EURECOM

S op h i a A n t i p ol is

Institut Euecom
Department of Corporate Communications
2229, route des @tes
B.P. 193
06904 Sophia-Antipolis
FRANCE

Research Report RR-06-184

Modeling and Analysis of Seed Scheduling Strategiesin a
BitTorrent Network

Pietro Michiardi, Krishna Ramachandran and Biplab Sikdar

Tel: (+33) 493 00 26 26
Fax : (+33) 4 93 00 26 27
Email : { Pietro.Michiard} @eurecom.fr{ramak,sikdab@rpi.edu

institut Euecom’s research is partially supported by its industrial members: Bms/@écom,
France Bécom, Hitachi Europe, SFR, Sharp, ST Microelectronics, SwisscemasTInstruments,

Thales.

Abstract

BitTorrent has gained momentum in recent years as an effective mediss of
tributing digital content in the Internet. Despite the remarkable scalability and
efficiency properties that characterize BitTorrent in the long haul,raégéudies
identify the source of the content as the main culprit for the poor perfocmafithe
system in a transient regime where user requests for a popular cowmipsthe
source and in case of high node churn. Our work models the sched@angjahs
made at the source (called teeed for selecting which pieces of the content to
inject in the system through a stochastic optimization process and providesan
lytical framework to compare different strategies. We define a new pigleeton
algorithm (called proportional fair scheduling, PFS) that incorporatesséed’s
limited vision of the system dynamics in terms of user requests so as to ensure
a better content distribution among the users. We prove convergendeSoaid
compare its short and long term performance against the mainline BitTament
plementation and the “smart seed” technique recently introduced in [9]reBults
show that PFS induces substantial improvements on both system perfesrbgnc
decreasing the download time at the users, and system robustness pgeirdy/-
namics, by quickly reacting to sudden changes in the request patterresusedls.

1 Introduction

Peer-to-peer (P2P) networks provide a paradigm shift from the tradit@ient
server model of most networking applications by allowing all users to abbts
clients and servers. The primary use of such networks so far hastbeswmap
media files within a local network or over the Internet as a whole. Amongentirr
solutions deployed in the Internet, BitTorrent (BT) has received a lattteintion
from the research community because of its scalability properties and its ability
to handle the so calleflash crowdscenario, a transient phase characterized by
a sudden burst of concurrent requests for a popular content. Wowecent re-
sults [1-3,9, 11] have revealed some inefficiencies of BT that transiate ipro-
longed transient phase, indicating the source of the content (callsgédeas the
main cause of a disproportionate distribution of the content among the daivnloa
ers. In this paper, we motivate the need to incorporate intelligence intowaigd
file pieces at theseedand develop an analytic framework wherein the impact of
the chosen strategies can be studied for a BT-like P2P network. Wesg@@po
novel scheduling policy called Proportional Fair Scheduling (PFS) thatoves
the content distribution process based both on past scheduling dedsidren
the actual distribution of content requests as seen by the seed. Usingplosed
analytical framework we compare our scheduling policy with the one useckin th
mainline BT implementation and with the best known scheduling improvement
called “smart seed” [9]. Through numerical evaluation we show that ®Fer-
forms previous policies in the short term. For the long term analysis we built a B
simulator and show that our scheduling algorithm achieves a fair conteribdis
tion, and reduces the time needed for the seed to inject the content in the syste
To summarize, our contributions in the current work can be stated as follows

e Present an analytic framework wherein different scheduling policiasea
modeled and their behavior analyzed.

e Propose a new algorithm, called Proportional Fair Scheduling (PFS) for
piece distribution that performs better than the current proposed safgdu
modification for the seed.

