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Abstract. This paper addresses the study of fundamental properties
of stream-based content distribution services. We assume the presence
of an overlay network with limited connectivity degree, and we develop
a mathematical model that captures the essential properties of overlay-
based streaming protocols and systems.
The methodology is based on graph theory and models the streaming
system as a stochastic process, whose characteristics are related to the
streaming protocol. The model can capture the transient behavior of the
distribution graphs, i.e., the evolution of the structure over time.
Results show that mesh-based architectures are able to provide bounds
on the receiving delay and maintain rate fluctuations due to system dy-
namics very low.

1 Introduction

The recent success of streaming based on peer-to-peer (P2P) applications seems
to achieve what traditional streaming and multicasting applications have never
achieved: distributed video-on-demand and live broadcasting on the Internet.
The first tree based systems [1][2] coexist now with more advanced mesh-based
systems [3][4][5] that are more resilient to node dynamic behavior and more
suited to the intrinsic Internet characteristics.

In spite of the success of P2P streaming, the fundamental properties of such
systems have not been investigated in depth. Many proposals use heuristic meth-
ods to improve performance, but these heuristics are verified only a posteriori
and protocol parameters are tuned according to these results. Performance anal-
ysis of overlay streaming systems received some attention only recently. Most
of the analytical works focus on tree based structures (e.g., [6]) and meshes are
studied only through simulation [5]. To the best of our knowledge, no study
analyzes the behavior of the streaming distribution system as a function of the
topological properties of the graph that is built by the P2P application. Many
studies based on graph theory focus on the steady state properties of networks
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[7][8], but the way the graph structure is built is not constrained by protocol
rules.

In this work we develop a mathematical model based on graph theory that
can be used to analyze fundamental performance issues of overlay streaming
services. We model such systems with a high level abstraction that allows the
study of fundamental behavior under different conditions. Our model can analyze
the dynamics of the graphs, i.e., the evolution of the structure over time. It can
assess the impact of different protocol choices and of bandwidth heterogeneity on
the streaming process, and it gives enough insight in the problem to formulate
improved streaming strategies.

The results obtained by the systematic study of different configurations and
scenarios show that performances are mainly influenced by the policies related
to content format. Mesh based architecture are very robust to failures, even in
presence of high churn, and the delay experimented by nodes is bounded.

2 Mesh-based Overlay Streaming Systems

We do not consider a specific system but we identify common basic character-
istics of recent proposals [4][5]. Consider an overlay network built by a P2P
application. Once the overlay layer is built, paths between the source and the
destinations are created according to the rules of the streaming protocol. At
each hop, nodes both receive the stream and contribute uploading it to other
nodes, i.e., they work as content relay. Since nodes in such networks can appear
or disappear frequently, the set of nodes from which a node i is downloading
changes over time.

2.1 System parameters

The content is distributed using R different stripes. Each stripe contains part
of the stream (coded, for instance, using MDC techniques [9]). A node needs
R′ < R out of R stripes to achieve a target quality, while the remaining R − R′

stripes contain redundant information.
The evolution of the network is subject to two main events: node arrivals

and node departures. We assume that arrivals and departures are exponentially
distributed according to rates λ(t) and µ(t) respectively. The dependence on
the time makes the model more flexible: for instance, we can describe different
arrival patterns, such as flash crowds or more smooth arrivals. Let Tstr be the
duration of the stream and N the mean number of nodes receiving the stream at
steady state. A fraction of the nodes joins the stream at time zero, and there is
an arrival interval during which λ(t) > µ(t) until steady state is reached. Fig. 1
shows a sample arrival pattern.

The departure rate µ(t) is the inverse of the mean time spent in the system
(sojourn time). λ(t) at steady state compensates departures. For a given time
interval T , the ratio between the cumulative number of disappeared nodes and
the mean number of active nodes during T is defined as the churn of the system.
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Fig. 1. Sample arrival pattern.

