send to the BS neither the list of the

sensors that executed the aggregation function, nor the list of missing participants; this feature is not

provided by [4];

• By using peer monitoring sensors, the proposed protocol allows local, early and cooperative detection

of bogus data injection;

• The aggregation protocol requires only the exact number of bits needed to compute the aggregate

function (for instance, the average values over the readings);

• As sensors compute the aggregated data without taking into account their own readings, with the

proposed protocol it is possible for the peer monitoring nodes to check not only the aggregated value,

but also single sensor readings;

• In our scheme, peer monitoring sensors do not send data messages, except for alarm messages. This

implies that the density of peer monitoring nodes does not increase contention to access the medium:

If necessary, we could increase the resilience of the aggregation protocol by increasing the number

of peer monitoring nodes (see Section VI-A) without any performance degradation;

• A single node corruption would not reveal any other information than the readings of the corrupted

node and the readings of its neighbors; that is, an adversary can only obtain a (small) constant number

of readings without being able to recover any information on the aggregated data, as discussed in

Section VI-B.

Table I provides a summary comparison of the protocol proposed in this paper with relevant related

work in literature. With HBH we refer to the case in which sensors encrypt data on a hop-by-hop basis,

while No Agg. refers to a situation in which there is no data aggregation: Each reading is sent to the BS.

TCM refers to the proposal appeared in [4]. In next section a detailed analysis of the proposed protocol

is reported.
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Algorithm 2: The peer monitoring algorithm executed by uw.
Peer Monitor(contributors list : ID list) ;

Input : The list of the sensors that are contributors of ua (contributors list);
Output: An alarm if the computation performed by the aggregator

does not match the result of the local computation.
min,max : data range, n : WSN size ;
while True do

tmp = 0; n̂a = 0; contrib list = contributors list ;
while not (contrib list = ∅) do

Receive(ucq ∈ contrib list, < scq , Acq , ncq >, time out) ;
if time out then

for each ucq ∈ contrib list do
rcq = generate(ucq) ;
tmp = tmp + rcq ;
contrib list = contrib list\{ucq} ;

end
else

rcq = generate(ucq) ;
\∗ bound checking \∗ ;
if (scq − rcq (mod p)) /∈ [min,max] then

Recovery () ;
else

contrib list = contrib list\{ucq} ;
inv = inverse(ncq , p) ;
tmp = tmp + Acq ∗ inv + scq (mod p) ;
n̂a = n̂a + ncq + 1;

end
end

end
\∗ Verification phase \∗ ;
inv = inverse(n̂a, p) ;
Âa = tmp ∗ inv (mod p) ;
Receive(ua, < sa, Aa, na >) ;
if time out then

Recovery () ;
else

if (Aa = Âa) and (na = n̂a) and (na ≤ n) then
skip

else
RaiseAlarm ()

end
end

end
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TABLE I

COMPARISON OF THE PROPERTIES OF THE DIFFERENT DATA AGGREGATION APPROACHES.

Model Properties
sensor failure confidentiality message length

resilience independent from
WSN size

Our Yes Yes Yes
TCM [4] No Yes No
HBH Yes No Yes
No Agg. Yes Yes No

VI. ANALYSIS AND DISCUSSION

A. Resilience

In order to analyse resilience of our protocol with respect to the adversary model introduced in Section

III-A, we assume that the adversary can compromise α randomly chosen sensors; we want to evaluate

what is the probability ε for the adversary to inject bogus data.

Note that the sensors to be compromised are randomly selected among the ones that are not yet

compromised. This means that every sensor can be compromised with probability less than α/(n − α).

As we have seen in Section III-B, the above assumption can be used to provide an upper bound on the

probability that compromised sensors can succeed in injecting a bogus data.

The relationship between the failure probability fp and the number of sensors compromised by the

adversary is given by fp < α/(n−α). In the sequel of this section, fp can also be considered the fraction

of the total number of sensors that can be corrupted by an adversary.

To provide an upper bound on resilience, note that we cannot have more than n peer monitoring sets

in a WSN. The probability for the WSN to be jeopardized (Pr[J ]) is given by the probability that at

least one of the monitoring sets is completely under the control of the adversary. Let us indicate with

Pr[jM ] = max{Pr[j1], . . . ,Pr[jn]} the monitoring set which has the highest probability to be corrupted.

