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Abstract— We address the optimization of the sum rate
performance in multicell interference-limited wireless networks
where access points are allowed to cooperate in terms of joint
resource allocation. The resource allocation policies considered
here combine power control and user scheduling. Although very
promising from a conceptual point of view, the optimization of
the sum rate (network capacity) hinges, in principle, on tough
issues such as computational complexity and the requirement
for heavy receiver-to-transmitter channel information feedback
across all network cells. However, we show that, in fact, dis-
tributed algorithms are actually obtainable in the asymptotic
regime where the numbers of users per cell is allowed to grow
to infinity. Additionally, using extreme value theory, we provide
scaling laws for upper and lower bounds for the network capacity
(as the number of users grows large), corresponding to two
forms of distributed resource allocation schemes. We show these
bounds are in fact identical asymptotically. This remarkable
result suggests that distributed resource allocation is practically
possible, with vanishing loss of network capacity if enough users
exist.

I. INTRODUCTION

Traditional resource allocation in multicell wireless net-
works follows a divide and conquer strategy. First, network-
wide frequency planning is used to allow the fragmentation
of the network area into smaller zones more or less isolated
from each other from a radio point of view. Then, the link
efficiency in a given cell is optimized via a careful design
of the PHY/MAC layers, exploiting advanced processing such
as efficient FEC coding, multiple antennas transceivers, fast
link adaptation protocols, interference canceling, and multiuser
diversity-oriented scheduling [1]. These are single cell based
techniques however and multicell coordination remains lim-
ited. Multicell Power control and dynamic channel assigne-
ment methods do exist and help alleviate the problem of in-
terference. However the majority of used techniques are geared
toward achieving a given signal to noise plus interference
(SINR), common to all users, rather than maximizing the
network’s throughput [2].

In this work we consider a wireless network where the cells
are allowed to cooperate so as to maximize the total capacity
(sum of rates achieved by simultaneously transmitting users).
The considered cooperation is limited to resource allocation
in the form of power control and user scheduling. In principle
a more advanced form of information theoretic cooperation
using distributed coding could further increase the capacity
[3] however this aspect is not considered here.

A simple intuitive idea behind multicell resource allocation

is to exploit the large amount of spatial and multiuser diversity
offered by the extra multicell dimension in order to optimize
the network performance at all times. Clearly the potential
gains comes with great challenges. One is the complexity
associated with the joint optimization of a large number of
parameters (slot assignement, power levels, ..). Another one
is the need for the joint processing of multicell channel
state information which necessitates huge cell-to-cell signaling
overhead. This makes global network coordination hard to re-
alize, especially in fast mobile settings. Despite the challenges,
some recenty published work suggests possible techniques for
low complexity and distributed resource allocation. Examples
of such approaches include game theoretic algorithms with
pricing [4], resource allocation based on quantized power lev-
els, and iterative/greedy capacity maximization techniques. An
overview of such techniques is available in [5]. Nonetheless it
remains that such approaches are suboptimal.

In this paper we address the problem of capacity-optimal
resource allocation in the form of multicell power control and
scheduling. We investigate upper and lower bounds on the
maximum network capacity provided by resource allocation
in interference-free and full-powered interference scenarios,
respectively. Interestingly the solution to the multicell schedul-
ing and power control is fully distributed in both scenarios.
We study these bounds in the asymptotic regime where the
number of users per cell is allowed to grow large while the
number of cells remain fixed. We introduce scaling laws of
capacity for this asymptotic regime, based on extreme value
theory and recently published work in the different context of
opportunistic single cell beamforming. We show the scaling
law for the upper and lower bounds on capacity are in fact
identical. Our results suggest that very simple distributed
resource allocation algorithms could be used, and that the
capacity loss with respect to the optimal resource allocation
solution is negligible if the number of users is large enough.

II. NETWORK MODEL AND ASSUMPTIONS

We consider a wireless network featuring a number of
transmitters and receivers. Among these, there are � transmit-
receive active pairs, which are simultaneously selected for
transmission by the scheduling protocol at any considered
instant of time, others remaining silent. In this network the
�-th transmitter, denoted �� in Fig.1, sends a message which
is intended to the �-th receiver �� only. However �� is
being interfering from all �� ��� �� � due to full reuse of



spectral resource. This setup can be seen as an instance of
the interference channel, the analysis of which is a famously
difficult problem in information theory [6]. The situation
depicted above can be that of a cellular network with reuse
factor one (say e.g. the downlink with � � being access points
(AP) or base stations). It can also depict a single-hop peer-to-
peer communication network. Below, we focus on the cellular
example. This paper addresses joint resource allocation be-
tween cells in terms of joint power control and user scheduling.

