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Now using Little’s formula, since the arrival rate is 2=3n, we conclude
that

E[D4] = E[A]E[ ~Q] =
3n

2
O(logn) = O(n logn):

VI. CONCLUSION

In this correspondence, we studied the maximal throughput scaling
and the corresponding delay scaling in a random mobile network with
restricted node mobility. In [2], it was shown that a particular mobility
restriction does not affect the throughput scaling. In this correspon-
dence, we showed that it does not affect delay scaling either. In partic-
ular, we show that delay scales asD(n) = �(n logn) for a network of
n nodes, which is the same as the delay scaling without any mobility
restriction. This was understood to be a consequence of the fact that
in spite of an apparent restriction, essentially node mobility remains
unchanged in the sense that: i) each node meets every other node for
�(1=n) fraction of the time with only �(1) other neighboring nodes;
and ii) the intermeeting time of nodes has mean of �(n) and variance
of O(n2 logn).
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Abstract—This correspondence analyzes the behavior of code-division
multiple-access (CDMA) systems with correlated spatial diversity. The
users transmit to one or more antenna arrays. The centralized receiver
employs a linear multiuser detector. We derive the performance of a
large system with random spreading sequences and weak assumptions on
the flat-fading channel gains—the fading may be correlated and contain
line-of-sight components. We show that, as the number of users and the
spreading factor grow large with fixed ratio, the performance of the system
is fully characterized by a square matrix with size equal to the number
of receiving antennas and multiuser efficiencies are not identical for all
users. Our general result includes the analysis of CDMA systems with
spatial diversity discussed by Hanly and Tse (’01) for independent channel
gains in case of both micro-diversity and macro-diversity and provides a
rigorous proof for the macro-diversity case missing in their work. We also
show that to any scenario with correlated Rayleigh fading, there exists
a macro-diversity scenario with independent Rayleigh fading which is
characterized by the same signal-to-interference-and-noise ratio (SINR).
Furthermore, sufficient conditions are given which force the multiuser
efficiencies of all users to become identical also in case of statistically
dependent channel gains.

Index Terms—Antenna array, code-division multiple access (CDMA),
correlated channels, large system analysis, line-of-sight components,
multiuser detection, random spreading, resource pooling, spatial diversity.

I. INTRODUCTION

Modeling of spreading matrices in code-division multiple-access
(CDMA) systems by random matrices has been extremely fruitful
from both the theoretical perspective of system analysis, see the
seminal works of [2], [3], and [4], and from the practical point of
view of receiver design, e.g., [5]. In the large system limit, as both the
transmitted signals K and the spreading factor N tend to infinity with
a fixed ratio, certain functions of random matrices show self-averaging
properties. This allows for the description of the system in terms of
few macroscopic system parameters and provides deep insights into
the system behavior. Modeling the spreading matrices as random
matrices, Hanly and Tse [1] analyzed a CDMA system consisting of
users transmitting to a multiuser receiver with spatial diversity. The
spatial diversity can be obtained by multiple antenna elements at a
single base station, or by combining of signals received at multiple
base stations. These two cases of spatial diversity are referred to as
micro-diversity and macro-diversity, respectively. This celebrated
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TABLE I
ASYMPTOTIC CONSTANTS CHARACTERIZING CDMA SYSTEMS WITH CORRELATED AND INDEPENDENT SPATIAL DIVERSITY

work covered many interesting aspects of CDMA systems with spatial
diversity.

• There is a simple relation between the degrees of freedom in-
troduced by spatial diversity (L receiving antennas) and the de-
grees of freedom in frequency given by spread-spectrum tech-
niques (spreading factorN ): the multiple-antenna system behaves
like a system with a single receive antenna but with spreading
factor multiplied by the number of receiving antennas, and with
the received power of each user being the sum of the received
powers at the individual antennas. This behavior is known as the
resource pooling effect. It shows the possibility to trade bandwidth
(spreading factor) for the number of antennas and vice versa ac-
cording to the peculiarity of the communication system.

• The effect of a single interferer on the user of interest is captured
by the concept of effective interference.

• A power control algorithm, the power-limited capacity region for
finite number of classes of users, and the interference-limited user
capacity are defined.

The work in [1] is based on the performance analysis of linear mul-
tiuser receivers under the assumption that the spreading sequences are
Gaussian and the random channel gains are circular symmetric and in-
dependent for all users and antennas, and for any user the gains to all
antennas are identically distributed. The analysis does not span cases
of practical interest like multiple-antenna element systems with corre-
lated channels and/or line-of-sight components.

The pioneering works in [6] and [7] on antenna arrays at the trans-
mitter and the receiver promise huge increases in the throughput of
wireless communication systems. Therefore, they motivated the flurry
of a rich output of works that study the capacities of such systems
in more realistic situations. In this stream are works that analyze
the effects of channel correlation [8]–[14], line-of-sight components
[15]–[17], multiple scattering [18], and keyholes [11] (this list does
not claim to be comprehensive). Fading correlation and line-of-sight
components were found to affect channel capacity severely. It is
natural and of practical interest to consider their effects also in CDMA
systems with spatial diversity.

In this correspondence, we consider a general framework with one
or more antenna arrays at the receive side including combined micro-
and macro-diversity scenarios. The transmitting users may use mul-
tiple-element antennas, but need not do so. The channel gains may be
correlated and contain line-of-sight components, i.e., their mean may
be different from zero. The analysis is based on the assumption of in-
dependent random spreading. Our general result includes the results in

[1] as special cases. Additionally, we provide a rigorous proof of the
results for the macro-diversity case, only conjectured in [1].

In the micro-diversity case with independent channel gains analyzed
in [1], the system behavior is captured by the multiuser efficiency, a nor-
malized signal-to-interference-and-noise ratio (SINR) defined in [19],
conditioned on the fading state of the user of interest. The multiuser
efficiency is shown to converge to a deterministic constant in the large
system limit. In the macro-diversity case with L receiving antennas,
L constants, a1; a2; . . . ; aL, characterize the system. With correlated
channel gains, we show that the large system behavior is captured by
a deterministic positive definite Hermitian matrix AAA with size equal to
the number of receive antennas.

Table I compares the scenarios investigated in [1] with the general
case considered in this work. The results in [1] are revisited in the light
of the general results so that all scenarios are represented by a matrixAAA.

• In the micro-diversity scenario with independent channels, AAA
is the identity matrix multiplied by the constant multiuser effi-
ciency a.

• In the macro-diversity case with independent channels, AAA is a di-
agonal matrix.

In this contribution, we consider three linear receivers corresponding
to different levels of knowledge of the interference structure and noise
at the receiver.

• Linear minimum mean-square error (MMSE) receiver, which re-
quires a complete knowledge of the spreading sequences and the
channel gains of the interferers.

• Single-user Bayesian receiver, which assumes only a statistical
knowledge of the spreading sequences and the channel gains of
the interferers;

• Single-user matched filter (SUMF) receiver. In this case, the re-
ceiver has no information about noise and interference.

Thanks to the assumption of independence among the chips, the anal-
ysis shows that these linear receivers are not affected by channel corre-
lation due to coupling effects among transmitting antennas and suffer
only from channel correlations due to coupling effects among receiving
antennas. For large CDMA systems without receive antenna diversity,
the multiuser efficiency fully characterizes the system since it is iden-
tical for all users. In contrast, we show that the multiuser efficiency
in CDMA systems with spatial diversity changes from user to user, in
general. Additionally, we give sufficient conditions under which also a
system with linear MMSE at the receiver, spatial diversity and statis-
tically dependent channel gains is characterized by a unique multiuser
efficiency.
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The single-user Bayesian receiver and the SUMF receiver are shown
to be asymptotically equivalent, in terms of SINR, to a finite CDMA
system with i) linear MMSE detector and SUMF, respectively, at the
receiver; ii) spreading factor L; and iii) spreading sequences equal to
the vector of the channel gains.

II. NOTATIONS

Throughout this work, the superscripts �T and �H denote the trans-
pose and the conjugate transpose of the matrix argument, respectively.
IIIn is the identity matrix of size n � n and and are the fields of
complex and real numbers, respectively. tr(�), k � k, and j � j are the
trace, the Frobenius norm, and the spectral norm of the argument, re-

spectively, i.e., kAAAk = tr(AAAAH), jAAAj = max
xxx xxx�1

xxxHAAAAAAHxxx. Ef�g

is the expectation operator. �ij is the Kronecker symbol and �(�) is
the Dirac’s delta function. XXX = (xij)

j=1;...;n
i=1;...;n is the n1 � n2 ma-

trix whose (i; j)-element is the scalar xij . XXX = (XXXij)
j=1;...;n
i=1;...;n is the

n1q1 � n2q2 block matrix whose (i; j)-block is the q1 � q2 matrix
XXXij .
 and ^ denote the Kronecker product and the logical “AND,” re-
spectively. eeel is the L-dimensional unit column vector whose elements
are zero except the lth that equals 1, i.e., eeel = (�lj)j=1...L. Re(�) and
Im(�) are the real and imaginary parts of the argument, respectively.
mod denotes the modulus and b�c is the operator that yields the max-
imum integer not greater than its argument. Furthermore, �(xxx 2 A)
denotes the indicator function of the multivariate random variable xxx on
the set A and �(xxx 2 A) = 1 if xxx 2 A and it is zero otherwise.

III. SYSTEM MODEL

We consider a CDMA system with spreading factorN andK0 users.
Each user employs a transmit antenna array with NT elements sending
independent data streams through each of the elements. Thus, we may
speak of a system withK = K 0NT virtual users. The signal is received
by L receive antennas. These antennas can be part of an array or can
be placed at different locations, but processed jointly.

The baseband discrete-time system model, as the channel is flat
fading, is given by

yyy =HHHbbb+ nnn (1)

where yyy is the NL-dimensional vector of received signal samples, bbb is
the K-dimensional vector of transmitted symbols, and nnn is discrete-
time, circularly symmetric complex-valued additive white Gaussian
noise with zero mean and variance �2. The influence of spreading and
fading is described by the NL �K matrix

HHH =

L

l=1

(SSSTTT���l)
 eeel (2)

where SSS is the N � K spreading matrix whose kth column is the
spreading sequence of the kth virtual user. Furthermore, the diagonal
matrix TTT 2 K�K contains the transmitted amplitudes of all vir-
tual users such that its kth diagonal element tk is the amplitude of the
signal transmitted by the virtual user indexed by k. The diagonal ma-
trices ���1;���2; . . . ;���L 2 K�K take into account the effects of the
flat-fading channels. The kth diagonal element of ���l is the channel
gain between the transmitting antenna element of the kth virtual user
and the lth receive antenna and will be denoted by �lk in the following.
The channel gains can be, in general, correlated and contain line of sight
components as in Rice channels.

In the following, the spreading matrix SSS is modeled as a complex
random matrix whose elements are independent1 with zero mean, vari-
ance 1

N
, and fourth moment such that there exists a 
 > 1 for which

1Note that the random variables s are not required to be identically dis-
tributed.

Efjsij j
4g � 1

N
with i = 1; . . . ; N and j = 1; . . . ; K . This condition

is satisfied by all practically relevant choices of chips, like Gaussian or
binary chips. Moreover, we assume the transmitted symbols to be un-
correlated and identically distributed random variables with zero mean
and unit variance, i.e., EfbbbbbbHg = IIIK . In order to simplify notation,
it will be helpful in the following to define the L-dimensional vectors
lllk = tk[�1k; �2k; . . . ; �Lk]

T , k = 1; . . . ; K , and the corresponding
L-variate random variable lll = t[�1; �2; . . . ; �L]

T .

IV. LINEAR MMSE RECEIVER

The linear MMSE detector generates a soft decision bk = cccHk yyy based
on the observation yyy. The linear MMSE detector ccck for the detection
of bk , the transmitted symbol of virtual user k, can be derived from the
Wiener–Hopf theorem [20] for the estimation of zero-mean random
variables. It is given by

ccck = EfyyyyyyHg�1Efb�kyyyg (3)

with the expectation taken over all variables that are unknown to the
receiver, i.e., the transmitted symbols bbb and the noise. Specializing the
Wiener–Hopf equation to the system model (1) yields

ccck =(HHHHHHH + �
2
III)�1hhhk (4)

= c � (HHHkHHH
H
k + �

2
III)�1hhhk (5)

for some c 2 . Here, hhhk denotes the kth column of HHH and HHHk

is the NL � (K � 1) matrix obtained from HHH suppressing the kth
column hhhk . The second step follows from the matrix inversion lemma.
Its performance is measured by the signal-to-interference-and-noise
ratio SINRk at its output which is well known [19] to be given by

SINRk = hhh
H
k (HHHkHHH

H
k + �

2
III)�1hhhk: (6)

The SINRk can be conveniently expressed in terms of the multiuser
efficiency �k

SINRk =
klllkk

2

�2
�k: (7)

The multiuser efficiency �k is defined as the ratio between the SINR
for the user k at the output of the multiuser detector of interest and
the SINR for the same user in absence of multiuser interference. The
multiuser efficiency is a useful measure, since it is identical to all users
in special cases [19].

A. General Case

Let us notice that SINRk depends on the spreading sequences and
the channel parameters of all the virtual users. To get deeper insights on
the linear MMSE behavior it is convenient to analyze the performance
as K;N !1 with constant ratio � = K

N
. To this aim, we have to de-

fine how the matrices TTT ;���1;���2; . . . ;���L behave as the system grows
large. Let us consider a system with K virtual users and the K corre-
sponding (L+1)-variate random variables (tk; �1k; �2k; . . . ; �Lk) for
k = 1; . . . ; K . The empirical joint distribution function for the random
variables (tk; �1k; �2k; . . . ; �Lk) for k = 1; . . . ; K is the distribution
function

F
(K)
TTT ;��� ;��� ;...;��� (t; �1; �2; . . . ; �L)=

1

K

�

K

k=1

�((t�tk) ^ (�1��1k) ^ (�2��2k) ^ � � � ^ (�L��Lk)):

We assume that the joint empirical distribution
F
(K)
TTT ;��� ;��� ;...;��� (t; �1; �2; . . . ; �L) converges weakly with probability

1 to a limit distribution function FTTT ;��� ;��� ;...;��� (t; �1; �2; . . . ; �L)
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with bounded support. Let us notice that, if (tk; �1k; �2k; . . . ; �Lk)
for all k, are independent realizations of a common cumulative
distribution function (cdf), then the empirical distribution
function F (K)(t; �1; �2; . . . ; �L) is the natural estimate of the
common cdf. The Glivenko–Cantelli theorem guaranties that, if
(tk; �1k; �2k; . . . ; �Lk) are independent and identically distributed
(i.i.d.) in k, then the empirical distribution converges weakly to
the common distribution function with probability 1. For example,
if, for each virtual user k, (tk; �1k; �2k; . . . ; �Lk) is a realization
of the same Gaussian distribution F (t; �1; �2; . . . ; �L), then the
Glivenko–Cantelli lemma guarantees that the sequence of the
empirical distribution functions converges almost surely to the same
distribution function F (t; �1; �2; . . . ; �L).

