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ABSTRACT

Recent progress and prospects in cognitive vision, multimedia, human-computer
interaction, communications and the Web call for, and can profit from applications of
advanced image and video analysis. Adaptive robust systems are required for analy-
sis, indexing and summarization of large amounts of audio-visual data.

Image classification is perhaps the most important part of digital image analysis. The
objective is to identify and portray the visual features occurring in an image in terms
of differentiated classes or themes. Applications can be found in a wide range of
domains such as medical image understanding, surveillance applications, remote
sensing and interactive TV.

Traditional image classification methods analyses independent blocks of an image,
which results in a context-free formalism. However there is a fairly wide-spread
agreement that observations should be presented as collections of features which
appear in a given mutual position or shape (e.g. sun in the sky, sky above landscape
or boat in the water etc.) [20], [21]. Consider analyzing local features in a small
region of an image; it is sometimes difficult even for a human to tell what the image
is about.

In this dissertation we apply a statistical machine learning approach to model context
in sequential data. With a statistical model in hand, we can perform several important
tasks to image analysis such as; estimation, classification and segmentation.

We employ a new efficient algorithm that models images by a two dimensional
hidden Markov model (HMM). The HMM considers observations statistically
dependent on neighboring observations through transition probabilities organized in a
Markov mesh, giving a dependency in two dimensions. The main difficulty with
applying a 2-D HMM to images is the computational complexity which grows
exponentially with the number of image blocks.

The main technical contribution of this thesis is a way of estimating the parameters

of a 2-D HMM in O(whN?) complexity instead of O(WNZh), where N is the number
of states in the model and (w,h) is the width respectively height of the image.
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We investigate the performance of our proposed model (DT HMM), and search for
its point of operation. Application to classification of TV broadcast frames reveal
intrinsic weaknesses of the HMMs for which we propose remedies.

In an effort to introduce both global and local context in images, the DT HMM was
extended to model multiple image resolutions. The results indicate that the earlier
recorded deficiency can be conquered and that its performance can be compared with
other known algorithms.

Finally we illustrate that the DT HMM formalism is open to a great variety of
extensions and tracks. Since 3-D HMMs has been little studied we investigate the
extension of the framework to three dimensions. We consider the case of video data,
where the two dimensions are spatial, while the third dimension is temporal. To
investigate the impact of the time-dimension dependency we explore the ability of
the model to track objects that cross each other or pass behind another static object.
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RESUME

Les progrés récents dans les domaines de la vision cognitive, du multimédia, de
l'interaction homme-machine, des communications et de 1’Internet sont un apport
considérable pour la recherche qui profite a I’imagerie et 1’analyse vidéo. Des
systemes adaptés et fiables sont nécessaires pour 1’analyse, 1’indexation et le résumé
de grandes quantités de données audiovisuelles.

La classification d’images constitue sans doute, la partie la plus importante de
I’analyse de I’image numérique. L’objectif est d’identifier et de décrire les caractéris-
tiques présentes dans une image afin de les répertorier par classes et par thémes. Des
applications existent dans un grand nombre de domaines, tels que I’interprétation de
I’imagerie médicale, la surveillance, la photo satellite et la télévision interactive.

Les méthodes traditionnelles de classification d’images procédent par analyse des
blocs distincts d’une image, ce qui aboutit a un formalisme non contextuel des
caractéristiques visuelles. Toutefois, face a I’analyse d’une parcelle d’image, 1’ceil
humain est souvent dans ’incapacité d’identifier ce qu’il voit. Les approches récen-
tes tendent donc de plus en plus vers une vision globale de 1’image incluant sa
structure et sa forme générale (ex: le soleil dans le ciel, le ciel au dessus d’un paysage
ou encore un bateau sur I’eau, etc.) [20], [21].

HMM Multi dimensionnel

Cette thése est une approche statistique issue de I’intelligence artificielle visant a une
représentation séquentielle des données de I’image. Cette représentation statistique
permet I’estimation, la classification, et la segmentation de 1’image.

Nous utilisons un nouvel algorithme efficace représentant les images a 1’aide du
mode¢le bidimensionnel de Markov caché (HMM). Le HMM considére les observa-
tions statistiquement dépendantes d’observations voisines a travers des probabilités
de transition organisées dans les mailles de Markov, ce qui induit une dépendance en
deux dimensions. La principale difficulté a appliquer un 2-D HMM aux images est la



complexité algorithmique qui s’accroit de facon exponentielle avec le nombre de
segments d’image.

En conséquence, la contribution technique majeure de cette thése est d’estimer les
paramétres d’un nouveau type de 2-D HMM dont la complexité sera O(LIN?) au licu
de O(LNZI) ou N est le nombre d’états dans le mod¢le et (L,I) sont respectivement la
largeur et la longueur de I’image.

Modéle d’entrainement

L’algorithme EM est généralement employé€ pour trouver I’estimation des parametres
du modéle de Markov caché la plus probable d’aprés les vecteurs caractéristiques
observés. Cet algorithme est aussi connu sous le nom d’algorithme de Baum-Welch.
Nous décrivons I’ensemble complet des paramétres pour un modele donné par A =
(aj;, bs(0y), ms). Comme montré en [37], trois problemes fondamentaux doivent étre
résolus pour ’utilisation des HMMs.

Probléme 1: Estimer P(O|)A), La probabilité de la séquence d’observation selon les
paramétres du modele

Probléme 2: Trouver la séquence d’états S = {sy,...,st} la plus significative.
Probléme 3: Comment ajuster les parametres du modele N pour maximiser P(O|A)?

Comme nous verrons dans la section 3.1, il y a des méthodes établies pour travailler
sur ces problémes. Ce sont respectivement les algorithmes « forward-backward », de
Viterbi, et de Baum-Welch. Dans la section suivante, Je montrerai que ces algorith-
mes peuvent étre adaptés au nouveau modele proposé.

Extensions 2-D nécessaires pour la classification d’images

Nous divisons une image en une grille réguliére de blocs. Un bloc est désigné par sa
position (i,j), et ’ensemble complet des blocs est X = { (i,j): 0<i<L, 0<j<] }ou L et |
sont respectivement la largeur et la hauteur de I’'image. Un vecteur caractéristique oj
est calculé pour chaque bloc (i,j) et ’ensemble de vecteurs caractéristiques O = {0j; :
(i,)) € X } décrivant I’image entiere est appelée « champ de vecteurs ». D’apres les
hypothéses des 2-D HMM, ce champ de vecteurs est généré par les états du modéele.
L’image est donc classée en accord avec ses vecteurs caractéristiques.

Un 2-D HMM est une grille de noeuds, chacun correspondant a un bloc. A Chaque
nceud peut Etre affecté un des N états possibles {1,2,...,N}. L’état d’un bloc (i,j) est
noté s;. La Figure 1 illustre les blocs d’une image ainsi que les nceuds correspon-
dants.
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Figure 1. (a) Décomposition de I’image en blocs, (b) Etats du modele de Markov

La formalisation du 2-D HMM est basée sur deux hypothéses. La premiere est :

P(si’j|s”, (@, j)eY)=a, (1.1)
where W ={(@",j"):(i'j") <(i,))}
and m=s,, ,,n=s,; ,l=5,;

Cela signifie que le processus d’états est Markovien du premier ordre: La probabilité
que le systéme entre dans un état particulier a la position (i,j) dépend uniquement des
¢tats des observations adjacentes selon les directions horizontales (i-1,j) et verticales
(1,j-1). La deuxieme hypothese stipule que le vecteur caractéristique est seulement
dépendant de I’état a la position (i), i.e. I’observation est conditionnellement indé-
pendante des autres blocs.

Comme précédemment, nous noterons par A les parametres du HMM, donc selon les
hypotheéses de Markov, la probabilité conjointe de O et S selon A peut étre calculée
d’apres :

P(0,S|2) = P(O|S,2)P(S|1) (1.2)

_HP( SU’X’)P( Sic1,j>8 111’)’)

Notons que la probabilite conditionnelle P(sij[ij-a,i-1 J,k) se réduit a P(syj|Sij-aM)
lorsque i=1, a P(si|si-1,1,A) quand j=1, et a P(s; 1| A) si i=j=

Dans la section suivante, nous présenterons une méthode efficace pour calculer
P(O,S|A) basée sur I’idée d’un arbre de dépendances aléatoires.

Arbre de dépendance

Comme mentionné précédemment, le probléme avec les 2-D HMM est la double
dépendance entre s;; et ses deux voisins s;.ij et sij.;, qui n’autorise pas la factorisa-
tion des composantes comme en 1-D, et rend les calculs intraitables.
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(i)

Figure 2. Voisins 2-D

Notre idée suppose que s;j dépend uniquement d’un voisin a la fois. Ce voisin peut
étre celui a son horizontale ou a sa verticale, selon une variable aléatoire t(i,j). Plus
précisément, t(i,j) est susceptible de prendre deux valeurs distinctes:

(0,i) = (i-1,j) withprob 0.5 (1.3)
“YZ6,1-1) with prob 0.5

Pour la position sur la premiere ligne ou la premicre colonne, t(i,j) a seulement une
seule valeur, celle qui conduit a une position valide dans le domaine. t0,0) n’est pas
défini. Ce qui induit les simplifications suivantes pour notre modele :

Py (s, |8 ;) it j)=(i-1,)) (1.4)

p(si,' o e . .
! pH(si,j si,j—l) ife(i,j)==,j-1)

Si—l,j’si,j—lat) =

Si nous définissons ensuite une fonction de direction :

Voift=(i-1j (1.5)
D(t):{H ift=(i,j-1)

Nous obtenons alors la formulation simplifiée :

P(si,j

Sici>Sijo1o0) = Pogi jy (8i. 1|8 4.) (1.6)

Notons que le vecteur t des valeurs t(i,j), pour tout (i,j) défini une structure d’arbre
sur ’ensemble des positions, admettant (0,0) comme racine. La Figure 3 montre un
exemple d’arbre de dépendances aléatoires
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Figure 3. Exemple d’arbre de dépendances aléatoires.

Avec cette structure d’arbre, nous pouvons calculer la probabilité d’une observation
produite par le modéle quelque soit la séquence d’¢état (tant que les états sont incon-
nus).

P(0)=) P(o,s|1) (1.7)

Et la séquence d’état la plus probable s qui génere ce résultat :

argmax P(o,s | t) (1.8)

s

Nous allons maintenant montrer comment résoudre un des trois problémes fonda-
mentaux cités en 2.4.9, ce qui nous permettra de mesurer le score d’une observation
selon le modéle A.

Solution au Probléme 1, estimer P(O|))

Nous voulons calculer la probabilité de 1’observation en fonction des paramétres
P(OJA) (2.1). Nous définissons la probabilité intérieure Bi(s) comme la probabilité
que la partie de I’image couverte par le sous arbre T(i,j) de racine (i,j) soit produit par
la séquence d’observation partielle et se termine a la position (i,j) (voir la portion
ombrée sur la Figure 4).
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Figure 4. Les probabilités intérieures

Ces valeurs peuvent étre calculées récursivement, dans I’ordre inverse (en par-
tant de la derni¢re position) de leurs relations :

e Si (i,)) est une feuille de t(i,j) :
Bi; (s)= P(Oi,j|5) (1.9)

¢ Si (i,j) admet seulement un successeur horizontal :

Bij (s)= P(Oi/j |S)ZPH(SI|S)ﬂi,j+1(SI) (1.10)

e Si (i,j) a seulement un successeur vertical :

Bij(s) = plo; |S)Z Py (s'[8)Bin ;(s") (1.11)

e Si (i,)) a deux successeurs, ’un horizontal et I’autre vertical :

1.12
/Bi,j ()= P(Oi,j |S)(z Pu (s |S)ﬂi,j+1 (s' )J ( )

[Z py (s |S)/8i+1,j (s )J

La probabilité que I’image soit produite par le modéle est donc:



PO|1) =By, (s,) (1.13)

ce qui nous donne la solution au probléme. La problématique 1 est applicable dans le
domaine de la classification ou I’on veut choisir un mode¢le qui satisfait le mieux une
observation.

Expériences

Dans notre premiére expérience, nous utilisons 1’arbre de dépendance HMM en
temps que structure pour un classificateur d’images contextuel. Nous explorons aussi
comment 1’équilibre entre I’information structurelle et le contenu descriptif affectent
la précision et le rappel en variant la taille des blocs.

Les algorithmes Baum-Welch modifiés (voir la section 3.4) ont été utilisés pour
évaluer les paramétres des modeles dans la phase expérimentale. Pour classifier une
image, ses descripteurs de bas niveau sont extraits et ensuite P (O | 1) est calculé
pour chaque mode¢le évaluant le niveau de correspondance entre le modéle et 1'obser-
vation, puis on recherche ensuite le modele fournissant la plus haute probabilité¢ a
posteriori. On montre une illustration générale du systéme de classification dans la
Figure 5.

training image training feature

.y [featre block » HMM training
extraction description
test image test feature result
feature blo_ck_ > H_MM _
extraction description classification
AN
block size

Figure 5. Schéma de Catégorisation d'Image.
Le graphique ci-dessous montre la précision de classification moyenne pour sept

tailles de bloc différentes. Nous avons remarqué qu'une taille de bloc de 16x15 pixels
( modéle #4) donne la précision moyenne la plus haute 0.036.
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Figure 6. La précision moyenne pour tailles de bloc: (1) 176x120, (2) 88x60, (3)
44x40, (4) 16x15, (5) 8x8, (6) 4x4, (7) 2x2

Nous pouvons aussi voir que la performance diminue rapidement avec de trés grands
blocs. L'explication est que les moyennes des canaux de couleur ne sont pas assez
descriptives et que les coefficients DCT refléteront seulement des hautes variations
de fréquence puisque 1'échelle sera plus haute quand la taille de bloc est augmentée.

Les résultats ne sont pas comparables avec les taux typiquement observés dans les
expériences vidéo TREC [66], cependant ils nous ménent a une compréhension plus
grande du modéle et ont inspiré de nouvelles expériences et raffinements qui seront
discutés dans les chapitres suivants.

Nous avons noté un inconvénient connu du HMM: la probabilité de production joue
un role plus important que la probabilité de transition. La sortie de distribution
s'étend sur la plus grande dispersion que sur la probabilité¢ de transition (cette dernie-
re s'étend sur 16 états seulement), avec une majorité de transitions d'un état a I’autre.
Cela explique pourquoi une image qui a une couleur presque uniforme a une haute
probabilité d'émission.

Influence de I'Arbre de Dépendance

Le DT HMM est rendu moins complexe que le 2-D HMM, en changeant les dépen-
dances spatiales horizontales et verticales doubles en une dépendance
unidirectionnelle aléatoire, horizontale ou verticale. La question qui se pose est: quel
l'impact ce choix aléatoire a-t-il sur le modele? Nous explorons donc les différents
aboutissements de I'effet de 1'arbre aléatoire.

Selon le modgéle, la probabilité exacte d'une observation est :

P(0) = > P(O| t)P(t) (1.14)

Xil



Nous pouvons postuler qu'il faut une équivalence de tous les arbres de dépendance,
pour que la distribution P(t) soit uniforme. Etant donné qu'il y a 20" arbres
différents pour une image de blocs m x n, le calcul complet est prohibitif. Donc, il
est important de chercher des approximations de cette valeur qui sont faciles a
calculer. A cette fin nous examinons trois facons différentes de faire cette évaluation
par: prélévement d'échantillon unique (P"), moyenne d'arbre (P?) et arbre dual (Pd).
La Section 3.8 donne une étude détaillée de leurs qualités.

Segmentation sémantique d’images

Pour mieux évaluer les possibilités du modele, nous avons introduit un champ
interprétation aux états du DT HMM en associant une sous-classe pour partitionner
les états. Affecter plusieurs états par sous-classe donne au modele la flexibilité
suffisante pour s’adapter aux sous—classes ayant des observations visuelles variées.
En entrainant un nouveau mode¢le avec des états restreints, nous pouvons effectuer
une segmentation sémantique de l’image sur des données non connues pourvu
qu’elles appartiennent a une des classes.

Etats pourvus d’un label sémantique

A chaque sous-classe est assignée un ensemble d’états pour permettre une représenta-
tion flexible. Supposons qu’il y ait K sous-classes (1,...,K) et qu’un vecteur
d’observation o;; appartienne a une région annotée avec une sous-classe cx. Alors, son
ensemble d’états permis est {s(k)}. La table ci-dessous liste les différentes sous-
classes et leur nombre d’états alloués.

Tablel. Nombre d’etats pour chaque classe.