1.1 BitTorrent overview

Before proceeding further, we provide a brief system overview. B3 2P
application that replicates the content by leveraging the upload bandwidltte of
peers involved in the download process. Each unique content in thersistes-
sociated with atorrent file, and is independent of the remaining torrents in the
system. What this implies is that a peer’s view of the BT system is confined to
a subset, termed theeer set of all the hosts associated with a specific torrent.
Peers wishing to download a particular content obtain the correspondingnt
file from a web server and use a centralized entity called the tracker to tallec
random subset of hosts currently active in the torrent. Peers involvaddrrent

3

cooperate to replicate the file among each other using swarming technigittes. B
Torrent achieves scalable and efficient content replication by empldyenghoke
and rarest first algorithms. The former is used for peer selection, i.&hvgeer

to upload to, while the latter for selecting the file part scheduled to be trausfer
Finally, a peer in BitTorrent exists in two statesedstate wherein it has the entire
content orleecherstate wherein it is in the process of downloading the file. Note
that we have limited our description to details relevant to the current workawel
glossed over several technicalities of the BT protocol, which may be foujrd.

The rest of the paper is organized as follows: in Section 2 we surveiedela
literature, while in Section 3 we discuss on the rationale and motivations of our
work. In Section 4 we present our analytical model that emulates the sarimu
tent scheduling strategies for a seed, Section 4.1 provides an analys®attibn
and addresses issues such as stability and convergence of thelisghstategies.

We present our results in Section IV and draw relevant inferences fihem and
finally summarize the work in Section 7.

2 Reated Work

In recent times BitTorrent has received substantial interest from seareh
community, with several modeling as well as simulation studies aiming at improv-
ing its performance. Mathematical models for BT are presented in [3-34] la
fluid model is used to characterize the performance of BitTorrent like r&saia
terms of the average number of downloads and download times. The auntf®jrs
propose to improve upon the aforementioned modeling work using a stoctii&stic
ferential equation approach, by incorporating more realistic BT netwehatior
in their study. A Markovian model of a BT network was studied in [3], wiretke
authors propose a novel peer selection strategy to improve download toes}
similar lines is another modeling work, [10], wherein a branching procassd
Markovian model was formulated to study BitTorrent like networks.

Simulation based studies are the focus of the works presented in [1,2]6,8
In [1], the authors investigate the efficacy of the rarest first and tbkechlgorithms
while [2] documents the impact of various system parameters on the netparks
formance. Along similar lines, [8] presents the dissection of the perforeahc
the mechanisms and algorithms used by BT over a five month period. In [6], the
authors make the case for a network coding scheme to improve contenatigpljc
while in [9], the authors study the performance of BT by employing metrich suc
as file download time, link utilization and fairness.

A common feature shared by the literature surveyed thus far is the attempt at
modeling the BT system in its entirety. As a result, not all facets pertaining to
efficient content distribution are explored. For instance, the first stégsrdirec-
tion is to ensure that the initial seed is able to injectdhé&re content among the
leechers at the earliest and this calls for specialized scheduling algorithmf:-

tunately, with a wholistic approach, this is difficult to accomplish. In this curren
work we restrict our attention to theeeds, and study the impact of scheduling de-
cisions at their end on the effectiveness of content distribution in thersy&this

is elaborated further in the following section.

3 Rationale and motivation

Typically when content first appears in a BT network, it is stored at aleing
host, i.e. there is a single seed. From here on, the lifetime of a torrent can be
broadly classified into three stages: the initial flash crowd or transiesiephlibere
the seed experiences a huge volume of concurrent requests fontieatimllowed
by the steady state phase where the system dynamics (especially thé arriva
requests for content) are regular and finally the “dying” out phasehwiniarks the
point where a substantial portion of the leechers complete downloadingitent
and leave the system. Note that, it is not binding for one stage to necessarily
succeed the other. For, instance a torrent could withess multiple iteratiadhe of
flash crowd and steady state phases before eventually dying out.