In the following, when possible, we will use the limiting joint dis-
tribution of the received amplitudes Flll(l1; l2; . . . ; lL) rather than the
limit distribution FTTT ;��� ;��� ;...;��� (t; �1; �2; . . . ; �L) in order to sim-
plify the notation. Flll is obtained by the projection (l1; l2; . . . ; lL) =
(t�1; t�2; . . . ; t�L). Under these assumptions the asymptotic perfor-
mance depends on a small set of parameters, as shown by the following
theorem.

Theorem 1: Let SSS be an N � K random matrix with inde-
pendent entries. Let its elements sij be zero mean, with variance
Efjsij j

2g = 1
N

and forth moment Efjsij j4g � 1
N

where 
 > 1.
Let lll = [l1; l2; . . . ; lL] and let lllk be the vector of received amplitudes
of the virtual user k. Let us assume that the norm of the channel
gain vector klllkk is uniformly bounded for all K . Furthermore, the
empirical joint distribution of lll1; lll2; . . . ; lllk�1; lllk+1; . . . lllK converges
almost surely to some limiting joint distribution Flll(l1; l2; . . . ; lL) as
K !1. Then, asN;K !1 with K

N
! � and L fixed, the SINR of

virtual user k, given the fading amplitude lllk , converges in probability
to the value

lim
K;N!1

SINRk =
lll
H
k AAAlllk

�2
(8)

where AAA is the unique deterministic L� L Hermitian matrix solution
to the matrix-valued fixed point equation

AAA
�1 = IIIL + �

llllll
H

�2 + lll
H
AAAlll

dFlll(l1; l2; . . . ; lL) (9)

such thatAAA is positive definite for any positive value of the noise vari-
ance �2.

Proof: See Appendix II.

Theorem 1 provides the asymptotic output SINR of a linear MMSE
detector for a synchronous CDMA system with correlated spatial
diversity. This result holds under very general conditions on the
channel gains and demonstrates interesting and useful properties of
synchronous CDMA systems with correlated spatial diversity and
linear MMSE detector at the receiver. The remainder of this section
is devoted to the discussion of these properties. More specifically,
in Section IV-B, Theorem 1 is specialized to the relevant situation
of practical interest where the received amplitudes are correlated
Gaussian distributed. In Section IV-C, Theorem 1 is utilized to derive
sufficient conditions under which the resource pooling effect arises.
General properties of CDMA systems with correlated spatial diversity
evinced from Theorem 1 are presented in Section IV-D.

B. Correlated Gaussian Received Amplitudes

In practice, fading amplitudes are often complex Gaussian dis-
tributed and correlated. Rayleigh fading also violates the demand for
uniformly bounded channel gains. However, it can be approximated
arbitrary closely by a distribution with bounded support. Thus, from an

engineering perspective, we need not worry about that fact.2 Assume
that the limiting joint distribution is given as

flll(lll) =
1

�L detCCClll
exp �lllHCCC�1lll lll : (10)

In the absence of power control, i.e., TTT = IIIK , this implies that CCClll
is the correlation matrix of the fading at the receive side with entries
(CCClll)ij = E �i�

�
j . Consider the eigenvalue decomposition

CCClll =M	MM	MM	MH (11)

with 			 = diag( 1; . . . ;  L) and the change of variables

ggg =MMMH
lll (12)

gggk = [g1k; . . . ; gLk]
T =MMM

H
lllk (13)

creating statistically independent components in the random vector ggg.
Plugging (12) into (9), we see that the matrixMMM also diagonalizes the
deterministic limit matrixAAA, i.e., the eigenvectors of the matrixAAA coin-
cide with the eigenvectors of the correlation matrixCCClll. Thus, we obtain
for correlated Rayleigh fading

lim
K;N!1

SINRk =
1

�2

L

`=1

a`jg`kj
2 (14)

where the coefficients a`, ` = 1 . . .L, are solutions of the fixed point
equations

a` =
1

1 + �

�

 jx j

� + a  jx j

L

n=1 exp(�jxnj
2)dxn

(15)
for ` = 1; 2 . . . ; L. Let us notice that, in the case of correlated Rayleigh
spatial diversity, the system of L2 fixed-point equation (9) reduces to a
system of L fixed-point equations as in the macro-diversity case with
independent channel gains analyzed in [1] (cf. Table I in this corre-
spondence). Furthermore, the CDMA system with correlated Rayleigh
spatial diversity characterized by the limiting joint distribution of the
channel gains (10) is equivalent in performance to a CDMA network
with macro-diversity and with independent Rayleigh channel gains. For
this equivalent CDMA network, the virtual channel gains of user k are
given in (13) and the virtual limiting joint distribution of the channel
gains is Gaussian with covariance matrix 			 defined in (11). Therefore,
it is apparent that to any correlated Rayleigh-fading scenario, there ex-
ists an equivalent macro-diversity scenario with independent Rayleigh
fading.

C. Uncorrelated Received Amplitudes

It is clear from (7) and (8) that unless the matrix AAA is a multiple of
the identity matrix, multiuser efficiency is, in general, not unique for all
the virtual users. In this subsection, we analyze under which conditions
on the limiting joint distribution Flll(l1; l2; . . . ; lL) or, equivalently, on
the corresponding limiting pdf flll(l1; l2; . . . ; lL) the matrix AAA is di-
agonal or proportional to the identity matrix. In fact, for diagonal AAA,
the general result in Theorem 1 simplifies to the system of fixed-point
equations in [1, Theorem 3]. The following corollary summarizes some
sufficient conditions that yield a diagonal structure of AAA.

Corollary 1: Let SSS and lllk be as in Theorem 1. If the joint pdf
flll(l1; l2; . . . ; lL), for any r, is an even function of Re(lr) and Im(lr)
for any value of the parameters (l1; . . . ; lk�1; lk+1; . . . ; lL) then as

2In fact, real-world channel gains are always bounded. The infinite support
Rayleigh distribution is just a close approximation of the distribution for real-
world bounded channel gains.
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N;K ! 1 with K

N
! � and L fixed, the SINR of virtual user k,

given the fading amplitude lllk , converges in probability to the value

lim
K;N!1

SINRk =
1

�2

L

`=1

a`jl`kj
2 (16)

where a`, ` = 1 . . .L, are the unique positive solutions to the system
of fixed-point equations

a` =
1

1 + � jl j

� + a jl j
flll(l1; . . . ; lL)dl1 . . . dlL

(17)

for ` = 1; . . . ; L.
Proof: Corollary 1 is proven if the system of (9) reduces to the

system of (17) under the conditions on flll(l1; l2; . . . ; lL) required by
Corollary 1. This is verified if, for all i; j = 1; . . . ; L, with i 6= j, the
off-diagonal elements of AAA are zero. The uniqueness of the solution
for system (9) guarantees that the constants a` are the solutions we
are looking for. In fact, 8i; j = 1; . . . ; L and i 6= j the off-diagonal
elements of AAA are given by

liljflll(l1; l2; . . . ; lL)

�2 + L

`=1 a`jl`j
2
dl1dl2 . . . dlL

= li
ljflll(l1; l2; . . . ; lL)

�2 + L

`=1 a`jl`j
2
dlj dl1 . . . dlj�1dlj+1 . . . dlL:

Since the function lj=(�
2 + L

`=1 a`jl`j
2) is an odd function of

Re(lj) and Im(lj), the integral with respect to lj will be always zero
if flll(l1; l2; . . . ; lL) is an even function in Re(lj) and Im(lj). Since
this property is satisfied for all random variables lj with j = 1; . . . ; L
then all the off-diagonal elements of AAA are zero and this concludes the
proof of Corollary 1.

Following the same approach used for Corollary 4 in [1] and using
Corollary 1, we find sufficient conditions under which the matrix AAA

is proportional to the identity matrix, i.e., AAA = �III . If AAA = �III , then
the scalar � coincides with the multiuser efficiency of a linear MMSE
detector as it is apparent from (7) and (8). Let us assume that the con-
ditions of Corollary 1 are satisfied. If we additionally assume that the
joint pdf flll(l1; l2; . . . ; lL) is exchangeable, i.e., for any permutation �
of f1; . . . ; Lg

flll(l1; l2; . . . ; lL) = flll(l�(1); l�(2); . . . ; l�(L))

then the system of (17), which defines the diagonal matrix AAA, satisfies
a` = �, for all ` = 1; . . . ; L,AAA = �III , and the system of (17) reduces a
single fixed-point equation. This result is stated in the following corol-
lary.

Corollary 2: Let SSS and flll(l1; l2; . . . ; lL) be as in Corollary 1. If the
limiting pdf flll(l1; l2; . . . ; lL) is exchangeable, i.e., for any permutation
� of f1; . . . ; Lg

flll(l1; l2; . . . ; lL) = flll(l�(1); l�(2); . . . ; l�(L))

then, as N;K ! 1 with K

N
! � and L fixed, SINR �

P
, with Pk =

klllkk
2 converges in probability to a deterministic constant � which is the

unique scalar multiuser efficiency, solution to the fixed-point equation

� =
1

1 + �

L

P

� +�P
dFP (P )

:

Here, P is the random variable defined by P = klllk2 and FP (P ) is its
distribution.

The conditions of Corollaries 1 and 2 imply that lll1; lll2; . . . ; lllK are
uncorrelated. However, the converse is not true in general, i.e., the ma-
trixAAA is not typically diagonal for asymptotically uncorrelated received
amplitudes. Corollaries 1 and 2 provide sufficient conditions such that
the matrixAAA is diagonal and proportional to the identity matrix, respec-
tively, when the received amplitudes are asymptotically uncorrelated.
Under the conditions of Corollary 2, the resource pooling effect arises.
In fact, the multiuser efficiency of a synchronous CDMA system with
L receive antennas and spreading factor N is equal to the multiuser ef-
ficiency of a synchronous CDMA system with a single receive antenna,
with spreading factor NL, and with the received power of each virtual
user being the sum of the received powers at the individual antennas
[1], [3].

D. Remarks

The empirical joint distributions F (K)
lll

(l1; l2; . . . ; lL) and the lim-
iting joint distribution Flll(l1; l2; . . . ; lL) are not able to capture and
describe the effects of the correlation due to antenna coupling at the
transmitter side. Since the effects of the channel gains on the system
performance are taken into account only by Flll(l1; l2; . . . ; lL), we can
conclude that the correlations of the channel gains due to coupling ef-
fects at the transmitter side do not effect the asymptotic performance of
the linear MMSE receiver. This property is intrinsically related to the
assumption of the statistical independence of the spreading sequences
of the transmitting antennas. It does not hold true if the condition of in-
dependence is not satisfied. In fact, in this caseFlll(l1; l2; . . . ; lL)would
not be sufficient to describe the system behavior.

As a consequence of Theorem 1, the asymptotic behavior of the gen-
eral system is completely described by a anL�L matrixAAA. In contrast
to the case of single receive antenna or the cases in which the resource
pooling effect arises, the multiuser efficiency of the linear MMSE re-
ceiver varies from user to user in general. In particular, for virtual user
k, it depends on the direction of the channel gains lllk with respect to the
eigenvectors of AAA: The SINR is maximum if lllk has the same direction
as the eigenvector corresponding to the maximum eigenvalue of AAA.

Typically, in order to determine the eigenvectors of the matrixAAA, the
solution of the matrix fixed point (9) is required. However, in the spe-
cial case that the limiting pdf flll(l1; l2; . . . ; lL) is zero-mean Gaussian,
the eigenvectors of AAA coincide with the eigenvectors of the covariance
matrix EfllllllHg.

In light of Theorem 1, we can revisit the known results in [1]. The-
orem 1 in [1] states that if the elements sij are i.i.d. Gaussian random
variables with zero mean and variance 1

N
, if the received amplitudes

are independent for all users and antennas, if the received amplitudes
are identically distributed for a given user, and if the sequence of the
empirical distributions converges asymptotically to a bounded distri-
bution function, then the matrix AAA in (8) is given by

AAA = aIIIL

with

a = 1+
�

L
E

P

�2 + aP

�1

where P = lllHlll.
By comparing this result to the result in Corollary 1 it becomes evi-

dent that Corollary 2 implies Theorem 1 in [1].
The following result is conjectured in Theorem 3 in [1]. If the chip

elements sij are independent, zero mean, Gaussian distributed, if the
received signal amplitudes are independent, and if the sequence of the
empirical distribution converges to a bounded distribution function,
then Theorem 3 in [1] conjectures that the matrix AAA in (8) is given by

AAA = diag(a1; a2; . . . ; aL)
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TABLE II
SUMMARY OF COROLLARY 1 AND COROLLARY 2

with

a` = 1 + �E
jl`j2

�2 + L

n=1
anjlnj2

�1

; ` = 1; . . . ; L:

By comparing the previous conjecture to Corollary 1, we notice that
Corollary 1 includes and proves rigorously Theorem 3 in [1].

In Table II, we recapitulate the results of Corollaries 1 and 2 and
summarize the sufficient conditions under which the resource pooling
effect arises.

V. SINGLE-USER BAYESIAN RECEIVER

The single-user Bayesian receiver is the linear detector, optimum in
a mean-squared error sense, when the receiver is synchronized and has
complete information about the virtual user of interest, i.e., spreading
sequence, and received power, but it does not know the spreading se-
quences of the interferers and has only statistical knowledge of the in-
terference. More specifically, we assume that the following information
is known at the receiver:

• knowledge of the signature sequence, channel gains, and transmit
power of virtual user k;

• knowledge of the statistics of the signature sequences, the channel
gains, and transmit powers of all interferers.

This detector has been analyzed for the case of independent channel
gains in [1] under the denomination of matched filter.