Sous Classe No. d’état
Divers 3
Ciel 7
Mer 5
Sable 6
Montagne 3
Végétation 3
Personne 4
Batiment 3
Bateau 2

9 sous-classes 36 états

Nous utilisons une version modifiée de 1’algorithme de Viterbi capable de gérer la
situation lorsqu’une sous-classe visuelle est représentée par plusieurs états, et que
seules les annotations des sous-classes sont disponibles. Nous avons étudié plusieurs
propriétés de ce procédé.
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L’entrainement fut effectué sur les archives de TRECVid [66], duquel nous avons
tiré une collection hétérogéne de 130 images dépeignant « plage » (voir Figure
dessous).

Figure 7. Examples d'Images entrainement.

L’expérience fut conduite sur 40 images tests sémantiquement segmentées. Nous
avons comparé la meilleure affectation d’état obtenue par I’algorithme de Viterbi
(Cela prend en compte a la fois les probabilités de sortie et de transition) avec
I’affectation ou chaque vecteur caractéristique est associé a I’état de meilleure
probabilité de sortie. Le taux moyen de blocs correctement labellisés est de 38% en
prenant en compte les probabilités de transition, et de 32% pour les probabilités de
sortie seules.

La table de confusion ci-dessous montre le nombre de blocs classés pour chaque
classe. On constate que Ciel est parfois confondu avec sable (a cause des réflexions,
comme dans Figure 43 b). De méme, on note I’amalgame occasionnel de mer avec
sable (a cause de leur recouvrement), et de montagne avec sable (du a leurs descrip-
teurs similaires). Les classes végétation, batiment, et bateaux, sont faibles a cause du
manque d’images d’entrainement.

Table 2. Table de confusion.

Annotées

Classées

divers ciel mer sable mont veg pers bat bateau
0 0 0 0 0 0 0 0

divers

ciel 59 4 115 50 21
mer 382 28 89 165 66
sable 245 24 181 152 51
montagne 101 14 31 94 24
végétation 84 45 7
personne 305 260 287 601 271 128
batiment 54 11 62 90 24 20
bateau 2 15 2 2 0 0

L’exemple suivant montre quelques images segmentées, ainsi que leur nombre de
blocs convenablement classés

Xiv



a) 72% correctement classés

b) 28% correctement classés

¢) 32% correctement classés

Figure 8. Exemple d’images segmentées.
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Mode¢le de Markov Caché Multi résolution

Dans I’expérience précédente, nous avons démontré qu’une importante probabilité de
sortie dégrade les résultats, mais aussi que le modéle contextuel échoue parfois a
caractériser les sous-classes d’un concept, ce qui suggére une échelle trop petite.
D’une part, une échelle élevée est nécessaire afin de distinguer les détails des objets,
et d’autre part, une faible échelle permet de capturer les propriétés globales. Cela
amene 1’idée du développement d’un modeéle multi résolution.

Le principe de I’analyse multi résolution est de capturer I’information d’une image a
différentes résolutions. Nous considérons donc une combinaison linéaire de
2-D HMMs entrainés a différentes résolutions. Comparé a la modélisation hiérarchi-
que, cette approche est plus aisée a construire: Il nous suffit d’entrainer un certain
nombre de 2-D HMMs a différentes résolutions et de les combiner par interpolation
ou par probabilité jointe. L architecture d’un systéme multi résolution est présentée

ci-dessous.
5O
P(I|myp)
" @\
Ao
P(I|m,)
Figure 9. Combinaison linéaire de mod¢les multi résolution.
Expérience

Pour évaluer les performances de notre modele, nous le comparons avec le modéle
proposé par Jia Li et AL[39], utilisant le méme scénario de classification d’images
que dans le chapitre précédent. Les modeles sont entrainés a 1’aide d’un ensemble
images annotées. La classification est ensuite effectuée sur un ensemble inconnu que
le procédé¢ convertit en une liste triée.

Xvi
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extraction description » HMM training
test image test feature y result
feature block HMM
extraction description | classification
AN AN
multiple resolutions number of blocks

Figure 10. Schéma de classification multi résolution.

En redéfinissant itérativement la taille de I’image, tout en conservant la taille du
block constante, nous obtenons les résolutions d’images de (a) 4x3, (b) 16x12 et (c)
64x48 blocks, comme illustré ci-dessous.

Figure 11. Trois résolutions avec des tailles de blocks constantes: (a) 4x3, (b) 16x12
et (¢) 64x48 blocks.

Les mode¢les sont entrainés a 1’aide des algorithmes adaptés de Baum-Welch, comme
décrit dans la section 2.4. La Figure 12 montre 1’évolution de la probabilité totale
pour le DT-MHMM durant I’entrainement.

610 | - Resolution ]

-620

-630

-640 -

-650

Avg. probability

eof ]
680 || B

600 | B

-700

L L L L
0 5 10 15 20 25
Iterations

Figure 12. Probabilité totale Durant I’entrainement.
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La Figure 13 montre la courbe rappel précision pour le modele 2-D MHMM (Jia Li
et al) et les deux modeles DT-MHMM.

0.35

T T

2D-MHMM ——

Kemmmmmm X Joint DT-MHMM  ---x---

/ \ Interpolated DT-MHMM ------
Rdm Precision &

03

Precision

0.05

L L L L L L L L
10 20 30 40 50 60 70 80 90 100
Recall (%)

Figure 13. Rappel précision pour 2D-MHMM et DT-MHMM.

On peut observer que le modele introduit a la plus basse résolution une information
globale qui pénalise les images mono-couleurs, mais, selon le schéma de fusion, les
modeles de plus hautes résolutions rétablissent parfois 1’ensemble. La précision
moyenne pour les différents modéles est listée en table 3.

Table 3. Précion moyenne pour DT HMM et 2-D MHMM.

Modé¢le CARTE
DT MHMM combine jointe 0.24
2-D MHMM 0.17
DT MHMM Interpolatée 0.13

Conclusion

Dans le but d’introduire le contexte local et global, le DT HMM est utilisé comme un
mode¢le d’image de multi résolutions. Le résultat indique que la perte enregistrée peut
étre diminuée et que les performances sont comparables avec celles des autres
algorithmes.
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Applications 3-D

Enfin nous présenterons les possibilités d’extensions de la formalisation DT HMM
par une étude du 3-D HMM (qui a été rarement étudiée). Nous nous focaliserons sur
les données vidéo [66], ou les deux premicres dimensions sont spatiales, et la troi-
siéme temporelle. Pour mieux comprendre cette derniére dimension, nous
explorerons les capacités du modéle dans le domaine du suivi d’objets.

En trois dimensions, 1’état s;;x du modéle dépendra de ces trois voisins si.ijk, Sij-1.k
sijk-1. Cette triple dépendance accroit le nombre de probabilités de transition dans le
modg¢le, et la complexité algorithmique des algorithmes tels que Viterbi ou Baum-
Welch. Cependant, 1’utilisation d’un arbre de dépendance 3-D nous permet d’estimer
les parametres du modéle le long d’un chemin 3-D (voir Figure 14) qui maintient une
complexité algorithmique linéaire.

i
'
/
_.(.‘/
/
=
/
&

g
d

7

ddddee

i

{i
W
27

@f

op

1A
)

24

Figure 14. Arbre de dépendance 3-D aléatoire.

La fonction de direction pour 1’arbre 3-D devient :

V oift=(>i-1,Jj,k) (1.15)
D(t)z H l..ft:(isj_l’k)
Z ift=(,jk-1)

En modélisation 3-D, les images sont représentées par des vecteurs caractéristiques
sur une grille 3-D. Notons le vecteur d’observation ojx comme 1’observation du bloc
(i,j,k) dans une image 3-D, volume d’images issues d’une séquence 2-D. Par analo-
gie, les variables d’états sjx du HMM représentent les états aux positions (i,j,k)
produisant les vecteurs d’observation ojx. Nous pouvons donc maintenant étendre
(3.6) a la troisiéme dimension:
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PGS, (1.16)

Sictju>Si ko Sijatt)

= Pouiijiy Sij ‘stu‘,j,k))

Le procédé de suivi se décompose principalement en deux phases: La phase
d’entrainement et la phase de segmentation. Lors de la phase d’entrainement, le
processus apprend les paramétres inconnus du HMM, a 1’aide du systéme
d’entrainement de Viterbi détaillé en section 5.2.1. Au cours de la phase de segmen-
tation, le procédé effectue une segmentation spatio-temporelle en exécutant un
alignement d’états 3-D de Viterbi.

Détection d'Objet

La vidéo originale contient deux skieurs passant devant des repéres jaunes sur un
paysage neigeux avec des ombres. Figure 15 retrace chaque seconde de la séquence.

Figure 15. La séquence vidéo commence au coin supérieur gauche,
suivi des autres cadres.

Les deux premicres images ont ¢t¢ manuellement annotées et utilisées pour évaluer le
modele initial, tandis que les images suivantes constituent l'observation 3-D sur
laquelle I’expérience de Viterbi a été exécutée. Puis, nous utilisons le modele formé
pour obtenir un étiquetage finalisé de 1'observation 3D compléte. Dans 1'étiquetage
final, chaque bloc d'observation est assigné a un seul état du modéle. L'étiquetage
final fournit une segmentation spatio-temporelle de I'observation 3D.

Le dépistage d'objet est alors exécuté facilement, en choisissant dans chaque image
les blocs que 1'on étiquette en fonction de la catégorie sémantique correspondante.
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Par exemple, nous pouvons facilement créer une séquence vidéo contenant seulement
les skieurs en excluant le paysage - et les marques repéres comme indiqué ci-dessous.

Figure 16. Détection de deux skieurs.

Nous pouvons voir dans la figure ci-dessus que certains blocs ne sont pas correcte-
ment assignés aux catégories de skieur. L'explication peut étre qu'avec un seul arbre
de dépendance, beaucoup de blocs a l'intérieur de la vidéo correspondent a des
feuilles dans I'arbre et sont donc dispersés. Cela justifie la combinaison de plusieurs
arbres de dépendance pour que la chaine d'images ne soit pas rompue.

Pour chaque arbre de dépendance, nous pouvons calculer le meilleur alignement,
utiliser ensuite un vote majoritaire pour choisir I’état le plus probable pour chaque
bloc. C'est une approximation pour la probabilité d'étre dans cet état pour ce bloc
pendant la génération de l'observation avec un arbre aléatoire inconnu. Figure 17
montre la vidéo obtenue avec cet étiquetage d'arbre multiple, en utilisant un jeu de 50
arbres aléatoirement produits.

Figure 17. Détection d'objet avec lissage de 50 arbres aléatoires.
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Comme le montrent ces résultats, les objets sont treés clairement définis dans cette
expérience et la plupart des interférences dans 1'étiquetage ont disparues.

Enfin nous avons illustré 1'approche DT HMM sur le probléme de la segmentation
vidéo et de la détection. Nous avons détaillé 1'application de notre modéle sur un
exemple concret. Nous avons aussi montré que quelques artefacts en raison de nos
simplifications peuvent étre énormément réduits par l'utilisation d'un plus grand
nombre d'arbres de dépendance.

Conclusion et Travail Futur

Grace aux nouvelles capacités d'apprentissage de HMM, nous croyons que ce type de
mode¢le sera appelé a étre utilisé pour nombre d'applications. On peut envisager
d'autres applications 3-D telles que la classification d'images 3-D ou la reconstruction
d'image.

Au dela, puisque l'arbre de dépendance présente des discontinuités nous pouvons
trouver d'autres facons de choisir un arbre. Faire par exemple un arbre optimal pour
un jeu d'images ou application en analysant d'abord chaque image et faire plus de
rapports (connexions) entre des régions de frontiére, ou considérer d'autres arbres
non-aléatoires.

Une future approche du probléme de discontinuités est d'utiliser des mode¢les hiérar-
chiques, puisqu'un bloc dans une résolution plus basse peut inclure les rapports
(connexions) qui n'existent pas a plus petite échelle.

Le modéle peut aussi étre appliqué (étendu) aux dimensions supérieures (n > 3).
Dans ce cas les rapports contextuels deviennent alors plus faibles et pour chaque
dimension nous aurons un rapport (connexion)proche de n. Pour cette raison le choix
de l'arbre deviendra encore plus important.

En conclusion nous croyons que le DT HMM est un modele puissant qui a un vérita-
ble potentiel d'avenir pour de nombreuses applications.
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CHAPTER 1: INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

The average person with a computer will soon have access to the world's collections
of digital video and images. However, unlike text that can be alphabetized or num-
bers that can be ordered, there is no general formalism to organize image and video.
Although tools which can "‘see" and ' ‘understand" the content of imagery are still in
their early years, they are now at the point where they can provide significant assis-
tance to users in navigating through visual media.

The challenge in developing techniques for media semantics requires knowledge and
techniques from a variety of disciplines and domains, many of them outside of
traditional computer and information science. Image understanding is a kingpin
thereof and is a most complex challenge of Al. To cover this complicated area of
computer vision in detail it would be necessary to discuss many other branches such
as; knowledge representation, semantic networks, image processing, classification
algorithms learning from experience, etc. The central problem is to bridge "the
semantic gap", which describes the difference between the meaning that users expect
systems to associate with their queries, and low-level features that the systems
actually compute. A number of researches have introduced systems that bridge the
gap between low-level features and semantic classes [3], [5], [6], [8], [25], [38], [52],
[68].

Semantics is meaningful only in context; it can not exist without a knowledge base to
project its concept on [35]. In this work we employ a probabilistic framework, which
means that the knowledge database, the meta-data of the image is stored numerically
and we use a state-transition model (a hidden Markov model) for capturing the
context and dynamics of images and video.
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The hidden Markov models (HMM) have been successfully introduced to many
important problems in image processing such as computer vision or pattern recogni-
tion. Their success is due to both their rich mathematical structure which engenders a
theoretical basis for many domains, and to the Baum-Welch algorithm [38]. The
Baum-Welch procedure is an efficient training algorithm that allows estimating the
numeric values of the model parameters from training data.

However for images computations becomes intractable because of the statistical
dependencies in two dimensions. Many approaches have been proposed to preserve a
modest computation [39], [44], [49], [50]. The disadvantages of these approaches is
that they either greatly reduce the vertical dependencies between states, which is then
only achieved through a single super-state, or introduces simplifying assumptions
and approximations so that the probabilistic model is no longer theoretically sound.

1.2 Contribution and Qutline

In this thesis we present a new type of multidimensional hidden Markov model that
is efficient in computational complexity and storage, while still being theoretically
sound. The basic idea is to relax the joint dependencies between neighboring states
by a dependency tree.

We derive the necessary expressions for the procedures associated with HMMs such
as the Baum-Welch and Viterbi algorithms. The model is embedded in an image
modeling framework for benchmarking and investigating the properties of the
formalism. The experimental parts deal mostly with classification problems since
they are easy to evaluate and due to the fact that we have access to a common anno-
tated video database used by the TRECVid workshop [66]. The outline of the
dissertation is as follows:

e Chapter 2 provides a perspective of image understanding from outside of tra-
ditional computer and information science. I review the literature on
statistical learning methods and give an introduction to the discipline of
Markov models.

e Chapter 3 constitutes the theoretical core of this dissertation. Here we present
our new hidden Markov model based on a random dependency tree, which
will later be referred to as the dependency tree hidden Markov model
(DT HMM). The algorithms associated with HMMs are derived and we show
that for this model, most of the common algorithms keep the same linear
complexity as in one dimension. We provide experimental details and com-
pare the results with those of the TRECVid workshop.

e In chapter 4 we specialize the model to the problem of image segmentation.
We review the current state-of-the-art and present a solution based on the
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DT HMM. Semantic regions are implemented by restricting a number of
states to a sub-class. This chapter also deals with the expansion to multiple
resolutions. The extension allows an image to be represented by observations
in several resolutions which corresponds to local and global context. Com-
parisons, in an image -classification scenario are made between the
multiresolution DT HMM and another well known multiresolution model.

e Chapter 5 considers an extension to three dimensions in a video modeling
scenario. Since video can be regarded as images indexed with time, we gen-
erate a 3-D dependency tree and compute the transition probabilities over
space and time. We demonstrate the potential of the model by applying it to
the problem of tracking objects in a video sequence. We explore various is-
sues about the effect of the random tree and smoothing techniques.
Experiments demonstrate the potential of the model as a tool for tracking
video objects with an efficient computational cost.
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CHAPTER 2: IMAGE CLASSIFICATION

Chapter 2

Image Classification

A picture can be very useful in answering questions. Like how where people dressed
during the 1860’s or how does a Lemur look like? However, retrieving a picture that
answers a particular question can be difficult. Investigating the meaning of pictures
can be compared to subject analysis of text, where the sense of the words are of
concern not the words of the text, nor the bibliographic description or genre exempli-
fied by the work.

In this chapter we present a survey of the literature on image classification. We start
with a review outside computer science by touching different linguistic and cognitive
aspects of image understanding. I look for answers to questions such as “what is the
meaning of a picture?” and how can the relation between visual objects in an image
be described? We then present important classification techniques in section 2.4.