A 100% churn means that during T the number of the departed nodes is equal
to the mean number of nodes in the system, i.e., there is a stochastic complete
change of the nodes during T .

Nodes are divided into different classes according to their bandwidth. Each

class j has an upload bandwidth b
(j)
u and a download bandwidth b

(j)
d , which can

be either symmetric, asymmetric or correlated, e.g., bu
i + bd

i constant, as in a
shared medium based access. The bandwidths are random variables described
by a probability density function (pdf) that is known (e.g., derived from mea-
surement studies).

The rate of the streaming is rstr. We suppose that all nodes have a download
bandwidth at least equal to the streaming rate. Each stripe has a rate equal to
rstr/R′, and we assume that the server is able to upload all the R stripes, i.e., it
has a bandwidth greater than Rrstr/R′. Each node has a constraint on maximum
and minimum number of active uploads that limit the possible outdegree of the
node: kmax is the maximum and kmin is the minimum outdegree.

Each node has B neighbors. Among its neighbors the node selects its par-
ent nodes, i.e., those from which it download. R′ parents are called active; the
remaining are called standby, since they are used as a backup in case of active
parent failure.

2.2 Join, Update and Leave Procedures

Nodes belonging to the initial set start building a diffusion tree for each stripe.
The number of nodes in each diffusion tree depends on the characteristics of
the nodes involved, i.e., their access bandwidths that determine the possible
children. Each node is involved in multiple diffusion trees.

When a new node arrives, it chooses randomly an active node as first contact,
and then builds its neighbor list with the help of the contacted node. From
the neighbors list, the node selects its parents and attaches to them. Nodes
periodically search for new connections among their neighbors with rate λup in
order to increase their indegree.

When a node leaves, all the inbound and outbound connections are canceled.
Orphan nodes try to replace the disappeared parent. If the disappeared parent



was in the standby set, the node does not react (it simply loses a backup parent).
If the disappeared parent was in the active set, the node tries to switch the state
of a standby parent, i.e., it starts downloading from the standby parent if it has
available bandwidth. If the node has no backup parents, there is a temporary
loss of quality that depends on the time necessary to search for a new parent.

3 Mathematical Background

The network of contacts among users of a P2P networks can be modeled as a
graph, where nodes represent the users and edges the neighborhood relation-
ship. When users start exchanging data (in our case, they start receiving and
distributing the stream) they use a subset of the available outgoing/incoming
edges. The focus of our analysis is the characteristics of the distribution graph,
i.e., the subgraph of the overlay graph, where edges are the connections effec-
tively used by nodes.

In general, the distribution graph is time varying, i.e., nodes and edges can
appear or disappear in time. The evolution of the graph can be seen as a stochas-
tic process with Markovian properties, since the graph at time t + dt depends
only on the graph at time t and the event occurred during dt.

The distribution graphs can be described through their structural character-
istics. We consider two main distributions: the degree distribution and the delay
distribution [7].

The degree distribution ps(k, t) is the probability that node s has k connec-
tions at time t.3 Knowing the degree distribution of each node in the graph, we
can derive the total degree distribution

P (k, t) =
1

N(t)

N(t)
∑

s=1

ps(k, t) (1)

where N(t) is the number of nodes attached to the streaming at time t.
The delay distribution represents the distance of the node from the source of

the stream following the shortest path. We define ps(ℓ, t) as the probability that
node s is ℓ steps away from the source at time t. The total delay distribution
can be derived in a similar way as done for Eq. (1). Hereinafter, for notation
simplicity, we omit the specification of node s.

3.1 Master Equations and Rate Equations

The analysis of the graph can be done through the study of the properties of the
degree and delay distributions. For a Markov process, the temporal behavior can
be described using the differential form of the Chapman-Kolmogorov equations,
known as Master Equations (MEs) [7].

3 It is possible to distinguish between indegree and outdegree distributions, ps(ki, t)
and ps(ko, t) respectively, with ki + ko = k.