The single-user Bayesian detector ccck for the virtual user of interest
k that minimizes the mean-squared error between its output, bbbBf;k =
cccHk yyy, and the transmitted symbol is given by the Wiener–Hopf equation

ccck = EfyyyyyyHg�1Efb�kyyyg (18)

as for the linear MMSE receiver. However, in this case, the expectation
operator is taken not only over the transmitted signals and the noise,
as for the linear MMSE receiver, but also with respect to the signature
sequences, the channel gains, and the transmit powers of all interferers.
Equation (18) yields the following explicit expression for the Bayesian
filter:

ccck =
(IIIN 
 ((� � 1

N
)CCClll + �2IIIL)

�1)hhhk

1 + (lllHk ((� � 1

N
)CCClll + �2IIIL)�1lllk)(sssHk sssk)

(19)

withCCClll = EfllllllHg. A better insight into the Bayesian filter receiver can
be obtained from (19) by performing a permutation� of the elements of
ccck and yyyk such that the elements corresponding to the same antenna are
relocated next to each other (� : i! ((i�1)modL)N+b i

L
c+1). Let

us denote with ccc�k and yyy� the Bayesian filter receiver and the received

signal vector obtained by such a permutation. Let ���k = ((�� 1

N
)CCClll+

�2IIIL)
�1lllk and let �l be the lth element of ���k . Then

ccc
�
k =

���k 
 sssk

1 + lll
H
k ���ksss

H
k sssk

: (20)

Equation (21) shows that, similarly to the case of completely indepen-
dent channel gains, the Bayesian filter despreads the received signal at
each antenna using the spreading sequence sssk and, then, it performs a
maximal ratio combining of the despread signals using as weight the
coefficients

�l

1 + lll
H
k ���ksss

H
k sssk

; l = 1; . . . ; L: (21)

The coefficients for maximal ratio combining depend on the correlation
matrix of the channel gains of the interferers.

The following theorem provides the performance of the Bayesian
filter in terms of its limiting SINR as the system dimensions grow large
with constant ratio.

Theorem 2: Let lllk be the vector of received amplitudes of virtual
user k. Let us assume that, almost surely, the empirical joint distribu-
tion of lll1; lll2; . . . ; lllk�1; lllk+1; . . . ; lllK converges to some limiting joint
distribution Flll(l1; l2; . . . ; lL) as K ! 1. Additionally, the elements
of the spreading vector sssk are assumed to be i.i.d. with zero mean and
varianceEjsjkj2 = 1

N
. Then, ifN;K !1with K

N
! � andL fixed,

SINRk of the Bayesian filter for the transmitted signal k, conditioned
on the vector of received amplitudes lllk , converges almost surely to a
constant value

lim
K;N!1

!�

SINRk
a:s:
= lll

H
k (�EfllllllHg+ �

2
IIIL)

�1
lllk (22)

where lll is the L-variate random variable with joint distribution
Flll(l1; l2; . . . lL).

Proof: See Appendix III.

The asymptotic analysis provides a result of simple interpretation:
the SINR of the virtual user k is equivalent to the SINR at the output
of a linear MMSE detector for a CDMA system with the following
characteristics.

• Spreading factor equal to the number of receiving antennas.
• Spreading sequence of the virtual user of interest equal to the

vector lllk of channel gains.
• Spreading sequences of the interferers equal to the vectors of

the channel gains attenuated by a factor
p
�. This takes into ac-

count the beneficial effects of the spreading in the original CDMA
system.
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In contrast to the case of independent channel gains in [1], the perfor-
mance depends on the direction of the vector of the channel gains. For a
given received power, the SINR is maximized as lllk has the direction of
the eigenvector corresponding to the minimum eigenvalue of the cor-
relation matrix EfllllllHg.

VI. MATCHED FILTER

The single-user matched filter requires only the knowledge of the
spreading sequence of the virtual user of interest. Its output is given by

bmf;k = hhh
H
k yyy:

As in the case of the single-user Bayesian receiver, the matched filter
despreads the received signals at each antenna and then it combines the
despread signals using as weighting coefficients the received energy at
each antenna.

The asymptotic performance of the single-user matched filter is
given by the following theorem.

Theorem 3: Let lllk , sssk , and Flll(l1; l2; . . . lL) be as in Theorem 2.
Then, if N;K ! 1 with K

N
! � and L fixed, SINRk of the

matched filter for the transmitted signal k, conditioned on the vector of
received amplitudes lllk , converges almost surely to a constant value

lim
K;N!1

!�

SINRk
a:s:
=

(lllHk lllk)
2

lll
H
k (�EfllllllHg+ �2IIIL)lllk

(23)

where lll is the L-variate random variable with joint distribution
Flll(l1; l2; . . . :lL).

Theorem 3 is proven in Appendix IV.

The SINR of the matched filter is equivalent to the SINR of a
matched filter for a CDMA system with spreading factor L, spreading
sequence of the virtual user of interest equal to the vector of the
channel gains, and the spreading sequence of the interferers equal to
their channel gains attenuated by a factor

p
�.

The multiuser efficiency depends on the direction of lllk . It is maxi-
mized when lllk has the direction of the eigenvector corresponding to
the minimum eigenvalue of the correlation matrix of the interferers
EfllllllHg.

VII. CONCLUSION

In this contribution, we determined the asymptotic performance
of linear MMSE detector, the single-user Bayesian receiver, and the
single-user matched filter receiver in CDMA systems with random
spreading and spatial diversity. We consider the general case where the
channel gains are correlated and there are line-of-sight components.

When a linear MMSE detector is used at the receiver, our general
Theorem 1 shows that the system is asymptotically described by an
L � L matrix AAA that characterizes completely the effects of channel
correlation and line-of-sight components. Our result includes as spe-
cial cases the results in [1] that were derived under the constraints of
independence of the channel gains, uniformly distributed phases, and
Gaussian spreading. Deriving the results in [1] from the general equa-
tions (8) and (9) we could prove the results for the macro-diversity case,
which was only conjectured in [1]. The performance analysis shows
that the efficiency of the system in recovering the symbol transmitted by
the virtual user k strongly depends on the direction of the channel gain
vector lllk with respect to the eigenvectors of AAA. However, the system
performance is asymptotically independent of coupling effects at the
transmitting antennas.

The single-user Bayesian filter and the single-user matched filter in
a large CDMA scenario with correlated spatial diversity were shown
to be equivalent, in terms of performance, to a linear MMSE detector

and a matched filter, respectively, in a CDMA system with spreading
factor L and spreading sequences equal to the channel gains.

APPENDIX I
MATHEMATICAL TOOLS

The following mathematical tools are developed along the lines of
the REFORM method proposed by Girko in [21] and [22]. The com-
plete derivation of the results utilized in this work was omitted in [21]
and it is presented here. We will make large use of the following well-
known inequalities:

jAAA+BBBj � jAAAj + jBBBj
Triangular Inequality for Spectral Norm (24)

jAAABBBj � jAAAkBBBj
Sub-multiplicative Inequality for Spectral Norm

(25)

kAAA+BBBk2 � 2kAAAk2 + 2kBBBk2 (26)

kAAA+BBB +CCCk2 � 3kAAAk2 + 3kBBBk2 + 3kCCCk2 (27)

kAAABBBk � jAAAjkBBBk (28)

tr(ABABABH+BABABAH)�kAAAk2 + kBBBk2 (29)

where AAA 2 a �a and BBB 2 b �b are matrices with consistent
dimensions, i.e., a1 = b1 and a2 = b2 forAAA+BBB and a2 = b1 forAAABBB.

In this section we adopt the following notation:
(i) n 2 + is a parameter.

(ii) n1; n2; p1; p2; q1; q2 2 +, with n1 = n1(n), n2 = n2(n),
p1 = p1(n), p2 = p2(n), and n1 = p1q1, n2 = p2q2.
n1; n2; p1; p2 are increasing functions of n and n1; n2; p1; p2 !
1 as n ! 1.

(iii) ���(n) = (�
(n)
ij )j=1;...ni=1;...n is an n1 � n2 matrix with complex

random elements �ij . The superscript (n) is omitted as not nec-
essary, i.e., ��� = ���(n).

(iv) ���
(n)

is obtained from ���(n) by structuring ���(n) in p1p2 blocks
of size q1 � q2, ���ij , i.e.,

���
(n)

= ���(n) = (���ij)
j=1;...p
i=1;...p :

In the following, we use ���
(n)

instead of ���(n) to stress the fact
that the matrix is block-structured. As the parameter n varies,

we obtain the sequence of random matrices ��� = f���(n)g. The

superscript (n) is omitted when not necessary, i.e., ��� = ���
(n)

.

(v) SSS = ������
H

is a p1 � p1 matrix of complex q1 � q1 blocks SSSij ,
i.e., SSS = (SSS)i;j=1;...;p .

(vi) PPP = ���
H

��� is a p1 � p1 matrix of complex q2 � q2 blocks PPP ij ,
i.e., PPP = (PPP ij)i;j=1;...;p .

(vii) � = t + is 2 with s 6= 0 and t � 0.
(viii) QQQ = (QQQij)ij=1;...;p = [SSS + �III]�1, where QQQij are complex

blocks of size q1 � q1.
(ix) GGG = (GGGij)ij=1;...;p = [PPP + �III]�1, where GGGij are complex

blocks of size q2 � q2.
(x) ~���k is the kth block row of ���.

(xi) ~���(k) is a q1 � (p2 � 1)q2 matrix obtained by suppressing the
kth block from ~���k , i.e.,

~���(k) = f���k`; ` = 1; . . . ; p2�1g = f���k`; ` 6= k; ` = 1; . . . ; p2g:

The previous relation defines implicitly the q1 � q2 blocks ���k`
as ���k` = ���k;`��(`>k).

(xii) ��� j ;j ;...;j
k ;k ;...;k

is a matrix obtained from ��� suppressing
the s block rows k1; k2; . . . ; ks and the r block columns
j1; j2; . . . ; jr .

(xiii) SSS j ;j ;...;j
k ;k ;...;k

= ��� j ;j ;...;j
k ;k ;...;k

���
H j ;j ;...;j

k ;k ;...;k
:
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(xiv) PPP j ;j ;...;j
k ;k ;...;k

= ���
H j ;j ;...;j

k ;k ;...;k
��� j ;j ;...;j

k ;k ;...;k
:

(xv) QQQ j ;j ;...;j
k ;k ;...;k

= SSS j ;j ;...;j
k ;k ;...;k

+ �III
�1

.

(xvi) GGG j ;j ;...;j
k ;k ;...;k

= PPP j ;j ;...;j
k ;k ;...;k

+ �III
�1

.

(xvii) ~SSSk is a q1 � (p1 � 1)q1 matrix obtained by suppressing the kth
q1 � q1 block from the kth block row of SSS, i.e.,

~SSSk=fSSSku; u=1; . . . p1 � 1g=fSSSku; u 6=k; u = 1; . . . ; p1g:

The p1 � p1 blocks SSSku are implicitly defined as SSSku =

SSSk;u+�(u>k).

(xviii) ~SSSk
j ;j ;...;j
k ;k ;...;k

is a q1 � (p1 � s � 1)q1 matrix obtained by
suppressing the kth q1 � q1 block from the kth block row of
SSS j ;j ;...;j

k ;k ;...;k
, i.e.,

~SSSk
j ;j ;...;j
k ;k ;...;k

= SSSks
j ;j ;...;j
k ;k ;...;k

; s = 1; . . . p1 � s� 1

= SSS j ;j ;...;j
k ;k ;...;k

kj
; j 6=k; j=1; . . . p1�s :

The q1 � q1 blocks SSSkj
j ;j ;...;j
k ;k ;...;k

are implicitly defined as

SSSkj
j ;j ;...;j
k ;k ;...;k

= SSS j ;j ;...;j
k ;k ;...;k

k;j+�(j>k)
:

(xix) HHH is the p1q1�p2q2 block matrix given byHHH = ����E(���):HHHk`

is the block (k; `) of HHH of dimensions q1 � q2.

(xx) HHH j ;j ;...;j
k ;k ;...;k

is a matrix with (p1�s) block rows and p2�r

block columns obtained from HHH suppressing the s block rows
k1; k2; . . . ; ks and the r block columns j1; j2; . . . ; jr .

(xxi) ~HHHk is the kth block row of the matrix HHH .
(xxii) ~HHH(k) is a q1 � (p2 � 1)q2 matrix obtained by suppressing the

kth block from ~HHHk , i.e.,

~HHH(k)=fHHHk`; `=1; . . . p2 � 1g=fHHHk`; ` 6=k; `=1; . . . ; p2g:

The previous relation defines implicitly the q1 � q2 blocks HHHk`

as HHHk` = HHHk;`��(`>k).

(xxiii) HHH j ;j ;...;j
k ;k ;...;k

is a matrix obtained from HHH suppressing
the s block rows k1; k2; . . . ; ks and the r block columns
j1; j2; . . . ; jr .

(xxiv) AAA = (AAAkj)
j=1;...;p
k=1;...;p is the p1 � p2 matrix of q1 � q2 blocks

given by AAA = E(���).

(xxv) AAA j ;j ;...;j
k ;k ;...;k

is a matrix obtained from AAA suppressing
the s block rows k1; k2; . . . ; ks and the r block columns
j1; j2; . . . ; jr .

(xxvi) ~AAAk is the kth block row of the matrix AAA.
(xxvii) ~AAA(k) is a q1 � (p2 � 1)q2 matrix obtained by suppressing the

kth block from ~AAAk , i.e.,

~AAA(k) = fAAAk`; `=1; . . . p2�1g=fAAAk`; ` 6=k; `=1; . . . ; p2g:

The previous relation defines implicitly the q1 � q2 blocks AAAk`

as AAAk` = AAAk;`��(`>k).

(xxviii) DDD
(1)

= diag(DDD
(1)
ii )i=1;...;p is a p1q1 � p1q1 block-diag-

onal Hermitian matrix with p1 blocks of dimensions q1 � q1.

DDD
(1)

(k1; k2; . . . ; ks) is a (p1 � s)q1 � (p1 � s)q1 matrix

obtained from DDD
(1)

suppressing the k1th; k2th; . . . ; ksth block
rows and columns.

(xxix) DDD
(2)

= diag(DDD
(2)
ii )i=1;...;p is a p2q2 � p2q2 block-diag-

onal Hermitian matrix with p2 blocks of dimensions q2 � q2.

DDD
(2)

(j1; j2; . . . ; jr) is a (p2 � r)q2 � (p2 � r)q2 matrix

obtained from DDD
(2)

suppressing the j1th; j2th; . . . ; jrth block
rows and columns.

(xxx) MMM = (MMM)j=1;...;pi=1;...;p is a p1q1 � p2q2 complex matrix structured
in p1p2 blocks of size q1 � q2.

(xxxi) ~MMMk is the kth block row of MMM .
(xxxii) MMM j ;j ;...;j

k ;k ;...;k
is the matrix with (p1�s) block rows and p2�r

block columns obtained from MMM suppressing the s block rows
k1; k2; . . . ; ks and the r block columns j1; j2; . . . ; jr .

(xxxiii) UUU = (UUU ij)i;j=1;...;p = (DDD
(1)

+MMM(DDD
(2)

)�1MMM
H

)�1, where
UUU ij are complex blocks of size q1 � q1. Similarly as in (xxxi),
UUU j ;j ;...;j

k ;k ;...;k
is defined in the first equation at the bottom of

the page.

(xxxiv) VVV = (VVV ij)i;j=1;...;p = (DDD
(2)

+MMM
H

(DDD
(1)

)�1MMM)�1, where
VVV ij are complex blocks of size q2 � q2. Similarly as in (xxxi)
VVV j ;j ;...;j

k ;k ;...;k
is defined in the second equation at the bottom

of the page.