2.1 Image Understanding

Image understanding is one of the most challenging fields of machine learning, and it
depends on other independent domains such as: knowledge representation, semantic
networks such as ontologies, inference, classification, segmentation, learning from
experience and more.

Some successful attempts to model media semantics make use of ontologies' [28],
[29]. The advantage of ontology learning is that its influence path is based on ontol-

"In this context an ontology denote a taxonomy with a set of inference rules.
In philosophy, ontology (from the Greek Ov, genitive dvtoc: of being (part. of givat: o be) and -Aoyia:

science, study, theory) is the study of being or existence.
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ogy hierarchy, which has real semantic meanings. In ontology-based learning there
are two kinds of influences; boosting and constraints. Boosting is about boosting the
precision of concepts by taking the results from more reliable ancestors. The con-
straints are used to decrease the probability of miss-classifying concepts that cannot
coexist.

2.1.1 The Meaning of the Picture and Ontologies

To decide the subject of a picture, it is necessary to determine the meaning conveyed
by the images within, and the relationship between this meaning and the words used
to describe it. In analyzing the kinds of meaning a picture may have, and the relation-
ship between the words used to describe it. Shatford [1] proposes a system for
classifying the subjects of a picture, into Generic Of, Specific Of and About. First the
meaning can be divided into the generic description OF the represented objects and
actions, and the intrinsic meaning of the content (4BOUT). Since pictures are simul-
taneously generic and specific; a picture of a bridge is both that particular bridge and
the generic bridge. She divides the Ofness into generic and specific, so we have:

Generic Of: Ofness, equivalent to the generic meaning of an image. Requires only
“everyday familiarity with objects and actions” e.g. man, woman, child, lifting a hat.
Skyscraper , Office Building.

Specific Of: Demands educational knowledge like “familiarity with specific themes
and concepts”, e.g. to understand that haft-lifting is a Greeting gesture”, or a particu-
lar building is the Chrysler Building. There can be several specific subjects in a
picture (referents) that determine the sense of the picture (c.f. meronony below).

Generic About: Description of a mood, identification of mythical beings that have
no concrete reality, or symbol meanings abstract concepts communicated by images.
Emotions; love, sorrow and concepts: truth, honor and strength, e.g. expressional like

9% <¢

“the pity of the Crucifixion”, “modern architecture”.

2.1.2 Hyponomic Ontology

The crux is to determine the meaning of a picture so that we can classify it in accor-
dance with its meaning. Only then will the user be able to search content on whatever
level: generic or specific. This is particular useful since a user can only express the
needs in terms of what s/he knows. A hyponomic ontology (hyponomy = is-kind-of
relationships) will allow us to retrieve specific content by performing a generic
search, i.e. the user can search on a subject without knowing its specific name. A side
effect is that the user might learn specific facts. E.g. a search on “Gothic church” can
retrieve Notre Dame. In this way one could say that we use an ontology to map
between the specific- and the generic as mentioned above. We employ this kind of



CHAPTER 2: IMAGE CLASSIFICATION

ontology in the personalization engine for interactive TV [16], in order to match
video object concepts with user preferences.

Introducing the relation ship of Aboutness, the description of a mood or a symbol,
would extend the possibilities to search for a picture that represents strength, vanity
or modern architecture. It is perhaps worthwhile mentioning that the factual meaning
is easier to classify as people are more likely to agree on descriptions on objects
rather than an emotion or mood.

2.1.3 Meronomic Ontology

Some attempts have been made to weight co-occurring multimodal features in order
to infer the occurrence of semantic objects [3]. In a model based approach [68],
Golshani et Al. measured the semantic similarity of quantized visual cue’s using a
correlation matrix and then mapped them to semantic labels. An ontology was
integrated to further facilitate the translation of text queries into visual queries. Hence
if there was no model learned for a certain key word the semantically closest will be
subsumed from the ontology by finding the hyponyms. The underlying idea resem-
bles that of LSI; to express a certain topic in text a certain collection of words will be
used. The collection will be perturbed by the existence of synonyms and polysemous
word.

Another approach would be to use a meronomy ontology (meronomy = part-whole
relationship) to map co-occurrences of several referents to a subject. A picture is
characterized by one or several objects (or referents in [1]). Shatford proposed a
method of thresholds recommendations; only name what is whole, not necessarily an
integral part of a larger whole. In our framework it would translate to use the ontol-
ogy to name only larger parts and use the “has-a” relation (like in part-based object
detection for example [4]).

As discussed earlier, since a picture can have several referents with its senses we can
use an ontology to explain what sense the co-occurrence of some referents (visual
obejcts) have. A cityscape consists of sky, buildings, roads, rivers etc. On a lower
level of detail one might say that the presence of a large number of windows in rows
formed in layers, with walls and a roof forms a skyscraper, similar to the “is-part-of *
relationship.

The need of co-occurrence and spatio-temporal information is even more important
in presence of blur while performing object recognition. As pointed out by the
authors in [6] the sense of an image is strongly judged by the position of the objects
within an image and not their shape.

The structure of an ontology can also be used in order to choose an adequate feature
model for each type of image, as well as different classifiers for different problems.
In a system developed by Minka and Picard [2] it is assumed that there is no single
model that can capture everything what humans perceive in images, their system
used a “society of models”. The system internally generates several groupings of



CHAPTER 2: IMAGE CLASSIFICATION

each image’s regions based on different combinations of features, then learns which
combinations best represents the semantic categories given as examples by the user.

2.1.4 Notes from Cognitive Psychology

According to the theory of cognitive science, the impressive abilities demonstrated
by the human brain originate mainly from one basic ability: pattern recognition. Our
brain is a generalized pattern-recognition machine. For example, there are many
different shapes for tables, but somehow we always implicitly recognize a table when
we see one, even if we have never seen that particular one.

In some particular cases, the human brain’s ability to recognize patterns is overeager,
so that it recognizes patterns where there are none. This phenomenon is called
pareidolia, and is sometimes used to explain phenomena’s like the Loch ness mon-
ster, astrology and the man in the moon. The effect is easy to recall; try to count the
black dots in the figure below.

Figure 1.  The human brain is a pattern recognizer.

2.2 Knowledge Representation and Control Strategy

Pictures are a kind of sensory data, and there is a lot of work going on to figure out
how to index this sensory data. What kind of knowledge representation should be
used for its meta-data? Currently the most important attempts to provide standards
for description of content are MPEG-7 from ISO, and the semantic web from the
W3C. In a paper by Ramesh Jain [31] some interesting ideas are presented on how to
store and interact with spatio-temporal data.

As I mentioned in the introduction, the computed feature-based signatures by them
selves infer nothing about the content, only that the content is different from sur-
rounding clusters. To extract meaningful semantics a knowledge base is needed to
project concept on. The content and representation of this knowledge is of main
concern.
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In this thesis we use a 2-D HMM as the backbone of the knowledge representation in
conjunction with a set of sub-class definitions. The HMM is a generic model, that
works in a top-down fashion which mean that an internal model is generated and is
verified against a test collection Since a top-down model is only testing to retrieve
images that we know something about, there is no limitation in adding prior knowl-
edge limited to a certain domain. We can for instance add “is-part-of” knowledge
(c.f. section 2.1.3) such as sky, sea and sand are parts of the concept beach. An
example of this is illustrated in section 4.1.2.

The architecture of a generic top-down classification system is depicted in Figure 2.
The principle of a top-down control is the construction of an internal model and its
verification, meaning that the principle is goal oriented, like looking for your car at a
parking lot.

. Extract N Estimate Hypothesis
. features 2-D block based DT HMM generation
Training images features
\
DT HMM
: Extract Compute Hypothesis
" features Feature vectors likelihood testing

v
score

Figure 2.  Architecture of a model-based control strategy.

The image understanding process consists of sequential hypothesis generation and
testing. The hypothesis testing algorithms represent data by a set of points (or proto-
types). A class is assigned to each prototype by majority vote on the associated class
distribution of the prototype. A test feature vector is identified as the class of its
closest prototype.

2.3  Applications

There are many areas of applications for image understanding: robot vision, remote
sensing, surveillance applications, military applications, medical image understand-
ing, and entertainment. In this section we shall present some examples from each
category.
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Robot Vision

Engineers at DaimlerChrysler are working on technology that can make cars watch
out for hazards, listen to the driver or even know when he/she is distracted, in order
to alert the human driver to potentially dangerous situations.

Prototype cars, equipped with stereo cameras are able to recognize hazards that the
driver has overlooked — like some one running over the road or a bouncing ball. It is
able to spot traffic lights and by swift camera movements is even able to check that
they are still green when the car approaches [7].

Remote sensing

In remote sensing for forestry applications the main goal is to fully or partly replace
the human image interpreter by a seeing computer, capable of making many deci-
sions on its own, with a minimum of human intervention during the image processing
and analysis. A review of the state-of-the-art of the research from different countries
is given in Hill and Leckie [8].

Unsupervised extraction of roads eliminates the need for human operators to perform
the time consuming and expensive process of mapping roads from satellite imagery.
As increasing volumes of imagery become available, fully automatic methods are
required to interpret the visible features such as roads, railroads, drainage, and other
meaningful curvilinear structures in multi-spectral satellite imagery. The challenge of
detecting curvilinear elements is also related to the problem of deriving anatomical
structures in medical imaging as well as locating material defects in product quality
control systems and cartographic applications [9].

Surveillance Applications

Surveillance applications often collect a large amount of video data. Currently the
surveillance applications do not allow the user to quickly search the collected data for
an occurrence of a particular individual. Face based browsing for surveillance
applications such as ID system for the police force to detect the face of criminals,
may enhance airport security.

The ultimate goal of surveillance systems is automatic detection of events and
suspicious activities that triggers an alarm (detection) as well as reducing the volume
of data presented to human operator (retrieval). Event detection requires interpreta-
tion of the "semantically meaningful object actions". Highway monitoring, airport
surveillance, building access control are just a few of the several important applica-
tions.

Whereas most models for detecting unusual events assume that “all” unusual event
events can be modeled, which requires off-line training. The research lab MERL?
employs an unsupervised learning method that does not require definition of what is
usual and what is not. They define usual as the high recurrence of events that are

2 Mitsubishi Electric Research Laboratories

10
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similar. As a result, unusual is the group of events that are not similar to the rest,
which also allows detecting multiple unusual events [10].

The same lab has also developed a technology for automatically detecting pedestrians
in video sequences. Detecting and tracking pedestrians can be used to sound an alarm
if an intruder is in a restricted area or to aid in browsing hours of surveillance video
by skipping to the next part of the video where a person was seen.

The problem of detecting people in low resolution surveillance video is difficult
because the pedestrian may be very small in the image, making the amount of
information contained in the pixels small. Furthermore, there may be background
movement in the scene such as trees waving or a cloud shadow passing by which
makes causes motion detectors to fail. Their approach is to encompass both the
appearance and the motion of pedestrians in the model [11].

Military applications

The future battlefield is characterized by an expanding suite of sensors and sensing
modalities collecting vast volumes of imagery from a mixture of ground, air, and
space-borne platforms. Image understanding techniques are needed to extract the
information needed by military forces from this data-rich environment.

Image understanding in military applications also provide advanced vision systems to
aid intelligence image analysts, or enables an unmanned military ground vehicle to
scout for enemy targets [12], [13].

Medical Image Understanding

Clinicians routinely employ a variety of imaging techniques during patient diagnosis.
The volume of information, and the difficulty of interpreting it, make this area one in
which advanced image understanding can make significant improvements in the
detection and treatment of illness e.g. 2-D functional analysis of the heart, mammog-
raphy image analysis, identify lung cancer cells and discriminate among different
lung cancer types [14], [15].

Interactive Television Projects

Advanced Digital Television provides an exciting new realm for the consumer. Not
only does it offer improved picture quality, it also provides a means for seamlessly
blending many new services into the TV set, expanding the scope of what televisions
can do. Advanced Digital Television also poses new challenges in video encoding,
transmission, and reception.

MPEG?2 has been successfully adopted in digital broadcasting and computer video
applications. Now the coding technologies are evolving from MPEG2 to MPEG4
which standardizes algorithms and tools for flexible representation of audio-visual
data in an object-oriented manner.

The object-based compression in MPEG4 enhances the user's interaction with a
device or computer. This aspect has been investigated in the GMF4iTV [16] project

11
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and a demo version of the interactive video system were presented at 4th Workshop
on Personalization in Future TV [17]. The objective of the prototype was to build an
end-to-end broadcast system for providing personalization and interactivity to TV
programs through active video objects [18].

Entertainment

Vision-based interfaces for computer games allow the player to move or gesture to
affect the game, instead of pressing buttons. The characters in the game may imitate
those motions, or respond accordingly.

Vision can be a powerful interface device for computers. There is the potential to
sense body position, head orientation, direction of gaze, pointing commands, and
gestures. Such free and untroubled interaction can make computers easier to use.
The application of vision to computer games poses special challenges. The response
time must be very fast, while the total hardware cost must be very low. An approach
in using fast and simple algorithms to meet these challenges is presented in [19].

2.4  Statistical Learning

Statistical modeling methods are paramount in today's large-scale image analysis. It
is critical for almost all image processing problems, such as estimation, compression
and classification. This section gives a brief introduction to the theory of inductive
learning, followed by a presentation of the currently most important classification
algorithms.

2.4.1 Concept Learning

In the process of learning, general concepts are formulated from specific examples.
Humans incrementally learn new concepts such as “butterfly”, “prime numbers”,
“explosion” etc. Each such concept can be viewed as describing some subset of
objects or events over a larger set (e.g. the subset of insects that constitute butter-
flies). A concept can be modeled as a function defined over this larger set, e.g. a
function defined over all insects whose value is true for butterflies and false for all

other insects.

In machine learning the desire is to induce’ a general function (a hypothesis) that best
fit a set of training examples. This is sometimes referred to concept learning: the
problem of automatically inferring the general model of some concept, given exam-
ples labeled as members or nonmembers of the concept.

3 Induction: the process of deriving general principles from particular facts or recur-
ring phenomenal patterns.

12
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Decision trees, artificial neural networks and genetic algorithms are all examples of
inductive learning methods that generalize from observed training examples by
identifying features that effectively discriminate positive from negative training
examples.

We give an example to clarify the idea Table 1 shows a number of examples (or
instances) of the concept “Potential dangerous dive”. Each instance is represented by
a set of attributes. The attribute Dangerous indicates whether the particular dive is
considered dangerous and is also called the target concept. If the value is ‘Yes’ then
the instance is said to be a positive example, respectively a negative example if the
value is ‘No’. The goal is to be able to predict this attribute for random examples.

Table 1. Positive and negative training examples for the target
concept “Dangerous dive”.

Example | Strong current | Depth | Night Experience | Dangerous
Dive 1 Yes <10m | No Medium No

Dive 2 Yes >10m | No Medium Yes

Dive 3 No >10m | Yes Novice Yes

Dive 4 Yes >10m | No Advanced No

When learning the target concept, the model is presented a set of training examples,
each consisting of an instance x from X (the set of examples over which the concept
is defined), along with its attributes and target concept c¢(x) (also called class label).

If we denote by Q the set of all possible models that might be considered to estimate
‘c’, then in general each o € Q represents a target function defined over X whose
value is true for instances belonging to the concept and otherwise false;w: X —{0,1}.
Usually Q is determined by the designer’s chose of representation which depends on
the application as we shall se in next section.

2.4.2 Classification Algorithms

In the communities of image understanding and computer vision, classification is a
very common task and it is generally not easy. The problem can also be expressed as
“understanding what the data means”. Some of the potential applications are, image
segmentation, semantic classification, object tracking and recognition. While these
tasks might be easy for humans they are very hard for computers. Even with the
simplest cases there are noise and distortions affecting the results making the classi-
fication nontrivial.

13
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Classification algorithms do not usually work well with raw data, for example where
a large array of numbers represents a digital image. Data have to be preprocessed to
extract few pieces of valuable information called features (see section A.2). Features
are represented as a feature vector where the dimension of a vector is the number of
scalar components of different features. Feature extraction is very important for
achieving good classification results and is typically application-specific. In the
previous section we used the general term instance for a concept example, from now
onwards we shall instead refer to a feature vector. Feature vectors with class labels
(earlier referred to as the target concept) can be used to estimate a model describing a
concept, provided that there are enough good samples available [23].

As before mentioned some assumptions have to be made about the structure of the
estimated model since totally arbitrary models are difficult to train. This is the same
as saying that inductive learning methods require some form of prior assumptions,
for example in Bayesian classification it can be assumed that a class can be repre-
sented in feature space with a Gaussian probability density function (PDF) (c.f.
section 2.4.4). The classification of unknown samples is based on estimated class
representations in a feature space.

A Classifier is an algorithm with features as input and concludes what it means based
on the information that is encoded into the classifier algorithm and its parameters.
The output is usually a label, but it can also be a real value.