A. Signal Model

We consider � time-synchronized cells, and �� users
randomly distributed over each cell. Within each cell, we
consider an orthogonal multiple access scheme so that a single
user is supported on any given spectral resource slot (resource
slots are time or frequency slots in TDMA/FDMA, or code
in orthogonal CDMA). Single antenna devices are consid-
ered. Generalizations to MIMO-aided spatial division multiple
access will be considered elsewhere. On any given spectral
resource slot, shared by all � cells, let �� � ��� ��� ��� be
the index of the user that is granted access to the slot in cell
	.

We denote the complex downlink channel gain between the
�-th AP and user �� of cell 	 by 
����. We hereby focus on the
downlink but all ideas here carry over to the uplink as well
unless otherwise stated. The local channel state information
(CSI) is assumed perfect at the receiver side. This information
is also fedback to the control unit responsible for resource
allocation, either in a centralized or distributed manner (see
later). The received signal ��� at user �� is given by
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������� �
��
����
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where ��� is the message-carrying signal from the serving
AP, subject to a peak power constraint ����.

��

���� 
�������

is the sum of interfering signals from other cells and 
�� is
the additive noise or extra interference. 
�� is modeled for
convenience as white Gaussian with power � �
�� �

� � ��.

III. THE MULTICELL RESOURCE ALLOCATION PROBLEM

As stated above, intra-cell multiple access is orthogonal,
while intercell multiple access is simply superposed, due to
full reuse of spectrum. The resource allocation problem con-
sidered here consists in power allocation and user scheduling
subproblems. Importantly we focus on capacity maximizing
resource allocation policies, rather than fairness-oriented ones.
In this setting the optimization of resource in the various
resource slots decouples and we can consider the power
allocation and user scheduling maximizing the capacity in
any one slot, independently of other slots. Fairness issues are
touched upon in [5]. A few useful definitions follow.

Definition 1: A scheduling vector � contains the set of
users simultaneously scheduled across all � cells in the same
slot:

� � ��� �� � � � �� � � � �� �

where �� �� � ��. Noting that � � �� � ��, the feasible
set of scheduling vectors is given by � � �� � � � �� �
�� � 	 � �� � � � � ��.

Definition 2: A transmit power vector � contains the
transmit power values used by each AP to communicate with
its respective user:

� � ���� ��� � � � ��� � � � ��� �

where �� �� � ��� � � ���� �
�. Due to the peak power

constraint � � ��� � ����, the feasible set of transmit power
vectors is given by � � �� � � � ��� � ���� � 	 �
�� � � � � ��.

A. Capacity optimal resource allocation

The merit (or utility) associated with a particular choice of
a scheduling vector and power allocation vector is measured
via the set of signal to noise and intereference ratios (SINR)
observed by all scheduled users simultaneously. �	�� ���� 

refers to the SINR experienced by the receiver �� in cell 	 as
a result of power allocation in all cells, and is given by:

�	�� ���� 
 �
��������

�� �

��
����

��������

� (1)

where ����� � �
�����
� is the channel power gain from cell �

to receiver ��.
In data-centric applications, a reasonable choice of utility is

a monotonically piece-wise increasing function of the SINR,
reflecting the various coding rates implemented in the system.
With an idealized link adaptation protocol, the utility even-
tually converges to a smooth function reflecting the user’s
instantaneous rate in Bits/Sec/Hz. For the overall network
utility we consider [6]:
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The capacity optimal resource allocation problem can now
be formalized simply as:

	� ��� �
 � ��
���
���
���

�	� �� 
� (3)

The optimization above can be seen as generalizing known ap-
proaches in two ways. First the capacity maximizing schedul-
ing problem has been considered (e.g. [1]), but in general
not jointly over multiple cells. Second, the problem above
extends the classical multicell power control problem (which
usually rather aims at achieving SINR balancing) to include
joint optimization with the scheduler.

