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1 Introduction

The problem of modelling channels is crucial for the efficient design of wireless systems [1, 2, 3]. The wireless
channel suffers from constructive/destructive interference signaling [4, 5]. This yields a randomized channel
with certain statistics to be discovered. Recently ([6, 7]), the need to increase spectral efficiency has motivated
the use of multiple antennas at both the transmitter and the receiver side. Hence, in the case of i.i.d Gaussian
entries of the MIMO link and perfect channel knowledge at the receiver, it has been proved [8] that the ergodic
capacity increase is min(nr,nt) bits per second per hertz for every 3dB increase (nr is the number of receiving
antennas and nt is the number of transmitting antennas) at high Signal to Noise Ratio (SNR)1. However,
for realistic2 channel models, results are still unknown and may seriously put into doubt the MIMO hype.
As a matter of fact, the actual design of efficient codes is tributary of the channel model available: the
transmitter has to know in what environment the transmission occurs in order to provide the codes with
the adequate properties: as a typical example, in Rayleigh fading channels, when coding is performed, the
Hamming distance (also known as the number of distinct components of the multi-dimensional constellation)
plays a central role whereas maximizing the Euclidean distance is the commonly approved design criteria for
Gaussian channels (see Giraud and Belfiore [9] or Boutros and Viterbo [10]).

As a consequence, channel modelling is the key in better understanding the limits of transmissions in
wireless and noisy environments. In particular, questions of the form: ”what is the highest transmission rate
on a propagation environment where we only know the mean of each path, the variance of each path and
the directions of arrival?” are crucially important. It will justify the use (or not) of MIMO technologies for
a given state of knowledge.

Let us first introduce the modelling constraints. We assume that the transmission takes place between a
mobile transmitter and receiver. The transmitter has nt antennas and the receiver has nr antennas. Moreover,
we assume that the input transmitted signal goes through a time variant linear filter channel. Finally, we
assume that the interfering noise is additive white Gaussian.

TxRx

Fig. 1. MIMO channel representation.

1 In the single antenna Additive White Gaussian Noise (AWGN) channel, 1 bit per second per hertz can be achieved
with every 3dB increase at high SNR.

2 By realistic, we mean models representing our state of knowledge of reality which might be different from reality.
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The transmitted signal and received signal are related as:

y(t) =
√

ρ

nt

∫
Hnr×nt

(τ, t)x(t− τ)dτ + n(t) (1)

with

Hnr×nt(τ, t) =
∫

Hnr×nt(f, t)ej2πfτdf (2)

ρ is the received SNR (total transmit power per symbol versus total spectral density of the noise), t, f
and τ denote respectively time, frequency and delay, y(t) is the nr × 1 received vector, x(t) is the nt × 1
transmit vector, n(t) is an nr × 1 additive standardized white Gaussian noise vector.

In the rest of the paper, we will only be interested in the frequency domain modelling (knowing that the
impulse response matrix can be accessed through an inverse Fourier transform according to relation 2). We
would like to provide some theoretical grounds to model the frequency response matrix H(f, t) based on a
given state of knowledge. In other words, knowing only certain things related to the channel (Directions of
Arrival (DoA), Directions of Departure (DoD), bandwidth, center frequency, number of transmitting and
receiving antennas, number of chairs in the room...), how to attribute a joint probability distribution to the
entries hij(f, t) of the matrix:

Hnr×nt(f, t) =




h11(f, t) . . . . . . h1nt(f, t)
... . . . . . .

...
... . . . . . .

...
hnr1(f, t) . . . . . . hnrnt(f, t)




(3)

This question can be answered in light of the Bayesian probability theory and the principle of maximum
entropy. Bayesian probability theory has led to a profound theoretical understanding of various scientific
areas [11, 12, 13, 14, 15, 16, 17, 18] and has shown the potential of entropy as a measure of our degree of
knowledge when encountering a new problem. The principle of maximum entropy3 is at present the clearest
theoretical justification in conducting scientific inference: we do not need a model, entropy maximization
creates a model for us out of the information available. Choosing the distribution with greatest entropy
avoids the arbitrary introduction or assumption of information that is not available4. Bayesian probability
theory improves on maximum entropy by expressing some prior knowledge on the model and estimating the
parameters of the model.

As we will emphasize all along this paper, channel modelling is not a science representing reality but
only our knowledge of reality as thoroughly stated by Jaynes in [20]. It answers in particular the following
question: based on a given state of knowledge (usually brought by raw data or prior information), what is
the best model one can make? This is, of course, a vague question since there is no strict definition of what is
meant by best. But what do we mean then by best? In this contribution, our aim is to derive a model which
is adequate with our state of knowledge. We need a measure of uncertainty which expresses the constraints of
our knowledge and the desire to leave the unknown parameters to lie in an unconstrained space. To this end,
many possibilities are offered to us to express our uncertainty. However, we need an information measure
which is consistent (complying to certain common sense desiderata, see [21] to express these desiderata and
for the derivation of entropy) and easy to manipulate: we need a general principle for translating information
into probability assignment. Entropy is the measure of information that fulfills this criteria. Hence, already
in 1980, Shore et al. [21] proved that the principle of maximum entropy is the correct method of inference
when given new information in terms of expected values. They proved that maximizing entropy is correct
in the following sense: maximizing any function but entropy will lead to inconsistencies unless that function
and entropy have the same maximum5. The consistency argument is at the heart of scientific inference and
can be expressed through the following axiom6:
3 The principle of maximum entropy was first proposed by Jaynes [12, 13] as a general inference procedure although

it was first used in Physics.
4 Keynes named it judiciously the principle of indifference [19] to express our indifference in attributing prior values

when no information is available.
5 Thus, aiming for consistency, we can maximize entropy without loss of generality.
6 The consistency property is only one of the required properties for any good calculus of plausibility statement. In

fact, R.T Cox in 1946 derived three requirements known as Cox’s Theorem[22]:
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Lemma 1. If the prior information I1 on which is based the channel model H1 can be equated to the prior
information I2 of the channel model H2 then both models should be assigned the same probability distribution
P (H) = P (H1) = P (H2).

Any other procedure would be inconsistent in the sense that, by changing indices 1 and 2, we could
then generate a new problem in which our state of knowledge is the same but in which we are assigning
different probabilities. More precisely, Shore et al. [21] formalize the maximum entropy approach based on
four consistency axioms stated as follows7:

• Uniqueness: If one solves the same problem twice the same way then the same answer should result both
times.

• Invariance: If one solves the same problem in two different coordinate systems then the same answer
should result both times.

• System independence: It should not matter whether one accounts for independent information about
independent systems separately in terms of different densities or together in terms of a joint density.

• Subset independence: It should not matter whether one treats an independent subset of system states in
terms of a separate conditional density or in terms of the full system density.

These axioms are based on the fundamental principle that if a problem can be solved in more than one way,
the results should be consistent. Given this statement in mind, the rules of probability theory should lead
every person to the same unique solution, provided each person bases his model on the same information.8

Moreover, the success over the years of the maximum entropy approach (see Boltzmann’s kinetic gas law,
[23] for the estimate of a single stationary sinusoidal frequency, [14] for estimating the spectrum density of
a stochastic process subject to autocorrelation constraints, [24] for estimating parameters in the context of
image reconstruction and restoration problems, [25] for applying the maximum entropy principle on solar
proton event peak fluxes in order to determine the least biased distribution) has shown that this information
tool is the right way so far to express our uncertainty.

Let us give an example in the context of spectral estimation of the powerful feature of the maximum
entropy approach which has inspired this paper. Suppose a stochastic process xi for which p + 1 autocorre-
lation values are known i.e E(xixi+k) = τk, k = 0, ..., p for all i. What is the consistent model one can make
of the stochastic process based only on that state of knowledge, in other words the model which makes the
least assumption on the structure of the signal? The maximum entropy approach creates for us a model and
shows that, based on the previous information, the stochastic process is a pth auto-regressive (AR) order
model process of the form [14]:

xi = −
p∑

k=1

akxi−k + bi

where the bi are i.i.d zero mean Gaussian distributed with variance σ2 and a1, a2, .., ap are chosen to satisfy
the autocorrelation constraints (through Yule-Walker equations).

• Divisibility and comparability: the plausibility of of a statement is a real number between 0 (for false) and 1 (for
true) and is dependent on information we have related to the statement.

• Common sense: Plausibilities should vary with the assessment of plausibilities in the model.
• Consistency: If the plausibility of a statement can be derived in two ways, the two results should be equal.

7 In all the rest of the document, the consistency argument will be referred to as Axiom 1.
8 It is noteworthy to say that if a prior distribution Q of the estimated distribution P is available in addition to the

expected values constraints, then the principle of minimum cross-entropy (which generalizes maximum entropy)
should be applied. The principle states that, of the distribution P that satisfy the constraints, one should choose
the one which minimizes the functional:

D(P, Q) =

Z
P (x)log

„
P (x)

Q(x)

«
dx

Minimizing cross-entropy is equivalent to maximizing entropy when the prior Q is a uniform distribution. Intu-
itively, cross-entropy measures the amount of information necessary to change the prior Q into the posterior P .
If measured data is available, Q can be estimated. However, one can only obtain a numerical form for P in this
case (which is not always useful for optimization purposes). Moreover, this is not a easy task for multidimensional
vectors such as vec(H). As a consequence, we will always assume a uniform prior and use therefore the principle
of maximum entropy.
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In this contribution, we would like to provide guidelines for creating models from an information theoretic
point of view and therefore make extensive use of the principle of maximum entropy together with the
principle of consistency.

2 Some Considerations

2.1 Channel Modelling Methodology

In this contribution, we provide a methodology (already successfully used in Bayesian spectrum analysis
[23, 17]) for inferring on channel models. The goal of the modelling methodology is twofold:

• to define a set of rules, called hereafter consistency axioms, where only our state of knowledge needs to
be defined.

• to use a measure of uncertainty, called hereafter entropy, in order to avoid the arbitrary introduction or
assumption of information that is not available.