To design the classifier, it is necessary to have knowledge about the classification
task at hand. For example what type of classifier is appropriate and what is the best
inner structure. For example the number of neurons and layers in a neural network,
the probability density function for a Bayesian classifier, or number of states in a
hidden Markov model. Classifier complexity is a tradeoff between representational
power and generality. A simple classifier may not be able to learn or represent
classes well which yields poor accuracy. An overly complex model can lead to over
fit the training examples, which means that it exist some other model that fits the
training examples less well but actually performs better over the entire distribution of
instances.

2.4.3 Bayesian Classifier

The concern in machine learning is to determine the best model from some space €2
of possible solutions, given the training data X. One way to specify what is meant by
the best is to say the most probable model (lowest risk or expected cost), given the
samples X plus any knowledge about the prior probabilities of the various models Q.

Let us consider the general pattern classification problem where a sample X is to be

assigned to one of a set of possible classes {c}. Within the Bayesian decision frame-
work, the optimal classifier frequently referred to as the minimum risk classifier

14



CHAPTER 2: IMAGE CLASSIFICATION

employs the following decision rule: assign the observed sample X to the class c; that
minimizes the conditional risk given by:

R(ck|x) = z/ﬁt(ck | CI)P(CI | x) 2.1)

where the loss function Mcg|c) quantifies the loss incurred for selecting cx when the
true class of X is ¢;, and where P(c|| X) is the (posterior) probability of class ¢, given
that sample X was observed, which is computed from the class prior probabilities and
class-conditional probabilities in (2.1).

Bayesian classification and decision making is based on probability theory and the
principle of choosing the most probable model. Assume that there is a classification
task to classify vectors (samples) to K different classes. A feature vector is denoted
as X = [Xy, X2,...,Xp] where D is the dimension of a vector. The probability that a
feature vector X belongs to a class ck is P(cy| X) and is referred to as a posteriori
probability because it represents our confidence that cix holds after we have seen the
training data X. In this way the posterior probability reflects the influence of the
training data, in contrast to the prior probability P(ck) which is independent of X. The
posterior probabilities can be computed with the Bayes’ rule:

P(x|ck )P(c,) (2.2)

P(c, |x) = P

Where p(X |ck) is the probability density function of class cx in the feature space
(which will be further discussed in section 2.4.8) and P(cy) is the a priori probability,
which tells the initial probability of the class before measuring any features and may
reflect any background knowledge about the model. The divisor is just a normalizing
constant that ensures that the posterior is a probability, i.e., adds up to 1. The Bayes
classifier is called a generative classifier since the distribution P(x|w) describes how
to generate random instances X of the target model o.

The training

To train a model we want to find the most probable model given the training data, i.e.
find the optimal model ® that maximizes P(wg|x). This maximal probability is called
maximum a posteriori (MAP) solutions, because it maximizes the posterior probabil-
ity given X. By using the Bayes’ rule and dropping P(x) in the last step since it’s a
constant independent of ® we get:

15
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T ypap = argmaxP(a)|x) (2.3)
weQ
P(x|a))P(a))
=argmax ————
weQ P(X)
= arg max P(x|a))P(a))

weQ)

If all models ® are considered to be equally likely then P(®) is uniform and equation
(2.3) can be further simplified by dropping the term, thus:

®,,; =argmax P(x|a)) (2.4)

weQ

The result is called the maximum likelihood estimation (wwy). The term likelihood is
usually used for approximations of probability density functions since it measures
how well the distribution fits the observed data.

The major problem in the Bayesian classifier is the class-conditional probability
density function p(x|cx). The function tells the distribution of a feature vector in the
feature space inside a particular class, i.e., it describes the class model. In practice it
is always unknown.

2.4.4 Gaussian Mixture Model

The Gaussian probability density function is often used to approximate the class-
conditional distribution. It is mathematically sound and extends easily to multiple
dimensions. The assumption is that the model is truly a model of one basic class.
However that is normally not the case, in a particular image class we might have
several different regions emitting features of several different types. A single Gaus-
sian approximation would describe the class with a wide range of features, including
patterns that might not belong to the class at all.

Therefore a Gaussian mixture model (GMM) is often used to provide a multimodal
density. The GMM is a combination of several Gaussian distributions and can
therefore represent different subclasses inside on class. The idea is to fit the data in
space by placing blobs of probability mass. If we believe that data lies around a
number of clusters, we can model each cluster i by a distribution P(x; p ). To model
the whole data set we need to describe how much probability mass to attach to each
cluster using a mixture weight o, we get:

M 2.5
p(x;0) = Zaip(x;yi’z:i) (2

i=1
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where P(x;p2) is the D-dimensional Gaussian probability density functions with
mean p and covariance X matrix, given by:

(2.6)

: = ! L P
P(xaﬂaz)_(zﬂ)p/z\/mexp( 2(x W) E7(x—u;))

Thus the GMM density function is defined as a weighted sum of Gaussians (2.5) that
is governed by its means, covariances and mixing coefficients, often denoted ® = (au;,

i, i ).

EM algorithm

One way of finding the ® parameters for a set of data is by maximum-likelihood
estimation. This leads however to a hard problem, for which an analytic approach is
infeasible and therefore a more elaborate method is used: the expectation maximiza-
tion (EM) algorithm. The EM algorithm is an iterative method for calculating
maximum likelihood parameters from incomplete (or hidden) data.

Assume that each training sample contains known (or observed) data (X) and missing
or unknown data (Y). The expectation step (E-step) for the EM algorithm is to
evaluate:

0(0,0')= E,|[nL(X,Y|0)| X,0] 2.7)

where @' is the previous estimate for the distribution parameters and © is the variable
for a new estimate describing the distribution for both the observed and hidden data.
L is the likelihood function, which calculates the likelihood of the data, including the
unknown data marginalized with respect to the current estimate of the distribution
described by ©'. The maximization step (M-step) is to maximize Q(®, ©") with
respect to © and set

0" « argmax Q(0,0) (2.8)

The steps are repeated until a convergence criterion is met, for example:
00,0 -0©,0")<T (2.9)

with a suitable selected T. The EM algorithm starts from an initial guess ©° for the
distribution parameters and the log-likelihood is guaranteed to converge to a local or
maximum. The initialization is a challenge; the selection of ®@° partly determines
where the algorithm converges. Some solutions use a random start or a clustering
algorithm such as k-Means.
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The application of the EM algorithm to Gaussian mixture models is the following.
The known data X is interpreted as incomplete data, and the missing part Y is the
knowledge of which component produced each sample x,. For each x, there is a
binary vector y, = {yn1,...,¥nc}, Where y, =1, if the sample was produced by the
component ¢, or otherwise zero. The complete data log-likelihood becomes:

NLX.¥ [0 )= 3y, In(@, p(x, |O)) (10

n=1 c=1

The E-step is to compute the conditional expectation of the complete data log-
likelihood (the Q-function) given the observed data X and the current estimate o
Since the complete data log-likelihood In L(X,Y|®) is linear with respect to the
missing Y, the conditional expectation W = E(Y|X, ®) is computed instead and put
into In L(X,Y|®):

00,0))=E[nL(X,Y|0)|X.0 |=hLX. W) (211
where the elements of W are defined as:
W,.=Ey,.|X.0'|=P(y,. =1|x,,0) (2.12)
which can be written as follows by Bayes law:

a,p(x,|c,0) (2.13)
c i . i
Zj=1ajp(xn |.]7® )

n,c

where a.' is the a priori probability of @', and Wh, 1s the a posteriori probability that
yne = | after observing x, i.e. p(c|x,). The probabilities p(c|x,) are also called the
responsibilities since they measure the probability that x, was produced by the cih
mixture component.

Applying the M-step to the problem of estimating the distribution parameters for a C-
component GMM results in the following formulas [34]:
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i+1 Z,I,V:lwn,cxn (214)

Me =70V
w
n=1 n,c
N T

i+l Zn:1 W (x, —p)(x, —n,)

X7 = <
Wi‘l C

n=1 B

A potential problem with the algorithm is that it has a tendency to make very narrow
Gaussians around single data points [35]. It is therefore customary to constrain the
variance o° to a minimum threshold, for example 10 or 10°° (c.f. chapter 4.1.5). An
example of this algorithm in action is shown in Figure 3, where we have trained a
three component GMM on 100 sample points.

We will return to this in chapter 3.6.3 in the discussion of how to select observation
features for training the GMM that represent the output probabilities.

0.00014
0.00012 |
0.0001
8e-05 -
6e-05 |-
4e-05 |
2e-05 [
0 pF—_

Figure 3.  An example surface of a two-dimensional Gaussian mixture PDF with
three components.

Estimation of the Gaussian mixture parameters for one class can be considered as
unsupervised learning of the case where samples are generated by individual compo-
nents of the mixture distribution and without the knowledge of which sample was
generated by which component. Clustering usually tries to identify the exact compo-
nents, but Gaussian mixtures can also be used as an approximation of an arbitrary
distribution.

k-Means

It is common to initialize the Gaussian means using the k-Means algorithm, which is
an example of a clustering technique (or unsupervised learning) where the training
samples are not labeled but the algorithm tries to find clusters and form classes by
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partitioning N data points into K disjoint subsets S; containing N; data points so as to
minimize the sum-of-squares criterion.

‘2 (2.15)

xn _/uj

B

where X, is a vector representing the nth data point and p; is the geometric centroid of
the data points in S;. In general, the algorithm does not achieve a global minimum of
J over the assignments. In fact, since the algorithm uses discrete assignment rather
than a set of continuous parameters, the "minimum" it reaches cannot even be
properly called a local minimum. Despite these limitations, the algorithm is used
fairly frequently as a result of its ease of implementation.

The algorithm consists of a simple re-estimation procedure as follows.

1) First selected the number of sets K.

2) Assign the data points at random to the K sets, or a random point is cho-
sen as the first centroid and then the most distant point from this is
selected as the second centroid etc.

3) Then assign each of the remaining (N-k) training samples to the cluster
with the nearest centroid. After each assignment, recomputed the cen-
troid of the gaining cluster.

4) Take each sample in sequence and compute its distance from the cen-
troid of each of the clusters. If a sample is not currently in the cluster
with the closest centroid, switch this sample to that cluster and update
the centroid of the cluster gaining the new sample and the cluster losing
the sample.

5) Repeat step 3 until convergence is achieved, that is until a pass through
the training sample causes no new assignments.

This is a simple version of the k-means procedure. It can be viewed as a greedy
algorithm for partitioning the n samples into k clusters so as to minimize the sum of
the squared distances to the cluster centers. It does have some weaknesses:

e The results produced depend on the initial values for the means, and it fre-
quently happens that suboptimal partitions are found. The standard solution is
to try a number of different starting points.

e [t can happen that the set of samples closest to p; is empty, so that p; cannot
be updated. This is an annoyance that must be handled in an implementation,
but that we shall ignore.

The results depend on the metric used to measure || x - ; ||- A popular solution is to

normalize each variable by its standard deviation, though this is not always desirable.
The results depend on the value of k.
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2.4.5 Naive Bayesian Classifier

The naive Bayesian classifier assumes that the feature components are conditionally
independent given the desired output value. By the definition of statistical independ-
ence we get that given the training data, the probability of observing the conjunct
component values of a feature vector is just the product of the probabilities for the
individual values P(x1,Xa,...X5 k) = []i P(xilox). By substituting this into equation
(2.2) we obtain:

@ = arg max P(a))H P(x; | o) (2.16)

weQ)

This assumption reduces the computational complexity to the order of 2n instead of
2(2"-1) where n is the number feature components. Another important difference
with the naive Bayesian classifier is that the optimal model is found without search-
ing, but by simply counting the various data combinations with in the training
examples. The number of distinct P(xj|®) terms that must be estimated from the
training is just the number of distinct feature components (the dimensionality) times
the number of distinct models.

2.4.6 Dynamic Bayesian Nets

The naive Bayes classifier makes significant use of the assumption that the vector
components are conditionally independent given the model ®w. However in many
cases it is too restrictive. The Bayesian belief network describes conditional inde-
pendence (visualized by a directed edge) between subsets of variables (represented
by nodes), i.e. independencies given a third random variable (the observed data)
which is governed by a certain distribution also referred to prior knowledge. The
Bayesian network in Figure 4 states that A is independent of C given B, under a

given probability distribution.

Figure 4.  The Bayesian network (BN) spells out the factorization that is a sim-
plification of the chain rule of probability.
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The Bayesian network is a Graphical model where the edges are directed and point
from parent to child nodes with no cycles, implicitly representing a factorization that
is a simplification of the chain rule of probability:

p(xy) =[] P(x; 1x,,) 2.17)

Graphical models (GMs) are a flexible statistical abstraction that has been derived
from probability theory and graph theory. They provide a visual graphical formalism
to depict conditional independence of natural systems and signals described by multi-
variate processes. They also provide procedures to reduce memory and computa-
tional demands.

2.4.7 Hidden Markov Model

Perhaps the most popular example (and simplest) of a directed graphical model
(DGM) is the hidden Markov model (HMM). The one-dimensional hidden Markov
model is a class of stochastic signal models which has a long history of success in
various problem domains, perhaps most notably in the field of automated speech
recognition (ASR).

The HMM are so named because they are composed of Markov chains that often
contain hidden variables. Nodes in a graphical model can be either observed or
hidden. If a variable is observed, it means that its value is known, or that data is
available. In speech recognition it could correspond to utterances and for images
visual observations such as color values. The observed variables are often repre-
sented by probability distributions for the feature vectors, usually modeled by a
multi-component GMM (see section 2.4.4).

If a variable is hidden, it currently does not have a known value, and all that is
available is the conditional distribution. Hidden variables are also called state vari-
ables and may reflect (a hypothetical) belief about the properties of the underlying
process that generated the observation that is being modeled. For practical applica-
tions there is often some physical significance attached to the states; in speech they
could represent a vowel or a part of a word and in images some abstract stationary

property.

Figure 5 displays a one-dimensional hidden Markov model. The opaque nodes
represent observed variables and the transparent nodes hidden variables.
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Figure 5.  The one-dimensional hidden Markov model.

As mentioned, a HMM possess a Markov chain of hidden variables. The Markov
chain has the property that, given the present, the future is conditionally independent
of the past. In Figure 5 we can see that the current state variable is independent given
the previous state, and that the observation is dependent only of the current state or to
other observations. This is called a first-order Markov assumption: we say that the
probability of a certain observation at time ¢ only depends on the observation x.; at
time t-1. For a second order Markovian - the current state depends on the two previ-
ous states.

2.4.8 HMM and Image Modeling

Hidden Markov models have become increasingly popular for learning purposes in
such diverse applications as speech recognition [37], language modeling, language
analysis, and image recognition [39]. The reason for this is that they have a rich
mathematical structure and therefore can form theoretical basis for many domains.
The discriminative power grows from its ability to learn the sequential evolution of
the observation which can be found through the Baum-Welch's forward-backward
algorithm [38] which allows estimating the numeric values of the model parameters
from training data. Next we will present computationally efficient algorithms to solve
the three fundamental problems of HMM design [41].

The Basic Evaluation Problem

Suppose there are N states {1,...,N} and that the probability of transition between
states i and j is a;. Define o as the observation of the system at time ¢. According to
the model this observation is governed by a probability distribution dependent only
on the state at time ¢ (recall Figure 5). Let bs(oy) be the probability distribution of o, in
state s (also called the output probability).

If m, is the probability of being in state s at time =1 (initial state distribution), then
the likelihood of observation the sequence O = {01,...,01 } is obtained by summing
the joint probability (the law of total probability) over all possible state sequences s
giving the marginal:
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P(OjA)= D P(O|S,A)P(S|A) (2.18)

= Z ﬂ-sl bsl (01 )aslsz bsz (02 ) . 'asr,l ST bsT (OT )

51,8 50087

where s; is the state at position ¢.

Discrete or Continuous Observation Densities

Depending on the type observation signal the output probability distribution bg(oy) is
discrete or continuous. The observations can be characterized by discrete symbols
chosen from a finite alphabet, as for instance rain, cloudy, sunny or the color values
of a pixel, which can use a discrete probability density for each state of the model.

However many times it is necessary to use a more complex signature given by a
multidimensional feature vector. Although it is possible to quantize such vector via
codebooks etc (see the VQ described in 3.7.1) there might be serious degradations
associated by such techniques. Hence it is desirable to be able to use continuous
observation densities directly. To this end it is necessary to use a probability density
function (pdf) that can be re-estimated in a consistent way, such as the mixture of
Gaussian distributions (described in detail in 2.4.4):

5.(0) =3 a,N(x:41,.5,) (2.19)

i=l

2.4.9 Reestimation Formulas

Estimation of the model parameters is usually performed with the Baum-Welch
procedure which can be interpreted as an implementation of the EM algorithm [40].