The problem in (3) presents the system designer with many
degrees of freedom to boost system capacity but also with sev-
eral serious challenges. First the problem above is non convex
and standard optimization techniques do not apply directly. On
the other hand an exhaustive search of the 	� �� 
 pairs over
the feasible set is prohibitive. Finally, even if computational



issues were to be resolved, the optimal solution still requires a
central controller updated with instantaneous inter-cell channel
gains which would create acute signaling overhead issues in
practice. The central question of this paper thus arises: Can
we extract all/some of the gain related to multicell resource
allocation (compared with single cell treatment) within rea-
sonable complexity and signaling constraints? Inspection of
the recent literature reveals that this is a hot research issue
with many possible tracks of investigation including use of
modified capacity metrics, game theoretic approches, reuse
partitioning, power shaping and power quantizing (see e.g.
[5] and references therein). Below, we investigate theoretical
answers on this question by means of so-called scaling laws
of the capacity, obtained via extreme value theory. This study
reveals both surprising and promising answers.

Interestingly, other work exists on analyzing the scaling
law of capacity in interference-limited networks, including
recently submitted [7]. In such work, a similar metric is used
related to the sum capacity of simultaneously active links.
Importantly though, in their work the scaling is in terms of
growing number of links (or cells for a cellular network),
rather than growing number of users per cell in a multiple
access scheme as is studied here. Thus multi-user diversity
scheduling is not exploited and fundamentally different scaling
laws are obtained in the two cases.

IV. NETWORK CAPACITY: BOUNDS AND ASYMPTOTIC

RESULTS

Let us consider a system with a large number of users in
each cell. For the sake of exposition we shall assume �� � �
for all 	, where � is asymptotically large, while � remains
fixed. We expect a growth of the sum capacity �	� ��� �
 with
� thanks to the multicell multiuser diversity gain1. Thus we are
interested in how the expected sum capacity scales with � . To
this end we shall use several interpretable bounding arguments.
We consider two channel gain models. The first considers a
symmetric distribution of gains to all users from their serving
AP. In the other one, an additional random distance-dependent
path loss is accounted for.

A. Bounds on network capacity

The simple bounds below hold in the asymptotic and non
asymptotic regimes.

Upper bound: An upper bound (ub) on the capacity for
given resource allocation vectors (non necessarily optimal
ones) is obtained by simply ignoring intercell interference
effects:
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In the absence of interference, the optimal capacity is clearly
reached by transmitting at a level equal to the power constraint,

1the multicell multiuser diversity gain can be seen as a generalization
of the conventional multiuser diversity [1] to multicell scenarios with joint
scheduling

i.e. ���� � ������ ��� ����� and selecting the user with the
largest channel gain in each cell (maximum rate scheduler),
thus giving the following upper bound on capacity:
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where the upper bound on SINR is given by:

��	� � ���
����

�

�������������
� (6)

Lower bound: A lower bound on the optimal capacity (in
the presence of interference) �	� ��� �
 can be derived by re-
stricting the domain of optimization. Namely, by restricting the
power allocation vector to full power ���� in all transmitters,
we have

�	���� �
 	 ��	 � �	��

� �����
 (7)

where � �

� denotes the optimal scheduling vector assuming

full power everywhere, defined by

�
�

� � ��
���
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�	� �����
� (8)

Note that the 	-th cell’s user in � �

� is found easily via:

���

� �� � ��
���

���
��	� (9)

where ��	� is a lower bound on the best SINR given by:
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(10)

B. Channel models

For clarity of exposition we make certain assumptions on
the system model. However some of these assumptions are
purely technical and could be relaxed without altering the
fundamental results. We assume a cellular network where APs
are regularly located with cell radius �. In this sense, the cells
are assumed to be circular with each base being at the center
of it, although this assumption is not critical to this study (i.e.
similar conclusions can be obtained for hexagonal cell etc.).

The basic channel model consists in the product between a
variable representing the path loss and a variable representing
the fast fading coefficient: Let ����� � ������������

�, �� �
����� � � ���� be the set of power gains where ����� is a path
loss coefficient and ����� is the normalized complex fading
coefficient. A generic path loss model is given by [8]:

����� � �������� (11)

where � is scaling factor, � is the path loss exponent (usually
with � � �), and ����� is the distance between user �� and
AP �.

Note that we assume as preamble a user-to-AP assignement
strategy resulting in all users being served by the AP with the
smallest path loss (but of course not necessarily that giving the
least fast fading). We consider in turn two channel models. In



the first one, denoted as, symmetric network, all users served
by a given AP are assumed to be located at the same distance
from that AP (equal average SNR). In the second one, denoted
simply as non-symmetric network, the users are subject to a
location dependent path loss, which will affect their chances
of being selected by the scheduler (unequal average SNR).