In other words, if two published papers make the same assumptions in the abstract (concrete buildings
in Oslo where one avenue...), then both papers should provide the same channel model.

To achieve this goal, in all this document, the following procedure will be applied: every time we have
some information on the environment (and not make assumptions on the model !), we will ask a question
based on that the information and provide a model taking into account that information and nothing more!
The resulting model and its compliance with later test measurements will justify whether the information
used for modelling was adequate to characterize the environment in sufficient details. Hence, when asked
the question, ”what is the consistent model one can make knowing the directions of arrival, the number of
scatterers, the fact that each path has zero mean and a given variance?” we will suppose that the information
provided by this question is unquestionable and true i.e the propagation environment depends on fixed steer-
ing vectors, each path has effectively zero mean and a given variance. We will suppose that effectively, when
waves propagate, they bounce onto scatterers and that the receiving antenna sees these ending scatterers
through steering directions. Once we assume this information to be true, we will construct the model based
on Bayesian tools.9.
To explain this point of view, the author recalls an experiment made by his teacher during a tutorial explana-
tion on the duality behavior of light: photon or wave. The teacher took two students of the class, called here

(1) (2)

(1’)

(2’)

(3’)

Fig. 2. Duality wave-corpuscule?

A and B for simplicity sake. To student A, he showed view (1’) (see Figure 2) of a cylinder and to student
9 Note that in Bayesian inference, all probabilities are conditional on some hypothesis space (which is assumed to

be true).



Information Theory and Wireless Channel Modeling 5

B, he showed view (2’) of the same cylinder. For A, the cylinder was a circle and for B, the cylinder was a
rectangle. Who was wrong? Well, nobody. Based on the state of knowledge (1’), representing the cylinder as
a circle is the best one can do. Any other representation of the cylinder would have been made on unjustified
assumptions (the same applies to view (2’)). Unless we have another state of knowledge (view (3’)), the true
nature of the object will not be found.

Our channel modelling will not pretend to seek reality but only to represent view (1’) or view (2’) in the
most accurate way (i.e if view (1’) is available then our approach should lead into representing the cylinder as
a circle and not as a triangle for example). If the model fails to comply with measurements, we will not put
into doubt the model but conclude that the information we had at hand to create the model was insufficient.
We will take into account the failure as a new source of information and refine/change our question in order
to derive a new model based on the principle of maximum entropy which complies with the measurements.
This procedure will be routinely applied until the right question (and therefore the right answer) is found.
When performing scientific inference, every question asked, whether right or wrong, is important. Mistakes
are eagerly welcomed as they lead the path to better understand the propagation environment. Note that
the approach devised here is not new and has already been used by Jaynes [20] and Jeffrey [26]. We give
hereafter a summary of the modelling approach:

1. Question selection: the modeler asks a question based on the information available.
2. Construct the model: the modeler uses the principle of maximum entropy (with the constraints of

the question asked) to construct the model Mi.
3. Test: (When complexity is not an issue) The modeler computes the a posteriori probability of the model

and ranks the model.
4. Return to 1.: The outcome of the test is some ”new information” evidence to keep/refine/change the

question asked. Based on this information, the modeler can therefore make a new model selection.

This algorithm is iterated as many times as possible until better ranking is obtained. However, we have
to alert the reader on one main point: the convergence of the previous algorithm is not at all proven. Does
this mean that we have to reject the approach? we should not because our aim is to better understand the
environment and by successive tests, we will discard some solutions and keep others.

We provide hereafter a brief historical example to highlight the methodology. In the context of spectrum
estimation, the Schuster periodogram (also referred in the literature as the discrete Fourier transform power
spectrum) is commonly used for the estimation of hidden frequencies in the data. The Schuster periodogram
is defined as:

F (ω) =
1
N
|

N∑

k=1

ske−jωtk |2

sk is the data of length N to be analyzed. In order to find the hidden frequencies in the data, the general
procedure is to maximize F (ω) with respect to ω . But as in our case, one has to understand why/when to use
the Schuster periodogram for frequency estimation. The Schuster periodogram answers a specific question
based on a specific assumption (see the work of Bretthorst [17]). In fact, it answers the following question:
”what is the optimal frequency estimator for a data set which contains a single stationary sinusoidal
frequency in the presence of Gaussian white noise?” From the standpoint of Bayesian probability, the dis-
crete Fourier Transform power spectrum answers a specific question about single (and not two or three....)
stationary sinusoidal frequency estimation. Given this state of knowledge, the periodogram will consider
everything in the data that cannot be fit to a single sinusoid to be noise and will therefore, if other frequen-
cies are present, misestimate them. However, if the periodogram does not succeed in estimating multiple
frequencies, the periodogram is not to blame but only the question asked! One has to devise a new model
(a model maybe based on a two stationary sinusoidal frequencies?). This new model selection will lead to a
new frequency estimator in order to take into account the structure of what was considered to be noise. This
routine is repeated and each time, the models can be ranked to determine the right number of frequencies.

2.2 Information and Complexity

In the introduction, we have recalled the work of Shore et al. [21] which shows that maximizing entropy
leads to consistent solutions. However, incorporating information in the entropy criteria which is not given
in terms of expected values is not an easy task. In particular, how does one incorporate information on the
fact that the room has four walls and two chairs? In this case, we will not maximize entropy based only on
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the information we have (expected values and number of chairs and walls): we will maximize entropy based
on the expected values and a structured form of the channel matrix (which is more than the information we
have since the chairs and walls are not constraint equations in the entropy criteria). This ad-hoc procedure
will be used because it is extremely difficult to incorporate knowledge on physical considerations (number of
chairs, type of room...) in the entropy criteria. Each time this ad-hoc procedure is used, we will verify that
although we maximize entropy under a structured constraint, we remain consistent. Multiple iterations of
this procedure will refine the structured form of the channel until the modeler obtains a consistent structured
models that maximizes entropy.

A question the reader could ask is whether we should take into account all the information provided,
in other words, what information is useful? We should of course consider all the available information but
there is a compromise to be made in terms of model complexity. Each information added will not have the
same effect on the channel model and might as well more complicate the model for nothing rather than bring
useful insight on the behavior of the propagation environment. To assume further information by putting
some additional structure would not lead to incorrect predictions: however, if the predictions achieved with
or without the details are equivalent, then this means that the details may exist but are irrelevant for
the understanding of our model10. As a typical example, when conducting iterative decoding analysis [27],
Gaussian models of priors are often sufficient to represent our information. Inferring on other moments and
deriving the true probabilities will only complicate the results and not yield a better understanding.

3 Gaussian i.i.d Channel Model

3.1 Finite Energy Case

In this section, we give a precise justification on why and when the Gaussian i.i.d model should be used. We
recall the general model:

y =
√

ρ

nt
Hx + n

Imagine now that the modeler is in a situation where it has no measurements and no knowledge where
the transmission took place. The only thing the modeler knows is that the channel carries some energy E,
in other words, 1

nrnt
E

(∑nr

i=1

∑nt

j=1 | hij |2
)

= E. Knowing only this information, the modeler is faced with
the following question: what is the consistent model one can make knowing only the energy E (but not the
correlation even though it may exist) ? In other words, based on the fact that:

∫
dH

nr∑

i=1

nt∑

j=1

| hij |2 P (H) = ntnrE (Finite energy) (4)

∫
dP (H) = 1 (P(H) is a probability distribution) (5)

What distribution P (H)11 should the modeler assign to the channel? The modeler would like to derive
the most general model complying with those constraints, in other words the one which maximizes our
uncertainty while being certain of the energy. This statement can simply be expressed if one tries to maximize
the following expression using Lagrange multipliers with respect to P :

L(P ) = −
∫

dHP (H)logP (H) + γ

nr∑

i=1

nt∑

j=1

[E −
∫

dH | hij |2 P (H)]

+β

[
1−

∫
dHP (H)

]

10 Limiting one’s information is a general procedure that can be applied to many other fields. As a matter of fact,
the principle ”one can know less but understand more” seems the only reasonable way to still conduct research
considering the huge amount of papers published each year.

11 It is important to note that we are concerned with P (H | I) where I represents the general background knowledge
(here the variance) used to formulate the problem. However, for simplicity sake, P (H | I) will be denoted P (H).
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If we derive L(P ) with respect to P , we get:

dL(P )
dP

= −1− logP (H)− γ

nr∑

i=1

nt∑

j=1

| hij |2 −β = 0

then this yields:

P (H) = e−(β+γ
Pnr

i=1
Pnt

j=1|hij |2+1)

= e−(β+1)
nr∏

i=1

nt∏

j=1

exp−(γ | hij |2)

=
nr∏

i=1

nt∏

j=1

P (hij)

with
P (hij) = e−(γ|hij |2+ β+1

nrnt
).

One of the most important conclusions of the maximum entropy principle is that while we have only
assumed the variance, these assumptions imply independent entries since the joint probability distribution
P (H) simplifies into products of P (hij). Therefore, based on the previous state of knowledge, the only
maximizer of the entropy is the i.i.d one. This does not mean that we have supposed independence in the
model. In the generalized L(P ) expression, there is no constraint on the independence. Another surprising
result is that the distribution achieved is Gaussian. Once again, gaussianity is not an assumption but a
consequence of the fact that the channel has finite energy. The previous distribution is the least informative
probability density function that is consistent with the previous state of knowledge. When only the variance
of the channel paths are known (but not the frequency bandwidth, nor knowledge of how waves propagate,
nor the fact that scatterers exist...) then the only consistent model one can make is the Gaussian i.i.d model.
In order to fully derive P (H), we need to calculate the coefficients β and γ. The coefficients are solutions of
the following constraint equations:

∫
dH

nr∑

i=1

nt∑

j=1

| hij |2 P (H) = ntnrE

∫
dHP (H) = 1

Solving the previous equations yields the following probability distribution:

P (H) =
1

(πE)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
E

}

Of course, if one has any additional knowledge, then this information should be integrated in the L(P )
criteria and would lead to a different result.
As a typical example, suppose that the modeler knows that the frequency paths have different variances such
as E(| hij |2) = Eij . Using the same methodology, it can be shown that :

P (H) =
nr∏

i=1

nt∏

j=1

P (hij)

with P (hij) = 1
πEij

e
− |hij |2

Eij . The principle of maximum entropy still attributes independent Gaussian entries
to the channel matrix but with different variances.
Suppose now that the modeler knows that the path hpk has a mean equal to E(hpk) = mpk and variance
E(| hpk−mpk |2) = Epk, all the other paths having different variances (but nothing is said about the mean).
Using as before the same methodology, we show that:

P (H) =
nr∏

i=1

nt∏

j=1

P (hij)
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with for all {i, j, (i, j) 6= (p, k)} P (hij) = 1
πEij

e
− |hij |2

Eij and P (hpk) = 1
πEpk

e
− |hpk−mpk|2

Epk . Once again, different
but still independent Gaussian distributions are attributed to the MIMO channel matrix.