The motivation for the current work stems from the findings of various simu-
lation studies [2,9, 11] revealing an inefficiency in the performance optbocol
during the flash crowd phase of a torrent arising from a disproportgodistribu-
tion of content among the leechers. It was found that in the flash crogrhso,
often the distribution from the seed becomes a bottleneck in the replication pro-
cess. In such a scenario, a lack of intelligence during the upload jgratt®e seed
could result in some of the pieces not being replicated at all. This phenanieno
termedstarvationand can adversely impact the torrent's performance in the fol-
lowing manner: consider the scenario where after a certain timetjsélye seed
decides to go offline. At such time, if there are certain parts of the file that inat
yet been replicated among any of the leechers, then the torrent wouitbeirg
die out since none of the leechers would be able to complete the download. Ev
otherwise, a disproportionate distribution of the parts would result in a pgeld
flash crowd scenario since the leechers have nowhere else to rdwipatts from.

In other words the seed and the leechers hosting the rarer parts wosichbgped
with a huge volume of upload requests. This problem if further magnified if the
seed is bandwidth constrained. Thus, an improved distribution of contehé a
seed’s end would serve to improve the performance of the torrent byakng

the download time of the leechers, since there is a bigger pool of leecktbriher
same piece.

A relevant doubt at this stage would be to question the rationale behind distin-
guishing between scheduling decisions at a seed and those at a |decbtrer
words,why would not a common scheduling algorithm work for botth@ answer
to this lies in the difference between the view of the torrent as seen by alemuth
a seed. While the leecher has complete information on the part distribution among
the peers in it's peer set, this knowledge is hidden from the seeds. Thimriy

due to a mechanism used to reduce the control message overhead naridEhe
suppression techniqueHAVE messages are used to disseminate information on
the piece distribution among leechers: each time a leecher finishes to dovenload
piece, she will inform all peers in her peer set about the new piece hiliylaThe
HAVE suppression technique inhibits the transmissioRAVE messages to those
peers that currently have a replica of the announced piece. Thequarse is that
seeds will have no information on the piece distribution in her peer set. tn fac
in the currentmainlineimplementation of the BT protocol, a seed simply replies
to piece request originated at the leechers without any scheduling deflisince

the name random scheduling (RS) used hereafter). Thus, lack of @l gludgpshot
constrains a seed to base scheduling decisions on it's own past histogeinto
improve content distribution and hence the motivation behind the curret wor

The endeavor in the current work is arrive at a mathematical framevesr&nic
in nature so as to facilitate the performance quantification of various stthgdu
strategies that could be implemented at the seed. In this paper we try amdsddr
the following problem:How best can a seed incorporate the limited view of the
BT system into its scheduling decisions so as to ensure better content diisiribu
among the downloaders?

To this end, as a part of their simulation study of BT, the authors in [9] mepo
the local rarest first (LRF) policy, termed “smart seed” scheduling pols an
improvement over the current scheduling scheme. However, the @mdpateme
is not receptive to the system dynamics, i.e. leechers entering and leagitay-th
rent, and further, the optimality of such a strategy is not guaranteed. Ipdpist,
we provide a theoretical grounding for the problem through a framelwasged on
stochastic approximation algorithms. In particular, we compare the perfagnan
of our scheduling strategy, the proportional fairness scheme (Pk8)h& current
proposed modification, local rarest first (LRF), and theisting policy, random
scheduling (RS), currently used in thainlineBT client.

4 Analytical Framework

In this section, we present our analytic framework based on stochagpticxap
imation to study the performance of piece scheduling decisions made at the see
While the framework is generic in nature and applicable to study a large diass o
scheduling policies, for illustrative purposes we focus our discussiatharacter-
izing the proportional fairness (PFS) and the LRF schemes. In thentseetion
we present a detailed overview of incorporating the PFS scheme into the-fra
work while in Section 4.2 we outline the modeling of the LRF scheme. The gist of
the two schemes is presented below:

e LRF: Inthis policy users are served on a first come first serve basechers
request the seed forseetof parts (RB) and the seed uploads the least served
piece amongsRkB.

e Proportional Fairness Scheme (PFS): In this scheme, the seed takes into
account the requests coming in for each part and the correspondstg pa
throughput and uploads the piece with the maximum ratio of the two.

Note that theexistingscheduling algorithm (RS) is purely random in nature
hence we do not model it in the current work.