Considering a node s, the variation of the probability to find the value α (α
is the degree or the delay) at time t can be expressed as

∂

∂t
p(α, t) =

∑

β

wβ,α(t)p(β, t) (2)

where wβ,α(t) is the transition rate from the value β to the value α at time t.
Transition rates are closely related to the streaming protocol policies and behav-
ior. The general formulation of the MEs must be specialized for our problem,
i.e., we have to define all the possible transitions.

The MEs fully determine the evolution in time of the stochastic system for
any node s. It is also useful to have the equations for the average value (degree
k or delay l). The correspondent equations are called Rate Equations (REs):

∂

∂t
α =

∂

∂t

∑

α

αp(α, t) (3)

The REs describe the average quantities and express deterministically the behav-
ior of the system: actually, REs are a set of differential equations that describe
the evolution over time of the mean properties of the system. Figure 2 shows
the relationship between the results of the MEs and the result of the REs for a
given observed random variable (e.g., node degree or delay). MEs clearly pro-
vide a great insight on the system (at a cost of more resources necessary to find
the solution), since they fully characterize the properties over time. REs gives a
mean value that is equivalent to the fluid approximation of the system.
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Fig. 2. Results of the Master Equations and the Rate Equations

The methodology we propose is able to provide the solution for the MEs,
and hence the complete system characterization. When the complexity of the
system increases and the required resources for solving it become prohibitive,
we can focus on the REs and obtain an analysis of the mean value. Thus, the
proposed method offers a great flexibility in deciding the desired level of detail
in the system analysis.

Space forbids the detailed description of the transition rates: the interested
reader can refer to [12].



4 Monte Carlo Integration of the MEs

The set of MEs that describe the distribution process cannot in general be solved
in closed form. However, the structure of the transition matrix that describes
the stochastic process, is extremely suited for an efficient numerical solution
based on Monte Carlo techniques [10][11]4, i.e., for a solution based on process
simulation.

Monte Carlo integration is basically a random walk in the state space of
the process. The convenience of the methodology is given by the fact that it is
very simple to build a random walk following the graph building rules given in
Sect. 2 and the same rules define a transition matrix with good local properties,
i.e., given a state there are few states where the process can evolve and, from
the reward point of view, they are similar one another, so that there are not
“diverging paths” that may lead to instabilities in the solution.

Samples obtained via Monte Carlo techniques are i.i.d. by construction, so
that confidence intervals can be estimated on the whole probability distribution.

The key strength of the methodology, however, is not the efficiency of the
numerical solution: Indeed, this method provides great flexibility in the system
description and specification. The realization of the stochastic process can be
as close as desired to a real implementation of the protocol/system. On the one
hand, this is like a generic simulation approach, but, being based on formal
definitions, avoids the risk of incomplete or bugged specifications; on the other
hand, assumptions made in fluid models can be avoided, since we can describe
the system behavior in full detail.

4.1 Comparison with Other Methodologies

We consider a very simple case in order to show the differences with other model-
ing approaches. Consider the case where a node update its indegree only during
update events. We assume infinite upload and download bandwidths and no
constraints on the maximum outdegree. If ki(t) is the indegree at time t, at
every update event the node will add R − ki(t) parents. In fact, under these
assumptions the probability to find all the necessary parents to obtain all the
stripes is 1, since there is always a node that is able to provide a connection.
The differential equation that describes the evolution can be written as

d

dt
ki(t) = λup(R − ki(t)) − ki(t)µ (4)

The second term considers the fact that each of the ki(t) parents can leave with
rate µ. Considering the initial condition ki(0) = 1 (we suppose that all nodes
are present at the beginning with exactly one parent each) the solution of (4) is

ki(t) =
λupR

λup + µ

(

1 − e−(λup+µ)t
)

+ e−(λup+µ)t (5)

4 In physical and chemical sciences this technique is often called Stochastic Simulation
Algorithm or Gillespie Algorithm, but we prefer to stick to the term ‘Monte Carlo’
normally used in computer science.
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Fig. 3. Solution of MEs and REs.