The previous examples can be extended and applied whenever a modeler has some new source of informa-
tion in terms of expected values on the propagation environment12. In the general case, if N constraints
are given on the expected values of certain functions

∫
gi(H)P (H)dH = αi for i = 1...N , then the principle

of maximum entropy attributes the following distribution [28]:

P (H) = e−(1+λ+
PN

i=1 λigi(H))

where the values of λ and λi (for i = 1..N) can be obtained by solving the constraint equations.
Although these conclusions are widely known in the Bayesian community, the author is surprised that

many MIMO channel papers begin with: ”let us assume a nr × nt matrix with Gaussian i.i.d entries...”.
No assumptions on the model should be made. Only the state of knowledge should be clearly stated at the
beginning of each paper and the conclusion of the maximum entropy approach can be straightforwardly
used.13

As a matter of fact, the Gaussian i.i.d model should not be ”thrown” away but be extensively used
whenever our information on the propagation conditions is scarce (we don’t know in what environment
we are transmitting our signal i.e the frequency, the bandwidth, WLAN scenario, we do not know what
performance measure we target...)14.

3.2 Finite Energy unknown

We will consider a case similar to the previous section where the modeler is in a situation where it has
no measurements and no knowledge where the transmission took place. The modeler does know that the
channel carries some energy E but is not aware of its value.

In the case where the modeler knows the value of E, we have shown that:

P (H | E) =
1

(πE)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
E

}

In general, when E is unknown, the probability distribution is derived according to:

P (H) =
∫

P (H, E)dE

=
∫

P (H | E)P (E)dE

and is consistent with the case where E is known i.e P (E) = δ(E − E0):

P (H) =
1

(πE0)nrnt
exp{−

nr∑

i=1

nt∑

j=1

| hij |2
E0

}

In the case were the energy E is unknown, one has to determine P (E). E is a positive variance parameter
and the channel can not carry more energy than what is transmitted (i.e E ≤ Emax) . This is merely the
sole knowledge the modeler has about E on which the modeler has to derive a prior distribution15.
12 The case where information is not given in terms of expected values is treated afterwards.
13 ”Normality is not an assumption of physical fact at all. It is a valid description of our state of information”, Jaynes.
14 In ”The Role of Entropy in Wave Propagation” [29], Franceschetti et al. show that the probability laws that

describe electromagnetic magnetic waves are simply maximum entropy distributions with appropriate moment
constraints. They suggest that in the case of dense lattices, where the inter-obstacle hitting distance is small
compared to the distance traveled, the relevant metric is non-Euclidean whereas in sparse lattices, the relevant
metric becomes Euclidean as propagation is not constrained along the axis directions.

15 Jeffrey [26] already in 1939 proposed a way to handle this issue based on invariance properties and consistency
axioms. He suggested that a proper way to express incomplete ignorance of a continuous variable known to be
positive is to assign uniform prior probability to its logarithm, in other words: P (E) ∝ 1

E
. However, the distribution

is improper and one can not therefore marginalize with this distribution.
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In this case, using maximum entropy arguments, one can derive P (E):

P (E) =
1

Emax
0 ≤ E ≤ Emax

As a consequence,

P (H) =
∫ Emax

0

1
(πE)nrnt

exp{−
nr∑

i=1

nt∑

j=1

| hij |2
E

}dE

With the change of variables u = 1
E , we obtain:

P (H) =
1

Emaxπnrnt

∫ ∞

1
Emax

unrnt−2e−
Pnr

i=1
Pnt

j=1|hij |2udu

Note that the distribution is invariant by unitary transformations, is not Gaussian and moreover the
entries are not independent when the modeler has no knowledge on the amount of energy carried by the
channel. This point is critical and shows the effect of the lack of information on the exact energy16.

In the case nt = 1 and nr = 2, we obtain:

P (H) =
1

Emaxπ2
∑2

i=1 | hi1 |2
e−

P2
i=1|hi1|2

Emax

3.3 Correlation matrix unknown

Suppose now that the modeler knows that correlation exists between the entries of the channel matrix H
but is not aware of the value of the correlation matrix Q = E(vec(H)vec(H)H). What consistent distribution
should the modeler attribute to the channel based only on that knowledge?

To answer this question, suppose that the correlation matrix Q = VΛVH is known (V = [v1, ...vnrnt ]
is a nrnt × nrnt unitary matrix whereas Λ is a nrnt × nrnt diagonal matrix Λ = diag(λ1, ..., λnrnt) with
λi ≥ 0 for 1 ≤ i ≤ nrnt).

Using the maximum entropy principle, one can easily show that:

P (H | V,Λ) =
1∏nrnt

i=1 πλi
exp{

nrnt∑

i=1

| vi
Hvec(H) |2

λi
}

The channel distribution can be obtained:

P (H) =
∫

P (H,V,Λ)dVdΛ

=
∫

P (H | V,Λ)P (V,Λ)dVdΛ

If the correlation matrix is perfectly known, then P (V,Λ) = δ(V −V0)δ(Λ−Λ0) and

P (H) =
1∏nrnt

i=1 πλ0
i
exp{

nrnt∑

i=1

| v0
i
Hvec(H) |2

λ0
i

}

In the case were the correlation matrix Q is unknown, one has to determine P (V,Λ) = P (Λ | V)P (V).
This is the problem of constructing an ignorance prior corresponding to ignorance of both scale (up to some
constraints proper to our problem) and rotation. The a priori distribution can be derived as well as the joint
probability distribution using tools from statistical physics. Due to limited space, the result is not provided
but can be found in the recent work of the author [30].
16 In general, closed form solutions of the distributions do not exist. In this case, a powerful tool for approximate

Bayesian inference that uses Markov Chain Monte Carlo to compute marginal posterior distributions of interest
can be used through WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.)
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4 Knowledge of the directions of arrival, departure, delay, bandwidth, power:
frequency selective channel model with time variance

4.1 Knowledge of the directions of arrival or departure

The modeler17 is interested in modelling the channel over time scales over which the locations of scatterers
do not not change significantly relative to the transmitter or receiver. This is equivalent to considering time
scales over which the channel statistics do not change significantly. However, the channel realizations do vary
over such time scales. Imagine that the modeler is in a situation where it knows the energy carried by the
channel (nothing is known about the mean)18. Moreover, the modeller knows from electromagnetic theory
that when a wave propagates from a scatterer to the receiving antennas, the signal can be written in an
exponential form

s(t,d) = s0 ej(kT d−2πft) (6)

which is the plane wave solution of the Maxwell equations in free non-dispersive space for wave vector k ∈2×1

and location vector d ∈2×1. The reader must note that other solutions to the Maxwell equations exist and
therefore the modeler is making an important restriction. The direction of the vector s0 gives us knowledge
on the polarization of the wave while the direction of the wave vector k gives us knowledge on the direction
of propagation. The phase of the signal results in φ = kT d. The modeler considers for simplicity sake that
the scatterers and the antennas lie in the same plane. The modeler makes use of the knowledge that the
steering vector is known up to a multiplicative complex constant that is the same for all antennas.

Although correlation might exist between the scatterers, the modeler is not aware of such a thing. Based
on this state of knowledge, the modeler wants to derive a model which takes into account all the previous
constraints while leaving as many degrees of freedom as possible to the other parameters (since the modeler
does not want to introduce unjustified information). In other words, based on the fact that:

H =
1√
sr




ejφ1,1 . . . ejφ1,sr

...
. . .

...
ejφnr,1 . . . ejφnr,sr


Θsr×nt

what distribution should the modeler attribute to Θsr×nt? H is equal to 1√
sr

ΦΘ, φi,j = k.ri,j and ri,j

is the distance between the receiving antenna i and receiving scatterer j and Φis a nr × sr matrix (sr is the
number of scatterers) which represents the directions of arrival from randomly positioned scatterers to the
receiving antennas. Θsr×nt is an sr × nt matrix which represents the scattering environment between the
transmitting antennas and the scatterers (see Figure 3).

The consistency argument (see Proposition 1) states that if the DoA (Directions of Arrival) are unknown
then H = 1√

sr
Φnr×srΘsr×nt should be assigned an i.i.d Gaussian distribution since the modeler is in the

same state of knowledge as before where it only knew the variance.
Based on the previous remarks, let us now derive the distribution of Θsr×nt . The probability distribution

P (H) is given by:

P (H) =
∫

P (ΦΘ | Φ, sr)P (Φ | sr)P (sr)dsrdΦ

• When Φ and sr are known, then P (Φ | sr) = δ(Φ−Φ0) and P (sr) = δ(sr − sr
0). Therefore P (H) =

P (Φ0Θ).
• When Φ and sr are unknown: the probability distribution of the frequency path hij is:

P (hij) =
∫

P (hij | Φ, sr)P (Φ | sr)P (sr)dΦdsr (7)

In the case when P (Φ | sr) and P (sr) are unknown, the consistency argument states that:
17 We treat in this section thoroughly the directions of arrival model and show how the directions of departure model

can be easily obtained from the latter case.
18 The case where the paths have different non-zero means can be treated the same way.
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– The Θsr×nt matrix is such as each hij is zero mean Gaussian.
– The Θsr×nt

matrix is such as E(hijhmn
∗) = δimδjn (since hij is Gaussian, decorrelation is equivalent

to independence).
In this case, the following result holds:

Proposition 1. Θsr×nt i.i.d. zero mean Gaussian with unit variance is solution of the consistency ar-
gument and maximizes entropy.