The EM algorithm is usually deployed for finding the maximum-likelihood estimate
of the parameters of the hidden Markov model given a set of observed feature
vectors. This algorithm is also known as the Baum-Welch algorithm. We describe the
complete set of HMM parameters for a given model by: A = (aj;, bs(0y), 7). As stated
in [37], three fundamental problems should be solved for using HMMs:

Problem 1 - Evaluation: Estimate P(O|A), the probability of the observation sequence
given the model parameters.

Problem 2 - Decoding: Find the state sequence S = {si,...,st} which is optimal in
some meaningful sense.

Problem 3 - Learning: How to adjust the model parameters A" to maximize P(O|1)?
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As we will see in section 3.2 there are established methods to work out these prob-
lems. They are, in the same order; the forward-backward, Viterbi and Baum-Welch
algorithms.

The calculation of the joint likelihood in (2.1) involves on the order of 2TN" calcula-
tions, since at every t=1,2,...,T, there are N possible state sequences, and for each
such state sequence about 2T calculations are required for each term in the sum. This
computation is prohibitive in practice, even for small number of states N. To preserve
a modest computational feasibility, a more efficient method is used: the Forward-
Backward procedure [41]. Consider the forward variable a.(1) defined as:

a,(i) = P(o,....0,,S, =i| 1) (2.20)

which is the probability of seeing the partial observation sequence oj,...,0; and
ending up in state i at time z. We can effectively define o(i) recursively as follows:

1. Initialization:

a, (i) = 7,b,(0)) (2.21)
2. Recursion
. N .
. (J)= IZ,‘:] a, (l)aij y’j (0,,,) 1<t<T-1 (2.22)
3. Termination
PO|A)=Y" a,(i) (2.23)

The calculation of au(i) requires on the order of N°T calculations rather than 2TN".
In a similar way we can define the backward variable (i), which is the probability
of the ending partial sequence 01,...,01 given that we started in state 7 at time ¢ [37].

With the forward-backward® variables we can define the probability of being in state
i at time ¢ for the state sequence O (also called the occupancy probability),

a0 (2.24)

7.(i)=P(S,10.2) = =5
2 DB

* The forward-backward variables are also amenable for the effective implementation of the Viterbi

algorithm based on dynamic programming.
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and the probability of being in state s;, at time ¢, and state s; at time t+1 given the
observation sequence and model, i.e.

5 (l ) _ at (i)a,_'jbj(otﬂ)ﬂtﬂ (.I) (225)
A= PO 2)

Using the above formulas we can develop the re-estimation formulas for the transi-
tion probabilities, means and covariances (a.k.a the Baum-Welch equations). The
transition probabilities are computed as the ratio of the expected number of transi-
tions from state s; to state s; to the expected number of times s; is visited.

_ Z; S (i,)) (2.26)
A

i

The observation probability distribution is updated by computing the expected
number of times state i is visited while observing O divided by the expected number
of times in state i.

. D@0, 2.27)
Hi=——7
> )

; v, ()0, — 1,0, — 1, )T (2.28)
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o7 ()

>

For details see any of the references on speech recognition [42], [43].
In the next chapter we shall see that the HMM can be expanded to two dimensions

and how it can be applied to image classification by causal reasoning or “top down”
since it specifies how causes (observations) generate effects (image class labels).
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25 2-D HMM

As we pointed out in 2.2 the HMM is a generative model, which is a great advantage
since the same formalization can be used for a variety of tasks, many of which are
relevant to multimedia analysis:

e build a model from examples,

e classify an item [25],

e unsupervised segmentation [39],

e automatic image annotation (the ALIP system [33]),
e detect an object in a stream,

e analyze an object of known type, etc...

Statistical learning is applied to image classification in a variety of ways depending
on the application. One approach is to divide the image into blocks and generate a
feature vector for each block. Once the image has an adequate representation, we can
deploy some classification algorithm; vector quantization, Bayes classifier, HMM,
SVM or decision trees, etc. to the sequence of feature vectors, in order to generate a
classifier.

However when analyzing a small region of an image, it is sometimes difficult even
for a person to tell what the image is about. Hence, the drawback of context-free use
of visual features is recognized up front. For most images with reasonable resolution,
pixels have spatial dependencies which should be enforced during the classification.
For the sake of computational simplicity, the identical independent distribution
(L.I.D.) assumption is commonly used, but the relaxation comes at the cost of loosing
spatial contextual constraints among pixels. In most images, if all the neighbors to a
pixel belong to a class ‘A’, it is not very likely that this pixel belongs to a completely
different class ‘B’ since generally images have a spatial coherence.

We can extend this argument to treat larger image regions. In an upright image
depicting a beach for instance, one can assume that regions will appear in a predict-
able order: sky, sea, sand and vegetation. This natural ordering suggest the use of a
top-down model, similar to the left-to-right model used in speech recognition, but
here the states of the model correspond to the semantic image regions (c.f. Chapter 4)
previously listed.

The HMM considers observations (e.g. feature vectors) statistically dependent on
neighboring observations through transition probabilities organized in a Markov
mesh, giving a dependency in two dimensions. The state process defined by this
mesh is a special case of the Markov Random Field (see section 2.5.2). In the
Markov random field the ordering of past, present and future in the 1-D model is
replaced by spatial neighborhood.
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In order to consider the neighborhood information, one approach is to estimate the
joint posterior probability for the whole image’s labeling configuration. To simplify
the computation the Markov assumption is considered, which states that the label of a
certain pixel (or block of observation) is independent to other pixel’s labels given its
direct neighbors.

The idea of using context information in images has given rise to algorithms based
on two dimensional hidden Markov models [35], [48], [62] which are discussed. The
main difficulty with applying the 2-D model to image classification is computational
complexity. It has been shown that a fully connected 2-D HMM would lead to an
NP-complete problem [36]. Several approximation methods have been developed to
achieve computational feasibility as we will present in section 2.5.4.

2.5.1 Necessary 2-D Extensions for Image Classification

We assume that the 2-D HMM is used to predict images. An image is divided into a
regular grid of blocks. A block is denoted by its position (i,j) and the complete set of
blocks is N = { (i,j): 0<i<w, 0<j<h } where w and # is the width respectively the
height of the image. A feature vector oj;; is computed for each block (i,j) and the set of
feature vectors O = {o;; : (1,)) € N } is the vector field describing the complete image.
Under the 2-D HMM assumption this vector field is generated by the states of the
model. Hence the image is classified according to the feature vectors.

A 2D-HMM is a grid of nodes, one corresponding to each block. Each node can take
any of N possible states {1,2,...,N}. The state of a block (i,j) is denoted s;;. Figure 6
illustrates the image blocks and the corresponding state nodes.
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Figure 6.  (a) Image decomposition into blocks, (b) states of the Markov model.
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2.5.2 Markov Random Field

To extend the Markovian dependence from 1-D to 2-D a more general setting is
needed. The Markov random field® (MRF) [55], [57], [58], [59] defines a joint
probability distribution for a neighborhood system, which specifies nonlinear interac-
tions between the observations of the vector field O. Given all the observations
within a neighborhood of an observation, this observation is statistically independent
of observations outside the neighborhood.

The basic characteristic of the chosen distribution Py, is its decomposition as a
product of factors depending on only a small set of variables. If we specify theses
local dependencies factors we can define the joint distribution Py(xy,...,X,), to end up
with a global model. With such a setup, each variable depends only directly on a few
other neighboring variables. From a more global point of view all variables are
mutually dependent, but only through the combination of successive local interac-
tions.

This key concept can be formalized by the graph for which 7 and j are neighbors if x;
and x; appear within a same local component of the chosen factorization. From a
probabilistic point of view, this graph neatly captures Markov-type® conditional
independencies among the random variables attached to the vertices of the graph.

The local decomposition of Py allows us to devise an iterative algorithms, based on
the common principle: at each step, consider just a few variables, all the others being
"frozen". Markovian properties then imply that the computations to be done remain
local, that is, they only involve neighboring variables.

However the joint probability of the non-causal MRF is not factored into the local
characteristics since it is based on the conditional probability. Fortunately this can be
solved by the Hamersley-Clifford theorem [60], which states that any MRF is equiva-
lent to a GRF (Gibbs Random Field), which is defined by a joint distribution;
therefore the MRF-GRF equivalence theorem allows us to represent the joint distri-
bution X in terms of local conditional probabilities

We consider now the Gibbs distribution and its Markovian properties. Let X;,
i=1,...,n, be random variables taking values in a discrete or continuous state space A
that forms the random vector X = (X,...,X,)" with configuration set Q = A". Differ-
ent state spaces are used depending on the application; A = {0,...,255} for 8-bit
quantized gray values and A = R for continuous color band values. As mentioned, Py
takes a factorized form:

> A random field is a random object with a two dimensional index set.

® The Markovian property — refers to the fact that the number of previous dependencies is fixed.
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Po(x)oc [T f.(x) (2.29)

ceC

where C has a partition of subsets ¢, the factor f; depends only on the subset x, =
{x,1 € c}, and []; f; is summable over Q. If in addition the product is positive
(Vx € Q, P«(x) > 0), then (2.29) can be written in exponential form (let V, = -In f;):

P = x-SV, (x)) (230)

This is, for physicists, the well known Gibbs distribution (or Boltzman) with interac-
tion potential {V. ¢ € C}, energy function (or Hamiltonian):

Ux)=)Y V.(x) (2.31)

ceC

and partition function Z = X, exp{-U(x)}. Note that the configurations of lower
energies are more likely, whereas high energies correspond to low probabilities.

The dependencies induced by the factorization can be represented by an independ-
ence graph. The graph associated with [[; fc for example, is the undirected graph
G = [S,E], with the vertex set S = {I1,...,n}, and the edges (E) which are defined so
that 7 and j are neighbors if x; and x; appear simultaneously in the same factor f..
When variables are associated to the pixels of an image, the most common system of
neighbors (or neighborhood system) are the regular ones where a position (not on the
border) has four (se figure below) or eight neighbors.

Figure 7.  First-order neighborhood system for MRF-based models.

Estimating the Parameters

Learning parameters of an assumed underlying (Gibbs) distribution based on ob-
served samples is a standard issue from statistics, and is often based on the likelihood
(c.f. section 2.4.3) of the observed data.
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We want to maximize the data likelihood L(0) = In Pey(}/) =1In 2 Pexy(X,y), whose
derivation is intractable. But we can compute the expectation of the current fit of 0~
for the gradient of L(0) when set to zero. In this way we can find the 0 that maxi-
mizes the conditional expectation of the distribution given the data. The procedure is
the Expectation-Maximization algorithm which has been introduced in section 2.4.4.
The application of the plain EM-algorithm is usually intractable because of the
complexity to compute the conditional expectation, and the parameter estimation of
incomplete data remains in this context a tricky issue.

However, in the last few years, energy minimization approaches have had a renais-
sance, primarily due to new optimization algorithms such as graph cuts and loopy
belief propagation (LBP) [56].

We summarize the non-causal Markov random fields as follows:

Advantages
e [sotropic behavior.
e Only local dependencies.
e Normally provide better synthesis.

Disadvantages
e Computing probability is difficult. The minimization of the energy function
may be drastically time consuming, or may get stuck in local minima.
e Parameter estimation is difficult [59].
e For graphs containing cycles, loopy BP is not guaranteed to converge or be
correct.

2.5.3 Markov Mesh Random Field

In this thesis we consider a special case of the Markov random field, the Markov
mesh random field (MMRF). In the case of 1-D HMM the notion of past and future
allowed us to develop the joint probability of states P(S|A) which was amenable to
the forward-backward, Viterbi and Baum-Welch algorithms. The Markov mesh
model reintroduces the notion of past, present and future thanks to a raster scan [57].
Let S= {sij ,i = 1,...,w; j = 1,...,h} be a wx h array of states (see right panel of
Figure 6) and let S;; be the set of states to the left or above sjj: Spn = {Smn, m <1 or
n <j}. Then the second order Markov mesh can be defined by the following property
(c.f. Figure 8).

P(s;; 1S,;,)=P(s; ;|8 ;1:5.1;) (2.32)
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Figure 8.  State dependency according to the second order Markov mesh.

Knowing the states of all the shaded blocks, we need only the states of the two
adjacent blocks in the darker shade to calculate the transition probability to a next
state (the order is introduced only for stating the assumptions). During the classifica-
tion, blocks are not classified one by one but the algorithm tries to find the optimal
combination of states jointly for all blocks.

We summarize the causal Markov mesh random fields as follows:

Advantages:
e Simple expressions for probability.
e Simple parameter estimation.
e Suited to real-time implementation.

Disadvantages:
e No natural ordering of pixels in image.
e Anisotropic model behavior.

Now we explain the causal procedure of how the image is described by the vector
field O. If we know the state s;; that the system occupies at each position (i,j) then the
probability of observing the image can readily be computed. The 2-D HMM gener-
ates the observations in the following way:

1) the node at position 0,0 enters state sy (according to the initial probabil-
ity distribution).

2) the node 0,0 emits the observation 0 according to a probability distribu-
tion.

3) the system goes to node 0,1 with a probability that depends on the state
chosen for node at 0,0.

4) the node at 0,1 emits the observation vector 0o,

5) etc. for all nodes generated in raster order until node w-1, h-1.

The probability of this process is the product:
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P(o|s)=P(s,,)xP(0,,|8,0) % P(5y, |8,0)xP(0y, |59,850,)-.% (2.33)

X P(sh—l,w—l | 80,050,155 p_1, w1 )X P(oh—l,w—l | $0,0550,1 "“sh—l,w—l)

The causality enables the extension of Viterbi and Baum-Welch algorithms to the
2-D case. However, even with the simple second-order Markovian model considered,
the direct extension of these algorithms to the 2-D case is still exponential in compu-
tational complexity [61] because of the double dependency between s;j and its two
neighbors s;i.;; and s;j;. Efficient approaches and approximations are therefore
necessary for applications of practical value.

2.5.4 Previous Work on 2-D HMM

There's a wealth of prior related work on statistical image modeling in computer
vision, image processing, and machine learning. We try to emphasize some of the
work that is most related to our proposed model. The references below are to be
taken as a selection, not as the complete list of work in the cited areas.

Many approaches have been proposed to extend the 1-D HMM to 2-D HMMs [44].
Among the first ones is [41] which uses a 1-D HMM to model horizontal bands of
face images. A more elaborate idea is to extract 1-D features out of the image or
video, and model these features by coupling one or more 1-D models [50]. The
algorithm is based on projections between component HMMs and a joint HMM. Two
HMMs are coupled by introducing conditional probabilities between their state
variables. The resulting distribution does not satisfy the Markov property, and
consequently there is no simple decomposition of the prior probability that lead to
simple parameter estimation procedures. A common way to model a system with two
state variables is to form a super-HMM from the product of all possible states.
However this squares the number of states and training data becomes very sparse in
relation to the number of states. The proposed algorithm takes the huge parameter
space and embeds within it a manifold subspace which represents all possible combi-
nations of a much smaller system of coupled HMMs (CHMM). A detailed exposition
can be found in [51].

Another approach is to consider independent horizontal and vertical 1-D HMMs. For
the problem of OCR Hallouli et al.[63] explored two different fusion schemes:
decision fusion and data fusion. In the decision fusion scheme, the classifiers are
assumed independent which enables to derive an approximation of the joint likeli-
hood. In the data fusion scheme line and column features occurring at the same
spatial index are considered correlated. The main disadvantage of these approaches is
that they greatly reduce the vertical dependencies between states, as it is only
achieved through a single super-state.
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PHMM (Pseudo 2-D HMM)

Agazzi et al. [52], [62] extended the 1-D HMM to a pseudo (or embedded) 2-D
hidden Markov model (PHMM). The model is called “pseudo 2-D” because it is not
a fully connected 2-D HMM. The assumption is that there exists a set of “super-
states” that are Markovian which subsume a set of simple Markovian states. For
images the superstate is decided depending on the transition probability based on the
previous superstate. The superstates determine the simple Markov chain to be used
by the entire row. A simple Markov chain is then used to generate observations in the
row. Inherently from its structure this model is expected to perform better with
structured images like documents. Since the effect of the state of a pixel on the state

below is distributed across the whole row.

Figure 9.  The observation for the word “ul” and the pseudo 2-D HMM.

Figure 9 shows an example how to represent a word by linking 1-D left-to-right
models with vertical superstates. The PHMM can be specified by the parameter set:
A=(N, A, I1, A) where:

1) N, is the number of superstates in the vertical direction. It is determined by
the structure of the word. Consider the word “ul” in Figure 9 if we group
similar rows together as indicated by the horizontal dark lines, then it is natu-
ral to assign three superstates, one for each group of lines (N=3).

2) A={a;:1<1j <N} is the superstate transition probability distribution.

3) II={m:1<j<N }, the initial superstate probability distribution.

4) A= {N:1<j<N}, the parameters set for specifying the horizontal 1-D
models within superstates. For the j™ superstate, A’ consists of the number of
states, the transition probabilities, observations probabilities and initial state
probabilities.

