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Abstract—In this contribution, the performance of an uplink  central framework for modeling competition and cooperation
CDMA system is analyzed in the context of frequency selective jn networking, see for example [2] and references therein.
fading channels. Using game theoretic tools, a useful framework |, the case of fading multiple-access channels, a game

is provided in order to determine the optimal power allocation th tic f Kk h readv b din 131 U
when users know only their own channel (while perfect channel eoretic framework has already been proposed in [3]. Users

state information is assumed at the base station). We consider the COMpete with rates as utility and powers as moves in the game.
realistic case of frequency selective channels. This scenario illus-However, their results rely on the fact that each user has a
trates the case of decentralized schemes and aims at reducing thecomplete knowledge of the system, and in particular, perfect
downlink signaling overhead. Various receivers are considered, channel state information (CSI) of all users in the cell. This is

namely the Matched filter, the MMSE filter and the optimum . .
filter. The goal of this paper is to derive simple expressions a necessary requirement in order to use the theory of games of

for the non-cooperative Nash equilibrium as the number of Ccomplete information, and a usual assumption in many papers
mobiles becomes large. To that end we combine two asymptoticin the field, as the authors point out. Nevertheless, it is rarely
methodologies. The first is asymptotic random matrix theory possible in practice and one can usually only satisfy at best
which allows us to obtain explicit expressions for the impact of the requirements knowing only its own channel.

all other mobiles on any given tagged mobile. The second is the Wh K v it h | other desi
theory of non-atomic games along with the Wardrop equilibrium €n one Knows only 1S own channel, other designs may

concept which allows us to compute good approximations of the be introduced. In [4], defining the utility as the ratio of

Nash equilibrium as the number of mobiles grow.* the throughput to the transmission power, the authors obtain
results of existence and unicity of a Nash equilibrium in this
. INTRODUCTION hypothesis. As far as the attenuation is concerned, only flat

Power allocation (PA) is an important topic in the conteXading is considered in [4] and in [5], in the case of multiple
of Code Division Multiple Access (CDMA) systems, in thecarriers (each one being flat fading). However, wireless trans-
uplink as well as in the downlink. In particular, in the uplinkmissions generally suffer from the effect of multiple paths,
users need to transmit with enough power to achieve th#tiius becoming frequency-selective. The goal of this paper is
requested quality of service, and not more, in order to mirtie determine the influence of the number of paths (or the
mize the amount of interference caused to other users. Thselectivity of the channel) on the performance of PA. This
an efficient PA mechanism allows to prevent an excessiwork is an extension of [4] in the case of frequency-selective
consumption of the limited ressources of the users. fading, in the framework of asymptotic CDMA with a cyclic

Usual PA mechanisms are based on a centralized procedprefix. We do not consider multiple carriers, as in [5], and
with the base station receiving training sequences from ttlee results are very different to those obtained in this work.
users and signaling back the optimal power allocation fdte extension is not trivial and involves advanced results on
each user, possibly according to some rule of precedemeadom matrices with non-equal variances due to Girko [6]
[1]. However, this involves a non negligible overhead andhereas classical results rely on the work of Silverstein [7].
numerous non informational transmissions. In particular, we quantify the gain of the non-uniform PA

A way to avoid the constraints of a centralized proceduseith respect to uniform PA, according to the number of paths.
is to implement a decentralized one where each user taRd® originality of the paper lies in the fact that we show that
a decision on the transmission power. This is, for examplas the number of paths increases, the optimal PA becomes
the case in ad-hoc networks applications. In this context,n@ore and more uniform due to the ergodic behavior of all the
natural framework is game theory, which studies competiti?d DMA channels. This is reminiscent of an effect (“channel
(as well as cooperation) between independant actors. Tob&dening”) already revealed in MIMO [8]. The highest gain
of game theory have already been frequently used as(imterms of utility) is obtained in the case of flat fading (which

also favors dis-uniform power allocation between the users).