Proof: Since Φ is unknown, the principle of maximum entropy attributes independent uniformly dis-
tributed angles to each entry φij :

P (φij) =
1
2π

1[0,2π].

Let us show that Θsr×nt
i.i.d zero mean with variance 1 is solution of the consistency argument.

Since hij = 1√
sr

∑sr

k=1 θkje
jφik then P (hij | Φ, sr) = N(0, 1

sr

∑sr

k=1 | ejφik |2= 1) = 1√
2π

e−
|hij |2

2 and
therefore hij is zero mean Gaussian since:

P (hij) =
∫

P (hij | Φ, sr)P (Φ | sr)P (sr)dΦdsr

=
∫

1√
2π

e−
|hij |2

2 P (Φ | sr)P (sr)dΦdsr

=
1√
2π

e−
|hij |2

2

∫
P (Φ | sr)P (sr)dΦdsr

=
1√
2π

e−
|hij |2

2

Moreover, we have:

E(hijh
∗
mn) = EΘ,Φ(

1√
sr

sr∑

k=1

θkje
jφik

1√
sr

sr∑

l=1

θ∗lne−jφml)

=
1
sr

sr∑

k=1

sr∑

l=1

EΘ(θkjθ
∗
ln)EΦ(ejφik−jφml)

=
1
sr

sr∑

k=1

sr∑

l=1

δklδjnEΦ(ejφik−jφml)

= δjn
1
sr

sr∑

k=1

EΦ(ejφik−jφmk)

= δjnδim

which proves that H is i.i.d Gaussian for unknown angles.

One interesting point of the maximum entropy approach is that while we have not assumed uncorrelated
scattering, the above methodology will automatically assign a model with uncorrelated scatterers in order
to have as many degrees of freedom as possible. But this does not mean that correlation is not taken into
account. The model in fact leaves free degrees for correlation to exist or not. The maximum entropy approach
is appealing in the sense that if correlated scattering is given as a prior knowledge, then it can be immediately
integrated in the channel modelling approach (as a constraint on the covariance matrix for example). Note
also that in this model, the entries of H are correlated for general DoA’s.

Suppose now that the modeler assumes that the different steering vectors have different amplitudes
√

Pi
r.

What distribution should the modeler attribute to the matrix Θsr×nt in the following representation:

H =
1√
sr




ejφ1,1 . . . ejφ1,sr

...
. . .

...
ejφnr,1 . . . ejφnr,sr







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr


Θsr×nt?

Proposition 2. Θsr×nt i.i.d Gaussian with variance 1 is solution of the consistency argument and maximizes
entropy

Proof: We will not go into the details as the proof is a particular case of the proof of Proposition 3.
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Rx Tx

Φnr×sr Θsr×nt

Fig. 3. Directions of arrival based model.

4.2 Knowledge of the Directions of Arrival and Departure

The modeler is now interested in deriving a consistent double directional model i.e taking into account
simultaneously the directions of arrival and the directions of departure. The motivation of such an approach
lies in the fact that when a single bounce on a scatterer occurs, the direction of arrival and departure are
deterministically related by Descartes laws and therefore the distribution of the channel matrix depends on
the joint DoA-DoD spectrum. The modeler assumes as a state of knowledge the directions of departure from
the transmitting antennas to the set of transmitting scatterers (1...st). The modeler also assumes as a state of
knowledge the directions of arrival from the set of receiving scatterers (1...sr) to the receiving antennas. The
modeler also has some knowledge that the steering directions have different powers. However, the modeler
has no knowledge of what happens in between. The set (1...st) and (1...sr) may be equal, (1...st) may be
included in (1...sr) or there may be no relation between the two. The modeler also knows that the channel
carries some energy. Based on this state of knowledge, what is the consistent model the modeler can make
of H

H =
1√
srst




ejφ1,1 . . . ejφ1,sr

...
. . .

...
ejφnr,1 . . . ejφnr,sr







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr




Θsr×st




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ejψ1,1 . . . ejψ1,nt

...
. . .

...
ejψst,1 . . . ejψst,nt


?

In other words, how to model Θsr×st? As previously stated, the modeler must comply with the following
constraints:

• The channel has a certain energy.
• Consistency argument: If the DoD and DoA are unknown then 1√

srst
Φnr×srP

r 1
2 Θsr×stP

t
1
2 Ψst×nt should

be assigned an i.i.d zero mean Gaussian distribution.

Let us now determine the distribution of Θsr×st . The probability distribution of P (H) is given by:

P (H) =
∫

P (ΦPr 1
2 ΘPt

1
2 Ψ | Φ,Ψ,Pr,Pt, sr, st)

P (Ψ,Φ | sr, st)P (Pr,Pt | st, sr)
P (st, sr)dsrdstdPrdPtdΨdΦ

• When Ψ,Φ, sr, st,Pr,Pt are known: P (ΦΨ | sr, st) = δ(Φ−Φ0)δ(Ψ−Ψ0), P (st, sr) = δ(sr−s0
r)δ(st−

s0
t),P (Pr,Pt | sr, st) = δ(Pr −P0r)δ(Pt −P0t) and

P (H) = P (Φ0P0r 1
2 ΘP0t

1
2 Ψ0)
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Rx Tx

Φnr×sr Ψst×ntΘsr×st

Fig. 4. Double directional based model.

• Suppose now that Ψ,Φ, sr, st are unknown, then each entry hij of H must have an i.i.d zero mean
Gaussian distribution. In this case, the following result holds:

Proposition 3. Θsr×st
i.i.d zero mean Gaussian with variance 1 is solution of the consistency argument

and maximizes entropy.

Proof: Let us show that Θsr×st i.i.d zero mean Gaussian with variance 1 is solution of the consistency ar-
gument and maximizes entropy. Since Φ and Ψ are unknown, the principle of maximum entropy attributes
i.i.d uniform distributed angles over 2π to the entries φij and ψij . In this case, if one chooses θp,k to be i.i.d
zero mean Gaussian with variance 1 and knowing that hij = 1√

stsr

∑st

k=1

∑sr

p=1 θpk

√
Pk

t
√

Pp
rejψkj ejφip ,

then: P (hij | Ψ,Φ, sr, st) = N(0, 1
stsr

∑sr

p=1

∑st

k=1 |
√

Pp
rejφip

√
Pk

tejψkj |2= 1) = 1√
2π

e−
|hij |2

2 (since
1
sr

∑sr

k=1 Pk
t = 1 and 1

st

∑st

p=1 Pp
t = 1 (due to power normalization as we assume the energy known).

Therefore

P (hij) =
∫

1√
2π

e−
|hij |2

2 P (Φ,Ψ | st, sr)P (Pr,Pt | st, sr)P (st, sr)dΦdΨ

dPrdPtdstdsr

=
1√
2π

e−
|hij |2

2

∫
P (Φ,Ψ | st, sr)P (Pr,Pt | st, sr)P (st, sr)dΦdΨdPrdPtdstdsr

=
1√
2π

e−
|hij |2

2

Moreover, we have :

EΦ,Ψ,Θ(hijh
∗
mn) =

1
stsr

st∑

k=1

sr∑
p=1

st∑
r=1

sr∑

l=1

EΘ(θpkθ∗lr)EΨ (e−jψrn+jψkj )EΦ(e−jφml+jφip)

√
Pk

t

√
Pr

t
√

Pp
r
√

Pl
r

=
1

stsr

st∑

k=1

sr∑
p=1

st∑
r=1

sr∑

l=1

δplδkrEΨ (e−jψrn+jψkj )EΦ(e−jφml+jφip)

√
Pk

t

√
Pr

t
√

Pp
r
√

Pl
r

=
1

stsr

st∑

k=1

sr∑
p=1

EΨ (e−jψkn+jψkj )EΦ(e−jφmp+jφip)Pk
tPp

r

= δimδjn
1

stsr

st∑

k=1

sr∑
p=1

Pk
tPp

r

= δimδjn
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which proves that Θsr×st is solution of the consistency argument. Once again, instead of saying that this
model represents a rich scattering environment, it should be more correct to say that the model makes
allowance for every case that could be present to happen since we have imposed no constraints besides the
energy.

4.3 Considering more features

The modeler wants to derive a consistent model taking into account the direction of arrivals and respective
power profile, directions of departure and respective power profile, delay, Doppler effect. As a starting
point, the modeler assumes that the position of the transmitter and receiver changes in time. However, the
scattering environment (the buildings, trees,...) does not change and stays in the same position during the
transmission. Let vt and vr be respectively the vector speed of the transmitter and the receiver with respect
to a terrestrial reference (see Figure 5). Let st

ij be the signal between the transmitting antenna i and the
first scatterer j. Assuming that the signal can be written in an exponential form (plane wave solution of the
Maxwell equations) then:

st
ij(t) = s0ej(kt

ij(vtt+dij)+2πfct)

= s0ej2π(
fcut

ijvt

c t+fct)ejψij

Here, fc is the carrier frequency, dij is the initial vector distance between antenna i and scatterer j

(ψij = kt
ij .dij is the scalar product between vector kt

ij and vector dij), kt
ij is such as kt

ij = 2π
λ ut

ij = 2πfc

c ut
ij .

The quantity 1
2πkt

ijvt represents the Doppler effect.
In the same vein, if we define sr

ij(t) as the signal between the receiving antenna j and the scatterer i,
then:

sr
ij(t) = s0ej(2π(

fcvru
r
ij

c t+fct))ejφij

In all the following, the modeler supposes as a state of knowledge the following parameters:

• speed vr.
• speed vt.
• the angle of departure from the transmitting antenna to the scatterers ψij and power P t

j .
• the angle of arrival from the scatterers to the receiving antenna φij and power P r

j .