In Fig. 3 we compare the analytical solution of this very simple case with
the solution of the Rate Equations (3) derived from our model. We set R = 10
stripes, µ = 1/Tstr and λup = 5

Tstr
, 3

Tstr
and 2

Tstr
. We normalize the time with

respect to Tstr. The numerical solution follows closely the analytical one. But
the results obtained from our model give more insight. In fact, we can observe
how the full indegree distribution changes over time.
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Fig. 4. Indegree distribution at time Tstr/2 obtained from the solution of the MEs.

Fig 4 shows the distribution of the number of parents (indegree) at time
Tstr/2 for different values of λup. Notice that there is a non-null probability
that nodes remain without parents, thus being disconnected entirely from the
distribution process, a phenomenon that a fluid approach analyzing the means
entirely disregards, while in most cases it is the most interesting result.



5 Application of the Methodology

We use a configuration with N = 104 nodes5. The input bandwidth distribution
is composed by three classes: slow nodes, medium nodes and fast nodes with
symmetric bandwidth respectively equal to rstr, 2rstr and 5rstr and probabilities
equal to 0.2, 0.4 and 0.4. The streaming rate is divided into R′ stripes and the
source generates R stripes. Results are obtained for R = 10 and R′ = 2, 4, 6, 8.

We consider an observation time equal to Tstr. We consider two arrival pat-
terns, with initial number of nodes equal to 0.1N and 0.5N respectively; the
remaining nodes arrive within Tstr/5. The mean sojourn time is set to Tstr,
2Tstr, and 5Tstr. Each node can have up to 60 neighbors in the overlay graph
(the actual number of neighbors depends on dynamics of the nodes); among these
relationships, while uploading a node can have a maximum outdegree equal to
14.

The stream is chunk based (e.g., few video frames or a slice of a few tens of
milliseconds of sound) and we normalize the dimension of the chunk, U , such that

U
rstr

= 1 unit. A node becomes eligible for uploading the content after a delay

equal to the download time of a single chunk. So the delay can be considered as
the “distance” (relative delay) of the node from the source of the stream. The
length of the stream, Tstr, is set to 10000 U

rstr
= 10000 units.

Besides degree and delay properties, we consider also the quality of the mesh:
when a node remains orphan of an active parent, it switches to one of its standby
parents: if they have enough bandwidth to help the node, the node has no service
disruption; if no standby parent is able to help the node, it must search for a
new parent, with a possible service disruption. We measure the quality of the
mesh as the percentage of nodes that successfully switch to a standby parent.

Due to space constraints, we report only some sample results; a more com-
prehensive set can be found in [12]

5.1 Analysis of the Indegree

Analysing the indegree we can examine whether the subdivision in stripes helps
the distribution process or not. On the one hand, more stripes means that each
stripe has a lower rate, so the loss of a single stripe has less impact. On the other
hand, each node must maintain more active connections, and the probability that
one of these connections fails increases.

Figure 5(a) shows the indegree distribution of the nodes at time t = Tstr,
computed with Eq. (1). In this case we have initial number of nodes equal to
0.1N and mean sojourn time Tstr. The distribution tends to peak around R as
R′ tends to R. This means that all the nodes in the network are able to receive
the full quality, since the degree is always greater or equal to R′. Note that
with R′ = 8 there is a fraction of the nodes with exactly 8 parents: this means
that, in case of one parent disappears, the quality received by the node may be
temporarely affected.

5 We have also checked configurations with 105 nodes obtaining similar results.
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Fig. 5. Solution of the MEs for the indegree ki(t).

The average temporal behavior of the indegree can be analyzed looking at the
results of the rate equations (Fig. 5(b)) computed with Eq. (3). A stable value is
reached after few time units: this means that the structure, even in presence of
high churn is able to maintain a high quality of the stream.