This work was supported by the BIONETS projelattp://www. In order to obtain analytical expressions, we consider the
bionets.org/ and by the Research Council of Norway and the French . . . letti both th b f
Ministry of Foreign Affairs through the Aurora project entitled “OptimizationSYSt€M 1N an asymptotic setting, letting both the number o

of Broadband Wireless Communications Networks”. users and the spreading factor tend to infinity with a fixed



ratio. We use tools of random matrix theory [9] to analyze Definition 4: Let V be aN x K random matrix that behaves
the system in this limit. Random matrix theory is a field oérgodically as in Def. 3, such a&Y (-) and F,’(-) have all
mathematical physics that has been recently applied to wirel¢issir moments bounded. Theo-dimensional channel profile
communications to analyze various measures of interest swdhV is the functionpV (z,%) : [0, 1] x [0,a] — R such that,
as capacity or Signal to Interference plus Noise Ratio (SINRj).the random variableX is uniformly distributed in[0, 1],
Interestingly, it enables to single out the main parameters thien the distribution ofpV (X, ) equaIsF;’() and, if the
interest that determine the performance in numerous modelsafdom variablel” is uniformly distributed in0, «], then the
communication systems [10], [11]. In addition, these asymgistribution of pV (x,Y) equalsE) (-).
totic results provide good approximations for the practical Theorem 1:Let Y = V ©® W be aN x K matrix, where
finite size case, as shown by simulations. © is the Hadamard (element-wise) product adand'W are

In the asymptotic regime, the non-cooperative game biadependenfV x K random matrices. Assume thsit behaves
comes a non-atomic one, in which the impact (through imrgodically with channel profileV (z,y) as in Def. 4 and that
terference) of any single mobile on the performance of oth& has i.i.d. entries with zero mean and variar%e Then,
mobiles is negligible. In the networking game context, thas N, K — oo with K/N — «, the empirical eigenvalue
related solution concept is often called Wardrop equilibriumistribution of YY# converges almost surely to a non-random
[12]; it is often much easier to compute than the original Nadimit distribution function whose Stieltjes transform is given
equilibrium [2], and yet, the former equilibrium is a goody:
approximation for the latter, see details in [13]. . 1 .

The layout of this paper is the following. First we introduce m¥Y" (z) = lim — Trace ((YYH — zI) )
useful notations and concepts of random matrix theory in Sec. NT°° N
II, and our communication model in Sec. lll. Asymptotic SINR - / u(z, z)dx
and capacity expressions are given in Sec. IV. The game be- 0
tween users is introduced and the Nash equilibrium is derivggld 4 (z, 2) satisfies the fixed point equation:
in Sec. V. Finally, theoretical results for the power allocation

are derived in Sec. VI and are matched with simulations in u(z,2) = 7 L 7 . 1)
o pY (z,y)dy
Sec. VII. 0 1+f01 pV (2 y)u(z’,z)dz’ —Z
1. NOTATIONS

The solution to equation (1) exists and is unique in the class of
The following definitions and theorem can be found in [Sfunctionsu(z, z) > 0, analytic for In{z) > 0, and continuous

and will be used in the following sections. In this secti®n, onz € [0, 1].

and K are positive integers.

Definition 1: Let v be a probability measure. Tigtieltjies . M opEL
transformm” associated te is given by We consider a single CDMA cell, i.e., inter-cell interference
. 1 free case. The spreading length is dena¥&dThe number of
m”(2) = [ y—v(d). users in the cell isK. The load isa = K/N. The general
Definition 2: Let v = [vy,...,vN] be a vector. Itempiri- case of wide-band CDMA is considered where the signal
cal distributionis the functionFy, : R — [0, 1] defined by:  transmitted by usek has complex envelope
F}{,(a:)zi#{vi <zli=1...N} xk(t):Zsknvk(t—nT).
In other words,F]‘\’,(% is the fraction of elements of that "

are inferior or equal tar. In particular, if v is the vector w(¢) is an weighted sum of elementary modulation pulses
of eigenvalues of a matriy, Fy is called theempirical which satisfy the Nyquist criterion with respect to the chip

eigenvalue distributiorof V. interval T, (T' = NT.):