The modeler has however no knowledge of what happens in between except the fact that a signal going from
a steering vector of departure j to a steering vector of arrival i has a certain delay τij due to possible single
bounce or multiple bounces on different objects. The modeler also knows that objects do not move between
the two sets of scatterers. The sr × st delay matrix linking each DoA and DoD has the following structure:

Dsr×st(f) =




e−j2πfτ1,1 . . . e−j2πfτ1,st

...
. . .

...
e−j2πfτsr,1 . . . e−j2πfτsr,st




The modeler also supposes as a given state of knowledge the fact that each path hij of matrix H has a
certain power. Based on this state of knowledge, the modeler wants to model the sr × st matrix Θsr×st in
the following representation:

H(f, t) =
1√
srst




ej(φ1,1+2π
fur

11vr
c t) . . . ej(φ1,s+2π

fur
1svr
c t)

...
. . .

...

ej(φr,1+2π
fur1

rvr
c t) . . . ej(φr,s+2π

fur
rsvr
c t)







√
P r

1 0 . . .

0
. . . 0

... 0
√

P r
sr




Θsr×st

⊙
Dsr×st(f)




√
P t

1 0 . . .

0
. . . 0

... 0
√

P t
st







ej(ψ1,1+2π
fut

11vt
c t) . . . ej(ψ1,nt+2π

fut
1nt

vt

c t)

...
. . .

...

ej(ψs1,1+2π
fut

s11vt

c t) . . . ej(ψs1,nt+2π
fut

s1nt
vt

c t)



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Fig. 5. Moving antennas.

⊙
represents the Hadamard product defined as cij = aijbij for a product matrix C = A

⊙
B. As

previously stated, one has to comply with the following constraints:

• Each entry of H(f, t) has a certain energy.
• Consistency argument: if the DoA, DoD, powers, the delays, the Doppler effects are unknown then matrix

H should be assigned an i.i.d Gaussian distribution.

Proposition 4. Θsr×st i.i.d zero mean Gaussian with variance 1 is solution of the consistency argument
and maximizes entropy.19

Proof: We will not go into the details but only provide the guidelines of the proof. First, remark that if
Φ and Ψ are unknown, then the principle of maximum entropy attributes i.i.d uniform distribution to the
angles φij and ψij . But what probability distribution should the modeler attribute to the delays and the
Doppler effects when no information is available?

• Delays: The modeler knows that there is, due to measurements performed in the area, a maximum
possible delay for the information to go from the transmitter to the receiver τmax. The principle of
maximum entropy attributes therefore a uniform distribution to all the delays τij such as P (τij) = 1

τmax
with τij ∈ [0, τmax]

• Doppler effect: The modeler knows that the speed of the transmitter and receiver can not exceed
a certain limit vlimit (in the least favorable case, vlimit would be equal to the speed of light) but if
the transmission occurs in a city, the usual car speed limit can be taken as an upper bound. In this
case, the speed vt and vr have also a uniform distribution such as P (vt) = P (vr) = 1

vlimit
. Moreover, if

vt = vt cos(αt)ı + vt sin(αt), vr = vr cos(αr)ı + vr sin(αr), ut
ij = cos(βt

ij)ı + sin(βt
ij) and ur

ij =
cos(βr

ij)ı+sin(βr
ij), the modeler will attribute a uniform distribution over 2π to the angles αt, αr,βt

ij

and βr
ij .

With all these probability distributions derived and using the same methodology as in the narrowband
(in terms of frequency selectivity) MIMO model proof, one can easily show that Θsr×st i.i.d Gaussian is
solution of the consistency argument and maximizes entropy.

Note that in the case f = 0, vt = 0 and vr = 0, the same model as the narrowband model is obtained. If
more information is available on correlation or different variances of frequency paths, then this information
can be incorporated in the matrix Dsr×st , also known as the channel pattern mask [31]. Note that in the case
of a ULA (Uniform Linear Array) geometry and in the Fourier directions, we have ur

ij = ur
j (any column of

19 Why does normality always appear in our models? Well, the answer is quite simple. In all this paper, we have always
limited ourselves to the second moment of the channel. If more moments are available, then normal distributions
would not appear in general.
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matrix Φ has a given direction) and ut
ij = ut

i (any line of matrix Ψ has a given direction). Therefore, the
channel model simplifies to:

H(f, t) =
1√
srst




1 . . . 1
...

. . .
...

ej2π
d(nr−1) sin(φ1)

λ . . . ej2π
d(nr−1) sin(φsr )

λ


Θsr×st

⊙
Dsr×st(f, t)




1 . . . ej2π
d(nt−1) sin(ψ1)

λ

...
. . .

...

1 . . . ej2π
d(nt−1) sin(ψst )

λ




In this case, the pattern mask Dsr×st
has the following form:

Dsr×st(f, t) =

0
BB@

p
P r

1

p
P t

1e−j2πfτ1,1ej2π ft
c

(ur
1vr+ut

1vt) . . .
p

P r
1

p
P t

st
e−j2πfτ1,st ej2π ft

c
(ur

1vr+ut
st

vt)

...
. . .

...p
P r

sr

p
P t

1e−j2πfτsr,1ej2π ft
c

(ur
sr

vr+ut
1vt) . . .

p
P r

sr

p
P t

st
e−j2πfτsr,st ej2π ft

c
(ur

svr+ut
st

vt)

1
CCA

Although we take into account many parameters, the final model is quite simple. It is the product of three ma-
trices: Matrices Φ and Ψ taking into account the directions of arrival and departure; matrix Θsr×st

⊙
Dsr×st

which is an independent Gaussian matrix with different variances. The frequency selectivity of the channel
is therefore taken into account in the phase of each entry of the matrix Θsr×st

⊙
Dsr×st(f, t).

Remark: In the case of a one antenna system link (nr = 1 and nt = 1), we obtain:

H(f, t) =
1√
srst

h
ej(φ1+2π

fur
1vr
c

t) . . . ej(φsr +2π
fur

sr
vr

c
t)

i
0
BBB@

p
P r

1 0 . . .

0
. . . 0

... 0
p

P r
sr

1
CCCA

Θsr×st

K
Dsr×st(f)

0
BBB@

p
P t

1 0 . . .

0
. . . 0

... 0
p

P t
st

1
CCCA

2
6664

ej(ψ1+2π
fut

1vt
c

t)

...

ej(ψst+2π
fut

st
vt

c
t)

3
7775

=
1√
srst

hPsr
k=1 θk,1

p
P r

k ej(φk+2π
fur

kvr
c

t)e−j2πfτk,1 . . .
Psr

k=1 θk,sR

p
P r

k ej(φk+2π
fur

kvr
c

t)e−j2πfτk,sr

i

0
BBB@

p
P t

1 0 . . .

0
. . . 0

... 0
p

P t
st

1
CCCA

0
BBB@

ej(ψ1+2π
fut

1vt
c

t)

...

ej(ψst+2π
fut

st
vt

c
t)

1
CCCA

=

stX

l=1

srX

k=1

ρk,le
j2πξk,lte−j2πfτk,l

where ρk,l (ρk,l = 1√
srst

θk,l

√
P r

k

√
P t

l ej(φk+ψl)) are independent Gaussian variable with zero mean and

variance E(| ρk,l |2) = 1
srst

P r
k P t

l , ξk,l = f
c (ur

kvr − ut
lvt) are the doppler effect and τk,l are the delays. This

previous result is a generalization of the SISO (Single Input Single Output) wireless model in the case of
multifold scattering with the power profile taken into account.

5 Discussion

5.1 Müller’s Model

In a paper ”A Random Matrix Model of Communication via Antenna Arrays” [32], Müller develops a channel
model based on the product of two random matrices:

H = ΦAΘ
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where Φ and Θ are two random matrices with zero mean unit variance i.i.d entries and A is a diagonal
matrix (representing the attenuations). This model is intended to represent the fact that each signal bounces
off a scattering object exactly once. Φ represents the steering directions from the scatterers to the receiving
antennas while Θ represents the steering directions from the transmitting antennas to the scatterers. Mea-
surements in [32] confirmed the model quite accurately. Should we conclude that signals in day to day life
bounce only once on the scattering objects?

With the maximum entropy approach developed in this contribution, new insights can be given on this
model and explanations can be provided on why Müller’s model works so well. In the maximum entropy
framework, Müller’s model can be seen as either:

• a DoA based model with random directions i.e matrix Φ with different powers (represented by matrix
A) for each angle of arrival. In fact, the signal can bounce freely several times from the transmitting
antennas to the final scatterers (matrix Θ). Contrary to past belief, this model takes into account multi-
fold scattering and answers the following question from a maximum entropy standpoint: what is the
consistent model when the state of knowledge is limited to:
– Random directions scattering at the receiving side.
– Each steering vector at the receiving side has a certain power.
– Each frequency path has a given variance.

• a corresponding DoD based model with random directions i.e matrix Θ with different powers (represented
by matrix A) for each angle of departure. The model permits also in this case the signal to bounce several
times from the scatterers to the receiving antennas. From a maximum entropy standpoint, the model
answers the following question: what is the consistent model when the state of knowledge is limited to:
– Random directions scattering at the transmitting side.
– Each steering vector at the transmitting side has a certain power.
– Each frequency has zero mean and a certain variance.

• DoA-DoD based model with random directions where the following question is answered: What is the
consistent model when the state of knowledge is limited to:
– Random directions scattering at the receiving side.
– Random directions scattering at the transmitting side.
– Each angle of arrival is linked to one angle of departure.