(xxxv) ZZZ = (ZZZi;j)i;j=1;...;p = MMM(DDD
(2)

)�1MMM
H

. ~ZZZk is a q1 � (p1 �
1)q1 matrix obtained by suppressing the kth block from the kth
block row of ZZZ , i.e.,

~ZZZk = fZZZks; s = 1; . . . ; p1 � 1g

= fZZZks; s 6= k; s = 1; . . . ; p1g

= ~MMMk(DDD
(2)

)�1MMM
H

�

k
:

The q1 � q1 blocks ZZZks are implicitly defined as ZZZks =

ZZZk;s+�(s>k).

(xxxvi) ZZZ j ;j ;...;j
k ;k ;...;k

is a q1(p1� s)� q1(p1� s) matrix obtained as

ZZZ j ;j ;...;j
k ;k ;...;k

=MMM j ;j ;...;j
k ;k ;...;k

DDD
(2)

(j1; j2; . . . ; jr)
�1

MMM j ;j ;...;j
k ;k ;...;k

H

:

Lemma 1: Let CCC be a block matrix of size p1q1 � p1q1. AAA is a
nonsingular block matrix of size p1q1 � p1q1 Then

@

@

ln det[AAA+ 
CCC]


=0

= Tr(CCCAAA
�1

):

UUU j ;j ;...;j
k ;k ;...;k

= (DDD
(1)

(k1; k2; . . . ; ks) +MMM j ;j ;...;j
k ;k ;...;k

(DDD
(2)

(j1; j2; . . . ; jr))
�1
MMM j ;j ;...;j

k ;k ;...;k

H

)�1:

VVV j ;j ;...;j
k ;k ;...;k

= (DDD
(2)

(j1; j2; . . . ; jr) +MMM j ;j ;...;j
k ;k ;...;k

H

(DDD
(1)

(k1; k2; . . . ; ks))
�1
MMM j ;j ;...;j

k ;k ;...;k
)�1:
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Tr(CCCUUU) =
@

@

ln det

ZZZ �

k
+DDD

(1)
(k) ~ZZZ

H

k

~ZZZk + 
~CCCk` ZZZkk +DDD
(1)
kk + 
�(k = `)CCC

: (32)

Tr(CCCUUU)=
@

@

ln det ZZZ �

k
+DDD

(1)
(k) det(ZZZkk+DDD

(1)
kk +
�(k=`)CCC�(~ZZZk+
~CCCk`)� ZZZ �

k
+DDD

(1)
(k)

�1
~ZZZ
H

k ) (33)

=
@

@

ln det ZZZkk+DDD

(1)
kk �

~ZZZkUUU
�

k
~ZZZ
H

k +
�(`=k)CCC�
CCC �(`<k)

p �1

j=1

UUU �

k
`j
ZZZ
H

kj+�(`>k)

p �1

j=1

UUU �

k
`�1;j

ZZZ
H

kj

(34)

=

Tr CCC(ZZZkk+DDD
(1)

(k)�~ZZZkUUU
�

k
~ZZZ
H

k )�1 ; k=`

�Tr CCC
p �1
j=1 (UUU �

k
)`jZZZ

H

kj ZZZkk +DDD
(1)
kk � ~ZZZkUUU(�

k
) ~ZZZ

H

k

�1

; ` < k

�Tr CCC
p �1
j=1 UUU �

k
`�1;j

ZZZ
H

kj ZZZkk +DDD
(1)
kk � ~ZZZkUUU(�

k
) ~ZZZ

H

k

�1

; `>k

(35)

Proof: Let �i(�) denote the ith eigenvalue of the matrix argument
in general not real for non-Hermitian matrices. Lemma 1 can be derived
as follows:

@

@

ln det(AAA+
CCC)


=0

=
@

@

ln det((III + 
CCCAAA

�1
)AAA)


=0

=
@

@

ln det(III+
CCCAAA) det(AAA

�1
)


=0

=
@

@

ln

p q

i=1

(1 + 
�i(CCCAAA
�1

))j
=0

=

p q

i=1

�i(CCCAAA
�1

)

=Tr(CCCAAA
�1

):

Lemma 2: Definitions (xxviii), (xxix), (xxx), (xxxi), (xxxii),
(xxxiii), (xxxiv) hold. Then

UUU `k=�

p �1

j=1

UUU �
k `��(`>k);j

ZZZ
H

kj UUUkk; k 6=`; k; `=1; . . . p1

(30)

UUUkk = ZZZkk +DDD
(1)
kk � ~ZZZkUUU

�

k
~ZZZ
H

k

�1

: (31)

Proof: Let CCC be a block matrix of size p1q1 � p1q1 having all
q1�q1 blocks equal to zero exceptCCCk` = CCC . ~CCCk` is a q1�q1(p1�1)
row vector block with the (` � 1)th or the `th q1 � q1 block equal
to CCC if k < ` or k > `, respectively, and zero elsewhere. Then, the
application of Lemma 1 to the matrices CCC and UUU yields (32) at the top
of the page. The rule of determinant of block matrices3 applied to (32)
yields (33)–(35) at the top of the page, and (35) follows from Lemma
1. By choosing CCC such that (CCC)ij = 1 and zero elsewhere, we obtain
an expression for (UUUkk)ij , the (i; j) element of the block matrix UUUkk

(UUUkk)ij = ZZZkk +DDD
(1)
kk � ~ZZZkUUU

�

k
~ZZZ
H

k

�1

ij

:

3Let AAA 2 be non singular, DDD 2 ;BBB 2 and CCC 2

. Then

det
AAA BBB

CCC DDD
= det(AAA) det(DDD �CCCAAA BBB):

Then, the relation holds also for the full block

UUUkk = ZZZkk +DDD
(1)
kk � ~ZZZkUUU

�

k
~ZZZ
H

k

�1

: (36)

Using (36) in (35) for ` < k and ` > k we obtain

(UUU `k)ij =

� p �1
j=1 UUU �

k
`j
ZZZ
H

kjUUUkk

ij

; ` < k

� p �1
j=1 UUU �

k
`�1;j

ZZZ
H

kjUUUkk

ij

; ` > k .

This concludes the proof of Lemma 2.

Lemma 3: Definitions (xxviii), (xxix), (xxx), (xxxi), (xxxii),
(xxxiii), (xxxiv) hold and ` = ` � �(` > k). Then

UUU `` � UUU �

k
``

= �

p �1

j=1

UUU �

k `;j
ZZZ
H

kj UUUkk

p �1

j=1

UUU �

k `;j
ZZZ
H

kj

H

for ` 6= k and

tr(UUU)� tr(UUU �

k
)=�tr ~ZZZk(UUU

�

k
)2~ZZZ

H

k UUUkk + tr(UUUkk):

Proof: Let CCC be a block matrix of size p1q1 � p1q1 having all
blocks equal to zero except CCC`` = CCC where CCC is an arbitrary q1 � q1
matrix.CCC(k) is a (p1� 1)q1� (p1� 1)q1 block matrix obtained from
CCC by suppressing the kth block row and the kth block column.CCCk and
EEEk denote two block vectors of dimensions (p1 � 1)q1 � q1 with all
q1� q1 blocks equal to zero except the kth equal toCCC and to a q1� q1
identity matrix, respectively. Then, CCC(k) = CCC

`
EEEH

`
.

Here, �i(�) denotes the ith eigenvalue of the matrix argument.
Let � = tr(CCC(UUU ``� (UUU(�

k
))
``
)). By applying Lemma 1 we obtain

�=tr(CCCUUU)� tr(CCC(k)UUU �

k
)

=
@

@

ln det ZZZ +DDD

(1)
+ 
CCC


=0

�
@

@

ln det ZZZ �

k
+DDD

(1)
(k)+
CCC (k)


=0
: (37)
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� =
@

@

ln det ZZZkk +DDD

(1)
kk �

~ZZZk ZZZ �

k
+DDD

(1)
(k) + 
CCC(k)

�1
~ZZZ
H

k


=0

= lim
�
!0

1

�

ln det ZZZkk +DDD

(1)
kk �

~ZZZk(ZZZ
�

k
+DDD

(1)
(k) + �
CCC(k))�1~ZZZ

H

k � ln det ZZZkk +DDD
(1)
kk �

~ZZZk(ZZZ
�

k

+DDD
(1)

(k))�1~ZZZ
H

k :

� = lim
�
!0

1

�

ln det ZZZkk +DDD

(1)
kk �

~ZZZkUUU
�

k
~ZZZ
H

k

�~ZZZk(UUU
�

k
�
CCC

`
(III +�
EEEH

`
UUU �

k
CCC
`
)�1EEEH

`
UUU �

k
)~ZZZ

H

k � ln det ZZZkk +DDD
(1)
kk �

~ZZZkUUU
�

k
~ZZZ
H

k

= lim
�
!0

1

�

ln det III � ~ZZZk(UUU

�

k
�
CCC

`
(III +�
EEEH

`
UUU �

k
CCC
`
)�1EEEH

`
UUU �

k
)~ZZZ

H

k ZZZkk +DDD
(1)
kk �

~ZZZkUUU
�

k
~ZZZ
H

k

�1

= lim
�
!0

ln

p �1

i=1

1 + �
�i �~ZZZk UUU �

k
CCC
`
(III +�
EEEH

`
UUU �

k
CCC
`
)�1EEEH

`
UUU �

k
~ZZZ
H

k UUUkk :

� =

p �1

i=1

�i �~ZZZkUUU
�

k
CCC(k)UUU �

k
~ZZZ
H

k UUUkk

= � tr ~ZZZkUUU
�

k
CCC(k)UUU �

k
~ZZZ
H

k UUUkk

= � tr

p �1

j=1

(UUU �

k
)
`;j
ZZZ
H

kj UUUkk

p �1

j=1

(UUU �

k
)
`;j
ZZZ
H

kj

H

CCC :

The application of the rule of determinant for block matrices to the
matrix

ZZZ +DDD
(1)
=

ZZZkk +DDD
(1)
kk

~ZZZk

~ZZZ
H

k ZZZ �

k
+DDD

(1)
(k) + 
CCC(k)

and (37) yield the first equation at the top of the page.
By applying the Woodbury formula4 we obtain the second equation

at the top of the page.
By applying (31) of Lemma 2 and the limit ex = limn!1 1 + x

n

n

we obtain the third equation at the top of the page.
Setting a single element of the matrix CCC equal to 1 and keeping the

others equal to zero we can establish the identity between the elements
of the matrix UUU `` � UUU �

k ``
and the elements of the argument of the

trace. Therefore

UUU `` �UUU �

k `;`
= �

p �1

j=1

UUU
`;j
ZZZ
H

kj UUUkk

p �1

j=1

UUU
`;j
ZZZ
H

kj

H

:

Thus
p

`=1
6̀=k

tr(UUU `` � (UUU �

k
)
``
) = �tr(~ZZZk(UUU

�

k
)2~ZZZ

H

k UUUkk)

and

tr(UUU)� tr(UUU �

k
)=�tr(~ZZZk(UUU

�

k
)2~ZZZ

H

k UUUkk) + tr(UUUkk):

4Let AAA be an N � N matrix and XXX , YYY be N � M matrices. Then,
(AAA+XXXYYY ) =AAA � (AAA XXX(III + YYY AAA XXX) YYY AAA ).

This concludes the proof of Lemma 3.

Lemma 4: Definitions (i), (ii), (xxviii), (xxix), (xxx), (xxxiii),
(xxxiv), (xxxv), (xxxvi) hold. Let ` = `� �(` > k). Then

UUU `k = �UUU
``

�

k
( ~MMM `VVV

�

k;`
~MMM

H

k )UUUkk

k 6= `; and k; ` = 1; . . . ; p1 (38)

UUUkk =(DDD
(1)
kk + ~MMMkVVV

�

k
~MMM

H

k )�1

k = `; and k; ` = 1; . . . p1: (39)

Proof: Equation (30) with ` 6= k can be rewritten as

UUU `k=�

p �1

j=1

j 6=`

UUU �

k `;j
ZZZ
H

kj UUUkk �UUU
`;`

�

k
ZZZ
H

k`UUUkk: (40)

Applying (30) to the matrix UUU �

k
instead of UUU we obtain

UUU �

k
j`

= �

p �2

i=1

UUU �

k;`
j;i
ZZZ
H

`i
�

k
UUU ``

�

k
;

j 6= `; j; ` = 1; . . . ; p1 � 1

where UUU ``
�

k
denotes the (`; `) block of the matrix UUU �

k
and j =

j � �(j > `). Since UUU , UUU �

k
, and ZZZ �

k
are Hermitian

(UUU �

k
)`j =(UUU �

k
)Hj` = �UUU ``

�

k

p �2

i=1

ZZZ`i
�

k
(UUU �

k;`
)H
j;i
;

j 6= `; j; ` = 1; . . . ; p1 � 1: (41)
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Substituting (41) in (40) we obtain

UUU `k =

p �2

i=1

p �1

j=1

j 6=`

UUU
�

k
`;`
ZZZ
`;i

�

k
UUU

�

k;`

H

j;i
ZZZ
H

kjUUUkk

� UUU
�

k
`;`
ZZZ
H

k;`UUUkk

= UUU
�

k
`;`

~ZZZ
�

k
`
UUU

�

k;`
~ZZZ
H

k
�

`
�ZZZ

H
k` UUUkk:

By applying definitions (xxxv) and (xxxiii) and using the following
identities:

~ZZZ
`

�

k
= ~MMM `(DDD

(2)
)�1MMM

H
�

k;`

~ZZZk(`� �(` > k)) = ~MMMk(DDD
(2)
)�1MMM

H
�

k;`

ZZZk` = ~MMMk(DDD
(2)
)�1 ~MMM

H

`

we obtain (42) at the bottom of the page.
The inversion lemma yields the following identity:

�(MMM
H

�

k;`
(DDD

(1)
(k; `))�1MMM �

k;`
+DDD

(2)
)�1

= (DDD
(2)
)�1MMM

H
�

k;`
(MMM �

k;`
(DDD

(2)
)�1MMM

H
�

k;`

+DDD
(1)
(k; `))�1MMM �

k;`
(DDD

(2)
)�1 � (DDD

(2)
)�1: (43)

Here, (42) and (43) are used to derive

UUU `k = �UUU
`;`
~MMM ` MMM

H
�

k;`
(DDD

(1)
(k; `))�1MMM �

k;`
+DDD

(2)

�1

� ~MMM
H

k UUUkk

= �UUU
`;`
~MMM `VVV

�

k;`
~MMM

H

k UUUkk: (44)

Definition (xxxiv) is applied to obtain (44).
By using definitions (xxxv) and (xxxiii) and the identities

ZZZkk = ~MMMk(DDD
(2)
)�1 ~MMM

H

k ;
~ZZZk = ~MMMk(DDD

(2)
)�1MMM

H
�

k

(31) can be rewritten as follows:

UUUkk= ~MMMk(DDD
(2)
)�1 ~MMM

H

k +DDD
(1)

kk � ~MMMk(DDD
(2)
)�1MMM

H
�

k

MMM
�

k
(DDD

(2)
)�1MMM

H
�

k
+DDD

(1)
(k)

�1

MMM
�

k
(DDD

(2)
)�1 ~MMM

H

k

�1

= ~MMMk MMM
H
�

k
(DDD

(1)
(k))�1MMM(k)+(DDD

(2)
)
�1

~MMM
H

k +DDD
(1)

kk

�1

(45)

= ~MMMkVVV
�

k
~MMM

H

k +DDD
(1)

kk

�1

: (46)
Equation (45) is derived applying the inversion lemma as in (43). In
(46), we make use of definition (xxxiv).