Definition 3: Let V be a N x K random matrix with N
independant columns and entrigs. Denote by|-| the closest i) = Z veb(t — (£ — 1)To).
smaller integerV is said tobehave ergodicallyf, as N, K — —

oo with K/N — «, for = € [0, 1], the empirical distribution ) ) , ]
of The signal is transmitted over a frequency selective channel

with impulse response; (7). Under the assumption of slowly-
varying fading, the continuous time received sigpgl) at the
converges almost surely to a non-random limit distributiobase station has the form:

denotedFY (-) and, fory € [0, a], the empirical distribution

K
of y(t) = Z Z Skn / ek (T)vg(t — nT — 7)d1 + n(t)

U”LLyNJ ’ N A ﬂ n k=1

converges almost surely to a non-random limit distributiowheren(t) is zero-mean complex white Gaussian noise with
denotedFy(). variance o2. The signal (after pulse matched filtering by

[|ULwNJ,1|2 s |ULwNJ,K|2]




Y*(—t)) is sampled at the chip rate to get a discrete-time In the following, we will assume that the frequency selective

signal that has the form: fading matrixH behaves ergodically, as in Def. 3. The two-
X« dimensional ghannel profile dv/P is denotedp(f,z) =
_ P(x)|h(f,z)|”, f €[0,1], = € [0,a]. f is the frequency
= CiviV P 2
Y % EVEV Sk 0 @ index andz is the user index. This enables us to use Th. 1 in

) . . order to obtain expressions for the SINR.
where C;,, are N x N Toeplitz matrices representing the

frequency selective fading for thé-th user andn is an IV. AsYMPTOTIC SINR EXPRESSIONS
N x 1 Additive White Gaussian Noise (AWGN) vector with [ et h, be thek-th column of H, and H(_; be H with
covariance matrix*Iy. h;, removed. Similarly, letw; be the k-th column of W,

Since the users are supposed to be synchronized with gy W (_x) be W with w;, removed. Let\/ﬁ(,k) be VP

base station and for sake of simplicity, we will consider iith the k-th column and line removed. Finally, €& ) =
all the following that users add a cyclic prefix of IengtrH(_k)\/ﬁ(_k) O W (.

equal to the channel impulse response length to their code _
sequencé. This case is similar to uplink MC-CDMA [15], A. Matched Filter

[16] and as a consequend’ } becomes circulant [17] and  Supposing perfect CSI at the receiver, the matched filter for
can be diagonalized in a Fourier babisModel (2) simplifies the k-th user is given by, = (hk, /P, ® ch)- This leads to

therefore to: the following expression for the SINR of uskr
= H }gHng
y= Z FH F" v/ Pisi +n ©)) SINRy, = k
k=1

o2gilg, +gif (G(fk)G(I{k)) gk
where H;, is a diagonal matrix with diagonal elements Proposition 1: [11] As N, K — oo with K/N — a, the

{hir}i=1..n. For each usetk, the coefficientshi; are the ¢\\p'or 1 cort at the output of the matched filter is given by
discrete Fourier transform of the channel impulse response.