Before proceeding with the description of the model, we outline our assump-
tions: The content to be replicated is divided iptequal parts and is stored at a
single seed. The seed is modeled by a single server queue with no buffer. space
Time is slotted in intervals with the granularity of each round chosen to accommo-
date the transfer of a single file part. For the sake of simplicity, in the cuwerk
we allow peers to upload to 1 other randomly selected peer, as opposedutithe
fledged implementation wherein 4 peers are selected using the choke alganithm.
particular, the seed serves only one part in a round, with the decisiorequigbe
to be uploaded in the next round made based on the requests that aring ttie
currenttime slot. The peer satisfying the scheduling criteria is served in the next
slot while the rest of the requests are dropped. The above assumptoasea-
sonable mapping to a bandwidth constrained seed where it makes sendie&bale
the entire bandwidth to serve a particular request instead of increasitejeney
by dividing it.

Let the request vector at the end of sto{start of slotn + 1) be represented
asR(n+ 1) = [pt1, 72041, »Tpnt1], Wherer; ,, o1 denotes the number of
times part; was requested for in round In other words, each entry iR(n + 1)
represents the number of leechers requesting for that particular pangdhe
previous round, i.e. round. Let the throughput vector be denotedB&) =
[t1nst2n, -, tpn], Wheret; , represents the number of times pawas served
in n rounds. Similarly, leB(n) = [61 5,62, , 0] denote the vector of sum
of requests for the different parts, each time it was served, averagadhe past
n rounds. The average throughput and request rate foripater n rounds are
defined as follows:

Yo Lik D ket Tiklik
z,n - n 97,,77, - n
wherel ; is an indicator variable equal to 1 if paris scheduled in round
and 0 otherwise. Thus, at the end of each round, each entry in vécdoid? can
be updated as follows:

Oint1 = Oin+en[lint1rint1 — bin) (1)
Z,n—i—l = Z,n + €n [Hi,n—o—l - ,Ti,n] (2)
with I; ,+1 as explained above ang = #1 Given the above system pa-

rameters, the seed scheduling algorithm we propose (PFS) can be suetheiz
follows:

e Among the non-zero request entries that arrive in a round, selecpénat
maximizing the following ratio:

arg .max Tim+1

If there are multiple parts satisfying the above criterion, break ties arbitrarily

Here,d is a constant arbitrarily close to zero and is chosen to avoid the divide
by zero error in the initial stages of the torrent when the throughputs for
nearly all the parts are close to or equal to zero.

¢ Upload the chosen part from the previous step to the requesting pesn,Ag
break ties arbitrarily

It is quite natural to question the soundness, be it theoretical or pracifcal,
formulation as in Equation (3). The proposed format can be justified if theead
replication process were to be viewed, from a seed’s perspective yasant of
the utility maximization problem. Note that in a BT system, the onus is primarily
on the seed to ensure the spread of content among the peers in the systisia T
seed seeks to maximize the replicas of each piece among the leechers efwtdéher
it is reasonable to assume that the utility function chosen is concave in nature.
this context consider the utility function to be the sum of the logarithm of aeerag
number of requests of the individual pieces, i.e.

U(9) = i log(6; + d) (4)

Then it can be shown [13] that for this particular choice of utility maximiza-
tion, the policy outlined in Equation (3) yields optimal results. We further note
that the seed is not constrained to choose the policy of Equation (3). easpn-
able representative concave function can be chosen as the utility fuactibthe
scheduling policy appropriately tailored to obtain optimal results.