5.2 Analysis of the Delay

The delay, expressed as time units, represents the number of hops from the
source. We plot the Complementary Cumulative Distribution Function (CCDF,
defined as 1-CDF) in order to study the tail of the distributions. We consider
R′ = 4 and we set different sojourn times (µ). Fig. 6(a) shows the case of initial
number of nodes equal to 0.5N . The tail of the distribution is not affected by
the different values of µ.

In Fig. 6(b) we show the impact of R′ on the delay. Increasing the number of
stripes has a side effect: since each node needs all the R′ stripes to correctly play
the stream, the absolute delay is given by maximum delay among the stripes. By
increasing the number of stripes, the probability to have higher delays increases,
since we have to compute the maximum among an increased number of stripes.

5.3 Analysis of the Quality of the Mesh

Aggregate results for the indegree and the delay are not able to capture all the
aspects related to the quality of the received stream by a generic node i. In
Table 1 we summarize other results that can be obtained from the solution of
the MEs. The value of the churn is computed according to the arrival pattern:
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arrivals and departures are Poisson processes with rate λ(t) and µ(t) respec-
tively, so we can calculate the cumulative disappeared nodes at time Tstr and
consequently the value of churn.

During node’s lifetime, there is a non null probability that all its parents
leave and node i is not able to find other parents. This situation causes an error
and node i leaves the system. From the probability to have outdegree 0 at any
instant t, p(0, t), integrating over time t we can compute the probability that a
node leaves with an error message. This result is reported in column % Error
of Table 1 for different values of R′. With high churn, one node per thousand is
forced out of the system. In some contexts, this value may be inacceptable.

Table 1. Other statistics

R′ 1/µ % Churn % Error %Switch

4 Tstr 98.33% 0.11% 99.63%
4 2Tstr 49.09% 0.05% 99.63%
4 5Tstr 19.77% 0.03% 99.63%

8 Tstr 98.24% 0.10% 94.38%
8 2Tstr 49.15% 0.05% 96.76%
8 5Tstr 19.74% 0.02% 97.99%

Another interesting results is the probability to switch to a standby parent
if an active parent leaves. This is given by p(ki, t) with ki < R′. Integrating over
time t we are able to compute the switch probability (see last column of Table 1).
With a small R′, the percentage of switches is very high, i.e., the received stream
is stable. On the other hand, with R′ near to R, with high churn, if the number
of parents of a node n drops below R′, the probability to switch to a standby



parent is 94%. This means that the quality temporalily decreases, as expected
looking at degree distribution (Fig. 5(a)).

6 Discussion and Conclusions

The contribution of this paper is the introduction of a novel methodology for
the high-level representation of overlay streaming systems. Based on the use
of Master Equations, the solution of the model yields the entire probability
distribution of the results (not only the mean value), as well as the temporal
(transient) dynamics.

We have modeled systems proposed recently obtaining novel insights in the
dynamics of self-organizing systems for streaming distribution. In the following
we summarize the main findings that can help in designing better P2P streaming
systems.

Redundant stripes play a fundamental role in obtaining good performances.
Recent proposals [4] consider only a small fraction of redundant information so,
in case of node departures, the stability of the streaming is affected. Maintaining
standby parents, a common solution used by such systems, may not alleviate the
problem, since a node can have a standby set of parents with the same stripes
of the (remaining) active parents.

The delay is influenced by stripe ‘size’: the greater R′ (smaller stripes) the
higher the delay. The number of necessary stripes R′ should be kept low to keep
a low delay. The delay remains low independently from the dynamics of the
network, which is a counter-intuitive result.

Under medium to high churn, nodes may become disconnected from the
stream, interrupting the service (notice that instead churn does not affect de-
lay). Only stable nodes can prevent disconnections. This performance measure
cannot be computed with any methodology that only yields averages, and may
be difficult to observe with standard simulations, because even small disconnec-
tion rates are unacceptable and require simulating thousands of nodes for hours
to be observed with sufficient reliability.
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