We make the hypothesis that the users employ Gaussian SINR, — "F <k>
i.i.d. codes. Since every unitary tranformation of a Gaussian ’ N

i.i.d. vector is a Gaussian i.i.d. vector (so that= F¥v; has
the same distribution ag; for any i), one can multiplyy in
(3) with F# and obtain without any change in the statistics: AMF(z) = P(z)-

wheresMF : [0, a] — R is given by

K 1 9 2
y:Zkak\/Pksk—&—n (fo |h(fa$)| df)
b= o2 [y Ih(f ) df + [ fy P(y)Ih(f.9) |h(f.2)* dfdy
= (HVPOW)s+n (4) ’ 00 (5)
i = 9Bk _
where® is the Hadamard product. DenotingSINRy, = B, we observe thaPy 5p; = G

In (4), H is the frequency selective fading matrix, of size8. MMSE Filter

N x K. L L L Supposing perfect CSI at the receiver, the MMSE filter for
e the k-th user is given bygM™SE = R~'g,, where R =
H=| : . . .
S ((H\/f © W) (H\/ﬁ © W) + 2Ly ). This leads to the
th hNQ e hNK

following expression for the SINR of usér
VP is the root square of the diagonal power control matrix, 1
of size K x K. SINRy, = gff (G(_1G{Ly) +0°In) g

W is an N x K random spreading matrix: . ,
Proposition 2:[11] As N, K — oo with K/N — «, the

Wik SINR of userk at the output of the MMSE receiver is given
W = [wi|ws| - |wk]| Wherew, = | @ |. by: N
WNEk SINRk = ﬁ (N)

Note that asymptotically (a&/ — oc), for a given mul- where 3 : [0 R is a function defined by the implicit
tipath channel of lengthC, model (4) is also valid for the equatioﬂn. (0,0 = y p

case of uplink DS-CDMA since all Toeplitz matrices can be

asymptotically diagonalized in a Fourier Basis [14], [18]. B(a) = Pla) /1 \h(f, )] df ©)
N 2 a P(y)|h(fy)*dy
2Note that in the asymptotic case (whah— o), the result holds without 0 o+ fO 1+4(y)

the need of a cyclic prefix as long as the channel is absolutely summable [14]DenotingSINR = (3, we observe thaPkg—gz = G



From Prop. 2, we have the capacity of uger Assuming perfect cancellation of decoded users, successive
interference cancellation with MMSE filter achieves the op-

1
CMMSE _ N logy (1 + By). timum capacity [19]. The following proposition ensues from
this fact.
The global capacity of the system is Proposition 4: [11] As N, K — oo with K/N — «, the
o optimal capacity is given by:
€M — [ logy(1+ (e da. @)
0

COPT = / log, (1 + 5(x)) da
C. Optimal Filter 0

The term optimal filter designates a filter capable of davhere3%'°: [0,a] — R is a function defined by the implicit
coding the received signal at the bound given by Shannofguation

capacity. Hence it is difficult to define an SINR associated to it. 1 Ih(f )|2 af
However, results of random matrix theory can still be applied. [5C(x) = P(x)/ ’ T (13)
LetY = (HVP ® W ). The definition of Shannon’s capacity 0 o2+ [§ W%y

Prop. 4 enables us to extract an expression that is analog

to the SINR for the optimal filter. This expression obeys the
1 1 Je]
COF = + logs det (IN + 2YYH) . (@) PropertyPigp: = Gi.
g

V. UTILITY AND NASH EQUILIBRIUM

per dimension for our system is

As N, K — oo with K/N — a, From now on, we denot8INR; = (3, whichever filter is

1 actually used. In order to place ourselves in a game theoretic
COPT_} /log2 <1 T 7L) v(dt) ©) setting),/ we have to defir?e atility for the usgrs. Utility
) o _ o measures the gain of a user as a result of the strategy this user
wherev is the empirical eigenvalue distribution &Y™, as plays. Thestrategyfor a mobile is its power allocation. As in
in Def. 2. If we differentiate the asymptotic val@"" of (9)  [4],'it is natural to define utility as the ratio of some measure