Further, we recall that for a peer monitoring set of size d̂, the probability to be entirely corrupted is given

by f d̂
p , since the maximum of Pr[ji] is obtained by the monitoring set that has the least number of peer

monitoring sensors (d), hence Pr[jM ] = fd
p . An upper bound on the overall probability of jeopardizing

the WSN security thus is:

Pr[J ] ≤ Pr [j1 ∨ j2 ∨ . . . ∨ jn] ≤ nPr[jM ] = n× fd
p . (1)
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In Figures 2(a), 2(b) we plot Equation 1. On the x axis we report the number of sensors in the WSN,

varying this value in the range [256, . . . , 65, 516], while on the y axis we show the probability that the

WSN can be jeopardized (Pr[J ]). In Figure 2(a) and 2(b) we take into account two single node failure

probabilities, that is fp = 2−4 and fp = 2−5 (i.e., as noted in Section III-B this parameters reflect a

situation in which the adversary can corrupt up to n/17 and n/33 sensors). We also vary the number of

peer monitoring sensors d in the range [4, 5, 6]. Within each figure, we magnify the behavior of the curves

for a choice of the x-axis in the range [63, 000 . . . , 65, 516], while the y-axis values are selected to grant

visibility to the curve with the lowest values. Note that the lowest value on the y-axis is always provided

by d = 6; this is coherent with the intuition that the bigger the number of peer monitors, the smaller the

probability of compromising our scheme.

In Figure 2(a) the probability of jeopardizing the WSN is not negligible when d = 4, even for a

small network size. However, note that as the number of peer monitoring sensors is at least d = 5, this

probability is always below the value of 0.07, while for small networks (e.g. below 10,000 nodes) this

probability is as little as 0.001. When the number of monitoring sensors reaches the value d = 6, the

corresponding probability is negligible: it is less than 0.00006 for a WSN with up to 10016 nodes, while

increases only up to 0.004 for a WSN with 65516 nodes.

The same qualitative behavior can be observed in Figure 2(b). In particular, when d = 4 and the network

size is less than or equal to 10, 016 nodes, the probability that our protocol does not detect the injection

of bogus data is always lower than 0.01, while this value slowly increases up to 0.06 when considering

65516 nodes. For d = 5, with 10016 nodes the probability to jeopardize the WSN is less than 0.0003,

while it increases up to 0.002 when considering 65,516 nodes. Finally, for d = 6 we have that for each

size of the WSN in the range [256, . . . , 65, 516], the probability ε is below 0.0006

Figures 2(a) and 2(b) support the intuition that the proposed protocol is highly resilient against the

oblivious adversary. Indeed, for a wide set of parameters (for instance, we have assumed the adversary

able to compromise 1/17 of the network), d = 6 implies a very small probability for the oblivious

adversary to be successful in injecting bogus data. Further, we highlight the fact that it is possible to

trade-off the resilience to the oblivious adversary for a slight increase in the size of the peer monitoring

set: A unity increase in the value of d provides an exponential gain in the resilience towards the oblivious

adversary. It should be noted that the resilience of our scheme in the random failure model is equivalent

to the one we obtained for the adversary model.
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Finally, note that an exponential gain is achieved by decreasing the sensor failure probability (fp).

However, fp is not a design parameter (for instance, we use COTS sensors, which come with their MTBF

in the technical specification). This is why we have been conservative in considering such high values for

fp (fp = 2−4, 2−5).
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Fig. 2. Scheme failure probability for d = 4, 5, 6

B. Basic security analysis

1) Confidentiality: Data aggregation can be exploited by an adversary to violate the confidentiality of

the aggregated data, for example by compromising a few nodes close to the BS.

In our protocol, we cope with this threat via encryption using the scheme described in Section IV-A.

Referring to the key setup phase described in Section IV-B, each sensor ui distributes to its neighbors the

secret key ki used to generate the key stream ri. Thanks to this feature, if sensor ui fails, its neighbors

can still provide the random value that should have been used to mask the sensed data. This operation is
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necessary since the BS, like in [4], derives all the masking values from the secret keys ki the BS shares

with sensors and uses these values to decrypt the received aggregate data.

Hence, distributing secret keys to a neighbourhood means that compromising a single sensor will provide

the adversary with a number of keys that is equal to the number of compromised sensor’s neighbors.