C. Capacity scaling with large � in symmetric network

We analyze the scaling of capacity �	� ��� �
 via the
scaling of the bounds � �	 and ��	, with increasing � . We
just focus on the performance in cell 	, as other cells are
expected to behave similarly under equal number of users
� . We provide here sketches of proof. Detailed proofs are
provided in the companion full length version of this paper
[9].

Interestingly, for the symmetric network, we can reuse
extreme value theory results [10] developped specifically in
the context of single cell opportunistic beamforming [11], [12]
and transposed here to the case of networks with multicell
interference.

First, the following results provides insight into the
interference-free scaling of SINR and capacity respectively.

1) Scaling laws for interference-free case:
Lemma 1: Let ����� � ������������

�, �� � ����� 	 �
���� , where ����� � ��. Assume �������

� is Chi-quare
distributed with 2 degrees of freedom (��	�
) (i.e. ����� is
a unit-variance complex normal random variable). Assume
the �������

� are i.i.d across users. Then for fixed � and �
asymptotically large, the upper bound on the SINR in cell 	
scales like

��	� 

������

��
��
� (12)

Sketch of proof: This result is a reuse of a well known
result for single cell opportunistic scheduling which states that
the maximum of � ��	�
 random variables behaves like ��
�
for large � . See for instance [11].

Theorem 1: Let ����� � ������������
�, �� � ����� 	 �

���� , where ����� � �. This means that all cells are assumed
to enjoy an identical link budget. Assume �������

� is Chi-
quare distributed with 2 degrees of freedom (��	�
). Assume
the �������

� are i.i.d across users. Then for fixed � and �
asymptotically large, the average of the upper bound on the
network capacity scales like

�	��	
 
 ��
 ��
� (13)

where the expectation is taken over the complex fading gains.
Sketch of proof: This result is a reuse of results for single

cell opportunistic scheduling found in [11], [12] among others.
See e.g. [12], Theorem 1.

2) Scaling laws for full-powered interference case: We
now turn to the behavior of interference limited networks by
exploring the lower bounds given for SINR and capacity.

Lemma 2: Let ����� � ������������
�, �� � ����� 	 �

���� , where ����� � ��, ����� � �������� for � �� 	. Assume
�������

� is Chi-quare distributed with 2 degrees of freedom
(��	�
). Assume the �������

� are i.i.d across users, cells. Then

for fixed � and � asymptotically large, the lower bound on
the SINR in cell 	 scales like

��	� 

������

��
��
� (14)

Sketch of proof: To obtain this result, one uses the
fact that users in cell 	 are served by their closest AP.
An upper bound on the interference power then given by��

���� �����������
�����. This gives a further lower bound

on ��	� given by
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where ����� denotes the normalized SINR:
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(17)

Given ����� � �� is constant, the scaling law of ��	�� can
be obtained by exploiting the similarity between ����� and the
SINR expression in the single cell opportunistic beamforming
problem reported in ([12], Lemma 4). This gives � �	�

� 

������ ��
����. Finally ��	� is bounded above and below
by two expressions (respectively the interference-free ��	

� and
��	�� ) with same scaling law and must satisfy itself the same
scaling law.

Theorem 2: Let ����� � ������������
�, �� � ����� 	 �

���� , where ����� � �, ����� � �������� for � �� 	. Assume
�������

� is Chi-quare distributed with 2 degrees of freedom
(��	�
). Assume the �������

� are i.i.d across users, cells. Then
for fixed � and � asymptotically large, the average of the
lower bound on the network capacity scales like

�	��	
 
 ��
 ��
� (18)
Sketch of proof: Assuming the result in Lemma 2 holds,

this result can be proved in similar way as ([12], Theorem 1).
From the bounding results and from theorems 1 and 2 above,

the following conclusion is trivially obtained:
Theorem 3: Let ����� � ������������

�, �� � ����� 	 �
���� , where ����� � ��, ����� � �������� for � �� 	. Assume
�������

� is Chi-quare distributed with 2 degrees of freedom
(��	�
). Assume the �������

� are i.i.d across users, cells. Then
for fixed � and � asymptotically large, the average of the
network capacity with optimum power control and scheduling
scales like

�	�	� ��� �

 
 ��
 ��
� (19)
Theorems 1 and 2 suggest that, in a symmetric multi-

cell network, the capacity obtained with optimal multicell
scheduling in both an interference-free environment and an
environment with full interference power have identical scaling
laws in ��
 ��
� . This result bears analogy to the results by
[12] which indicate that in a single cell broadcast channel
with random beamforming and opportunistic scheduling, the
degradation caused by inter-beam interference tends becomes
negligible when the number of users becomes large. Here



the multicell interference becomes negligible because the
optimum scheduler tends to select users who have both large
instantaneous SNR and small interference power.