The model parameters A are estimated by using the segmental k-Means algorithm
[37]. The observation sequence O, of each training sample is segmented into super-
states sequence by determining the optimum alignment according to the current
model parameters. The segmentation is achieved by a double embedded Viterbi
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algorithm exposed in [62]. The model parameters are initialized arbitrarily and then
re-estimated according to histograms of the results of the segmentation. The final
step in the training loop is to test for convergence. The training procedure stops if the
difference between the total accumulated likelihood of the current model and the
previous falls below a threshold.

The PHMM has shown to work well with OCR problems. In applying the algorithm
for machine recognition of keywords [62] an accuracy of 99% was obtained, while
the conventional 1-D HMM achieved only 70% accuracy rate. Although the PHMM
performs well with regular images, such as documents, since the effect of the state of
a pixel on the neighboring state is distributed across the whole column, it is too
constrained for classification of arbitrary images.

Path Constrained HMM

In an effort to improve image classification by context using a 2-D HMM, Li and
Gray [39] proposed to use meta-states, representing state sequences on a diagonal.
Thus letting a diagonal isolate the elements in the expansion of the probability of
states P(s). The diagonal is chosen since it is assumed that ignoring dependencies
along a diagonal intuitionally degrades performance less. The difference from the
standard algorithms is that the number of possible state sequences varies depending
on the length of the diagonal. In fact they grow exponentially with the number of
blocks on the diagonal, so they use only the N sequences with the largest posterior
probabilities. Another assumption is that the optimal sequence yields high likelihood
when the blocks are treated independently.

) o,
‘l’ﬂC 0,0 X_;; o, () [

whY | O | O Ay |
R (5 b Yhewez

Figure 10.  Subset of state configuration along diagonals.

To appreciate the idea we expose the formulas for the state probabilities here. We
denote the state at each node by Xjj € { si,52,...,sn}and Y; (the meta-state) is the state
sequence on diagonal i. Thus for the meta-states we have a 1-D Markov model:

Y -5V Y, —>.. (2.34)
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The state variables on diagonal 7 is {Xio, Xi.1,1,...,X0i}, Where (w,h) is the number of
columns and rows respectively as shown in Figure 10. Now it can be shown that
P(Yi|Yi1,...Yo) = PC Yi | Yi1) [39]. Suppose Y;= {Xi,o, Xi-l,l,---,XO,i}; then
Yi1 = {Xi.1,0, Xi2,15--,X0,-1} and

P, Y s X)) = P(X, 0, X0 X0, | Vi, Y X)) (2.35)
= P(xi,o |Yi—19"'5Y0)'P(xi—1,1 |xi,09Yi—1""’Y0)
o P(xg 1 X e X505 Y X))

= P(xi,o |xi-1,o)'P(xi-1,1 |xi—2,1xi—1,0)"'P(x0,i |x0,i—1)

Since all the states x;; that appear in the conditions’ are in Y;.; it is concluded that

P(Y: | Yifp---aYo) = P(Yz | Yifl) (2.36)

Now we can expand the probability of the states P{s;; : (1,j)) € N }, where N = { (i,)) :
0<i<h,0<j<w } refers to all blocks in the image

Pix,;:(i,j)e N} =PX,) - PY, | Yy)..P(Y,,, ,Y,., ) (2.37)

Thus we see that the sequence Y serves as an isolating element, which is the key for
developing the algorithm.

Variable State Viterbi

Let us now see how to estimate the model parameters by a modified Viterbi training
algorithm. In Viterbi training it is assumed that the single most likely state sequence
accounts for practically all the likelihood of the observed data, thus searching for the
sequence that maximizes P(s | y, A), which is equivalent to maximizing P {x;j, ujj : (1,))
€ N} (MAP rule) as we saw in section 2.4.3. By using (2.37) we can expand

P{xi, ujj : (1,)) € N} as follows:

Pix; ;,u,;:(i,j)e N} (2.38)
:P{xi,j :(iaj)EN}‘P{ui,j :(i’j)EN|xi,j (i, j)e N}
=P{x;;:(i,j)e N} HP(ui,j | x;;)

(i,j)eN

=PY,) P, |Y,)) P, |Y)..PY, , Y., 3) HP(”i,j |xi,j)

(i,j)eN

" the past blocks - above or to the left as described in 2.5.3.
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Since Y; isolates the elements in the expansion the Viterbi algorithm can be applied
directly. The difference however from the normal Viterbi algorithm is that the
number of possible state sequences at every position increases exponentially with the
number of nodes on a diagonal i. If there are N states in the model and v nodes on a
diagonal, then the amount of computation is in the order of N". This is why this
version of the algorithm is called a variable-state Viterbi.

We can illustrate the number of state sequences in a state transition diagram as
depicted below.

state

sequence

() L)
GNONONO

» diagonal

Figure 11.  Viterbi state transition diagram.

To reduce computation, at each diagonal, the algorithm only uses 7 of the N” possible
state sequences. This is achieved by computing the posterior probability of a se-
quence of states on the diagonal as a product of the posterior probability of every
block. Then the n sequences with the largest posterior probabilities are chosen as the
n nodes allowed in the Viterbi transition diagram. This procedure is justified by the
assumption that the optimal state sequence yields high likelihood when the blocks are
treated independently. This sub-optimal version of the algorithm is referred to as the
path-constrained variable-state Viterbi algorithm. (PCVS Viterbi).

We implemented the PCVS Viterbi to compare it with our model in chapter 4.2.4. A
fast recursive algorithm can be developed for finding the n sequences with highest
posterior probabilities. We don’t need to compute the probabilities for all the N” state
sequences in order to find the n largest. Let us denote by vyim the log likelihood of
block i being in state m, then the selection of the n nodes (c.f. nodes in the state
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diagram) is to find the sequence {s;: i= 1,...,v} with the largest Xic(1, .} Visi - But we
don’t need to compute this sum for all sequences, we need only to find argmaxg; visi
for each i (block) since the blocks on a diagonal are assumed to be independent.

Therefore we compute a sorted list of the highest y; , for each node and keep track of
the n-sequences which gives the best solutions, and what previous state sequence that
was used, for each diagonal.

To ensure that the PCVS Viterbi gives results sufficiently close to the variable-state
Viterbi algorithm, the parameter n should be larger when there are more blocks on
the diagonal. For this reason we partitioned the images into sub-images and set n to
16. See section 4.2.4 for an exposition of the application of the algorithm to multiple
resolutions HMMs.

The authors of [39] claim that the algorithm perform better than other popular block-
based classification algorithms such as LVQ (Learning Vector Quantization) [46]
and CART (decision tree) [47].

Finally several attempts have been done to heuristically reduce the complexity of the
HMM algorithms by making simplifying assumptions which approximate the real
algorithms:

e ignore correlation of distant states [48],

e approximate probabilities by turbo-decoding [49],

e sclect a subset of state configurations only [39].

The main disadvantage of these approaches is that they only provide approximate
computations, so that the probabilistic model is no longer theoretically sound.
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Chapter 3
Dependency Tree Hidden Markov
Model

The 2-D HMM formalization is based on two assumptions. The first assumption
made is that

P(s;;|s;,0.,:,j)e¥)=a, (3.1)
where W ={(i",j"): (i'J') < (@, j)}
and m=s, . ,n=s,; ,l=5,;

This means that the state process is first order Markovian: the probability that the
system enters a particular state at position (i,j) depends only upon the states at the
adjacent observations in horizontal (i-1,j) and vertical direction (i,j-1). The second
assumption is that the feature vector o;; is dependent only on the state at position (i,),
i.e. the observation is conditionally independent of the other blocks.

As earlier we denote by A the parameters of the HMM then, under the Markov
assumptions, the joint likelihood of O and S given A can be computed as:

P(0,S|4) = P(O|S,2)P(S|1) (3.2)

—HP(. 3. 2Pl s

llj’ tjl’ )

Note that the conditional probability P(s;j|si;-a,Si-1,5,A) reduces to P(syj|si 1) for i=1,
to P(si.1[si-1,1,A) when j=1, and to P(s; 1| A) if i=j=1.
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In the following section, we will present an efficient method for computing P(O,S|A)
based on the idea of a random dependency tree.

3.1 Dependency Tree

As before mentioned the problem with 2-D HMM is the double dependency between
sij and its two neighbors, s;.;; and s;j.;, which does not allow the factorization of
computation as in 1-D, and makes the computations practically intractable.

(i)
Figure 12.  2-D Neighbors.

Our idea is to assume that s;; depends on one neighbor at a time only. But this
neighbor may be the horizontal or the vertical one, depending on a random variable
t(i,j). More precisely, t(i,j) is a random variable with two possible values:

Q) = (i—1,j) withprob 0.5 (3.3)
b= (i,j—1) withprob 0.5

For the position on the first row or the first column, t(i,j) has only one value, the one
which leads to a valid position inside the domain. t(0,0) is not defined. So, our model
assumes the following simplification:

Po(silsin,) it ) =3-1j) (34)

P(S;j|Si1 58 jost) = ep e s ..
st {p,,(s,.,,.\s,,,.o if (i, ) = (i, j~1)

If we further define a “direction” function:

Voift=(>-13j) (3.5
D(t):{H ift=(i,j—1)

then we have the simpler formulation:

P(si,j

Sic1jo 8t 500 = Poi iy (8i181y) (3.6)
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Note that the vector t of the values t(i,j) for all (i,j) defines a tree structure over all
positions, with (0,0) as the root. Figure 13 shows an example of random dependency
tree.

Oﬂﬁﬂﬂﬁﬂﬂﬁ
PTY ¥
otete |0 |dHefeto [ O
¢ | ¢to | dteteto | dHeto
¢ |ete O]9 |Hete | &40
¢S |10 [y | O | ¢tete
o |10 [He |9 | &6
¢S |9 | e+e191o | e1o
Ho|d[d[d|ede [dHedo
Qe |99 | Hetfetletw
Old|d|d][d|dHetedo|d

Figure 13.  Example of a random dependency tree.

With this tree structure we can compute the probability of an observation produced
by the model whatever the state sequence (since the states are unknown):

P(0)=)_P(o,s|1) (3.7)

and the most probable state sequence s~ that generated this output

argmax P(o,s | 1) (3.8)

s

Comments to the Anisotropy

The normal way of constructing a causal model is to impose the model constraints
from left-to-right. We believe that another choice would be equivalent (although we
have no proof). This was confirmed by performing the experiment in section 5 using
trees with different roots, without any significant changes in the result.

Now we recall the three fundamental problems stated in 2.4.9.
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3.2  Solution to Problem 1 (Evaluation Problem)

We want to compute the likelihood of the observation given the model parameters
P(OJA) (2.1). In section 2.4.9 we introduced the forward-backward variables that
enabled us to compute this joint likelihood in an efficient way 3.6.

In a similar way we define the inside probabilities Bii(s) as the probability that the
part of the image covered by a sub-tree T(i,j) with root (i,j) is produced by the partial

observation sequence and ending up in state s at position (7,j) (c.f. shaded portion in
Figure 14).

10,00

R

(i) |

S e

Figure 14.  The inside probabilities

These values can be calculated recursively, in reverse order (starting from the last
position), according to the relations:

e if (i,j) is a leaf in T(i,j):

Bij (s) = P(Oi,j|5) (3.9

e if (i,j) has only an horizontal successor:

Bij (s)= P(Oi/j |S)ZpH(SI|S)ﬂi,j+l (s") (3.10)

e if (i,j) has only a vertical successor:
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ﬂi/j (s)= P(Oi/j |S)ZPV(SI|S)ﬂi+1,j(SI) (3.11)

e if (i,j) has both an horizontal and a vertical successors:

. ' (3.12)
ﬂi,j(s) = p(oi,j |S)[Z pu(s |s)ﬂi,j+l(s )J
[va (SI|S)ﬂi+1,j(sl )J
The probability that the complete image is produced by the model is then:
P(O|t) = fyo(s;) (3.13)

which gives the solution to the problem. Problem 1 can be used in classification
problems where we want to choose a model that best matches a test observation.

3.3  Solution to Problem 2 (Decoding Problem)

Problem 2 is the one in which we attempt to find an optimal state sequence associ-
ated with the given observation sequence. The Viterbi algorithm chooses the states s;
that are individually most likely. This optimality criterion maximizes the expected
number of correct individual states.

s =argmax P(s | 0) (3.14)

s

P(s,0)
= arg max
s P(o)

= arg max P(s, 0)

N

The criterion is also called maximum a posteriori (MAP) because it maximizes the
posterior probability of s given o. The key of the algorithm, based on dynamic
programming techniques, is that the object function can be computed as a sum of
functions depending on the state of the previous one. This makes the amount of
computation at the order of N*(w x h) instead of N™ * " that a brute-force optimiza-
tion would require.

We define T(i,j) as the sub-tree with root (i,j), and Bj(s) as the highest probability
that the part of the observation covered by T(i,j) is generated starting from state s in
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position (i,j). We can now compute the values of Bj(s) recursively by enumerating
the positions in the reverse raster order:

if (i,j) is a leaf in T(i,j):

Bii(s) = p(o; s) (3.15)

if (i,j) has only an horizontal successor:

Bii(s) = plo;;s) mgx Py (s |S)1Bi,j+1 (s") (3.16)

if (i,j) has only a vertical successor:

B.i(s) = p(oy j|sJmax Py (s'|8) B i (5) (3.17)

if (i,j) has both an horizontal and a vertical successors:

Bi.;i(s) = plo; ; Is) (mgx pu(s |S)ﬂi,j+1 (s )) (3.18)

(mgx pv(s |S)ﬂi+llj (s ))

To actually retrieve the state sequence, we keep track of the argument which maxi-
mized (3.14) for each position (i,j) and s. The optimal state sequence is found by
backtracking over the stored best arguments. The value By o(s;) is the probability of
the best state sequence for the whole image, and can be used as an approximation for
solving problem 1 (estimate P(O|1)).

Note that the complexity of the algorithm is only linear in the number of positions,
and that it is similar to the forward-backward algorithm, with the difference that
maximization over the previous states is replaced by summations.

3.4  Solution to Problem 3 (Learning Problem)

Problem 3 is concerned with the issue of estimating the model parameters A that
maximizes P(O|A). In the 1-D case the Baum-Welch method (section 2.4.9) is
generally used which is based on the EM algorithm. The reestimation procedure
gives a local maximum solution and is called a maximum likelihood estimate of the
HMM.
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Here we present a variation of the Baum-Welch algorithm inspired by the inside-
outside algorithm [64], [65], which is a way of re-estimating production probabilities
in a probabilistic context-free grammar.

Recall that the reestimation formulas in the 1-D case (2.26), (2.27), (2.28) was
defined by using the forward-backward probabilities to describe the sequence of
events leading up to the probability of being in state s;, at time t, and state s; at time
t+1. In a similar fashion we define the inside-outside probabilities to compute the
joint event that the system is in state s; at position (i,j) and state s; at position (i,j+1)
or (i+1,j). We have already introduced the inside probabilities in section 3.2.

To define the outside probabilities we denote by O(i,j) the portion of the image that is
not covered by the sub-trees starting with the root at (i,j) (see Figure 15). For exam-

ple, if (i,j) has two successors, O(i,j) is the portion of the image outside the sub-trees
T(@+1,)) and T(1,j+1).

[(0,0)

[T )

(i+1)

Figure 15.  The outside probabilities.

If we denote by a;j(s) the probability of starting from position (0,0), generating the
output vectors for all the positions in O(i,j), and reaching position (i,j) in state s, then
the probabilities may be computed by the following recursion:

° ay,(s,)= p(00,0|Si)7 ag,(s) = 0fors #s;,
e if (i,j+1) has an horizontal ancestor:

i+ (s)= p(0i1j+1 |S)Z i (s")pw (S|S' )Z Pv (S"|S' )ﬁm,j (s") (3.19)
(in this case, O(i,j+1) is the union of O(i,j), (i,j) and T(i+1,j)),

e if (i+1,)) has a vertical ancestor:
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Aiyj (s)= p(0i+1,j |S)Z & j (s")py (S|S' )Z py (s |S' )ﬂi,jﬂ (s") (3.20)

(in this case, O(i+1,j) is the union of O(i,j), (i,j) and T(i,j+1)). The cases where (i,j)
has only one successor lead to simpler formulas:

e if (i,j+1) is the horizontal successor:

i j+1 (s) = p(oi,j+1|S)Z i ; (s' )pH(S|S') (3.21)

e if (i+1,)) is the vertical successor:

Aiij (s)= P(01+1,j|5)z & (s' )pv(5|5') (3.22)

Thus, using the inside and outside probabilities, the probability of generating the
complete image is:

3.23
P(O| t) = zai,j(s)[z pH(Sl|S)ﬁi,j+1 (s )J ( )

(z Py (s"8)Bru 1" )J

During the maximum likelihood training, we perform the E (expectation) step by
estimating the number of times that a particular transition, or a particular emission, is
used while generating the complete image. This is sometimes referred to as occu-
pancy probabilities and can be written as:

GIORDWNCOLIC (3.24)
71](3) zpv(s |S)ﬂ1+lj(s )

Using this formulation we can write (3.23) as

P(O[ 1) = )" a; i ()7 (s) i (s) (3.25)

Note that this relatlon is valid for all positions (i,j). Note also that if we define ;/l (s)
(respectively )/, .(s)) to be equal to 1 when (i,j) has no horizontal (respectlvely
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vertical) successor, then the formula is valid whatever the number of successors of
(1,j) is.