As one can see, Müller’s model is broad enough to include several maximum entropy directional models
and this fact explains why the model complies so accurately with the measurements performed in [33]

5.2 Sayeed’s Model

In a paper ”Deconstructing Multi-antenna Fading Channels” [34], Sayeed proposes a virtual representation
of the channel. The model is the following:

H = AnrSAnt

H

Matrices Anr and Ant are discrete Fourier matrices and S is a nr × nt matrix which represents the con-
tribution of each of the fixed DoA’s and DoD’s. The representation is virtual in the sense that it does not
represent the real directions but only the contribution of the channel to those fixed directions. The model is
somewhat a projection of the real steering directions onto a Fourier basis. Sayeed’s model is quite appealing
in terms of simplicity and analysis (it corresponds to the Maxent model on Fourier directions). In this case,
also, we can revisit Sayeed’s model in light of our framework. We can show that every time, Sayeed’s model
answers a specific question based on a given assumption.

• Suppose matrix S has i.i.d zero mean Gaussian entries then Sayeed’s model answers the following question:
what is the consistent model for a ULA when the modeler knows that the channel carries some energy,
the DoA and DoD are on Fourier directions but one does not know what happens in between.

• Suppose now that matrix S has a certain correlation structure then Sayeed’s model answers the following
question: what is the consistent model for a ULA when the modeler knows that the channel carries some
energy, the DoA and DoD are on Fourier directions but assumes that the paths in between have a certain
correlation.

As one can see, Sayeed’s model has a simple interpretation in the maximum entropy framework: it
considers a ULA geometry with Fourier directions each time. Although it may seem strange that Sayeed
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limits himself to Fourier directions, we do have an explanation for this fact. In his paper [31], Sayeed was
mostly interested in the capacity scaling of MIMO channels and not the joint distribution of the elements.
From that perspective, only the statistics of the uncorrelated scatterers is of interest since they are the ones
which scale the mutual information. The correlated scatterers have very small effect on the information. In
this respect, we must admit that Sayeed’s intuition is quite impressive. However, the entropy framework
is not limited to the ULA case (for which the Fourier vector approach is valid) and can be used for any
kind of antenna and field approximation. One of the great features of the maximum entropy (which is not
immediate in Sayeed’s representation) approach is the quite simplicity for translating any additional physical
information into probability assignment in the model. A one to one mapping between information and model
representation is possible. With the maximum entropy approach, every new information on the environment
can be straightforwardly incorporated and the models are consistent: adding or retrieving information takes
us one step forward or back but always in a consistent way. The models are somewhat like Russian dolls,
imbricated one into the other.

5.3 The ”Kronecker” model

In a paper ”Capacity Scaling in MIMO Wireless Systems Under Correlated fading”, Chuah et al. study the
following Kronecker 20 model:

H = Rnr

1
2 ΘRnt

1
2

Here, Θ is an nr×nt i.i.d zero mean Gaussian matrix, Rnr

1
2 is an nr×nr receiving correlation matrix while

Rnt

1
2 is a nt × nt transmitting correlation matrix. The correlation is supposed to decrease sufficiently fast

so that Rnr and Rnt have a Toeplitz band structure. Using a software tool (Wireless System Engineering
[37]), they demonstrate the validity of the model. Quite remarkably, although designed to take into account
receiving and transmitting correlation, the model developed in the paper falls within the double directional
framework. Indeed, since Rnr and Rnt are band Toeplitz then these matrices are asymptotically diagonalized
in a Fourier basis

Rnr ∼ FnrΛnrF
H
nr

and
Rnt ∼ FntΛntF

H
nt

.

Fnr and Fnt are Fourier matrices while Λnr and Λnt represent the eigenvalue matrices of Rnr and Rnt .
Therefore, matrix H can be rewritten as:

H = Rnr

1
2 ΘRnt

1
2

= Fnr

(
Λnr

1
2 Fnr

HΘFntΛnt

1
2

)
Fnt

H

= Fnr

(
Θ1

⊙
Dnr×nt

)
Fnt

H

Θ1 = Fnr

HΘFnt is a nr × nt zero mean i.i.d Gaussian matrix and Dnr×nt is a pattern mask matrix
defined by:

Ds×s1 =




λ
1
2
1,nt

λ
1
2
1,nr

. . . λ
1
2
nt,ntλ

1
2
1,nr

...
. . .

...

λ
1
2
1,nt

λ
1
2
nr,nr . . . λ

1
2
nt,ntλ

1
2
nr,nr




Note that this connection with the double directional model has already been reported in [31]. Here again,
the previous model can be reinterpreted in light of the maximum entropy approach. The model answers the
following question: what is the consistent model one can make when the DoA are uncorrelated and have
respective power λi,nr , the DoD are uncorrelated and have respective power λi,nt , each path has zero mean
and a certain variance. The model therefore confirms the double directional assumption as well as Sayeed’s
approach and is a particular case of the maximum entropy approach. The comments and limitations made
on Sayeed’s model are also valid here. reference also [38, 39]
20 The model is called a Kronecker model because E(vec(H)Hvec(H)) = Rnr

N
Rnt is a Kronecker product. The

justification of this approach relies on the fact that only immediate surroundings of the antenna array impose the
correlation between array elements and have no impact on correlations observed between the elements of the array
at the other end of the link. Some discussions can be found in [35, 36].
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5.4 The ”Keyhole” Model

In [40], Gesbert et al. show that low correlation21 is not a guarantee of high capacity: cases where the channel
is rank deficient can appear while having uncorrelated entries (for example when a screen with a small keyhole
is placed in between the transmitting and receiving antennas). In [42], they propose the following model for
a rank one channel:

H = Rnr

1
2 grgt

HRnt

1
2 (8)

Here, Rnr

1
2 is an nr × nr receiving correlation matrix while Rnt

1
2 is a nt × nt transmitting correlation

matrix. gr and gt are two independent transmit and receiving Rayleigh fading vectors. Here again, this
model has connections with the previous maximum entropy model:

H =
1√
srst

Φnr×sr
Θsr×st

Ψst×nt
(9)

The Keyhole model can be either:

• A double direction model with sr = 1 and Φnr×1 = Rnr

1
2 gr. In this case, gt

HRnt

1
2 = Θ1×st

Ψst×nt

where Θ1×st is zero mean i.i.d Gaussian.
• A double direction model with st = 1 and Ψ1×nt = gt

HRnt

1
2 . In this case, Rnr

1
2 gr = Φnr×srΘsr×1

where Θsr×1 is zero mean i.i.d Gaussian.

As one can observe, the maximum entropy model can take into account rank deficient channels.

5.5 Conclusion

After analyzing each of these models, we find that they all answer a specific question based on a given state
of knowledge. All these models can be derived within the maximum entropy framework and have a simple
interpretation. Moreover, each time the directional assumption appears which conjectures the correctness of
the directional approach.

6 Testing the Models

In all the previous sections, we have developed several models based on different questions. But what is the
right model, in other words how to choose between the set {M0,M1, ..., MK} of K models (note that M
specifies only the type of model and not the parameters of the model)?

6.1 Bayesian Viewpoint

When judging the appropriateness of a model, Bayes22 rules derives the posterior probability of the model.
Bayes rule gives the posterior probability for the ith model according to: 23

P (Mi | Y, I) = P (Mi | I)
P (Y | Mi, I)

P (Y | I)

Y is the data (given by measurements), I is the prior information (ULA, far field scattering...). For
comparing two models M and M1, one has to compute the ratio:

21 ”keyhole” channels are MIMO channels with uncorrelated spatial fading at the transmitter and the receiver but
have a reduced channel rank (also known as uncorrelated low rank models). They were shown to arise in roof-edge
diffraction scenarios [41].

22 This chapter is greatly inspired by the work of Jaynes and Bretthorst who have made the following ideas clear.
23 We use here the notations and meanings of Jaynes [20] and Jeffrey [18]: P (Mi | Y, I) is the ”probability that the

model Mi is true given that the data Y is equal to the true data y and that the information I on which is based
the model is true”. Every time, ” (|” means conditional on the truth of the hypothesis I. In probability theory, all
probabilities are conditional on some hypothesis space.
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P (M1 | Y, I)
P (M | Y, I)

=
P (M1 | I)
P (M | I)

P (Y | M1, I)
P (Y | M, I)

If P (M1 | Y, I) > P (M | Y, I), then one will conclude that model M1 is better than model M . Let us
now try to understand each term.
The first term, crucially important, is usually forgotten by the channel modelling community: P (M1|I)

P (M |I) . It
favors one model or the other before the observation. As an example, suppose that the information {I =
The scatterers are near the antennas } is given. Then if one has to compare the model M (which considers
ULA with far field scattering) and the model M1 (assuming near field scattering ) then one should consider
P (M1|I)
P (M |I) > 1. 24

For understanding the second term, let us analyze and compare the following two specific models: the
DoA based model Mdoa and the double directional model Mdouble.

Model Mdoa:

H(f, t) =
1√
sr

Φ
(
Θ

⊙
D(t, f)

)

with

D(t, f) =




e−j2πfτ1,1ej2π ft
c (ur

1vr) . . . e−j2πfτ1,nt ej2π ft
c (ur

1vr)

...
. . .