This concludes the proof of Lemma 4.

Specializing Lemmas 2–4 to the matrix QQQ by setting DDD
(1)

= �III ,

DDD
(2)

= III , MMM = ���, and ZZZ = SSS, we obtain Corollary 3.

Corollary 3: Definitions (i), (ii), (iv), (xii) (v), (vi), (vii), (ix), (x),
(viii), (xv), (xiv), (xvi), and (xvii) hold and ` = `� �(` > k). Then

QQQ`k = �

p �1

j=1

QQQ
�

k `;j
SSS
H

kj QQQkk;

k 6= `; k; ` = 1; . . . p1 (47)

QQQkk = SSSkk + �III � ~SSSkQQQ
�

k
~SSS
H

k

�1

(48)

QQQ``�QQQ
�

k ``
=�

p �1

j=1

QQQ
�

k `;j
SSS
H

kj QQQkk

p �1

j=1

QQQ
�

k `;j
SSS
H

kj

H

;

` 6= k (49)

trQQQ�trQQQ �

k
= � tr ~SSSk(QQQ

�

k
)2~SSS

H

k QQQkk + tr(QQQkk) (50)

QQQ`k = � �QQQ``
�

k
(~���`GGG

�

k;`
~���
H

k )QQQkk;

k 6= ` and k; ` = 1; . . . ; p1 (51)

QQQkk =�
�1(III + ~���kGGG

�

k
~���
H

k )
�1
;

k = ` and k; ` = 1; . . . p1: (52)

Analogous results hold for the blocks of the matrixGGG defined in (ix).

Lemma 5: Let AAA be a Gram p1q1 � p1q1 block matrix and �

be defined as in (vii). Then, the spectral radius of the matrix BBB =

(AAA+�III)�1 and the spectral radius of each blockBBBij ofBBB are upper-
bounded as follows:

jBBBj < jsj�1 and jBBBij j < jsj�1: (53)

Proof: Let �i(AAA) be the eigenvalues of the matrixAAA. Then, given
� = t + is with t � 0

jBBBj = max
� (AAA)

j�i(AAA) + t+ isj�1 < j�j�1 < jsj�1:

The upper bound is obtained for �i(AAA) = 0. Let EEEk be a q1 � p1q1
block matrix with all blocks equal to the null block matrix except the
ith block equal to the identity matrix. Then, the submultiplicative in-
equality for spectral norms (25) yields

jBBBij j = jEEEiBBBEEE
H
j j � jEEEikBBBkEEE

H
j j � jsj�1:

Lemma 6: Let Definition (iii), (iv), (x), (xii), (viii), (ix), (xix),
(xxi), (xxii), (xi), (xxiv), (xxv), (xxvi), (xxvii), (xxv) hold.

UUU `k = UUU
�

k
`;`

~MMM `(DDD
(2)
)�1MMM

H
�

k;`
(MMM �

k;`
(DDD

(2)
)�1MMM �

k;`

H

+DDD
(1) �

k;`
)�1MMM �

k;`
(DDD(2))�1 ~MMM

H

k � ~MMM `(DDD
(2)
)�1 ~MMM

H

k UUUkk

= UUU
�

k
`;`

~MMM ` (DDD
(2)
)�1MMM

H
�

k;`
UUU

�

k;`
+DDD

(1) �

k;`

�1

MMM
�

k;`
(DDD

(2)
)�1 � (DDD

(2)
)�1 ~MMM

H

k UUUkk: (42)
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�1 = Ek�

p (n)

i;`=1
i6=`

HHHkiGGGi`
�

k
HHH

H
k` + ~HHHkGGG

�

k
~AAA
H

k + ~AAAkGGG
�

k
~HHH
H

k k:

�
2
1 � 9Etr

p

i;`=1
i6=`

�
2jHHHk`j

2
HHHkiGGGi`

�

k
GGGi`

�

k

H
HHH

H
ki + 6Etr

p

i;`;r=1

�
2jHHHk`j

2
AAAkiGGGi`

�

k
GGGr`

�

k

H
AAA
H
kr

� max
`=1;...;p

E(jHHHk`j
2) 9Etr

p

i;`=1
i6=`

�
2
HHHkiGGGi`

�

k
GGGi`

�

k

H
HHH

H
ki + 6Etr

p

i;`;r=1

�
2
AAAkiGGGi`

�

k
GGGr`

�

k

H
AAA
H
kr

� max
`=1;...;p

E(jHHHk`j
2) 9Etr

p

i;`=1

�
2
HHHkiGGGi`

�

k
GGGi`

�

k

H
HHH

H
ki �

p

i=1

�
2
HHHkiGGGii

�

k
GGGii

�

k

H
HHH

H
ki + 6Ek�~AAAkGGG

�

k
k2

� 9 max
`=1;...;p

E(jHHHk`j
2)Etr

p

i=1

�
2
HHHki(GGG

�

k
GGG
H �

k
)HHHH

ki + 6 max
`=1;...;p

EjHHHk`j
2Ek~AAAkk

2 (55)

Additionally, assume

H-1
sup
n

max
i=1;...;p (n)

p (n)

j=1

EkHHHijk
2

+sup
n

max
j=1;...;p (n)

p (n)

i=1

EkHHHijk
2
< +1;

H-2
sup
n

max
i=1;...;p (n)

p (n)

j=1

jAAAij j

+sup
n

max
j=1;...;p (n)

p (n)

i=1

jAAAij j < +1;

H-3 Lindeberg condition: 8� > 0

lim
n!1

max
i=1;...;p (n)

p (n)

j=1

E kHHHijk
2
�fkHHHijk > �g

+ max
j=1;...;p (n)

p (n)

i=1

E kHHHijk
2
�fkHHHijk > �g = 0:

H-4 ���ks, k = 1; . . . ; p1, s = 1; . . . ; p2, the random blocks of the
matrix ��� are independent for every n.

and set �1 as shown in the first equation at the top of the page. Then

lim
n!1

�1 = 0: (54)

Proof: Applying the Liapunov inequality5 and inequality (27) we
obtain

�
2
1 �E �

p (n)

i;`=1
i6=`

HHHkiGGGi`
�

k
HHH

H
k`+ ~HHHkGGG

�

k
~AAA
H

k +~AAAkGGG
�

k
~HHH
H

k

2

�3E (

p (n)

i;`=1
i6=`

�HHHkiGGGi`
�

k
HHH

H
k`)

2

+3Ek�~HHHkGGG
�

k
~AAA
H

k k
2

+ 3Ek�~AAAkGGG
�

k
~HHH
H

k k
2
:

5Liapunov inequality: Given a random variable x; (E(jxj )) �

(E(jxj )) for k > 1. In particular, (E(jxj)) � E(jxj ).

Considering that from the definition of HHH E(HHHki) = 000, where 000 is the
null matrix, and applying inequality (29), yields

E (

p (n)

i;`=1
i6=`

�HHHkiGGGi`
�

k
HHH

H
k`)

2

�E

p (n)

i;`=1
i6=`

�HHHkiGGGi`
�

k
HHH

H
k`

2

+

p (n)

i;`=1
i6=`

�
2
HHHkiGGGi`

�

k
HHH

H
k`HHHk`GGG

H

i`
�

k
HHH

H
ki

�E

p (n)

i;`=1
i6=`

�HHHkiGGGi`
�

k
HHH

H
k`

2

+ 2E

p (n)

i;`=1
i<`

�HHHkiGGGi`
�

k
HHH

H
k`

2

and

Ek�~HHHkGGG
�

k
~AAA
H

k k
2

=Ek�~AAAkGGG
�

k
~HHH
H

k k
2

=Etr

p

i;`;r=1

�
2
AAAkiGGGi`

�

k
HHH

H
k`HHHk`GGG

H

r`
�

k
AAA
H
kr:

Therefore, applying inequality (28), we get (55) at the top of the page.

To obtain (55) we make use of the fact that p

`=1GGGi`
�

k
GGG
H

i`
�

k

is the ith diagonal block of the matrixGGG �

k
GGG
H �

k
and we neglect

the term

p

i=1

�
2
HHHkiGGGii

�

k
GGG
H

ii
�

k
HHH

H
ki

since it is always positive. Considering that �GGG
�

k

2

� 1 and ap-
plying the interlacing theorem, we obtain that also the maximum eigen-
value of �2GGG

�

k
GGG(k)H

ii
is upper-bounded by 1. Therefore

�
2
1 �9 max

`=1;...p
EjHHHk`j

2E

p

i=1

kHHHkik
2+6 max

`=1;...;p
EjHHHk`j

2E

p

i=1

kAAAkik
2
:
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Assumptions H-1 and H-2 imply that p

`=1
EkHHHkik

2 < +1 and
p

`=1
jAAAkij

2 < 1. Additionally, from H-3, the Lindeberg condition,
it follows that

lim
�!0

lim
n!+1

max
`=1;...;p

EkHHHk`k
2

= lim
�!0

lim
n!+1

max
`=1;...;p

EkHHHk`k
2
�fkHHHk`k

2
> �g

+EkHHHk`k
2
�fkHHHk`k

2 � �g

� lim
�!0

lim
n!+1

max
k=1;...;p

EkHHHk`k
2
�fkHHHk`k

2
> �g+ �

=0: (56)

Then, limn!+1 �21 = 0. Since �1 � 0, this completes the proof of
Lemma 6.

Lemma 7: Let Definitions (iii), (iv), (x), (xii), (viii), (ix), (xix),
(xxi), (xxii), (xi), (xxiv), (xxv), (xxvi), (xxvii), (xxv) hold.

Assume that Conditions H-1, H-2, H-3, and H-4 in Lemma 6 are
satisfied and define �2 as shown in the first equation at the bottom of
the page. Then

lim
n!1

�2 = 0: (57)

Proof: Let us define LLLs = �HHHksGGGss
�

k
HHH

H
ks. Then, �2 can be

rewritten as

�2 = Ek

p

s=1

LLLs � EfLLLsjGGGss
�

k
gk:

By applying the triangular inequality of the Froboenius norm and the
linearity of the expectation we derive

�2�Ek

p

s=1

LLLs�(kHHHksk>� )�EfLLLs�(kHHHksk>� )jGGGss
�

k
gk

+Ek

p

s=1

LLLs�(kHHHksk � � )�EfLLLs�(kHHHksk � � )jGGGss
�

k
gk

=�1+�2

where

�1 =Ek

p

s=1

LLLs�(kHHHksk > � )� EfLLLs�(kHHHksk > � )jGGGss
�

k
gk

and

�2 =Ek

p

s=1

LLLs�(kHHHksk � � )� EfLLLs�(kHHHksk � � )jGGGss
�

k
gk:

Let us focus on �1, the triangular inequality yields

�1 � E(

p

s=1

kLLLsk�(kHHHksk > � )

+

p

s=1

kE(LLLs�(kHHHksk > � )jGGGss
�

k
)k):

The triangular inequality and the linearity of expectation imply
EkE(LLLs�(kHHHksk > � )jGGGss

�

k
)k

� E E(kLLLsk�(kHHHksk > � )jGGGss
�

k
) :

Therefore, using the bound on the spectral norm j�GGGss
�

k
j � 1

�1 � 2

p

s=1

E(kHHHksk
2
�(kHHHksk > � )):

Thanks to the Lindeberg condition

lim
n!+1

�1 = 0: (58)

Let us consider �2. Applying the Lyapunov inequality we get the second
equation at the bottom of the page. SinceHHHks andHHHkt are independent
for s 6= t
E LLLsLLL

H
t �(kHHHksk < � )�(kHHHktk < � )jGGGss

�

k
;GGGtt

�

k

=E LLLs�(kHHHksk < � )jGGGss
�

k
E LLL

H
t �(kHHHktk < � )jGGGtt

�

k
:

Therefore

�
2

2 �Etr

p

s=1

E(LLLsLLL
H
s �(kHHHksk < � )jGGGss

�

k
)

� Etr

p

s=1

E(LLLs�(kHHHksk < � )jGGGss
�

k
)

�E(LLLH
s �(kHHHksk < � )jGGGss(k))

�Etr

p

s=1

E(LLLsLLL
H
s �(kHHHksk < � )jGGGss

�

k
)

=E

p

s=1

E(kLLLsk
2
�(kHHHksk < � )jGGGss

�

k
):

By applying inequality (28) we obtain

�
2

2�E

p

s=1

E(jHHHksj
2j�GGGss

�

k
j2kHHHksk

2
�(kHHHksk<� )jGGGss

�

k
):

The bounds j�GGGss
�

k
j < 1 and jHHHksj

2�(kHHHksk < � ) < � 2 yield

�
2

2 � �
2

p

s=1

E(kHHHksk
2):

�2 = E

p

s=1

�HHHksGGGss
�

k
HHH

H
ks � Ef�HHHksGGGss

�

k
HHH

H
ksjGGGss

�

k
g :

�
2

2 �Ek

p

s=1

LLLs�(kHHHksk � � )� EfLLLs�(kHHHksk � � )jGGGss
�

k
gk2

=Etr

p

s=1

LLLs�(kHHHksk � � )� EfLLLs�(kHHHksk � � )jGGGss
�

k
g

2

=Etr

p

s;t=1

E(LLLsLLL
H
t �(kHHHksk < � )�(kHHHktk < � )jGGGss

�

k
;GGGtt

�

k
)

�E LLLs�(kHHHksk < � )jGGGss
�

k
E LLL

H
t �(kHHHktk < � )jGGGtt

�

k
:
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Since p �1

s=1
E(kHHHksk

2) is upper-bounded thanks to hypothesis
H-1, it results that

lim
�!0

lim
n!+1

�2 = 0:

This completes the proof of Lemma 7.

Lemma 8: Let Definition (iii), (iv), (x), (xii), (viii), (ix), (xix),
(xxi), (xxii), (xi), (xxiv), (xxv), (xxvi), (xxvii), (xxv) hold.