with respect tor?, we obtain of performancey and the transmit power. For example, in the
HCOPT _ 1y simulations, we consider the goodputs;) = (1 —e=%)"
902 2a( )/ 1 _:itl/(dt) whereM is the number of bits transmitted in a CDMA packet.
) "21 ) ) This is a relevant performance measure, as each mobile wants
_ 10g2(e)/ o (—git— 55 + 53) (dt) to use its (limited) battery power to transmit the maximum
2 (1+ J5t) possible amount of information. Therefore, the utility of user
1 1 k can be written
= log,(e) (/ ml/(dt) -3 /V(dt)> Up = % (14)
k
= log,(e) (m”(—aQ) - 012> (10) This utility is expressed inbits per joule In the non-

cooperative game setting, each user wants to selfishly max-
where m” () is the the Stieltjes transform of the empiricalmize its utility. A Nash equilibrium is obtained when no user
eigenvalue distribution o' Y*. From Th. 1,m”(-) is given can benefit by unilaterally deviating from its strategy.

by We denotey, = v(8x), wherey(-) is the same function for
N ! all users. To obtain the maximum utility achievable by user
m”(2) :/0 ulf, z)df we differentiateu;, with respect to the poweP, and equate
to 0. We obtain
whereu(f, z) is given by (1) Witth‘/F(f,x) =p(f,z) = 3ﬁk
P(z) |h(f,z)|°. Given that ifo® = 400, COPT = 0, it is Pi g, =57 (Be) —7(Br) = 0. (15)

immediate to obtairCOPT from (10) as _ _ . _
o For all filters under consideration, (5), (6) and (13) imply

COPT _ log, (e )/ m¥(—z) — %dz. 1) Prap 9% = By, thus (15) reduces an equation gp
y By (Br) — v(Br) = 0. (16)

Eq. (16) is particularly interesting in the case when there
N exists a unique solutiofi*. The existence of a solution to (16)
(COPT _ oMMSE _ log, ( )/ 5(@ is guaranteed as long as the functigh) is a quasiconcave
1+ ﬂ(l‘) function of the SINR, i.e., there exists a point below which the

Proposition 3: C°PT and CMMSE are related through the
following equality

1 ) d d 1 function is non-decreasing, and above which the function is
o8z | ! + o? 1 + ﬁ v)df. (12) non-increasing [20]. In addition, we assume that the function
Proof. Sce Append|x m () takes valuey(0) = 0, so that users cannot achieve an



infinite utility by not transmitting. This occurs for several 3) Optimum filter: In the case of the optimum filter, the
functions~(-) of interest, in particular the goodput [4], whichSINR is not defined. However, the target capacity is the same
we will use for simulations. Unfortunately, the capacity caas for the other receivers, i.€ = %10g2 (14 p%).

not be used be used as a functigh), since it leads to the Proposition 5: The power allocation is given by

trivial resultg* = 0 for this utility function. The uniqueness of

the solution3* to (16) is due to fact that the SINR of each user P, = 1 025+ fora<ii — 1 1)
is a strictly increasing function of its transmit power. Given |hk.|2 1+/3+
the target SINR3*, we obtain the strategy of users in the next
section. where 37T is the solution to

VI. POWERALLOCATION IN THE NASH EQUILIBRIUM | N | +
A. Flat Fading alog, (1+67) —alog,(e) 146+

In this subsection, we show that the results of [4] for 1 aft .
Matched and MMSE filters are a special case of our setting 11982 | 1+ 77 Gt _q |~ alog, (1+5%).

1+8+

whenL = 1 (flat fading case). In addition, we derive the power
allocation for the Optimum filter. When there is only one path,
for each usek, denoted by its indext: = z € [0, ], h(f,z)

does not depend oifi. Given the target SINR3*, we have
explicit expressions of the power with which ugetransmits
for the various receivers. We show that in the asymptotic limit, In the context of frequency selective fading, for each user
we obtain results similar to Wardrop equilibrium: the strategl. denoted by its index = z € [0,qa], there areL > 1

(22)
Proof: See Appendix. [ ]