...
e−j2πfτsr,1ej2π ft

c (ur
svr) . . . e−j2πfτsr,nt ej2π ft

c (ur
svr)




deals with the DoA model taking into account the delays, Doppler effect (we suppose that the transmitting
antenna does not move but only the receiving one) for a ULA (s is the number of scatterers). Let the
information I on which is based the model be such that the powers of the steering directions are identical
and that the transmitting antennas do not move. We recall that ur

i vr = (cos(βr
i)i+sin(βr

i)j)(vr cos(αr)i+
vr sin(αr)j) = vr cos(βr

i − αr)
The set of parameters on which the model is defined is

pdoa = {Φ, sr, τ, vr,Θ, αr, β
r}

and the parameters lie in a subspace Spdoa . We recall here the DoA based model for a given frequency:

y(t, f) =
1√
sr

Φ
(
Θ

⊙
D(t, f)

)
x(f) + n(f)

The term of interest P (y | Mdoa, I) can be derived the following way:

P (y | Mdoa, I) =
∫

P (y, pdoa | Mdoa, I)dpdoa =
∫

P (y | pdoa, Mdoa, I)P (pdoa | Mdoa, I)dpdoa

Let us derive each probability distribution separately: P (y | pdoa,Mdoa, I) =

1

(2πσ2)
N1Nr

2

e
− 1

2σ2
PN

i=1
PN1

j=1

“
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

”H“
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

”

and

P (pdoa | Mdoa, I) = P (Φ, sr, τ, β
r, vr, αr,Θ | Mdoa, I)

= P (Φ | sr,Mdoa, I)P (sr | Mdoa, I)P (vr | Mdoa, I)P (τ | Mdoa, I)
P (Θ | Mdoa, sr, I)P (αr | Mdoa, I)P (βr | I, Mdoa)

since all the priors are taken independent in the case of uninformative priors. The values of these priors
have already been provided (the proof is given in chapter 4.3) and only the prior on Θ and sr remain to be
given. We give these two priors now (and also the prior on the power although in the two models introduced
for comparison, the power distribution is not needed):

24 The term P (M1|I)
P (M|I)

can be seen as the revenge of the measurement field scientist over the mathematician. It shows

that modelling is both an experimental and theoretical science and that the experience of the field scientist (which
attributes the values of the prior probabilities) does matter.
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• If only the mean and variance of each path is available then using maximum entropy arguments, one can
show that:

P (Θ | sr,Mdoa, I) =
1

(
√

2π)nt×sr
e−
Psr

i=1
Pnt

j=1|θi,j |2

=
1

(
√

2π)nt×sr
e−trace(ΘΘH)

• How can we assign a prior probability P (sr | Mdoa, I) for the unknown number of scatterers? The
modeler has no knowledge if the measurements were taken in a dense area or not. The unknown number
of scatterers could range from one (this prior only occurs in model that have a single bounce) up to a
maximum. But what is the maximum value? There are N × N1 data values and if there were N × N1

scatterers, the data could be at most fit by placing a scatterer at each data value and adjusting the
direction of arrivals. Because no additional information is available about the number of scatterers,
N × N1 may be taken as an upper bound. Using the principle of maximum entropy, one obtains a
uniform distribution for the number of scatterers P (sr | Mdoa, I) = 1

N×N1
.

Note that in the general case, if one has precise available information then one has to take it into account.
But how can the modeler translate the prior on the scatterers due to the fact that the room has three
chairs and a lamp in the corner? This is undoubtedly a difficult task and representing that information
in terms of probabilities is not straightforward. But difficult is not impossible. The fact that there are
several chairs (with respect to the case where there is no chairs) is a source of information and will lead
to attributing in the latter case a peaky prior shifted around a higher number of scatterers.

• Power: The transmitter is limited in terms of transmit power to an upper bound value P t
max. There-

fore, the principle of maximum entropy attributes a uniform distribution to the different amplitudes
P (Pi

t) = 1
P t

max
, Pi ∈ [0, P t

max]. In the same vein, the receiver cannot, due to the amplifiers, process a re-
ceiving amplitude greater then P r

max. In this case, the principle of maximum entropy attributes a uniform
distribution such as P (P r

i ) = 1
P r

max
, Pi ∈ [0, P r

max]

With all the previous priors given, one can therefore compute:

P (y | Mdoa, I) =

Z
1

(2πσ2)
N1Nr

2

e
− 1

2σ2
PN

i=1
PN1

j=1

“
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

”H“
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

”

P (Φ | sr, Mdoa, I)P (sr | Mdoa, I)P (vr | Mdoa, I)P (αr | Mdoa, I)P (βr | Mdoa, I)

P (τ | Mdoa, I)P (Θ | Mdoa, I)dΦdΘdsrdτdvrdαrdβr

which gives:

P (y | Mdoa, I) =
1

N ×N1

N×N1∑
sr=1

∫ 2π

0

∫ ∞

0

∫ vlim

0

∫ τmax

0

1

(2πσ2)
N1Nr

2

N∏

i=1

N1∏

j=1

e
− 1

2σ2

“
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

”H“
y(tj ,fi)− 1√

sr
Φ(Θ

J
D(tj ,fi))x(fi)

”

(
1

τmax
)sr×nt

1
vlim

(
1
2π

)nr×sr
1
2π

(
1
2π

)sr

dφ11...dφnrsrdθ11...dθsrntdτ11...dτsrntdvrdαrdβr
1...dβr

sr
(10)

As one can see, the numerical integration is tedious but it is the only way to rank the models in an
appropriate manner.

Model Mdouble:
Let us now derive model Mdouble:

H(f, t) =
1√
srst

Φ
(
Θ

⊙
D(t, f)

)
Ψ

with
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D(t, f) =




e−j2πfτ1,1ej2π ft
c (ur

1vr) . . . e−j2πfτ1,st ej2π ft
c (ur

1vr)
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e−j2πfτsr,1ej2π ft

c (ur
sr

vr) . . . e−j2πfτsr,st ej2π ft
c (ur

sr
vr)


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deals with the double directional model for which the set of parameters is

pdouble = {Φ, sr,Ψ, st, τ, vr, , αr, βrΘ} = {pdoa,Φ, st}
by adding two new parameters Ψ and st and going to the new subspace Spdouble in such a way that Ψ = Fnt

(nt = st) represents model Mdoa. Indeed, in this case, we have:

“
Θ
K

D(t, f)
”
Fnt =

0
BBB@

Pnt
i=1 θ1ie

−j2πfτ1,iej2π ft
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i=1 θ1ie
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i=1 θ1ie
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Pnt

i=1 θ1ie
−j2πf(τ1,i−τ1,nt

)e
j2π

(nt−1)i
nt
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. . .

...
Pnt

i=1 θsrie
−j2πf(τsr,i−τsr,1) . . .

Pnt
i=1 θsrie

−j2πf(τsr,i−τsr,nt )e
j2π
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nt

1
CCCA
K

D(t, f)

= Θ1

K
D(t, f)

Where Θ1 is a matrix with i.i.d Gaussian entries.
We recall here the model for a given frequency:

y(f, t) =
1√
srst

Φ
(
Θ

⊙
D(t, f)

)
Ψx(f) + n(f)

The same methodology applies and we have:

P (y | Mdouble, I) =

Z
1

(2πσ2)
N1Nr

2

e
− 1

2σ2
PN

i=1
PN1

j=1

“
y(tj ,fi)− 1√

srst
Φ(Θ

J
D(tj ,fi))Ψx(fi)

”H“
y(tj ,fi)− 1√

srst
Φ(Θ

J
D(tj ,fi))Ψx(fi)

”

P (Φ | sr, Mdouble, I)P (sr | Mdouble, I)P (Ψ | st, Mdouble, I)P (st | Mdouble, I)

P (vr | Mdouble, I)P (αr | Mdouble, I)P (βr | Mdouble, I)P (τ | Mdouble, I)

P (Θ | Mdouble, I)dΦdΨdΘdsrdstdτdvrdαrdβr

and

P (y | Mdouble, I) = (
2

N ×N1
)2

N×N1
2∑

sr=1

N×N1
2∑

st=1

∫ 2π

0

∫ ∞

0
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0

∫ τmax

0
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2
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N1∏
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e
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y(tj ,fi)− 1√

srst
Φ(Θ

J
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y(tj ,fi)− 1√

srst
Φ(Θ

J
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(
1
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)sr×st

1
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(
1
2π

)nr×sr (
1
2π
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1
2π

(
1
2π

)sr

dφ11...dφnrsrdψ11...dψ1ntdθ11...dθsrntdτ11...dτsrntdvrdαrdβr
1...dβr

sr
(11)

A common problem in the modelling process is the following: suppose, when testing the models with the
data, that both models M and M1 have the same maximum likelihood, in other words:

P (y | pdoa
max, Mdoa, I) = P (y | pdouble

max,Mdouble, I)

Which model should we choose? Hereafter, we give an example to show that Bayesian probability will
choose the model with the smallest number of parameters.

First of all, we will suppose that the information I available does not give a preference to model before
seeing the data: P (Mdouble | I) = P (Mdoa | I).
As previously shown,
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P (y | Mdoa, I) =
∫

P (y, pdoa | Mdoa, I)dpdoa

=
∫

P (y | pdoa,Mdoa, I)P (pdoa | Mdoa, I)dpdoa

and

P (y | Mdouble, I) =
∫

P (y, pdouble | Mdouble, I)dpdouble (12)

=
∫

P (y | pdouble,Mdouble, I)P (pdouble | Mdouble, I)dpdouble (13)

Since

P (pdouble | Mdouble, I) = P ([pdoa,Ψ, st] | Mdouble, I)
= P (pdoa | Ψ, st,Mdouble, I)P (Ψ, st | Mdouble, I)

From equation (12), we have:

P (y | Mdouble, I) =
∫ ∫

P (y | [pdoa,Ψ, st],Mdouble, I)P (pdoa | Ψ, st,Mdouble, I)

P (Ψ, st | Mdouble, I)dpdoadΨdst

In the following, we will suppose that the likelihood function P (y | [pdoa,Ψ, st],Mdouble, I) is peaky
around the maximum likelihood region and has near zero values elsewhere. Otherwise, the measurement
data Y would be useless in the sense that the data does not provide any information. Suppose now that with
model Mdouble, the maximum likelihood P (y | [pdoa,Ψ, st]Mdouble, I) occurs at a point near Ψ = Ft and
st = nt for the parameters Ψ and st in other words P (y | [pdoa,Ψ, st],Mdouble, I) is always null except for
the value of Ψ = Ft and st = nt then:

P (y | Mdouble, I) =
∫ ∫ ∫

P (y | [pdoa,Ψ, st],Mdouble, I)P (pdoa | Ψ, stMdouble, I)

P (Ψ, st | Mdouble, I)dpdoadΨdst

≈
∫

P (y | [pdoa,Ψ = Fnt , st = nt],MDouble, I)

P (pdoa | [Ψ = Fnt , st = nt]Mdouble, I) (14)
P ([Ψ = Fnt , st = nt] | Mdouble, I)dpdoa (15)