4.1 Convergence Analysis

The formulation of Equations (1) and (2) is in the framework of stochastic ap
proximation algorithms [12]. Notably, under certain assumptions, which ean b
shown to be valid in a BitTorrent scenario, it can be shown that the stticlags
proximation algorithm in Equation (2) can be described llgi@rministic mean
field ordinary differential equation (ODE) system. This enables us tcackenize
the behavior of the proposed algorithm and is also a useful tool to stucgymep-
totic properties such as the long term throughput of the respective filepiém
important consequence of the convergence proof is that concerrarggahility of
the system. For example, a scheduling policy that converges asymptotically als

characterizes a stable system. We now outline the assumptions requiree for th
ODE convergence:

e Stationarity of the request distributiodR (n),n < oo}. Note thatin a BT
system, the requests generated by leechers for the missing pieces depend
only on the current distribution of the parts among each other. For instance
if a system snapshot at timievere to be translated to a different instant, say
t1, the pattern of requests generated would be similar. Define the stationary
expectation w.r.t. the request distribution for paais

hi(8) = E[H{ﬁZﬁ},Vjii] (5)
e Lipschitz continuity offzi(.)7 1 < ¢ < p. We demonstrate this with the help
of a simple case where the file consists of two parts and the joint probability
density is given byp(r;,72). Then, for part 1, Equation (5) can then be
simplified as

hi(0) = /H{gzw}p(rl,rz)drldrg (6)

wherew = (0; +d) /(62 + d). Note that in the above equation we have used
a continuous density function for the request generation processh vghit

fact discrete. This is because, it has been shown in [14], that thestqu
for the parts can be approximated by a Gaussian distribution which is con-
tinuous. In the current work, we employ the same approximation and hence
the formulation of Equation (6). Now, Eqn. (6) is Lipschitz continuous with
respect taw, since the area of the region where the indicator function is not
zero is a differentiable function af [13]. Similar is the case fohy(6).
Further, the derivatives df; (6) andh,(6) will be continuous ifp(r1, r2) is
bounded and continuous.

e Bounded density dR(n). This is trivially satisfied since the number of users
in a BT system is finite thus ensuring that the requests generated durimg eac
round of time remain bounded.

Under the above assumptions, the stochastic approximation algorithm of Equa
tion (2) can be approximated by the ODE given by:

zj;PFS _ E[I[{ . TPFS (7)

T4 T ..
g1d, 26j+dj }Vﬁél] !

4.2 Modeling other policies

The analytic framework provides a generic setting wherein a wide class of
scheduling policies can be modeled and quantified. We illustrate the robsistnes
the framework by modeling the LRF scheme in [9] as follows:

9

e For each piecein the request blockRB) setr; ,+1 =1
e Choose piecesuch that: arg mgxzg {Mﬁ} ; break ties arbitrarily

e Upload the piece from the previous step

The corresponding throughput formulation for par?;“%¥", is then given by:

LRF LRF LRF
Tiner = Tin™ Fenllit s o yvjm = Tin” | (8)

and the equivalent ODE by:

TERE = By s 1yl = T ©)

0;+d; = 0;+d;

5 Implementation details

In this section we provide some more details on the BT protocol and discuss
on practical implementation issues that may arise when implementing the PFS al-
gorithm in a real BT client.

The protocol that governs the piece exchange between peers in BitToan
be trivially described as follows:

e Any peer wishing to download a part of the file unicast a control message
calledl NTERESTED message, to announce the willingness to download a
part from a remote peer;

e A remote peer schedules one or more upload opportunities (based on the
peer selection algorithm that we will not detail in this paper) and informs the
selected peer through a control message calNOHCOKE;

e The unchoked peer selects a piece to download (based on the piet®selec
algorithm) and unicastsREQUEST message to the remote peer;

e Finally, the remote peer uploads the part to the requesting peer.

Peer scheduling decisionise. UNCHOKE messages are sent, are made every 10
seconds with one exception, as described for example in [1].