B. Frequency Selective Fading

used by each user does not influence the strategy of othéths with respective attenuations(x), ¢ = 1,..., L, which
users. are i.i.d. random variables with some known distribution. We
1) Matched filter: From Prop. 1, the continuous formula-Suppose that,(r) has mean zero, and the distributions of
tion is the real part and imaginary part df;(x) are even func-
(o ra 9 tions, as for example the Gaussian distribution, which we
Plz) = s (‘7 + Jo P() |h(y)| dy) consider in tile simulationsi(f,z) depends onf through
h(z)? h(f,z) = Y., he(z)e 27 (¢=1) Given the target SINR

4%, the Nash equilibrium power allocation is determined by

or equivalently in a discrete form implicit equations for the various receivers.

B* (02 + L Zle in P |h»|2) 1) Matched filter: The continuous formulation is
s o SR
: z) =
Summing (17) overk = 1,..., K, we obtain a closed form 2 r1, df + )|h hf. )% dfd
expression for the minimum power with which ugetransmits Jo InCE ) df + Jo [ Pw) n(F ) (S 2) difdy
when using the matched filter (fo |h(f,x) | df)
2 Q%
P — |th 10 ﬁﬂ* for a < % (18) or equivalently in a discrete form
k —
2) MMSE filter: From Prop. 2, the continuous formulation P = 3*-

is o2 N 2 1 «—N 2 1

5 (0% + i Ji PO )P dy) % T el + % S Pl & B By s

B +5* Jo ~ 2
o= ()P | (% S )
23

or equivalently in a discrete form (23)

x (-2 11K 2 In (23), hnk—h(n ,k)

[ > P lhs N °N . )
P, — p (0 e v 2=k Ui ] ) . (19) The problem with this expression is that the power alloca-
|hi|? tion of userk seems to depend on the power allocation and

Summing (19) over: — 1 K we obtain a closed form fading realization of all the other users. In order to alleviate

expression for the minimum power with which ugeransmits S dependancy, we SUppose that the2niimber of users tends to
when using the MMSE filter infinity. Supposing thaty > ., P; |hn;|” is asymptotically a
constant, denoted’, we obtain

1 2 9% 1
P = > L%* fora <1+ @ (20) Oz,())*(f K |ha;?
ihk| 1— alJrB* X = K Zuj=1"E; (24)

2
Both (18) and (20) are the same results as in [4]. 1—af* & Zf:l %



whereE; = + Zﬁ[];l |hmj\2. As K — oo, we can apply the  We observe that for all filters considered, the optimal PA
Central Limit Theorem to the sum of random variables is a constant times the inverse of thetal energy Qf t2he
1 & 2 channelF;. Via Parseval's Theoreny;; = S |he (8]
% Z % (25) Itis a sum of i.i.d. random variables. As the number of paths
j=1 J increases, the optimal PA tends to a uniform PA. This is an
It tends to its expectation, which is equalitgsee Appendix). effect 'S|m|Iar to “channgl hardening” _[8]5 as the number of
It follows that asymptoticallyX — afB*o? (and simulations paths increases, the variance of the distribution of the channel

: i - l-apr : ilibri
in Sec. VIl prove that this approximation is valid for moderat&"€"%Y decreases and the Nash equilibrium PA becomes more

finite values of V). From (23), we obtain a formula similar toand more uniform for all users.

(18)
1 o2p* 1 VIl. NUMERICAL RESULTS
P, =— for —. 26
k Frl—ap a < 3 (26)
_— . L We consider a CDMA system witli’ = 32 users and a
2) MMSE filter: The continuous formulation is spreading factolV = 256. The noise variance is? — 1010,
o B* For a number of bits in a CDMA packet/ = 100, the
P(z) = — h 2r (27) . — 100 .
— | gg\ f - goodput isy(8) = (1—e™?)"" (see [4]), and3* = 6.48.
i Jo PWIMGy)Fdy The capacity achieved at the Nash Equilibrium G5 =
or equivalently in a discrete form alog, (1 + 4*) = 0.39 bits/s. Unfortunately, the capacity
g* itself cannot be used as a relevant performance measure in
P, = = Al (28) the definition of the utility, because in this case the maximal
¥ Don=1 P SN AT utility is obtained when not sending.