One has to notice that P (pdoa | [Ψ = Fnt , st = nt],Mdouble, I) = P (pdoa | Mdoa, I) and P (y | [pdoa,Ψ =
Fnt , st = nt],Mdouble, I) = P (y | pdoa,Mdoa, I) since both models are the same when Ψ = Fnt and st = nt.
We also have P (Ψ = Fnt , st = nt | Mdouble, I) ≤ 1 (In fact, we can derive the exact value. Indeed, since we
have no knowledge of the directions of arrival, P (Φ = Fnt , st = nt | Mdouble, I) = 1

(2π)nr×st
). Using equation

(14), Bayesian probability shows us that:

P (y | Mdouble, I) ≤
Z

P (y | [pdoa,Ψ = Fnt , st = nt], MDouble, I)

P (pdoa | [Ψ = Fnt , st = nt]Mdouble, I)P ([Ψ = Fnt , st = nt] | Mdouble, I)dpdoa

=

Z
P (y | pdoa, Mdoa, I)P (pdoa | Mdoa, I)P ([Ψ = Fnt , st = nt] | Mdouble, I)dpdoa

≤
Z

P (y | pdoa, Mdoa, I)P (pdoa | Mdoa, I)dpdoa

=

Z
P (y, pdoa | Mdoa, I)dpdoa

P (y | Mdoa, I)

Since Mdoa has less parameters then Mdouble, Bayesian probability will favor the model Mdoa with less
parameters and therefore shows that ”the best explanation is always the simplest”25. It is therefore wrong
25 In statistical inference, this is known as Occam’s razor. William of Occam was a theologian of the 14th century who

wrote against the papacy in a series of treatise in which he tried to avoid many established pseudo explanations. In
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to think that by increasing the number of parameters one can always find a good model: one can indeed
better fit the data to the model (expression P (y | pdoa,Mdoa, I)) but the prior probability P (pdoa | Mdoa, I)
will spread over a larger space and assign as a consequence a lower value to P (y | Mdoa, I).

But how does the a posteriori computation compare with the usual methodology of maximizing the
likelihood P (y | p,M, I)?

Following [20], let us expand log P (y | p,M, I) around the maximum likelihood point p̂ = {p1
max, ..., p

m
max}

log P (y | p,M, I) = log P (y | pmax, M, I) +
1
2

m∑

i,j=1

d2 log(P )
dpidpj

(pi − pi
max)(p

j − pj
max) + O()

then near the peak a good approximation is a multivariate Gaussian such as:

P (y | p,M, I) = P (y | pmax, M, I)e−
1
2 (p−pmax)∆−1(p−pmax)

with the inverse covariance matrix defined as:

∆−1
ij =

(
d2 log(P )
dpidpj

)

π=πmax

Therefore,

P (y | M, I) = P (y | pmax,M, I)
∫

e−
1
2 (p−pmax)∆−1(p−pmax)P (p | M, I)dp

= P (y | pmax,M, I)G(M, I)

All the tools are now provided to better understand what is happening. Suppose we want to compare
two models M and M1. The a posteriori probability ratio for model M over M1 is:

P (M | y, I)
P (M1 | y, I)

=
P (M | I)
P (M1 | I)

P (y | M, I)
P (y | M1, I)

=
P (M | I)
P (M1 | I)

P (y | pmax,M, I)
P (y | p1

max,M1, I)
G(M, I)
G(M1, I)

In the conventional methods, M is better than M1 if P (y|pmaxM,I)
P (y|p1maxM1,I) > 1 which is only one part of the

three terms to be computed. In fact, in order to compare two models, three terms have to be calculated
and the mistake persists thinking that any model M1 versus M is good as long as we increase the number
of parameters: indeed, the fitting will get better and the ratio P (y|pmax,M,I)

P (y|p1max,M1,I) will decrease but this is only

looking at one part of the problem. First of all, one has to consider P (M |I)
P (M1|I) and moreover G(M,I)

G(M1,I) . This
last term depends on the prior information about the internal parameters and as the number of parameters
increases this term decreases due to the fact that we add more and more uninformative priors.

6.2 Conventional Methods

In the previous section, we have shown how probability theory can be used to rank the models. However,
the integrals derived in equation (10) and equation (11) are not easy to compute, especially in the case of
interest with a high number of antennas (8 × 8) since we have to marginalize our integrals across a great
number of parameters. But however difficult the problem may be, it is not a reason to hide problems and the
use of other methods should be clearly explained. The reader must now know that one can rank models and
that there is an optimum number of parameters when representing information. The Bayesian framework
gives us an answer by comparing the a posteriori probability ratios: P (M |y,I)

P (M1|y,I) . If one is to use other testing
methods, then one has to clearly understand the limitations of these methods and justify the use of the
criteria. In the following, we explain two procedures used by the channel modelling community and explain
their limitations.

his terms, the logic of simplicity was stated in the following form ”Causes shall not be multiplied beyond necessity”
[28]. Note that Occam’s razor has been extended to other fields such as metaphysics where it is interpreted as
”nature prefers simplicity”.
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1- Parameter estimation methods
In this procedure, the data is cut into two parts, one for estimating the parameters, the other to validate
the model incorporating the parameters.
• For estimating the parameters such as the angles of arrival, non-parametric methods such as the

beamforming or the Capon method [43] can be used. In the case of parametric methods such as
Music [44], Min-Norm [45] or Esprit method [46], they rely on properties of the structure of the
covariance R = E(yyH) = ΦKΦH + σ2I of the output signal. In this case, one has to assume that
matrix K (K = E(ΘΨxxHΨHΘH)) has full rank.

• Once the parameters of the model have been estimated, the other set of the data is used to test the
model. A mean square error is given. In general, a small mean square error is acknowledged to yield
a good model and one seeks the smallest error possible.

If one is to use this procedure, one has to understand that in no way will it lead into judging the
appropriateness of a model. Indeed, by adding more and more parameters to the model, one can always
find a way of achieving a low mean square error by adjusting accordingly the parameters. This fact
explains why some many models comply in the literature with the measurements. If the model minimizes
the mean square error, then it is a possible candidate but the modeler can not conclude that it is a
good candidate.
Moreover, since the testing method has no real justification, many problems arise when using it.
• How does one cut the set of data? Do we use half the data to estimate the parameters and half the

data to test the model? Why not using one quarter and three quarter? In the Bayesian viewpoint,
this is not at all a problem as one takes into account all the data available and does not make any
unjustified transformation on the data.

• If one is to use a Music or Esprit algorithm, K has to be full rank. This is obviously not the
case for a double directional model where the steering DoD matrix Ψ is not always full rank since
K = E(ΘΨxxHΨHΘH).

2- Moment fitting:
Other authors [47] validate their model by finding the smallest error of a set of moments. They derive
explicit theoretical formulas of the nth moment mn(f) of the matrix HH(f)H(f) and find the optimal
parameters in order to minimize:

1
N

N∑
n=1

| mn(f)
m̂n(f)

− 1 |

where

m̂n(f) =
Trace(HH(f)H(f))n

Trace(HH(f)H(f))

As previously stated, many models can minimize this criteria by adding more and more parameters and
one cannot obviously conclude in this case if a model is better then the other or not. Moreover, how
useful is it to have a channel that fits a certain amount of moments?26.
The previous remarks show that when the abstract of a paper asserts: ”This paper finds the theoretical
predictions to accurately match data obtained in a recent measurement campaign”, one has to be really
cautious on the conclusions to be drawn.

7 Conclusion

Where do we stand on channel modelling?27 This question is not simple to answer as many models have been
proposed and each of them validated by measurements. Channel models are not getting better and better
but they only answer different questions based on different states of knowledge28. The crucial point is not

26 Note that if all the moments fit, then the criteria is sound in the sense that measures such as mutual information
or SINR (which are of interest in communications) will behave similarly.

27 This question has to be taken in light of a talk ”Where do we stand on maximum entropy?” made by E.T. Jaynes
in 1978 at MIT [48].

28 This point of view is not new and the misconception persists in many other fields. Descartes, already in 1637,
warned us when stating in the first lines of the French essay ”Le discours de la méthode”:” la diversité de nos
opinions ne vient pas de ce que les uns sont plus raisonnables que les autres, mais seulement de ce que nous
conduisons nos pensées par diverses voies, et ne considérons pas les mêmes choses”.
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creating a model but asking the right question based on a given state of knowledge (raw measurement data,
prior information, are we in a urban area? is it a fixed network?..). A generic method for creating models
based on the principle of maximum entropy has been provided and proved to be theoretically sound. At
every step, we create a model incorporating only our prior information and not more! The model achieved
is broad as it complies as best it can with any case having more constraints (but at least includes the same
prior constraints). The channel modelling method is summarized hereafter:

• H(p) =
∫ −plogp +

∑
i λi{prior information}i

• Argument of consistency

The consistency argument is extremely important as it shows that two channel modelling methods based
on the same state of knowledge should lead to the same channel model. This fact has not always been fulfilled
in the past. Our models are logical consequence of the use of the principle of maximum entropy and need
not to be assumed without deeper justification. The models proposed may seem inadequate to reality for
some readers: we argue as in [20] that the purpose of channel modelling is not to describe reality but only
our information about reality. The model we achieve are consistent and any other representation is obviously
unsound if based on the same state of knowledge. However, one must bear in mind that the less things are
assumed as a priori information the greater are the chances that the model complies with any mismatched
representation.

But what if the model fails to comply with measurements? The model is not to blame as it is a logic
consequence of information theoretic tools [20]. With the methodology introduced, failure is greatly appre-
ciated as it is a source of information and the maximum entropy approach is avid of information: the result
of non-compliance is automatically taken into account as some new information evidence to be incorporated
in the question. It only means that the question asked was not correct (double directional rather than direc-
tional for example) and should be adjusted accordingly in order to imply a new model (based on some new
source of information); and as it is well known, finding the right question is almost finding the right answer.
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