The alternative scheduling policy for the seed proposed in this papdreciamn
corporated into present BT clients with the minimal of changes and incurrinig min
mal overhead. Note that leechers in a BT system can distinguish betwestshesel
non-seeds, i.e. a leecher knows the seeds in it's peer set through thehiitth
shake procedure wherein BT clients exchange a digest of their piedaility
the first time a connection is established. Thus, wheh MRERESTED message
is sent to a seed, the leecher appends the piece identifier it is looking &osjrim-
ilar way it is done for a regulaREQUEST message. Once the seed has collected

10

a sufficient number of requests in a round, it executes the above algaiid un-
chokes the leecher that satisfies both the piece scheduling and the Ipedulsg
criterion. Note that the change is madely to thel NTERESTED messages sent

to the seed, the format of otheNTERESTED messages (sent to leechers) remain-
ing unaltered. Thus, the size of ealcNTERESTED message to a seed increases
by a byte and while the message complexity remains invariant, the byte overhead
increases, albeit minimally.

6 Reaults

In this section we present results comparing the efficiency of the PF#sche
against LRF. To prove the robustness of the proposed frameworguasmtify the
performance gains obtained in the short term as well as in the long runth&or
short term analysis we perform a numerical evaluation of the PFS slingadis-
ing the stochastic approximation algorithm as described in Section 4. On the othe
hand, we perform the long term evaluation using a custom simulator of thg®T s
tem. The rationale behind this choice lies in the lack cdalistic characterization
of the piece request ra@(n) = [rin, 2,0, - ,7pn) t0 be used in the analytical
evaluation presented in Section 4.1. Our implementation, which is outlined in Sec-
tion 6.2, also provides a global perspective of the system, as opposezidedt's
perspective offered by the analytical model.

6.1 Short term behavior

Since the primary objective in the initial stages of a torrent is to minimize
starvation of pieces, a natural benchmark for comparing the policies visutd
measure the number of starved pieces at a certain point of time underaawsh p
Here, we choose to make the comparison afterunds, where denotes the num-
ber of pieces the content is divided into. The rationale behind this is as &llow
since we assume that the seed schedules one piece per round, in theagedl
would requirep rounds to ensure that the file in it's entirety is present among the
leechers. Figure 1 graphs the performance of the various policies iragiediowd
stage. In Figure 1(a), the number of starved parts of a 30 part fileletteg for
each policy over 100 runs of our algorithm while Figure 1(b) quantifiesripact
of the file size on the number of starved parts. Each point on the graph.ci®)
is an average of 100 runs. As seen from the plots, the proportionatdheme
offers significant gains over the other two policies. Even with increasiegities,
the performance degradation is not very substantial. In fact, for a filsisting of
100 parts, the ratio of starved pieces in the “flash crowd” phase is ab®tdr PFS
and LRF, while it is around 1:18 when comparing PFS and the RS schemes. We
believe the better performance of the algorithm could be attributed to the fotjowin
factors:

e The seed makes a scheduling decision taking into acadurnhe requests

11

that are made in a particular round, unlike LRF and RS where users are
served in a first come first served manner. For instance, if a large muofbe
leechers request for a particular piece there is a higher probability efrigh

a rare piece as compared the rarity of a piece requested by a single user.

e In an open BT system the local rarest piece need not reflect reatity, thie
seed’s perspective, due to leechers entering and leaving the systers, Th
when a seed bases its scheduling decisions only on its past history like in the
LRF case, due to peers’ dynamics a seed may have a stale vision of what
is rare and what is not in the system. The PFS scheme accounts for this by
using the number of requests for a piece as the system’s indicator of rarity
and makes the scheduling decision accordingly.

Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes
15 0 : ; : ; . .
\ | —T
A PFS
| | | _
lr 1 | (I 351 RS A
i I W Y | 0 /x/
| | £ ol T
n 8 A
2 >
& _
=% ° P
R} O 25¢ s
[c S
z 5 -
s L)
1723 wn 20 *
2 -
o Y— -
e 1) -
2 = 15 —
b s
S /
S o) o
= E
>
Pz
L SM
. A A A A A AR
e ,

96 100 30 40 90 100

50 60 ';0 8‘0
Number of parts (file size)

(@) (b)