Assume that Conditions H-1, H-2, H-3, and H-4 in Lemma 6 are
satisfied and define �3 as shown in the first equation at the bottom of
the page. Then

lim
n!1

�3 = 0: (59)

Proof: The triangular inequality and the linearity of expectation
yield

�3=E

p

s=1

E �HHHks(GGGss
�

k
�XXX)HHHH

ksjGGGss
�

k
XXX=GGG

�E

p

s=1

E kHHHks�(GGGss
�

k
�XXX)HHHH

ksk jGGGss
�

k
XXX=GGG

:

By applying inequality (28) we obtain the second equation at the
bottom of the page.

Applying the Woodbury formula, we obtain

GGG
�

k
�GGG = (GGG �

k
~���
H

k CCC
~���kGGG

�

k
)

with CCC = (III + ~���kGGG
�

k
~���
H

k )
�1. Note that the spectral norm of CCC is

bounded by jCCCj � 1 and

GGGss
�

k
�GGGss =

p

j=1

GGGsj
�

k
~���
H

kj CCC

p

`=1

GGGs`
�

k
~���kj

H

:

By appealing to inequality (28)

GGGss
�

k
�GGGss �

p

j=1

GGGsj
�

k
~���
H

kj

2

:

Therefore, we have (60) at the bottom of the page. The bounds
k�GGG �

k
k � 1 and kGGG �

k
k � j�j�1 are applied to derive (60).

Hypotheses H-1 and H-2 of Lemma 6 imply that p

j=1
Ek���kjk

2 is
upper-bounded as n! +1. Following the same line as in Lemma 6,
we get

lim
n!+1

max
s=1;...;p

E jHHHksj
2 = 0:

This implies (59) and completes the proof of Lemma 8.

Lemma 9: Let definitions (iii), (iv), (x), (xii), (viii), (ix), (xix),
(xxi), (xxii), (xi), (xxiv), (xxv), (xxvi), (xxvii), (xxv) hold.

Assume that Conditions H-1, H-2, H-3, and H-4 in Lemma 6 are
satisfied and define

EEEk` = �~���kGGG
�

k;`
~���k � �~AAAkGGG

�

k;`
~AAAk; k 6= `: (61)

Then

lim
n!1

E(kEEEk`k) = 0: (62)

Proof: Referring to the Liapunov inequality and inequality (27)
we obtain

(EkEEEk`k)
2 �EkEEEk`k

2

� 3E(k�~HHH`GGG
�

k;`
~HHH
H

k k
2 + k�~AAA`GGG

�

k;`
~HHH
H

k k
2

+ k�~HHH`GGG
�

k;`
~AAA
H

k k
2):

Taking into account that ~HHH` and ~HHHk are independent for ` 6= k and
E~HHH` = 000, where 000 is the null matrix, it results in equation (63) at the

�3 = E �

p

s=1

E HHHksGGGss
�

k
HHH

H
ksjGGGss

�

k
� E HHHksXXXHHH

H
ks

XXX=GGG
:

�3 �E

p

s=1

E jHHHksj
2k�(GGGss

�

k
�XXX)k jGGGss

�

k
XXX=GGG

= max
s=1;...;p

E jHHHksj
2 E

p

s=1

k�(GGGss
�

k
�GGGss)k :

�3 � max
s=1;...p

E jHHHksj
2 E

p

s=1

�tr (

p

j=1

GGGsj
�

k
���
H

kj)
H(

p

`=1

GGGs`
�

k
���
H

k`)

= max
s=1;...;p

E jHHHksj
2 E tr�

p

j;`=1

p

s=1

(���kjGGGsj
�

k

H
GGGs`

�

k
���
H

k`)

= max
s=1;...p

E jHHHksj
2 E tr

p

j;`=1

� ���kj(GGG
�

k

H
GGG

�

k
)jl���

H

k`)

� max
s=1;...;p

E jHHHksj
2 E k� GGG

�

k
~���kk

2

� j�j�1 max
s=1;...;p

E jHHHksj
2 E k~���

H

k k
2

� j�j�1 max
s=1;...;p

E jHHHksj
2

p

j=1

E k���kjk
2

: (60)
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(EkEEEk`k)
2 � 3E tr �

2
p

i;j=1

HHH`jGGGij
�

k;`
HHH

H
kjHHHkjGGGij

�

k;`

H

HHH
H
`i

+ 3E tr(�2
p

i;j;r=1

AAA`iGGGij
�

k;`
HHH

H
kjHHHkjGGGrj

�

k;`

H

AAA`r) +3E tr(�2
p

i;j;r=1

HHH`iGGGij
�

k;`
AAA
H
kjAAAkrGGGir

�

k;`

H

HHH
H
`i )

� 3 max
j=1;...;p

E(jHHHkj j
2) E tr

p

i=1

�
2
HHH`i(

p

j=1

GGGij
�

k;`
GGG
H

ij
�

k;`
)HHHH

`i + E tr

p

i;j;r=1

�
2
AAA`iGGG

H

ij
�

k;`

�GGGrj
�

k;`
AAA
H
`r + 3 max

j=1;...;p
E(jHHH`j j

2)E tr

p

i;j;r=1

�
2
AAAkrGGG

H

ir
�

k;`
GGGij

�

k;`
AAA
H
kj : (63)

top of the page. In (63) inequality (28) has been applied. Note that the
term

p

j=1

�
2
GGGij

�

k;`
GGGij

�

k;`

H

coincides with the ith diagonal block of the matrix

�
2
GGG

�

k;`
GGG
H

�

k;`
:

Appealing to the interlacing theorem and the bound on the eigenvalues
of �GGG �

k;`
we easily recognize that

j

p

j=1

�
2
GGGij

�

k;`
GGGij

�

k;`

H

j � 1:

Additionally
p

i;j;r=1

�
2
AAA`iGGGijGGG

H

rjAAA
H
`r = �

2~AAA`GGG
�

k;`

H

GGG
�

k;`
~AAA
H

` :

These considerations yield

(EkEEEk`k)
2 � 3 max

j=1;...;p
E(jHHHkj j

2) Etr(

p

i=1

HHH`iHHH
H
`i)

+Etr(�2~AAA`GGG
�

k;`

H

GGG
�

k;`
~AAA
H

` )

+3 max
j=1;...p

E(jHHH`j j
2)Etr(�2~AAAkGGG

�

k;`

H

GGG
�

k;`
~AAA
H

k )

� 3 max
j=1;...p

E(jHHHkj j
2) E

p

i=1

kHHH`ik
2+

p

i=1

kAAA`ik
2

+ 3 max
j=1;...p

E(kHHH`j)k
2
p

i=1

kAAA`ik
2
: (64)

Inequality (28) and the bound on the spectral norm of �GGG �

k;`
are

used to derive (64). Hypotheses H-1 and H-2 imply that the sums in (64)
are upper-bounded for any n. Additionally, as in (56), the Lindeberg
condition implies that

lim
n!1

max
j=1;...;p

E(jHHHkj j
2) = 0:

This yields the thesis of Lemma 9.

Lemma 10: Let definitions (iii), (iv), (x), (xii), (viii), (ix), (xix),
(xxi), (xxii), (xi), (xxiv), (xxv), (xxvi), (xxvii), (xxv) hold.

Assume that Conditions H-1, H-2, H-3, and H-4 in Lemma 6 are
satisfied.

Then, for � 2 n �

lim
n!1

EjQQQp`(�)� TTT p`(�)j =0; p; ` = 1; . . . ; p1

and

lim
n!1

EjGGGp`(�)� �
�1
RRRp`(�)j =0; p; ` = 1; . . . ; p2

i.e., the blocks of the matrices QQQ and GGG converge in the first mean to
the corresponding blocks of the matrices

TTT =(CCC
(1)

+AAA
H

(CCC
(2)

)�1AAA)�1

and

RRR =(CCC
(2)

+AAA(CCC
(1)

)�1AAA
H
)�1

respectively, with

CCC
(1)

(�) = diag(CCC
(1)
kk (�))k=1;...;p (65)

and

CCC
(2)

(�) = diag(CCC
(2)
kk (�))k=1;...;p : (66)

The matrix blocksCCC(1)
kk (�) of size q1�q1 andCCC(2)

kk (�) of size q2�q2
are equal to

CCC
(1)
kk (�) =�III+

p

j=1

EHHHkj(XXX)jjHHH
H
kj

XXX=�GGG
; k=1; . . . ; p1 (67)

CCC
(2)
`` (�) = III+

p

j=1

EHHHH
j`(YYY )jjHHH

H
j`

YYY=QQQ
; k=1; . . . ; p2 (68)

with QQQ and GGG defined in (viii) and (ix), respectively.

Proof: Let us consider the matricesQQQ,GGG,CCC
(1)

, andCCC
(2)

defined
in (viii), (ix), (65), and (66), respectively. Corollary 3, (51), and (52),
applied to the matrix QQQ yields

QQQ`k = �QQQ``
�

k
(�~AAA`GGG

�

k;`
~AAA
H

k +EEE`;kQQQkk; ` 6= k (69)

QQQkk =(CCC
(1)
kk + �~AAAkGGG

�

k
~AAA
H

k +EEEkk)
�1 (70)

with EEE`k defined already in (61) as

EEE`k = �~���`GGG
�

k;`
~���
H

k � �~AAA`GGG
�

k;`
~AAA
H

k ; ` 6= k

and

EEEkk = �~���kGGG
�

k
~���
H

k � �~AAAkGGG
�

k
~AAA
H

k �CCC
(1)
kk + �III: (71)

Thanks to Lemma 9

lim
n!+1

max
k=1;...;p
`=1;...;p

E(kEEEk`k) = 0; for ` 6= k: (72)

In order to prove an similar property for EEEkk let us rewrite EEEkk as
follows:

EEEkk =�~HHHkGGG
�

k
~HHH
H

k + �~HHHkGGG
�

k
~AAA
H

k + �~AAAkGGG
�

k
~HHH
H

k

�

p

s=1

E(HHHksXXXssHHH
H
ks)XXX=�GGG

+�

p

s=1

E(HHHksGGGss
�

k

�HHH
H
ksjGGGss

�

k
)� �

p

s=1

E(HHHksGGGss
�

k
HHH

H
ksjGGGss

�

k
)
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=

p

i;`

i 6=`

�HHHkiGGGi`
�

k
HHH

H
k`

+ �~HHHkGGG
�

k
~AAA
H

k + �~AAAkGGG
�

k
~HHH

H

k + �

p

s=1

HHHksGGGss
�

k
HHH

H
ks

��

p

s=1

E(HHHksGGGss
�

k
HHH

H
ksjGGGss

�

k
)

+�

p

s=1

E(HHHksGGGss
�

k
HHH

H
ksjGGGss

�

k
)��

p

s=1

E(HHHksGGGssHHHks):

Appealing to the triangular inequality of the Frobenius norm

EkEEEkkk � �1 + �2 + �3 (73)

with �1, �2, and �3 defined in Lemmas 6–8, respectively. These lemmas
and (73) imply

lim
n!1

max
k=1;...;p

EkEEEkkk = 0: (74)

Making use of Lemma 4, the block elements of the matrix TTT can be
rewritten as

TTT`k = � TTT``
�

k
(~AAA`RRR

�

k;`
~AAA
H

k )TTTkk;

k 6= `; and k; ` = 1; . . . ; p1

TTTkk =(CCC
(1)
kk +~AAAkRRR

�

k
~AAA
H

k )
�1
; k = 1; . . . ; p1 (75)

with RRR �

k
= (CCC(2) +AAA

�

k

H
(CCC(1)(k))�1AAA

�

k
)�1 and

RRR
�

k;`
= (CCC(2) +AAA

�

k;`

H

(CCC(1)(k; `))�1
AAA

�

k;`

H

)�1
:

CCC
(1)

(k) is the matrix obtained fromCCC
(1)

by suppressing the kth block

row and the kth block column. Analogously, CCC
(1)

(k; `) is the block-

diagonal matrix obtained from CCC
(1)

by suppressing the kth and `th
block rows and the kth and `th block columns. For further study, we
derive the following bound:

EjQQQ`k � TTT `kj

=Ej�QQQ``
�

k
(�~AAA`GGG

�

k;`
~AAA
H

k +EEEk`)QQQkk

+ TTT ``
�

k
~AAA`RRR

�

k;`
~AAA
H

k TTT kkj

=Ej(�QQQ``
�

k
+ TTT ``

�

k
)�~AAA`GGG

�

k;`
~AAA
H

k QQQkk

�TTT ``
�

k
�~AAA`GGG

�

k;`
~AAA
H

k (QQQkk � TTT kk)�TTT ``
�

k
~AAA`

�(�GGG �

k;`
�RRR �

k;`
)~AAA

H

k TTT kk �QQQ``
�

k
EEEk`QQQkkj

�E(j�QQQ``
�

k
+TTT ``

�

k
k�GGG �

k;`
k~AAA`k~AAAkkQQQkkj)

+ E(jTTT ``
�

k
k�GGG �

k;`
k~AAA`k~AAAkkQQQkk�TTT kkj)

+ E(jTTT ``
�

k
kTTT kkk

p

s;t=1

AAA`s(�GGGst
�

k;`

�RRRst
�

k;`
)AAAH

ktj) + E(jQQQ``
�

k
kEEEk`kQQQkkj): (76)

Here, (76) derives from the triangular inequality (24) and the submul-
tiplicative inequality (25). Taking into account that

jQQQkkj; jTTT kkj; jTTT ``(k)j < j�j�1 � jsj�1 and j�CCC �

k;`
j < 1

and

j~AAA`j �

p

i=1

kAAA`ik2 � q1

p

i=1

jAAA`ij2

we obtain

EjQQQ`k � TTT `kj

� q1

p

i=1

jAAA`ij2 q1

p

i=1

jAAAkij2jsj
�1

� EjQQQ``
�

k
� TTT ``

�

k
j+ EjQQQkk � TTT kkj

+ max
s;t=1;...p

EjGGGst � �
�1
RRRst

�

k;`
j + jsj�2EjEEEk`j

� c
0j�j�1( max

k;`=1;...p
s;t=1;...p

EjQQQ``
�

k
� TTT ``

�

k
j

+EjQQQkk � TTT kkj+EjGGGst
�

k;`
� �

�1
RRRst

�

k;`
j

+ j�j�1EjEEEk`j) (77)

where 0 < c0 < +1 is a finite constant thanks to hypothesis H-2. A
similar bound holds for EjQQQii � TTT iij. In fact, (70) and (75) yield

EjQQQkk � TTT kkj

=EjTTT kkTTT
�1
kkQQQkk � TTT kkQQQ

�1
kkQQQkkj

=EjTTT kk
~AAAk(RRR

�

k
� �GGG

�

k
)~AAAkQQQkk � TTT kkEEEkkQQQkkj

� j�j�1E

p

i;j=1

jAAAki(�
�1
RRRij

�

k
�GGGij

�

k
)AAAH

kj j+j�j
�1jEEEkkj

� j�j�1 max
ij=1;...;p

E(j��1
RRRij

�

k
�GGGij

�

k
j)

�(
j

kAAAkjk
2) + j�j�1jEEEkkj (78)

� c
0j�j�1 max

ij=1;...;p
Ej��1

RRRij
�

k
�GGGij

�

k
j+ j�j�1jEEEkkj :

(79)

Equation (78) is derived applying the triangular inequality (24). In (79),
we use hypothesis H-2.