However, since in our scheme every and each node add an encryption layer (ra) on the sensed data, the

aggregated data will be still secure, like in [4]. From these considerations the following lemma holds.

Lemma 1: In our protocol, for the adversary to capture q readings, it is necessary to capture a number

of nodes which is at least dq/Me, where M is the maximum size of an active neighbourhood.

The above lemma allows the adversary to chose any q sensors from the WSN. That is, even if the

adversary is able to compromise all the q sensors close to the BS, it will get no more than qM readings,

while in a scheme where no data confidentiality is enforced, this would result in the compromising of the

confidentiality of the aggregated data.

2) Impersonation: Here we turn to the attacks through which an adversary can impersonate a legitimate

sensor node. By cloning a corrupted sensor an adversary could perform the so-called Sybil attack [10]

and insert all produced sensor replicas in the WSN.

In the literature it is possible to find some solutions that deal with the Sybil attack, like [30]; more

recent works aim at better identifying the rationales behind this attack and provide efficient solutions [7]

to cope with it.

Our aggregation protocol natively thwarts this kind of attack. Indeed, if the adversary puts replicas of a

captured sensor in different neighbourhoods from the one the original sensor belonged to, these replicas

will not hold the encryption keys that have been previously shared among sensors; hence, the corrupted

sensor and its replicas can not participate to the aggregation protocol. If replicas are positioned within

the same neighbourhood of the corrupted node, a peer monitoring node can easily detect the attempts of

a sensor to inject several readings in a single time slot.

In case a corrupted node tries to disrupt the computation performed in the WSN by injecting an

implausible value, that is, a value that exceeds a certain range [min, . . . , max], an alarm is going to be

raised; indeed, as described in Algorithm 2, the reading sc provided by a contributor is defined to fall in

the range [min, . . . , max].

C. Discussion on peer monitoring nodes

In this section we discuss on some possible caveats related to the role of peer monitoring nodes.
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A typical example would be for a misbehaving peer monitoring sensor to report false alarms to the BS.

The impact of false positives can be mitigated for example by requiring the source of an alarm to append

(in a verifiable and secure way) its identity. The BS could maintain and increment a tally for those nodes

that falsely reported an alarm and could take the appropriate action to isolate the misbehaving sensor if

the tally exceeds a certain threshold. Note that this solution also requires a mechanism to understand if

an alarm is false. Further, peer monitors could also be the target of attacks. For example, a threat could

be posed by a contributor sensor trying to control its transmission power with the goal to circumvent the

peer monitor; this can be done by modulating the transmission power such that the signal would be strong

enough to be overheard by a peer monitoring set, but too weak to be received by the true aggregator.

Though this would require the misbehaving node to know exactly the transmission power required to

reach each of its neighboring nodes, we consider this attack feasible. However, this attack would still be

detected based on our protocol, since peer monitoring nodes verify the result of the computation performed

by the aggregator, which will not match with the locally computed value. Even if the identification of

the misbehaving node is difficult, an alarm will be raised to inform the BS of the inconsistency of the

aggregated data.

A more sophisticated attack can be mounted when multiple nodes collude. For example, suppose an

aggregator ua and all the nodes in Wa are corrupted. The aggregator could inject bogus data in the

network. The aggregation protocol presented in this paper is inherently d−1 resilient to collusion attacks,

where d is the size of the smallest peer monitor set. If at least one sensor in the set is not corrupted, it

can still notify the BS of the anomalies perceived during each protocol execution.

D. Scalability issues

The number of neighbors a sensor can support is mainly limited by interference and collision issues at

the medium access level. In this section, we investigate the scalability of our scheme with respect to the

network size.

Define x = max{i|fp ≤ 2−i}, then Equation 1 can be rewritten as:

Pr[J ] ≤ 2−xd+log2 n. (2)

Equation 2 reflects the impact that the parameters d (the size of the peer monitoring set that has

the minimal number of elements) and n (the number of sensors in the WSN) have on the resilience to
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failures. Our objective is to study the effectiveness of our protocol as the size of the WSN increases,

while preserving Pr[J ] ≤ ε resilience to bogus data injection.

Let M be the maximum size of an active neighbourhood a sensor can support and fix ε to be the upper

bound on the probability of failure. In the following we study the relationship between the cardinality of

the minimum peer monitoring set and the network size, for a given probability ε.