Simulation Run

Figure 1: Performance evaluation in the flash crowd phase

6.2 Longterm behavior

As a final validation of our theoretical formulation presented in Egn (3), we
present a simulation comparison of the proposed PFS algorithm againsRthe L
scheme, especially the behavior over long time periods. Since we only modlify th
seed scheduling algorithm, it only makes sense to quantify the impact within the
seed’s peer set and not globally. The main objective in the long term isteryre
a high variance in the number of replicas of each part, i.e. prevent abgisgion-
ate piece replication in the peer set since it is the root cause of all problems.
other words the scheduling process should be “fair” to the individualegie@he
intuition behind this is that ensuring a balanced replication of the pieces ¢@an he
improve download times since there is a higher level of redundancy andlialso
tribute the load more evenly among the leechers. As a measure of the dégree o

12

fairness, we employ the Max-Min Fairness Index [15] given%%, where
z; denotes the number of replicas of padt the end of a rounth the seed’s peer
set Before discussing the long term results, we provide a brief descripfitimeo
custom simulator we designed.

6.2.1 BitTorrent Smulator

We developed a synchronous simulator working in rounds wherein we im-
plemented both seed and leecher algorithms following the BT specification. We
then implemented two scheduling policies at the seed side, the PFS and the LRF.
The only limitation we imposed on the simulator follows the one of the analytical
model: only one peer is unchoked in each round. The peer set siz@éaras set
to the default value of the mainline BT client, that is 80 peers. To quantify the im-
pact of the scheduling decisions, we assume that leechers that finistiodoling
leave the torrent, i.e. there is a single seed in the system at all times.

It is worthwhile noticing from the discussion in Section 5 that, as compared to
the LRF scheduling policy which requires modifying both the seed and thbdeec
side of BT as well part of the protocol specification, PFS schedulindbesseam-
lessly integrated with a simple modification at the seed side only.

6.2.2 Simulation results

We compare the LRF and the PFS scheduling algorithms assuming the content
to be split inp = 150 pieces. We simulate the presence of one seed only in the
system and study two representative and realistic scenarios: the fiese ilie
torrent experiences a heavy flash crowd and the second indicat®aknt with
a high churn rate.

To simulate the flash crowd setting, 160 peers are injected into the system in
the first round, after which no further joins are allowed. The objectiesehs
to study the algorithm’s sensitivity toward achieving a balanced replication in the
wake of a huge volume of requests. Note that the Max-Min Fairness plots ca
also be used to infer and compare the download times experienced by therkeec
Since we assume that leechers with the entire content depart, thé timhen the
graph reaches one also denotes the instant whig¢he leechers in the system have
finished downloading. Therefore, the faster the graph peaks to anbetter it is
in terms of fairness as well as download times. In Figure 2(a) we plot the Max
Min Fairness index versus time (in simulation rounds) for the flash crowabsize
described above. When using PFS schedulings 159 while for the LRF case
T = 219. A similar trend was observed over multiple repetitions of the experiment,
showing an improvement of the total time to download the content in favor of PFS
whereas this improvement was even more pronounced in the case of snedler fi
Further, as shown in Figure (3), the time requireddtirthe 160 nodes in the flash
crowd scenario to finish downloading the content grows linearly with thesase
in the file size for PFS, while for LRF the behavior was quite erratic with a high

13

variance in the download times.

[N
T
5N
T

o
©
T
o
©
T

—e—PFS

o
=)
T
o
2]
T

—v— LRF

e
3
T
o
~

o
o
T
o
o
T

T=219

o
~
T T
o«
~

o
w
T
o
w

Max—Min Fairness Index
o
~ @

Max—Min Fairness Index
°
(%,

—e— PFS |

o
[N
T

o o

—¥—LRF |4

o

o i

120 140 1(‘30 1é0 260 2‘20 24‘10 0 100 . 20.0 . 300
Time (simulation round) Time (simulation round)

(@) (b)

o
T

Figure 2: Simulation results for the long term analysis.