A similar inequality holds for E GGGij
�

k;`
� ��1RRRij

�

k;`
:

For further study, we introduce the definitions, shown in the equa-
tions at the top of the next page. With the previous definitions and
taking into account (77) and (79) we can write

a
(0)
(0)(�) � cj�j�1(max(a

(0)
(1)(�); b

(0)
(1)(�); b

(0)
(2)(�))

+ j�j�1 max
k;`

(EjEEEkkj+EjEEEk`j))

� cj�j�2
"0 + cj�j�1 max(a

(0)
(1)(�); b

(0)
(1)(�); b

(0)
(2)(�)) (80)

with

"0 = "0(n) = "
0
0 = max

k;`
E(jEEEkkj+ jEEEk`j)

and c = 3c0. Considering relations similar to (77) and (79) for

E QQQp`
j ;j ;...;j
k ;k ;...;k

� TTT p`
j ;j ;...;j
k ;k ;...;k

and

E GGGp`
j ;j ;...;j
k ;k ;...;k

� �
�1
RRRp`

j ;j ;...;j
k ;k ;...;k
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a
(0)
(0)(�) = max

p;`=1;...p
EjQQQp` � TTT p`j

a
(r)
(s)(�) = max

p;`=1;...p
max

j ;j ;...;j
k ;k ;...;k

(EjQQQp`
j ;j ;...j
k ;k ;...k

� TTT p`
j ;j ;...j
k ;k ;...k

j)

b
(0)
(0)(�) = max

p;`=1;...p
EjGGGp` � �

�1
RRRp`j

b
(r)
(s)(�) = max

p;`=1;...p
max
j ;...j
k ;...k

(EjGGGp`
j ;j ;...;j
k ;k ;...;k

� �
�1
RRRp`

j ;j ;...;j
k ;k ;...;k

j):

we can write

a
(r)
(s)(�) � cj�j�1 max(a

(r)
(s+1)(�); b

(r)
(s+1); b

(r)
(s+2)(�))

+j�j�1"
(r)
(s) (81)

and
b
(r)
(s)(�) � cj�j�1 max(a

(r+1)
(s) (�); a

(r+2)
(s) (�); b

(r+1)
(s) (�))

+j�j�1"
(r)
(s) (82)

with

"
(r)
(s) =max

p;`
max

j ;j ;...;j
k ;k ;...;k

E EEEp`
j ;j ;...;j
k ;k ;...;k

+ E EEE``
j ;j ;...;j
k ;k ;...;k

+E EEEp`
j ;j ;...;j
k ;k ;...;k

+E EEE``
j ;j ;...;j
k ;k ;...;k

:

Here, E EEEp`(
j ;j ;...;j
k ;k ;...;k

is defined analogously to

E EEEp`(
j ;j ;...;j
k ;k ;...;k

but for the matrix

E GGGp`
j ;j ;...;j
k ;k ;...;k

� �
�1
RRRp`

j ;j ;...;j
k ;k ;...;k

:

Note that "(r)(s) depends on the parameter n. Let us substitute the upper

bounds (81) and (82) for a(0)(1)(�), b
(0)
(1)(�), b

(0)
(2)(�) in6 (80). We obtain

a
(0)
(0)� cj�j�1 max cj�j�1(max(a

(0)
(2); b

(0)
(2); b

(0)
(3))+j�j

�1
"
(0)
(1));

cj�j�1(max(a
(2)
(0); a

(3)
(0); b

(2)
(0)) + j�j�1"

(1)
(0));

cj�j�1(max(a
(1)
(2); a

(2)
(2); b

(1)
(2))+j�j

�1
"
(0)
(2)) +j�j�1"

(0)
(0)

�c2j�j�2 max(a
(0)
(2);b

(0)
(2);b

(0)
(3);a

(2)
(0);a

(3)
(0);b

(2)
(0);a

(1)
(2);a

(2)
(2);b

(1)
(2))

+j�j�1 max("
(0)
(1); "

(1)
(0); "

(0)
(2)) + cj�j�2"0

�c2j�j�2max(a
(0)
(2); b

(0)
(2); b

(0)
(3);a

(2)
(0);a

(3)
(0);b

(2)
(0); a

(1)
(2); a

(2)
(2); b

(1)
(2))

+ c
2j�j�3max("

(0)
(1); "

(0)
(1); "

(0)
(2)) + cj�j�2"0: (83)

By denoting "1 = max("
(0)
(1); "

(0)
(1); "

(0)
(2); "0) the quantity a

(0)
(0)(�) is

bounded as follows:
a
(0)
(0) �c

2j�j�2max(a
(0)
(2); b

(0)
(2); b

(0)
(3); a

(2)
(0); a

(3)
(0); b

(2)
(0); a

(1)
(2); a

(2)
(2); b

(1)
(2))

+ "1(c
2j�j�3 + cj�j�2): (84)

By iterating the substitutions (81) and (82) in (80) and by considering
that the upper bounds
a
(r)
(s)(�)

� max
p;`

max
i ;i ;...;i

E QQQp`
j ;j ;...;j
k ;k ;...;k

+ E TTT p`
j ;j ;...;j
k ;k ;...;k

< 2j�j�1 (85)

and similarly b(r)(s)(�) � 2j�j�1 at the mth iteration we obtain

a
(0)
(0)(�) �

"m

c

m�1

i=2

c
ij�j�i + 2ck+1j�j�k�1:

6In the following, a = a (�).

Note that "(r)(s) ! 0 for n ! 1, then also limn!1 "m = 0. Since

a
(0)
(0)(�) � 0, for cj�j�1 < 1

lim
m;n!1

"m

c

m�1

i=2

c
ij�j�i + 2cmj�j�m = 0:

Then

lim
m;n!1

a
(0)
(0)(�) = lim

n!1
max
p;`

EjQQQp`(�)� TTT p`(�)j = 0 (86)

for cj�j�1 < 1. Since the matrices QQQp`(�) and TTT p`(�), for p; ` =

1; . . . ; p1 are analytical in � 2 n � then the convergence holds for
all � 2 n �.

The proof of the convergence in probability of the matrices GGGp` to
RRRp` follows along the same line.

Lemma 11: Let us assume that the definitions of Lemma 10 hold
and the conditions of Lemma 10 are satisfied.

Then, the q1� q1 matricesCCC(1)
kk (�), k = 1; . . . ; p1, and the q2� q2

matricesC(2)
`` (�), ` = 1; . . . ; p2, defined in (67) and (68), respectively,

converge as n ! 1 to the limit matrices

lim
n!+1

CCC
(1)
kk =			

(1)
kk ; k = 1; . . . ; p1

lim
n!+1

CCC
(2)
`` =			

(2)
`` ; ` = 1; . . . ; p2

where			(1)
kk , k = 1; . . . ; p1, and			(2)

`` , ` = 1; . . . ; p2 satisfy the canon-
ical system of equations

			
(1)
kk =�III+

p

j=1

E (���kj�AAAkj) 			
(2)

+AAA
H

[			
(1)
]�1AAA

�1

jj

� (���kj�AAAkj)
H

; k=1; . . . ; p1 (87)

			
(2)
`` = III+

p

j=1

E (���j`�AAAj`)
H 			

(1)
+AAA[			

(2)
]�1AAA

H �1

jj

� (���j`�AAAj`) ; `=1; . . . ; p2

AAA=(AAAij); 			
(1)

=diagf			
(1)
kk (�)g; 			

(2)
=diagf			

(2)
`` (�)g: (88)

Proof: Let us consider the system of equations

CCC
(1)
kk =�III +

p

j=1

E HHHkj(XXX)jjHHH
H
kj

XXX=�GGG

CCC
(2)
kk = III +

p

j=1

E HHH
H
j`(YYY )jjHHHj`

YYY=QQQ
:

Taking into account the convergence ofQQQp` and �GGGp` to TTT p` andRRRp`,
respectively, shown in Lemma 10 (86) we can substituteQQQp` and �GGGp`

with their limiting values. For finite n

CCC
(1)
kk =�III+

p

j=1

E HHHkj((CCC
(2)

+AAA
H
(CCC

(1)
)�1AAA)�1)jjHHH

H
kj +WWW

(1)
kk

CCC
(2)
kk =III+

p

j=1

E HHH
H
j`((CCC

(1)
+AAA(CCC

(2)
)�1AAA

H
)�1)jjHHHj` +WWW

(2)
kk
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whereCCC
(1)

= diag(CCC
(1)
kk )k=1;...;p ,CCC

(2)
= diag(CCC

(2)
`` )`=1;...;p , and

WWW
(1)
kk =

p

j=1

E HHHkj(�(�III +���
H

���)�1 � (CCC
(2)

+AAA
H
(CCC)�1AAA)�1)jjHHH

H
kj

WWW
(2)
`` =

p

j=1

E HHH
H
j`((�III +������

H

)�1 � (CCC
(1)

+AAA(CCC
(2)

)�1AAA
H
)�1)jjHHHj` :

Let us consider WWW (1)
kk . By definitionGGG = (�III +���

H

���)�1 andRRR =

(CCC
(2)

+ AAA
H

(CCC
(1)

)�1AAA)�1, thus

max
k

EjWWW
(1)
kk j = max

k
Ej

p

j=1

(HHHkj(�GGG�RRR)jjHHH
H
kj)j

� max
k

E

p

j=1

jHHHkj j
2j�GGGjj �RRRjj j

� max
k

E ( max
j=1;...;p

j�GGGjj �RRRjj j)

p

j=1

jHHHkj j
2

:

(89)

Here, (89) follows from the triangular inequality (24) and the submul-
tiplicative inequality for the spectral norm (25). From hypothesis H-1
and the convergence shown in Lemma 10

lim
n!1

E max
j=1;...p

jGGGjj � �
�1
RRRjj j = 0

we obtain
lim
n!1

max
k

EjWWW
(1)
kk j = 0:

Similarly, we can prove
lim
n!1

max
k

EjWWW
(2)
kk j = 0:

Then, we get (90)–(91) at the bottom of the page. Let us consider the
system of (87) and (88). The solution of this system coincides with the
solution of the system

CCC
(1)
kk =�III+

p

j=1

E (���kj�AAAkj) CCC
(2)

+AAA
H
[CCC

(1)
]�1AAA

�1

jj

� (���kj �AAAkj)
H

; k = 1; . . . ; p1

CCC
(2)
`` =III+

p

j=1

E (���j`�AAAj`)
H

CCC
(1)

+AAACCC
(2)

]�1AAA
H �1

jj

� (���j` �AAAj`) ; ` = 1; . . . ; p2:

The system of limits (90) and (91) guarantees that CCC(1)
kk and CCC(2)

`` de-
fined in (67) and in (68) converge to the solutions of the system of
equations defined by (87) and (88), 			(1)

kk and 			
(2)
`` , respectively.

Lemma 12: Let us assume that the definitions of Lemma 10 hold
and the conditions of Lemma 10 are satisfied. Let us consider the
system of canonical (87) and (88) with AAA and AAAkj defined in (xxiv).
Then, the solution of the canonical system of (87) and (88) exists and

it is unique in the class of nonnegative definite analytic matrices for
Re(�) > 0.

This lemma can be proven along the same lines as the proofs of
the existence and uniqueness of the solutions of canonical systems of
equations in [21], [22]. For example, the reader can refer to the proof
of Lemma 7.4 for the system of canonical equations K7 in [21].

APPENDIX II
PROOF OF THEOREM 1: ASYMPTOTIC CONVERGENCE

OF THE LINEAR MMSE’S SINRk

The proof of Theorem 1 is based on the results of Lemmas 10–12.
Then, let us verify that the matrixHHH satisfies conditions H-1, H-2, H-3,
and H-4 required by Lemmas 10 and 11.HHHij is the L� 1 block i; j of
the matrix HHH. Consistently with the assumption on the linear MMSE
detector that the channel gains are perfectly known at the receiver, we
assume that the channel gains are given. Then, all blocks are indepen-
dent since the spreading sequence elements are independent and con-
dition H-4 is satisfied. Furthermore

sup
N

max
i=1;...N

K

j=1

EfkHHHijk
2g+ max

i=1;...K

N

j=1

EfkHHHjik
2g

� sup
N

K

N
max

j=1...K
lll
H
j lllj + max

i=1...K
lll
H
i llli

� sup
N

(� + 1) max
i=1;...;K

lll
H
i llli < +1: (92)

The second inequality in (92) holds thanks to the assumption that klllik
is uniformly bounded for all N . Then, HHH satisfies condition H-1.

Condition H-2 is trivially verified since the entries of matrix HHH are
all zero mean.