Furthermore, since a system where the full power is allo-
cated at all transmitters is asymptotically optimal (in terms
of scaling law), a simple procedure based on (9) is also
asymptotically optimal. Interestingly, this procedure is com-
pletely distributed as only local CSI is exploited by each
user and fedback to its serving AP only. The SINRs are
computed during a preamble phase where all APs are asked
to transmit pilot or data symbols at full power. These results
come as a complement to previously reported findings [13]
which propose a near optimal power allocation scheme, for
fixed number of users, where a fraction of the transmitters
are selected to be turned off while the rest operate at full
power. It was observed experimentally there that the fraction
of off cells would go to zero when the number of users grows
large. The analysis of scaling of capacity provides a theoretical
justification to this intuitevly appealing behavior.

We now turn to a non symmetric network where users can
experience different average SNR values depending on their
position and conduct a similar analysis. However we will see
that different scaling rates are obtained compared with the
symmetric network case.

D. Capacity scaling with large � in non-symmetric network

We assume the path loss is determined by the user’s distance
to the emitting AP, both serving and interfering. We consider
a uniform distribution of the population in each cell. Thus
����� is a random variable with non-uniform distribution
��	�
 � �����, in ��� ��. Further, this random variable can
be considered i.i.d across users and cells, if users in each cell
are dropped randomly in the network. Assuming � � � for
normalization, the distribution of ����� � �������� is given by

��	�
 �
�
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�

�

�

�

�
with � � ����
 (20)

and zero elsewhere. In order to get upper and lower bounds
on performance, we are interested in the behavior of the ex-
treme value of the products of random variables ������������

�

and ���������� respectively, where ����� is defined as per
(17).

The distribution of ����� shown in (20) is remarkable in that
it differs stronly from fast fading distributions, due to its heavy
tail behavior. Heavy tail is also observed in other large scale
fading models such as log normal shadowing for instance. The
distribution of ����� can be classified as regularly varying
[10] (see below for the definition). An interesting aspect of
regularly varying distributed random variable (R.V.) is that
they are stable with respect to multiplication with independent
R.V. with finite moments (such as the distribution of �������

�

or that of �����), as pointed out by the following theorem
shown by Breiman [14]:

Theorem 4: Let � and � two independent R.V. such that
� is regularly varying with exponent ��, i.e. the cdf of � ,
��	�
, is such that ��
�	�


��
� 	��


  � when  
 �. Assuming

� has finite moment �	� �
, then the tail behavior of the
product 
 � �� is governed by:

�� ��	!

 �	� �
	�� �� 	!

 when ! 
� (21)
The idea behind this theorem is that when multiplying a
heavy tail regularly varying R.V. with another one with finite
moment, one obtains a heavy tail R.V. whose tail behavior is
similar to the first one, up to a scaling. We now apply this
result to � � ����� and � given by � � �������

� for the
interference free case and � � ����� for the full-powered
interference case, respectively. In both cases, the tail behavior
of 
 � �� can then be characterized by the following lemma:

Lemma 3: Let � � ����� be a R.V. with distribution given
by (20). Let � be an independent R.V. such that �	�

�

� 
 " �.
Then the tail of 
 � �� is governed by:

�� ��	!

 �	�
�

� 


�
�

!

� �

�

when ! 
� (22)

Proof: A direct application of Theorem 4 with � having
distribution shown in (20).

Under the lemma above, 
 is seen to be regularly varying
with exponent � �

�
. Following [10], 
 can be classified to be

of Frechet type, for which extreme value theory results exist.
1) Scaling law for interference-free case: We can now

derive scaling laws for the interference-free case in a non-
symmetric network:

Theorem 5: Let �����, �� � ���� be i.i.d Gaussian dis-
tributed unit-variance random variables. Assuming that �����
is i.i.d., distributed as per (20), for 	 � ���� . Then for fixed �
and � asymptotically large, the interference-free SNR scales
like:

��	� 
 #�
�

� (23)

where # � � is a scaling factor which depends on �, �, ����

and � .
Sketch of proof: From Lemma 3 we have that, given � �

����� and � � �������
�, 
 � �� has a regularly varying

distribution with exponent � �
�
. Then we invoke Gnedenko’s

theorem [15] given in appendix here. We find that �� �
��	�

�

� 

�

��
�

� where �� is defined in the appendix. From this,
the scaling rate of (23) is derived.