The probability for being in state s at position (i,j) while generating the complete
image is therefore:

P(s, =s (3.26)

L]

0,0)=———0a, (9)7.;(5)7,,(5)

1
P(0]1)

The expected number of times that the system is in state s during the generation of
the image is:

(3.27)

Da, ()] (s)

1
E(s)=) P(s,, =s =—
() Z;, (s, PO

The probability for going from state s at position (i,j) to state s’ in position (i,j+1)
while generating the complete image is:

P(S,,. =8,8; i = s' (328)

0,0)=———a, (), (s's)

P(0| t)
ﬂi,j+1 (s' )7;,// (s)

The expected number of times that the horizontal transition from s to s’ takes place
during the generation of the image is:

E(s—2s') = ZP(qu =5,q; ;11 =50,1) (3.29)
ij
1

~P(0] t)Z SOMCIDEFNICHAI0

This provides the basis for the reestimation of the horizontal transition probabilities:

E(s—>s) (3.30)

P (ss) = ZE(S TR

The vertical transitions are handled in the same way. The reestimation of the output
probabilities is similar, as the probability of being in state s at (i,j) is also the prob-
ability of emitting the output vector o;; from state s at position (i,j). When the output
probability distribution is discrete, the re-estimate is obtained by counting:
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E(s — o) (3.31)

p'(0|s): ZE(S —0')

When the distribution is continuous, the expected number of times that the emission
is observed can be used to update the parameters of the distribution. In the case of a
mixture of Gaussian distributions, its means, covariances and mixing coefficients,
® = (o, Ki, Zi ). It can be shown [54] that the reestimation formulas for the coeffi-
cients of the mixture density take the form (example for a horizontal successor):

3.32
. Z(i,i)eN 7:11' (s) Oi,i ( )
H= H
Z(i,i)elv 7!',] (s)
o Dunen715(8) Oy = DO, = ) (3-33)
Z(i,i)eN 7/5 (s)

In summary, the ML algorithm consists in iterating two steps over the whole set of

training images:

e Compute the inside and the outside probabilities (for an image and dependency
graph),

e Accumulate the expected number of occurrences for transitions and outputs.

When all images have been processed, the probabilities are re-estimated, and a new
iteration on the set of images is performed. A stopping criterion is used to terminate
the iterations.

Another way of estimating the model parameters is by so called Viterbi training. We
replacing the “soft” classification reflected by y, ; (s) by “hard” classification, y, ;(s)
= I(s’=k), i.e., 7:,;(s) equals 1 when the optimal state sequence is in state s at (i,)),

and 0 otherwise. Then we update the parameters with the same formulas as in the
EM-estimation.

An approximation to the maximum likelihood training provided by the Baum-Welch
algorithm is what is often termed Viterbi training, in which each observation is
assumed (with weight of 1) to have resulted from the single most likely state se-
quence that might have caused it.
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3.5 Implementation Issues for HMMs

The discussion in the previous section has primarily dealt with the theory of HMMs
and its extensions to 2-D. Here we comment on some practical implementation issues
including numerical problems, the choice of initial model, model size (number of
states) and computational complexity.

Numerical problems

It is well known that that the implementation of the forward-backward technique
obtained by a mere translation of Baum’s formulas into computer programs would be
distorted by underflow problems on any existing computer for all but the most trivial
problems. Levinson et al. [53] have proposed a rather heuristic way to remedy the
situation which consists in rescaling the forward and backward probabilities.

Recall from the definition of the forward variable

a,(i) = P(o,....0,,S, =i| 1) (3.34)

that each o(i) consists of a sum over a large number of terms.
. N
() =[P, (0,) 11T (3.35)

Since each term a;j and b; is generally significantly less than 1, it follows that as the
number of observations (t) starts to get big (e,g, 100 or more), the terms (i) heads
exponentially towards zero. For sufficiently large ¢ the range of computing o(i) will
exceed the precision range of virtually any computer, hence a rescaling method is
needed as presented in [37], [53].

When using the Viterbi algorithm to compute the maximum likelihood state sequence
we can use logarithms instead of the scaling procedure. Using the logarithms during
the calculations not only solves the numerical precision problem [53] but also

simplifies products to sums. Therefore we maximize the logarithm of the probability
from (3.14).

s" =argmaxlog P(s | 0) (3.36)

s

then the highest path probability Bj(s) for horizontal successor is computed as

log 5, ,(s) = log p(o, |s) + maxlog p,, (s']s) + 5, ., (s") (337)
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and the corresponding for a vertical successor
log 5, ,(s) = log p(o, ,|s) + maxlog p, (s'|s) +/,,,,(s') (3.38)

This will give us log P(O|A) instead of P(OJL), but with less computation and no
numerical problems.

How to choose initial model parameters?

The initial model depend on the choice of number of states, continuous or discrete
observations, and in the case of continuous observations; the number of Gaussian
mixture components. There is no theoretical way of making these choices, but they
are based on the experience from working with HMMs. They depend on the nature of
the physical problem, the low-level signal, the amount and nature of training data.

Computational Complexity
As we could se in section 2.4.9, the key to re-estimate the model parameters is to
compute y,(i) and&,(i,j). If we compute them directly from equation (2.24) and

(2.25) we need to consider all the combination of states. Since at every position there
are N possible states which can be reached and we have w x h positions, there are N
*M state sequences. For each such state sequence there are about 2(w x h) computa-
tions for each term in the sum of (2.1), hence we have a complexity of the order
2(w x h)N™* calculations.

By introducing the forward-backward procedure the complexity is reduced to o(N?)
(or more precise wN? calculations), which is still intensive. If we consider a modest
model with 16 states and 22 x 16 observation blocks, there are on the order 22x16°*'
~ 10* calculations. The complexity of the DT HMM is linear with the number of
observations as in the 1-D case (w x h)N?, since the algorithm assumes that the states
depends at one neighbor at the time.

3.6 Experiment

Our first experiment was to use the dependency tree HMM as the framework for a
context-dependant classifier for images. We also explored how the balance between
structural information and content description affect the precision and recall by
varying the size of the blocks.

3.6.1 Context Dependent Image Categorization

Conventional block-based classification is based on the labeling of individual blocks
of an image, disregarding any adjacency information. When analyzing a small region
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of an image, it is sometimes difficult even for a person to tell what the image is
about. Therefore we are motivated to model the context between visual features. The
HMM model context by considering observations statistically dependent on
neighboring observations through transition probabilities organized in a Markov
mesh, giving a dependency in two dimensions.

We train a set of models, each representing a semantic class using the development
video archive annotated by the TRECVid 2005 participants (see section 3.6.4). To
perform classification we compute the likelihood of the model P(O[L) to choose a
model that best matches a test observation as described in section 3.2.

3.6.2 System Design

We implemented an experimental system which processes the TRECVid database to
extract signature features and semantic descriptions. The results were stored in an
indexed database to speed up experiments. For the classifier we implemented both a
discrete and a continuous DT HMM. The discrete model uses a vector quantization
(LBG-quantizer [77]) step to handle multivariate signature vectors, and the continu-
ous model uses a GMM to describe the output probabilities. We use the modified EM
algorithm to estimate the GMM and K-means to initialize the parameters. To evalu-
ate and analyze the result we calculate a precision — recall curve and list the top 50
ranked frames. The presented results are based on the continuous model, whereas the
discrete model was used for verification.

As in all block-based classification systems, an image is divided into non overlapping
blocks, forming a regular grid. Feature vectors are then evaluated as statistics of the
blocks, which can be regarded as a sequence of observations. The assumption in a
2-D HMM is that the observation sequence was produced by the model, i.e. P(O | 1)
where O is the observation sequence and A the set of model parameters. The number
of states is a fixed parameter and is set to 16 (N); each one is associated with a
Gaussian mixture model to represent the continuous observation densities, which has
a fixed number of components (M):

< (3.39)
b_i(0)=26im7z0,,uim,2im 1<j <N
m=1

We use the modified Baum-Welch algorithms (see section 3.4) to estimate the model
parameters in the training step. To classify an image its low-level features are ex-
tracted and then P(O | 1) is computed for each model giving a score on how well the
model matches the observation, and then search the model with highest a posteriori
probability. A general illustration of the classification system is shown in Figure 16.
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Figure 16. Image Categorization Scheme.

Since we are interested in exploring the balance between structural information and
content description, we vary the size of the blocks. Using big blocks means that
content description becomes more important while small blocks imply that structure
becomes more prominent and content description simpler. To produce the observa-
tions for training we decompose the image into n, by n, non-overlapping blocks as
shown in Figure 17. This gives us a vector field describing the whole picture,
O = {o;;} where oj; is the feature vector extracted at position (i,j). We let the block
size vary in the range of 176 x 120 to 2 x 2 pixels.

B R e aRRE
!E‘!"'_:]IIIIIIIF'--"-'HEII

Images decomposed into blocks with different sizes; (a) 44x40, (b)
16x15 and (c) 8x8 pixels.

Figure 17.

3.6.3 Extracted Low-Level Features

The visual features were extracted from the decompressed key-frames in the source
videos of the TRECVid 2005 development archive [66] as described below (see A.1).
As aforementioned the image was split into blocks before extraction.

We designed and implemented feature extraction algorithms for color moments and
DCT coefficients. In the light of the fact that we use Gaussian mixture models it was
desirable to use features which are Gaussian distributed and are as much uncorrelated
as possible. Further as it is well known that histogram output as features has highly
skewed probability distributions and can therefore lead to ill-conditioned systems, we
decided to use HSV means and variances for color descriptors and DCT coefficients
for their discriminative ability of energies in the frequency domain (see A.2). Hence
for each block, there are six color features and 16 DCT coefficients { Hy, S,,, V., Ho,
S, Vo, Dij . ij € (0,1,2,3) }. The definition of the DCT coefficients is shown by
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Figure 18. We pick the coefficients corresponding to low- and middle frequency
response in each direction since, which are visually more discriminating.

Figure 18.  DCT coefficients of a 8 x 8 image block.

Since our classifier is trained over a sequence of observations; the number of dimen-
sions is the same of that of the block (22-dimensions). With this order of
dimensionality we disregard the possibility of dimension reduction.

3.6.4 The Dataset

The algorithms were tested on data from TRECVid 2004 during development, and
then the experiments were carried out on TRECVid 2005. The archive consists of
133 annotated video files corresponding to 63 GB, from which we used 9473 random
images. To manage the extensive amount of data and numerous files we developed a
Sample parser (see Appendix B). Given a header file and a label, the Sample parser
creates an indexed subset of frames to speed up the training and test process.

Each video has a common shot boundary reference that was provided by the TREC-
Vid organization. To create the shot reference, the videos was segmented and
keyframes defined according to a scheme that guarantees that a shot is at least two
seconds in length. We decompress all annotated keyframes within each shot, crop it
to a standard size of 352x240 pixels, and then compute image signatures on features
extracted from those representative images. The classifier was jointly trained on 100
frames annotated as “Waterscape/Waterfront”. Some sample images are shown in
Figure 19.

o et e

Figure 19.  Images annotated “Waterscape Waterfront” from the TRECVid 2005
archive.
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During training we measure the average probability of the model for different
number of Gaussians per mixture (GPM) to investigate how that affects the perform-
ance of the model. The training was performed on a Pentium 2.99 GHz PC with a
LINUX operating system. The approximate time to train a model with 16 states and
22 x 16 blocks was 3 hours. The graph below shows the evolution of likelihood of
the training data during the training of a model based on blocks with the size 88x60
pixels.

2: blocksize 88 x 60
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Figure 20.  Likelihood of the training data for three different gpm’s

We choose to use five Gaussians per mixture in our further experiments since they
provide a good compromise between computational complexity and performance.

3.6.5 Results

Here we noticed the problem of one known drawback of the HMMs, that the output
probability plays a more important role than the transition probability. The output
distribution ranges over greater dispersion than the transition probability which range
over 16 states only, with a majority of transitions from a state to itself. This explains
why an image which has an almost uniform color that has a high output probability
from one of the states is likely to get a very large emission probability (see Figure
below).
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Figure 21. 20 top ranked images are uni-colored.

The first images annotated as “Waterscape/Waterfront” appears on rank 122 out of

9473 images in the test set.
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Figure 22.  The first true positive appears on position 122 of 9473 test images.
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One possible approach to remedy this problem is to rescale the transition probabili-
ties after the training. The looping probabilities’ can be set to a predetermined
maximum constant and then all the other probabilities are rescaled so that they sum
up to one.

In the speech community fully connected HMM (ergodic models’) are rarely used
since too much freedom can be difficult to train. Instead restrictions to state transi-
tions are sometimes introduced in modeling language characteristics such as a
minimum duration constraint [67] for example. In this experiment it appears that we
have the opposite problem; instead of forcing a minimum duration of the signal we
would like to minimize the maximum duration.

Instead of rescaling the transition probabilities, we suggest a modified algorithm:
during the training phase, we compute the probability that a state is used in a given
position p(s | (i,j)). We use this as prior probability providing some knowledge on the
position of states in the image. This allows us to describe, for example, that states
representing sky colors are more likely to appear in the top area of the image. We
then compute the inside probabilities with prior, which are given by the formula:

3.40
ﬂli,j (s)= P(Oi,j |S)P(S|(i: J))[z pH(SI|S)ﬂIi,j+1 (S')] ( )

[z pv(s |S)ﬂ|i+1,j (s )]

This modification, to weight with prior probabilities, later shoved to increase the
precision with 19%. To explore how the block-size (structural information) affects
the precision, we trained seven models; each one based on observations with a
different partitioning, and then the models were tested against a common test set
resulting in a ranked list. The graph below shows the average precision for seven
different block sizes. We noticed that a block-size of 16x15 pixels (model #4) gives
the highest average precision 0.036.

¥ The probability for a state to reach itself.

® A model where the transition from any state to any other state is possible.
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Figure 23.  Avg. precision for block size: (1) 176x120, (2) 88x60, (3) 44x40, (4)
16x15, (5) 8x8, (6) 4x4, (7) 2x2

We can also see that the performance decreases rapidly with very large blocks. The
explanation for this is that the averages of the color channels are not descriptive
enough, and that the DCT coefficients will reflect only high frequency variations
since the scale will be higher when the block-size is increased.

A solution to this problem would be to use histogram-based features, for which I can
choose the number of bins (or dimensions), but then I am confronted with GMMs
with spikes and very narrow variances which gives rises to singularities when
training the HMMs. For this reason future experiments concerned with varying the
block-size was conducted by filtering (i.e. resizing) the image first and then divide
into blocks of constant size.

3.6.6 Conclusion

In an effort to demonstrate the potential of the proposed model we have applied it to
the problem of image classification We have shown that the most common algo-
rithms for solving the necessary problems associated with HMMSs, can be adapted to
DT HMM, which allows reestimation of the HMM parameters in the same linear
complexity as in the one dimensional HMM case.

To investigate the performance of the model and to find its point of operation, we
have studied the importance of number of Gaussians per mixture during training and
the effect of varying the block size. The results indicate that during the training
process a model with a larger number of Gaussians per mixture (GPM) needs more
iteration to reach an asymptote which happens after about 30 iterations. A model
trained with five GPMs achieves the best performance with a block size of 16x15
pixels.

Using the modified algorithm in (3.40), with the prior probabilities during training,
the precision increased with 19%, but the results are still not comparable with the

57



CHAPTER 3 : DEPENDENCY TREE HIDDEN MARKOV MODEL

rates typically observed in the TREC video experiments, however it lead us to a
greater understanding of the model and gave inspiration to new experiments and
refinements that will be discussed in the following chapters.

3.7 Combination with a Global Model

As we could see in the previous experiment, the result was somewhat shadowed by
uni-colored images. In the case of speech recognition it can be compared with trying
to recognize the word “aaaaaa”. Since our classification model is a generative one,
this kind of observations becomes a part of the model, and can therefore not be
distinguished from the rest.

Driven by the desire to investigate the models behavior on normal non-synthetic
images we introduce a model based on global characteristics that we combine with
the DT HMM in order to sift away the uni-colored images.

The global model uses a histogram to represent the frequency of global observations
over the whole training set. Since each observation is an n-dimensional vector we
first gquantize them by using a vector quantizer.