1ok We have performed simulations over 10000 realizations.
In (28), hnie = b (%54, %)-

/ NN ) Fig. 1 shows the good fit of theoretic values calculated directly
As previously, in order to alleviate the dependancy of the . (26), (30) and (31) with those simulations. We see that

power of user on the power allocation of the other users, W yim m filter requires the minimal power, and matched filter
suppose that the number of users tends to infinity. SUPPOSIAG 1\ ovimal power to achieve the required BER.

1K . 12 i
f;atwlé %bﬁiln]?h‘:% |||0\I/\S/ir?s}:em8;(zitlocna”y a constant, denoted In Fig. 2 we have plotted the average utility versus the
' 9 €q ' number of multipathsL. Multipaths are supposed to be

afroL YK [fons | i.i.d. Rayleigh distributed with varianck/L, in order for the
X = K=l 5 3 (29) channels to have the same energy. Two cases are considered:
1— af* 1 K |hnj ] ™ . . el s .
11 5% K ijl B, the utility obtained in the Nash equilibrium, according to the
| <N ) PA given by (23) and (28), and the utility in the case where all
whereEj = 5 32—y [fimj] ™ L, nodes transmit at the same power. In order to compare, the sum
It follows that asymptoticallyX = 1:*57‘;*, we obtain a of the uniform powers is equal to the sum of the powers used
formula similar to (20) e in the Nash equilibrium. The utility does not vary within the
5 s Nash equilibrium: the Central Limit Theorem applies to the
P, = i% fora <1+ i* (30) utility, whi(_:h i§ a constant.t_imes_ the rgndom variaﬁlg,-in the
Ep1 - AT Nash equilibrium. The utility with uniform powers is always

3) Optimum filter: In the case of the optimum filter, the!nferlor to the utility in the Nash equilibrium. However, ds

SINR is not defined. However, for a giveit, the capacity is increases, the gap decreases, as the varianég ocreases,

the same as for the other receivers, i(&,= alog, (1 + §*). and the equilibrium PA becomes uniform.
Proposition 6: Asymptotically, asN, K — oo, the power

allocation is given by VIIl. CONCLUSION
2 0+ . . .
P, = L% fora <14+ LJF (31) U_sllng tools of random_ matrices, we have dg-nved the
Ekl—am equilibrium power allocation in a game-theoretic frame-

work applied to asymptotic CDMA with cyclic prefix, under

I .
where ™ is the solution to frequency-selective fading. Three receivers are considered:

+ matched filter, MMSE and optimum filter (given by Shannon’s
alog, (1 + 5+) — alogg(e)m capacity). For each user, this power allocation depends only on
. . the total energy of the channel of the user under consideration.
tlog, |1+ . o — — alog, (1 + 5*). For a_frequenf:y—flat channel, the power allocation among
1+p+1— T users is dis-uniform, whereas when the number of multipaths

(32) increases, the power allocation tends more and more to a
Proof: The proof is similar to the proof of Prop. 5.8 uniform one.