From the scaling of SNR above, we can infer that the upper
bound on capacity will behave like:

�	��	
 

�

�
��
� for large � (24)

2) Scaling law for full-powered interference case: We can
derive the scaling laws for the lower bounds of SINR and
capacity by following a strategy similar to Sec.IV-D.1 but
simply replacing the R.V. �������

� by the R.V. ����� which
also has bounded moments. We obtain the following result:

Theorem 6: Let �����, �� � ����� � � ���� be i.i.d Gaus-
sian distributed unit-variance random variables. Assuming that
����� is i.i.d, distributed as per (20), for 	 � ���� . Then for
fixed � and � asymptotically large, the lower bound on SINR
scales like:



��	� 
 #��
�

� (25)

where #� � � is a scaling factor which depends on �, �, ����

and � .
Sketch of proof: We use the same proof as for Theorem 5,

with � � ����� but this time � � �����.
Finally, from Theorem 6, we infer that the upper bound on

capacity for a non-symmetric network behaves also like:

�	��	
 

�

�
��
� (26)

As in the case of the symmetric network, the results above
(24) and (26) suggest that multicell interference, no matter how
strong, does not affect the scaling of the network capacity, if
enough users exist and capacity optimal scheduling is applied.
Furthermore, for a network with path loss-based average SNR,
the maximum capacity behaves like

�	���� �
 

�

�
��
� (27)

Additionally, in this case too, a suboptimal but fully dis-
tributed resource allocation based on constant (full) power
transmission at all transmitters and scheduling policy based
on (9) will actually result in the best possible scaling law of
capacity for the network. Finally we obtain a much greater rate
growth than in the case of the symmetric network. This is due
to the amplified multiuser diversity gain due to the presence
of unequal path loss.

V. NUMERICAL EVALUATION

We validate the asymptotic behavior of the multicell sum
rate when � grows large with Monte Carlo simulations. We
use a small network with � � � cells with both the symmetric
distribtion of average SNR and the path-loss based average
SNR with unit cell radius and � � ����, � � �, ���� � �,
�� � ����. iid flat Rayleigh fading is considered. In both cases
we compute the upper and lower bound on capacity (see Fig.2
and 3 and observe the identical rate growth, further suggesting
that the capacity obtained with exhaustive user and power
level selection also has the same growth rate (in ��
� for the
symmetric network and in ��
 ��
� for the non symmetric
network.

VI. CONCLUSIONS

We present an extreme value theoretic analyis of network
capacity for maximum sum rate multicell power allocation and
user scheduling. We derive scaling laws of capacity when the
number of users per cell grows large, both in cases where
the users have same average SNR and path loss dependent
SNR. We show that in both cases, 1-the effect of intercell
interference tends to be negligible asymptotically, and 2-
should intercell interference be considered, an asymptotically
optimal allocation procedure is given based on full power
allocation at all transmitters, which is furthermore completely
distributed. We show that the growth rate of capacity is much
faster in the case of a system with unequal distance-based
average SNR.

APPENDIX

The following theorem is due to Gnedenko [15] (1943) and
states the following property for regularly verying distribu-
tions:

Theorem 7: Let 
� an i.i.d random process. Then 
� has a
regularly varying distribution with exponent � if and only if

��� Pr� ���
���

�


� � ���� � $��
��

when � 
� (28)

where �� is a sequence such that �� ��	�� 
 �
�
�

.
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Fig. 1. Snapshot of network model, with � � � interfering pairs of
transmitters �� and receivers ��. The cellular model (a) and the single-hop
peer-to-peer or adhoc model (b) give rise to equivalent mathematical models.
Dashed circles refer to silent users while solid circles refer to access points
or users selected by the scheduler.
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Fig. 2. Scaling of upper and lower bounds of capacity versus � for a
symmetric network (� � �)

0 20 40 60 80 100
5

10

15

20

25

30

35

40

45

50

ca
pa

ci
ty

number of users per cell

 

 

Interference−free optimum capacity
Optimum capacity assuming full−powered interference

Fig. 3. Scaling of upper and lower bounds of capacity versus � for a non-
symmetric network (unequal average SNR) (� � �).