In the second simulation study, we focus on the responsiveness afuticige
decisions at the seed when substantial variations in the population ofdumeens
loading the content arise, i.e. a system with high churn. In particular, wsider
80 peers joining the system at round 1, then 30 randomly chosen peédrgjldze
system at round 150, and finally 80 new peers joining the system at 2athdAl-
though both PFS and LRF scheduling reach the highest fairness irigexe 2(b)
clearly shows that PFS reacts consistently faster to peer dynamics asredngpa
LRF. Similar results (not reported due to lack of space) have been obtitéone
different runs of the same scenario.

7 Conclusion and Future Work

In this work, we motivated the need for improved scheduling algorithms at the
seed in a BT system and quantified the performance gains obtained thaaeAq
analytical framework to model such algorithms was presented and a resel s
scheduling strategy to achieve better content replication was proposedugh
numerical evaluation of the model as well as simulations the improved perfeaman
of the proposed PFS algorithm over existing strategies in the literature (bRF a
the existing mainline random scheduling schemes) was demonstrated. As a natu
ral extension to this paper we will assess the impact of PFS on a real Bititorr
network through measurements using modified clients deployed on Planet Lab

14

500

N
al
=]

n

o

=]
T

=

o

=]
T

Download Time (number of rounds)

I3

60 80 100 120 140 160 180 200
File Size (number of parts)

I
[=)

Figure 3: Impact of file size on performance of PFS and LRF.

References

[1] A. Legout, G. Urvoy-Keller and P. MichiardRarest First and Choke Algo-
rithms Are Enough,ACM SIGCOMM/USENIX IMC 2006, Rio de Janeiro,
Brazil.

[2] G. Urvoy-Keller and P. Michiardijmpact of Inner Parameters and Overlay
Structure on the Performance of BitTorretEEE Global Internet Symposium
2006, Barcelona, Spain.

[3] Y. Tian, D. Wu and K. W. Ng,Modeling, Analysis and Improvement for
BitTorrent-Like File Sharing NetworkdeEE INFOCOM 2006, Barcelona,
Spain.

[4] D. Qiu and R. SrikantModeling and performance analysis of BitTorrentlike
peer-to-peer network®CM SIGCOMM 2004, Portland, OR, USA.

[5] B. Fan, D-M. Chiu and J. C. S| LuGtochastic Differential Equation Approach
to Model BitTorrent-like P2P SystemEEE ICC 2006, Istanbul, Turkey.

[6] C. Gkantsidis and P. Rodriguedetwork Coding for Large Scale Content Dis-
tribution, IEEE INFOCOM 2005, Miami, USA.

[7] B. Cohen,Incentives Build Robustness in BitTorreévtprkshop on Economics
of Peer-to-Peer Systems 2003, Berkeley, USA.

[8] M. lzal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. HamracaL.
Garces-Erisd)issecting BitTorrent: Five Months in a Torrent’s LifetiniRAM
2004, Antibes, France.

15

[9] A. Bharambe, C. Herley and V. N. Padmanabhanalyzing and Improving
a BitTorrent Network’s Performance MechanismiEEE INFOCOM 2006,
Barcelona, Spain.

[10] X. Yang and G. de Vecian&ervice capacity in peer-to-peer networkskE
INFOCOM 2004, Hong Kong, China.

[11] F. Mathieu and J. ReynieMissing Piece Issue and Upload Strategies in
Flashcrowds and P2P-assisted Fileshariritgchnical Report, ENS, France.

[12] H. J Kushner and G. Yirstochastic Approximation Algorithms and Applica-
tions, 2nd ed. Berlin, Germany: Springer-Verlag, 2003.

[13] H. J Kushner and P. A Whitingzonvergence of Proportional-Fair Sharing
Algorithms Under General ConditiondEZEE Transactions on Wireless Com-
munications, Vol. 3, No. 4, July 2004

[14] D. Erman, D. llie and A. PopescijtTorrent Session and Message Models,
ICCGI 2006, Bucharest, Romania.

[15] B. Radunovt and J.Y. Le Boudedh Unified Framework for Max-Min and
Min-Max Fairness with ApplicationsTechnical Report, EPFL, July 2002

16