In order to verify condition H-3, we focus on the limit

lim
K!1

K

j=1

EkHHHijk
2
�(kHHHijk > � ) = 0 (93)

for any � > 0. The limit

lim
N!1

N

j=1

EkHHHjik
2
�(kHHHjik > � ) = 0 (94)

can be computed in a similar way.
Let us observe that 8i; j

E kHHHijk
2
�(kHHHijk>� ) = lll

H
j lllj

js j >

jsij j
2dF (sij)

�
(lllHj lllj)

1+�

� 2�

fjs j�0g

jsij j
2+�dF (sij)

where F (sij) is the distribution function of sij and � 2 +. From the
assumptions in Theorem 1, E(jsij j4) � 1

N
with 
 > 1. Then, for

� = 2

E kHHHijk
2
�(kHHHijk > � ) �

(lllHj lllj)
3

� 4N

; with 
 > 1:

Since kllljk, for j = 1; . . . ; K is uniformly bounded for all K , there
exists a real number m < +1 such that maxj=1;...;K lll

H
j lllj < m for

all K and
max
i;j

E kHHHijk
2
�(kHHHijk > � ) �

m3

� 4N

; with 
 > 1:

lim
n!1

max
k

jCCC
(1)
kk � �III �

p

j=1

E(HHHkj(CCC
(2) +AAA

H
(CCC(1))�1AAA)�1jj HHH

H
kj)j = 0; k = 1; . . . ; p1 (90)

lim
n!1

max
`
jCCC

(2)
`` � III �

p

j=1

E(HHHH
`j(CCC

(1) +AAA(CCC(2))�1AAA
H
)�1jj HHHj`)j = 0; ` = 1; . . . ; p2: (91)
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Therefore

lim
K;N!1

!�

K

j=1

E kHHHijk
2
�(kHHHijk > � ) � lim

N!1

m3�

� 4N
�1
= 0:

and H-3 is satisfied by the assumptions of Theorem 1.
The system of canonical equations (87) and (88) can be considerably

simplified for the matrixHHHHHHH. Equation (87) can be rewritten as

			
(1)
kk =�IIIL +

K

j=1

E HHHkj([			
(2)

]�1)jjHHH
H
kj (95)

=�IIIL +

K

j=1

([			
(2)

]�1)jjE HHHkjHHH
H
kj (96)

=�IIIL +KKK
(1) = 			(1)

: (97)

The step from (95) to (96) is justified by the fact that ([			
(2)

]�1)jj is a
scalar (1 � 1 matrix). Equation (97) emphasizes that the matrix

KKK
(1)

K

j=1

([			
(2)

]�1)jjE HHHkjHHH
H
kj (98)

is independent of k since E HHHkjHHH
H
kj = E HHHk jHHH

H
k j for all

k; k0 = 1; . . . ; N .
Equation (88) can be specialized to system (1) as follows:

			
(2)
ll =1 +

N

j=1

E HHHH
jl ([			

(1)
]�1)jjHHHjl (99)

=1 +

N

j=1

E lll
H
l ([			

(1)]�1)lllljsjlj
2 (100)

=1 + lll
H
l [			

(1)]�1llll: (101)

Substituting (101) in (98), (97) can be rewritten as

			(1) =�IIIL +

K

j=1

E HHHkjHHH
H
kj

1 + lll
H
j [			

(1)]�1lllj

=�IIIL +
1

N

K

j=1

llljlll
H
j

1 + lll
H
j [			

(1)]�1lllj
:

Then, considering the limit for K;N ! 1

			(1) = �IIIL + �
llllll
H

1 + lll
H [			(1)]�1lll

dFlll(l1; l2; . . . ; lL) (102)

and substituting (			(1))�1 = AAA

�
we obtain (9) for � = �2.

Let UUU = (HHHkHHH
H
k + �2III)�1 and let UUU ij , i; j = 1; . . . ; N be its

L � L matrix-block elements. From Lemma 10

lim
K;N!1

!�

EjUUU ij � TTT ij j = 0

with TTT ij = [CCC
(1)
ii (�2)]�1�ij and

CCC
(1)
kk (�

2)=�
2
III+

K

j=1

(Ejsjkj
2
lll
H
k XXXjjlllk)jXXX=� (HHH HHH+� III) :

Lemma 11 guarantees that

lim
K;N!1

!�

TTT ij = [			(1)]�1�ij :

Here, LLLk denotes the LN � K block-diagonal matrix whose blocks
are identically equal to lllk . Its maximum singular value is equal to
lll
H
k lllk < +1 since klllk is uniformly bounded for all K . Then, hhhk =

LLLksssk , where sssk is the kth column of the spreading matrix SSS.

The convergence in probability of SINRk = hhh
H
k UUUhhhk to the quantity

lllHk [			
(1)]�1lllk is proven if �1 = EjhhhHk UUUhhhk � lllHk [			

(1)]�1lllkj vanishes
asymptotically, i.e.,

lim
K;N!1

!�

�1 = 0: (103)

The rest of the proof is focused on showing (103). Let us observe
�1 � EjhhhHk UUUhhhk � hhh

H
k TTThhhkj+EjhhhHk TTThhhk � lll

H
k [			

(1)]�1lllkj
where the triangular inequality of the spectral norm is applied and
TTT = diag([CCC

(1)
kk (�

2)]�1)k=1;...;N .
By applying the submultiplicative inequality for spectral norms (25)

and the triangular inequality (24) to the first term we obtain

EjhhhHk (UUU � TTT )hhhkj =Ej
i;`

s
�
iklll

H
k (UUU � TTT )i`lllks`kj

�
i;`

EjUUU i` � TTT i`jlll
H
k lllkEjs

�
iks`kj

=
i

EjUUU ii � TTT iij
lll
H
k lllk

N

� lll
H
k lllkmax

i
EjUUU ii � TTT iij:

Thanks to Lemma 10 and the fact that lllHk lllk < +1

lim
K;N!1

!�

EjhhhHk (UUU � TTT )hhhkj = 0:

In order to prove the convergence to zero of �2 = EjhhhHk TTThhhk �
lll
H
k [			

(1)]�1lllkj we considers

�
2
2 �EjhhhHk TTThhhk � lll

H
k [			

(1)]�1lllkj
2

=E((hhhHk TTThhhk)
2�2hhhHk TTThhhklll

H
k [			

(1)]�1lllk+lll
H
k [			

(1)]�1lllk)

=E
ij

lll
H
k TTT iilllklll

H
k TTT jjlllkjsikj

2jsjkj
2 � 2lllHk [			

(1)]�1lllk

�
i

lll
H
k TTT iilllkjsikj

2 + (lllHk [			
(1)]�1lllk)

2 (104)

=
i

(lllHk TTT iilllk)
2 1

N

+

i;j

i6=j

(lllHk TTT iilllk)(lll
H
k TTT jjlllk)

1

N2

�
2

N
lll
H
k [			

(1)]�1lllk
i

lll
H
k TTT iilllk+(lllHk [			

(1)]�1lllk)
2
: (105)

From (104) to (105) we make use of the assumptions on the second
and fourth moments of sij . Let us observe that the spectral norm of
[			(1)]�1 and TTT ii, for any i, are bounded by j[			(1)]�1j < �2 and
jTTT iij < �2. Then, the first term in (105) vanishes as N ! 1 since

 > 1. By appealing Lemma 11, for any i, TTT ii ! [			(1)]�1 as
K;N ! 1 with K

N
! �. Then, the second and third terms in

(105) converge to (lllHk [			
(1)]�1lllk)

2 and �2(lllHk [			
(1)]�1lllk)

2, respec-
tively. We can conclude that

lim
K;N!1

!�

�
2
2 = 0

and �2 ! 0 as K;N ! 1 as K

N
! �. Therefore, (103) is proven.

The Markov inequality implies that, 8" > 0

lim
K;N!1

!�

PrfjhhhHk UUUhhhk � lll
H
k [			

(1)]�1lllkj > "g

�
1

"
lim

K;N!1

!�

EjhhhHk UUUhhhk � lll
H
k [			

(1)]�1lllkj = 0

and the convergence in probability stated in Theorem 1 is proven.
This concludes the proof of Theorem 1.
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APPENDIX III
PROOF OF THEOREM 2: ASYMPTOTIC CONVERGENCE OF BAYESIAN

FILTER RECEIVER’S SINRk

Let us derive first the Bayesian filter. To this aim we calcu-
late EfyyyyyyHg�1 and Efb�kyyyg with the expectation taken over the
noise, all transmitted signals, and over all transmitted powers,
channel gains, and spreading sequences of all interferers. Then,
EfyyyyyyHg = EfHHHkHHH

H
k g + hhhkhhh

H
k + �2IIINL. Because of the inde-

pendence and zero mean of the elements of the spreading sequences,
EfHHHkHHH

H
k g is a block-diagonal matrix with N blocks of size L � L.

Each block is given by (K�1
N

)CCClll with CCClll = EfllllllHg. It follows that

CHHH = EfHHHkHHH
H
k g = IIIN 


K � 1

N
CCClll: (106)

By applying the Sherman–Morrison equation we obtain

(EfyyyyyyHg)�1 = (CHHH + �
2
IIINL)

�1 � (CHHH + �
2
IIINL)

�1
hhh
H
k

�(1 + hhh
H
k (CHHH + �

2
IIINL)

�1
hhhk)hhh

H
k (CHHH + �

2
IIINL)

�1
:

Let us observe that Efb�kyyyg = hhhk: The Bayesian receiver is given by

ccck =
(CHHH + �2IIINL)

�1hhhk

1 + hhh
H
k (CHHH + �2IIINL)�1hhhk

:

The energy of the useful signal k at the output of the Bayesian filter is
given by

EfjcccHk hhhkbkj
2g =

hhh
H
k (CHHH + �2IIINL)

�1hhhk

1 + hhh
H
k (CHHH + �2IIINL)�1hhhk

2

:

The energy of the noise at the output of the Bayesian filter is

EfjcccHk nnnj
2g = �

2 hhh
H
k (CHHH + �2IIINL)

�2hhhk

(1 + hhh
H
k (CHHH + �2IIINL)�1hhhk)2

:

Finally, the energy of the interferers is

E

K

j=1
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K
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j 6=k
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H
j ccck
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H
k EfHHHkHHH

H
k gccck

= ccc
H
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Therefore, it holds that
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k ((��
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N
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2
IIIL)

�1
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N

n=1

snks
�
nk: (107)

Applying the strong law of large numbers we obtain the convergence
of SNIRk to lllHk (�CCClll + �2IIIL)

�1lllk with probability 1 as N !1.

APPENDIX IV
PROOF OF THEOREM 3

The proof of Theorem 3 follows the same lines as the proof of The-
orem 2, taking into account that ccck = hhhk . Then

SINRk=
EfjhhhHk hhhkbkj

2g

EfjhhhHk nnnj2g + Ef K
j=1

j 6=k

jhhhHk hhhjbj j2g

=
(hhhHk hhhk)

2

�2hhh
H
k hhhk + hhh

H
k Ckhhhk

=
(lllHk lllk

N

n=1
snks

�
nk)

2

lll
H
k �� 1

N
CCClll+�2IIIL lllk

N

n=1
snks

�
nk

: (108)

Applying the strong law of large numbers, we obtain the almost sure
convergence of SINRk as K;N ! 1 with K

N
! �. More specifi-

cally, we obtain

lim
K=�N!1

SNIRk
a:s:
=

(lllHk lllk)
2

lll
H
k (�CCClll + �2IIIL)lllk

:
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Blind OFDM Channel Estimation Using FIR Constraints:
Reduced Complexity and Identifiability

Seongwook Song, Member, IEEE, and
Andrew C. Singer, Member, IEEE

Abstract—In this correspondence, blind channel estimators exploiting
finite alphabet constraints are discussed for orthogonal frequency-division
multiplexing (OFDM) systems. Considering the channel and data jointly,
a joint maximum-likelihood (JML) algorithm is described, along with
identifiability conditions in the noise-free case. This approach enables
development of general identifiability conditions for the minimum-dis-
tance (MD) finite alphabet blind algorithm of Zhou and Giannakis. Both
the JML and MD algorithms suffer from high numerical complexity,
as they rely on exhaustive search methods to resolve a large number of
ambiguities. We present a substantially more efficient blind algorithm, the
reduced complexity minimum distance (RMD) algorithm, by exploiting
properties of the assumed finite-length impulse response (FIR) channel.
The RMD algorithm exploits constraints on the unwrapped phase of FIR
systems and results in significant reductions in numerical complexity over
existing methods. In many cases, the RMD approach is able to completely
eliminate the exhaustive search of the JML and MD approaches, while
providing channel estimates of the same quality.

Index Terms—Blind channel estimation, finite-length impulse response
(FIR), orthogonal frequency-division multiplexing (OFDM).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is a popular
modulation technique used in a variety of high-rate digital commu-
nication standards, including digital audio and video broadcasting
(DAB, DVB) [1], [2] and high-speed broadband wireless local area
networks (IEEE 802.11a and HIPERLAN/2) [3], [4]. Similar to other
transmission schemes, such as single-carrier time-division multiple
access (TDMA) and code-division multiple access (CDMA), OFDM
systems require knowledge of the channel impulse response, or
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channel state information (CSI), in order to perform equalization. For
the purpose of channel estimation, training data may proceed or be
inserted into a data block at a modest expense of system throughput
and various pilot-aided channel estimation algorithms have been
developed [5]–[8].

Either to reduce the overhead of training data, or for applications
such multicasting or eavesdropping, for which training is either incon-
venient or unavailable, blind algorithms aim to perform equalization
in the absence of training sequences or pilots, and a number of blind
channel estimation algorithms have been proposed and investigated in
the literature [9], [10]. For OFDM systems, the cyclic prefix can also
be effectively exploited for blind identification. Correlation-matching
methods have been developed in [11] and [12], by taking advantage of
the cyclostationarity of the transmitted OFDM signal. In [13], the struc-
ture induced in the autocorrelation matrix of the received signal due to
the cyclic prefix is used to develop a subspace-based blind identifica-
tion algorithm. However, this method fails to guarantee identifiability
for channels with nulls located on subcarriers (discrete Fourier trans-
form (DFT) bins of the associated channel impulse response that are
identically zero). A subspace algorithm that guarantees channel identi-
fiability was proposed for OFDM systems with zero padding in [14] at
the expense of structural changes to the transmitter and receiver. As is
common to many subspace approaches, numerical complexity can be-
come an issue due to the necessary matrix multiplications and singular
value decompositions (SVD) of matrices of degree proportional to the
number of subcarriers used [11], [12], restricting their use.

Joint channel and data estimation methods have also been employed
in a number of scenarios, including that shown in [15], in which statis-
tical sampling methods are used for single-carrier systems with turbo-
equalization-based receivers, and [16] in which sequential Monte Carlo
(SMC) methods are studied for OFDM systems. Even though such
SMC methods can be shown to be asymptotically optimal for certain
criteria, they suffer a number of potentially major drawbacks. First,
they typically require high numerical complexity, due to their itera-
tive nature. Second, their performance can be sensitive to the amount
and quality of prior knowledge available about the channel, which is
often rather limited. Decision-directed approaches use quantized out-
puts from the equalizer or the decoder, as does the blind algorithm in
[17], [18], which makes use of the output of an error correction de-
coder to refine a channel estimate starting from a coarse initial channel
estimate. This comes at the expense of numerical complexity, storage,
and latency involved in transferring the data between the additional en-
coding and decoding.

finite alphabet constraints are often employed in decision-directed
strategies, where hard decisions (quantization of equalizer or decoder
outputs to valid symbols) facilitate channel estimation when such sym-
bols are largely correct. The existence of a finite alphabet constraint on
the transmitted data has been applied to enable factorization of the data
matrix in multiple-input multiple-output blind channel estimation for
single-carrier communication systems [19], [20]. Recently, in [21] and
[22], a minimum distance (MD) blind algorithm exploiting finite al-
phabet constraints was proposed for OFDM systems and shown to have
a number of benefits, including guaranteeing channel identifiability, re-
gardless of the existence of null subcarriers, and requiring fewer sam-
ples for convergence under phase-shift keying (PSK) signaling. How-
ever, the MD algorithm relies on exhaustive search techniques for re-
solving ambiguities for each subcarrier. As such, the numerical com-
plexity becomes exponential in the number of subcarriers, making it
rapidly become intractable for systems with large numbers of subcar-
riers. To combat the complexity of these approaches that rely on ex-
haustive search, in [21], a number of reduced complexity modifications
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