14

equation (33) ag(x) and thus

1
2
12} u(f,—0%) = o p(fy)dy . (34)
o Trow) TO°
uf Optimum Filter Using (33) and (34), we can rewrite
% MMSE Filter 1 1 1
£ of /U(f—a df—— / - y —/ —df
d 0 fo pl(-iﬁy()yy 0 7
= a p(f.x)
5.0 B 0 118 % d
N a p(fy)dy f
0 o2 ( 0 1H3y) T 7 )
sl Matched Filter [j(
- /
o p(f y)dy
f 1+8(y) +o?
% 5 10 15 20 2 %0 5 B / “ iz,
Number of Multipaths L - - 27
o 02 (1+6(x))
Fig. 1. Comparison of theoretic values and simulations for utilities in the
Nash equilibrium. Thus from (10)
acoPT @ ﬁ(.’L‘)
x10 — =1 ———dx. 35
147 Oo? Og2(€)/0 o2 (1+/8(‘T)) v ( )
121 Ifferentiating with respect to=, we obtain
Diff iating (7) with 9 btai
| HCMMSE a 1 a5
10 / — =1 ————(x)dx. 36
5 , 80'2 OgQ(e)/O 1 +B($> 80'2 (I’) € ( )
- ! ——WMF
g 8 .
-g- ;T +:\:,’:SE Let 71'(17) = m- From (35) and (36), we obtain
o , — % — MFw
SO MMSEw
% " — % —Optw 3COPT _ 5‘CMMSE
ol a2 a2
4 * op
=—1 — drx. (37
PSR O S o) [ (80) 40?550 ) ). @0
e From (6), we have
% 5 10 15 20 2 %0 5 N p
Number of Multipaths L 2 T
o N [ oo s teris
Fig. 2. Simulation of utilities in the Nash equilibrium and constant powe
allocations versud.. / / a?p(f,x) f a—w(a:)dx
02 +f0 a?p(f,y)m(y)dy 0o
IX. APPENDIX e (z)da
0 1 +fo 7 ( )
A. Proof of Prop. 3 1 B

Notice that whens? — oo, COPT = 0, CMMSE — ( and
B(z) = 0. Thus we only have to prove that the derivatives

either side of (12) are equal.
Using p(f, ) = P(x) |h(f,)|",

(6) can be rewritten

/01 log, (1 + /0’1 p(f y)w(y)dy) df.

- log, (e) do?

Og)bserving that

o) = [ ALY

From (1), f, p(f,)

o2 + f‘l p(f,y)2dy *

. [ (90) + 0% g (@)) 7o) + 02800) ()
(33) o [
0 -5z || (e

u(f, —o?)df satisfies the same implicit we obtain (12) from Prop. 3.



B. Proof of Prop. 5

Given C*, we can use (12) to obtain a Nash equilibrium[1]
power allocation in the following way. We rewrite (12) as-
suming that the target SINR for the MMSE filter 5.

ﬂ+
1+ 6+

wtoms (14 ey [ PO dy)
= alogy (14 8%). (38)

In the left-hand side of (38)P(y) is given by a MMSE [5]
power aIIocation similar to the one given by (20). Hence,
the term [ P(y) |h(y )|? dy in (38) does not depend on the [6
actual reallzatlons of the channels. Replacjiig by 5T in

(19), we obtain thatf;" P(y) |h(y)|* dy = %, which

1487+
gives us (22). Replacing* by 8T in (20), we obtain the
power allocation (21).

[2]
alog, (1 + ﬂ*) — alog,(e) 3]

(4]

(7]

(8]

C. Expectation of the random variab(&5)

For each userj, there arel. > 1 paths with respective
attenuationsh, (&), ¢ = 1,...,L, which are i.i.d. complex
random variables with mean zero and even distributions of tHél
real and imaginary parts. The Fourler transform of those at-
tenuations ish,; = h (%, 4) = Y/ 1h[( Je R (=D g
The total energy of the paths 1§; = 3./, |he (& )|2

We want to show that the expectatlon of the random varialghke;
K Zj 1 'h"Jl is equal to 1. By expanding the expression of

hrj, this is equwalent to showing that the expectation of thes)

random variable
he (4) he (%)

E;

9

[14]

_ [15]
is equal to 0. Denoting by(-) the distribution ofa, = hy (4 ),
this expectation is equal to thie-dimensional integral of

hohgs
(her) p (he)
el + [her |* + > kze e 1kl k;lé_eIK’

which is an odd function ofi,. Its integral is therefore O,
which proves the desired result.

(16]

2 p hé
(17]

(18]
(19]

(20]
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