From Equation 2 we have: Pr[J ] ≤ 2−dx+log2 n ≤ ε, which is true for

dx ≥ log2 n− log2 ε.

Hence, the values d can take on are given by:

M > d ≥
⌈

log2 n− log2 ε

x

⌉
(3)

where M is the maximum size of an active neighbourhood, and the equation on the right provides the

minimum value of d such that our WSN is still ε resilient. In Figures 3(a), 3(b) we plot Equation 3. On

the x axis we represent the network size (in the range [256, . . . 65, 516]), while on the y axis we report

the minimum number of monitoring sensors are required to have at least ε resilience. The two figures

take into consideration different values for the failure probability fp. In Figure 3(a) we assume to have

fp = 2−4. From this figure, we observe that when the network size is less or equal to 16,376 sensors, a

monitoring set of cardinality at least 7and 9 is required to have ε = 2−16, 2−24 respectively. For a network

size between 16,376 and 65,516 sensors, we need a peer monitoring set of cardinality 8 and 10 if we

want to be ε resilient, where ε is 2−16, 2−24 respectively.

The same results hold for the case fp = 2−5, as can be seen from Figure 3(b). Indeed, we have taken

a conservative approach taking into consideration the upper integer part of log2 n−log2 ε
x

, as results from

Equation 3.

From this discussion it follows that our proposed scheme is highly scalable. Indeed, for a WSN

composed of up to 65,516 sensors, for a value of fp = 2−4, 2−5, to assure an ε resilience for ε = 2−16, 2−24,

the number of required peer monitors ranges in [7, . . . , 10]. Note that 10 neighbors is a very feasible limit

on the number of neighbours a sensor can have [12]. Furthermore, this limit can even be augmented if we

assume that peer monitoring sensors are specialized sensors (i.e., they do not act neither as contributor nor

as aggregator); in this case it holds the consideration exposed in V-B about the possibility of decoupling

the physical neighbourhood limit as for the peer monitoring set.
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Fig. 3. Peer monitoring density for failure probability less than ε = 2−16, 220, 2−24

E. Overhead analysis

a) Transmission overhead: Each contributing sensor is required to append an HMAC to each message

destined to each peer monitoring sensor associated to it. Note that this number is in the range [7, . . . , 10],

as shown above, while the size of the HMAC can be limited to 64 bits, as detailed in the following.

Further, note that an aggregator could incur an additional overhead when it acts as a rely node for nodes

that are not in the direct communication range of the peer monitoring nodes. However, rely is just on-hop

limited and possibly required by just a small subset of the nodes (if any) in the peer monitoring set.

Finally, it should be noted that monitoring sensors do not send any messages, unless to rise an alarm.

b) Computational overhead: Our protocol requires contributing sensors to generate the encryption

key and the HMACs. Aggregating sensors are further required to generate the encryption key ki in case

of contributors failures. Peer monitoring sensors carry out the same set of computations performed by the
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aggregator. However, note that computing an HMAC can be considered as lightweight operation.

As opposed to the protocol proposed in [4], our scheme requires the additional overhead imposed by

HMACs and the presence of peer monitoring sensors. These limitations are compensated by the additional

properties of our scheme presented in Table I and by the smaller message size of the aggregated data that

can be represented with fewer bits and that does not require the identity of contributors to be appended.

Finally, recall that the implementation of the HMAC [23] as discussed in detail in [29] would produce an

output of 64 bits only. The energy devoted to compute and to transmit this HMAC has been the subject

of research [34], [25], and its cost has been accepted as sustainable by the vast majority of literature

addressing security issues for WSN.

VII. CONCLUDING REMARKS

In this paper we present a mechanism for data aggregation in WSN that enforces both confidentiality

and integrity of the aggregated data. The proposed mechanism is based on a novel application of peer

monitoring and on a delayed aggregation of sensed data. The security of our scheme relies on the concept of

additive homomorphic encryption and on a lightweight key distribution technique. Moreover, our scheme

is robust against bogus data injection. Resilience to attacks and to random node failures is also provided.

Our aggregation protocol is scalable, and we have shown that the network size can scale up to thousands

of sensors with guarantees on the confidentiality and integrity provided by the scheme. These properties

come at a limited additional cost since the proposed scheme requires only local communications and

leverages lightweight cryptographic primitives.
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