3.7.1 Vector Quantization

Vector quantization is generalization of scalar quantization to multiple dimensions.
The idea dates back to Shannon [89] in his development of the information rate of a
source subject to a fidelity criterion.

A vector quantizer maps n-dimensional vectors in the vector space R" into a finite set
of vectors Y = {y;: i =1, 2, ..., n}. Each vector y; is called a code vector or a code-
word and the set of all the codewords is called a codebook. Associated with each
codeword, yj, is a nearest neighbor region called Voronoi region, and it is defined by:

V,={xen”: Vi # j (3.41)

o=yl <]x -y,

As an example we take vectors in the three dimensional case without loss of general-
ity. Figure 24 shows some vectors in space. Associated with each cluster of vectors
is a representative codeword. Each codeword resides in its own Voronoi region.
These regions are separated with imaginary planes in the figure for illustration.
Given an input vector, the codeword that is chosen to represent it is the one in the
same Voronoi region [91].
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Figure 24.  Codewords in three dimensional space. Input vectors are marked as a
cross and codewords as an arrow.

The problem of designing a codebook that best represents a set of input vectors is
NP-hard (Nondeterministic in Polynomial time). This means an exhaustive search
that grows exponentially with the number of codewords, where each potential
solution can be verified in polynomial time. I therefore resort to suboptimal code-
book design scheme called LBG for Linde-Buzo-Gray, the authors of the method
[91]. This algorithm is similar to the k-means algorithm.

The algorithm
1) Determine the number of codewords # (the size of the codebook).

2) Make an initial partition of the code vectors by selecting an input vector at ran-
dom, and then iteratively chose the vector as far away as possible from the selected
one [90].

3) Use the Euclidean distance measure to clusterize the vectors around each code-
vector. This is done by taking each input vector and finding the Euclidean distance
between it and each codeword. The input vector belongs to the cluster of the code-
word that yields the minimum distance.

4) Compute the new set of codewords. This is done by obtaining the average of each
cluster. Add the component of each vector and divide by the number of vectors in
the cluster

1 <—m (3.42)
Yi= ZZj:l Xij

where i is the component of each vector (X, y, z, ... dimension), m is the number of
vectors in the cluster. Steps 2 and 3 are repeated until either the codewords don't
change or the change in the codewords is below a certain threshold.
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3.7.2 Global Model

We let a histogram represent the global characteristic of the training set. By comput-
ing a code cook for the training data according to the algorithm above, we can
express the number of observations associated with each code word in a histogram.

no. observations

code word

Figure 25.  Global LBG Histogram.

For a test image we compute its histogram based on the training-codebook by finding
the closest code words for each observation vector and then forming a histogram
based on the frequencies of the code word indices.

To compare the test image with the training set with need a similarity measure for
their histograms. Swain and Ballard introduced a histogram matching method called
Histogram Intersection [94]. Given a pair of histograms, H(I;) and H(I,), of images I,
and I, respectively, each containing n bins, they define the histogram intersection of
the normalized histograms as:

H(I)NHI,) =" min(H,,),H (I,)) (3.43)

where H;(I) represents the frequency of color j in image I. For two images, the larger
the value of the histogram intersection, the more similar the image pair is considered
to be. The L; (Manhattan) and L, (Euclidean) distances measures are commonly used
when comparing two feature vectors. In practice, the L; distance measure performs
better than the L, distance measure because the former is statistically more robust to
outliers [93]. In this experiment I use the L, distance measure for comparing histo-
grams because it is simple and robust [95].

3.7.3 Results

The desire is to combine the global model with the DT HMM so that we obtain a
model that takes into account both local and global properties. Several schemes of
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combination and fusion can be considered to combine the models but is beyond the
scope of the objective here. We resorted to a combination by taking the product of
the two probabilities Pe™"ed = pelobal « pDTHMM T, gty the behavior of the differ-
ent models we first applied them separately on a small test set of 100 samples. Table
2 shows the average precision for each model.

Table 2. Average precision on large test set.

Average Precision
Global model 0,104577
DT HMM 0,137663
Combined model 0,146427

We the performed an experiment using a larger test set comprised of 4700 images
from the TRECVid 2003 development archive [66]. The test set has 40 true positives
(classified as “Beach”) giving a random precision of 0.0083. Figure 26 shows the
recall precision for the concept Beach using the combined model.
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Figure 26.  Recall / Precision for Beach

We can see in the graph that the precision peak is shifted to the right which can be
explained by that there is still the effect of images with large uni-colored regions that
get a high probability, meanwhile they also comply with the global models require-
ments. This is supported by the figure below where we can see a mix of images
coming from the global model which match in terms of global characteristics e.g.
images: 0,1,4,6,7 and images that comply with the DT HMM which meet with local
characteristics: 2,3,5,8. In image 2 and 3 the model believes that the white bottle is a
person, since there are a lot of light people-objects in the middle of the image in the
training data.
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Figure 27. 20 top ranked images using a combination of the global model and
DT HMM.

We give the top ranked images by using only the DT HMM for comparison:
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Figure 28. 20 top ranked images using the DT HMM.
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By using the combined model, the classification performance increased to 0.045,
from 0,013 (average precision rate in the TREC workshop for the beach concept was
0.017). Showing a three fold increase indicates that global information may be used
to improve the quality of the HMM model

3.7.4 Conclusion

To be able to study our contextual model we sifted out uni-colored images by using a
global model. It was confirmed that big output probabilities degrade the result, but
also that the contextual model sometimes fails to discriminate sub-classes with-in the
concept which might suggest the scale is too low. At one hand we need high scale to
distinguish fine details in objects, and low scale to capture global properties. This
gives rise to the idea of introducing restrictions to the states in order to enforce sub-
classes which can be given interpretations such as sky, sea, sand, person, boat etc.
Naturally it also motivated us to form a multiscale model which we present in
chapter 4.
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3.8 Influence of the Dependency Tree

The DT HMM avoids the complexity of regular 2D HMM by changing the double
horizontal and vertical spatial dependencies into a random uni-directional depend-
ency, either horizontal or vertical. A question that arises is what impact does this
random choice have on the model? We therefore explore various issues about the
effect of the random tree.

Figure 29.  The Joint probability of the observation given the model, and the tree,
at position (i,j).

3.8.1 DT HMM Probability Estimation
According to the model, the exact probability of an observation is:

P(0) = > P(O| t)P(1) (3.44)
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We may assume that all dependency trees are equally likely, so that the distribution
P(t) is uniform. As there are 2(™ () different trees for an image of m x n blocks,
the complete computation is prohibitive. Therefore, it is important to search for
approximations of this value which are easy to compute. In this chapter we investi-
gate three different ways of doing this estimation by: unique sampling (P"), tree
average (P%) and dual tree (Pd). The section below gives a detailed study of their
qualities.

The experiments are conducted using a 36-state model trained on a consistent set of
130 Beach images annotated at the pixel level into § different sub classes. We divide
the images in 22x16 blocks that are represented by color moments and DCT coeffi-
cients. Evaluation is done by computing P(OJt) (also called the score), using the
modified Viterbi algorithm, for 100 random images, with different set of trees, to
investigate the behavior of the dependency.

We give an example below to illustrate the state alignment in one image for two
different trees.

Figure 30.  State alignment with two different trees.

3.8.2 Estimation by Average

The best approximation (in terms of quality) that we can do is to compute an average
over as many trees as possible: consider a set of trees Ty={t;, tp, ... ty} and compute
the estimate as:

k 3.45
B(0)= 13 PO]L) (349

As k gets larger, the value of P?(O) should converge towards the optimal value. The

graph in Figure 31 shows the magnitude of the relative error E(k) computed as the
relative difference of this score to the average over the largest number of trees (here
chosen to be 50), i.c.:
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Figure 31.  Convergence of probability average.

We can see that with 10 trees or more, the average relative error is below 0.01%
while the maximum relative error remains below 0.03%.

3.8.3 Estimation by unique sampling

As the computation of the probability with a lot of different trees can be computa-
tionally expensive, we would like a faster approximation of this probability. The
fastest way is to use a single tree,

P"(0)=P(0|t) (3.47)

To evaluate the quality of the approximation, we compute the relative difference
between an estimation and the mean over all 50 trees, and we compute the histo-

grams of these values for different estimations (P*, P¢, P?).
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Figure 32.  Distribution of scores.

P“is the dual estimation and is explained below. We can see that 90% of the values
for A are within a range of £ 0.015%. By comparison P" has only 63% of its values

with in the same range. For a confidence interval of 90%, P*has a variation of
1 0.060%.

3.8.4 Estimation with dual tree

The dual t" of a tree t is defined as the tree where the horizontal dependencies are
replaced by vertical dependencies and vice versa (except for the border nodes for
which the ancestor is unique).

As the couple (t, tT) contains all the possible vertical and horizontal dependencies, it
is interesting to consider the estimation by the average probability between the tree t
and its dual t"

P! (0) =%(P(O| 0+ PO[)) (3.48)

where t" is the dual tree of t, defined by replacing horizontal by vertical dependencies
(and vice versa), except for boundary constraints. This formulation introduces both
horizontal and vertical dependencies for all neighbor pairs in the observation.

As indicated in Figure 32 the dual estimation gives a better approximation than the
unique sampling. The dual estimation has 82% of its samples in the previously

mentioned interval with limits + 0.015%. For a confidence interval of 90%, P has a
variation of £ 0.022%.
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3.8.5 Conclusion

Discontinuity

The DT HMM considers one neighbour at the time which is not sufficient to give a
robust model. A theoretically sound model requires that all possible trees would be
considered. Since this is not possible, we have done an experiment with many trees
(yielding a multiple-tree model). The advantage of the multiple-tree model is that it
has a low computational complexity while being sound modelled (without disconti-
nuities).

We have investigated the variation of the observation probability with respect to the
particular dependency tree that is used. The results show that the divergence between
P" and P* is small, i.e. that there are great chances that a random tree will provide a
value which is close to the average.

We have also compared three different approximations of the exact probability (3.44)
which results may suggest the choice of the best approximation method, based on the
deviation which is considered reasonable for a given application.

What are we modeling?

The DT HMM is an attempt to combine information of blocks in the image with their
neighbors by imposing constraints to the side-by-side relation. We impose local
constraints by considering neighboring blocks in an effort toremove ambiguous
context and improve the performance.

Our objective is to model relative relationship between observations which can be
part of larger semantic regions such as sky or mountain. The semantic regions
depend on the concept we try to learn, the size of the blocks and the model, as we
will se in the next chapter.

68



CHAPTER 4: ADVANCED 2-D APPLICATIONS

Chapter 4
Advanced 2-D Applications

To further investigate the model we introduce interpretations to the states of the
DT HMM by associating a sub-class to partitions of states. The sub-classes model the
variability of the visual features representing an image region. They are therefore
amenable for abstracting the later to semantic regions. By training a new model with
restricted states we can perform semantic image segmentation on unseen but in-class
images

To this end we need to segment the images in the training data and manually annotate
the resulting image regions. Further we need to introduce a mechanism in the training
phase that restricts the possible states depending on corresponding sub-class of the
image patch.

4.1 Semantic Image Segmentation

Segmentation is the operation concerned with partitioning images by determining
disjoint and homogeneous regions or, equivalently, by finding edges or boundaries.
The homogeneous regions or the edges are supposed to correspond to actual objects,
or parts of them, within the images. It plays an important role in many areas of image
processing and computer vision as the first step before applying higher level opera-
tions such as recognition and semantic interpretation [74]. These systems are also of
key importance for the new content based applications like object-based image and
video compression for which among others the standards MPEG-4 and MPEG-7 are
developed.

Semantic segmentation can be said to emulate the cognitive task performed by the

human visual system (HVS) to decide what one "sees", and relies on a priori assump-
tions. In this chapter, we investigate how this prior information can be modeled by
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learning the local and global context in images by using our multidimensional hidden
Markov model.

4.1.1 Related Work

A number of researches have introduced systems for mapping users’ perception of
semantic concepts to low-level feature values [68], [69]. Carson et al. at Berkeley
introduced a so-called “blobworld” [89], in where the image representation provides
a transformation from the raw pixel data to a small set of image regions (blobs)
which are coherent in color and texture space. The “blobworld” representation is
based on segmentation using the Expectation-Maximization algorithm on combined
color and texture features.

In an effort to perform unsupervised texture segmentation, a multiple resolution
algorithm was used in [73]. The algorithm first segments the image at coarse resolu-
tion and proceeds to progressively finer resolutions until individual pixels are
classified. At each resolution a greedy algorithm is used to perform the classification,
and then the result is used as an initial condition at the next finer resolution.

The probabilistic framework of multijects (multi-objects) and multinets by Naphade
and Huang [25] map high level concepts to low level audiovisual features by inte-
grating multiple modalities and infer unobservable concepts based on observable by a
probabilistic network (multinet). The Stanford SIMPLIcity system [53] uses a
scalable method for indexing and retrieving images based on region segmentation. A
statistical classification is done to group images into rough categories, which poten-
tially enhances retrieval by permitting semantically adaptive search methods and by
narrowing down the searching range in a data-base.

Li and Gray [39] proposed a 2D-HMM for image segmentation. Their experiments
showed that the algorithm performs better than other popular block-based classifica-
tion algorithms such as LVQ [46] and CART [47]. An attempt in associating
semantics with image features was done by Barnard and Forsyth at University of
California at Berkeley [72]. In recent work by Kumar and Hebert at Carnegie Mellon
University [75], a hierarchical framework is presented to exploit contextual informa-
tion at several levels. The authors argue that the system encodes both short- and long-
range dependencies among pixels respectively regions, and that it is general enough
to be applied to different domains of labeling and object detection.

4.1.2 Semantic Segmentation

Semantic segmentation relies on domain-specific a priori knowledge about the
concept at hand, which is not easy to generalize. We therefore restrict the problem to
one concept; beach images in a top-down fashion.
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4.1.3 States with semantic labels

Naturally the modeling is based on the multidimensional DT HMM. Since semantic
video regions do not usually have invariant visual properties, we divide the image
class into a number of sub-classes (or regions). Every sub-class is assigned a set of
states to allow for a flexible representation. Suppose there are K sub-classes
{1,....K} and that observation vector o; belongs to a region annotated with sub-class
Ck, then its set of permissible states is {s(k)}. The table below lists the sub-classes
and their designated set of states.

Table 3. The set of states for each sub-class.

Sub Class No. states
Miscellaneous 3
Sky 7
Sea 5
Sand 6
Mountain 3
Vegetation 3
Person 4
Building 3
Boat 2

9 sub-classes 36 states

Due to this restriction of states we introduce a flexible but controlled representation
for the observation vectors. The sub-class sky can for instance have states corre-
sponding to observations with the colors: saturated blue, white, dark gray or yellow
and with different texture properties such as regular, striped or grainy.

The miscellaneous (or mixed) class is used for areas that are ambiguous or contain
video graphics etc. (see Figure 33). Ambiguous areas are patches which contain
several sub-classes or which are difficult to interpret. Observations from this class are
not a part of the model since they are considered as noise.

Figure 33.  Example of images with mixed class areas.

Annotations was done in practice by first segmenting the training images into arbi-
trary shaped regions using the algorithm proposed in [86] and then manually label
each region on the pixel level (352x240 pixels) with one of the sub classes by using
an application with a graphical user interface as shown below.
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Figure 34.  Annotating an image segment as “sky”’.

4.1.4 Model Training

The training process is as follows; extract the image signatures and train a model
using the restricted states. For the image to be segmented; extract its low-level
features and compute the maximum posterior probability of the state sequence given
the model as given by the Viterbi algorithm 3.3.

image

!

feature
extraction

feature vectors
\
Estimate a DT HMM Find MAP combination
DT HMM d of states

segmented image

Figure 35. Image segmentation schema.

We used the algorithms presented in section 3.4 for Viterbi training to fit the model.
Assume that we have a labeled observation, for example an image where each output
block has been assigned a state of the model (this labeled observation might have
been created manually or automatically). Then, it is straightforward to estimate the
transition probabilities by their relative frequency, by:

Ny (s,s") 4.1

PH(S'|S,'[) = TS)
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where Ny (s,s')is the number of times that state s’ appears as a right horizontal
neighbor of state s in the dependency tree t, and N(s) the number of times that state s

appears in the labeling. This probability may be smoothed, for example using La-
grange smoothing, to allow for transitions that have not been seen during training.

The output probabilities may be also estimated by relative frequency in a similar
way. This provides a solution to estimate the parameters of the model from a set of
labeled training examples, and is called Viterbi training as before mentioned. Each
observation is assumed (with weight 1) to have resulted from the single most likely
state sequence that might have caused it i.e. in the Viterbi training the state sequence
with the maximum a posteriori probability P(S|O) is assumed to be the real state
sequence.

The training was conducted on the TRECVid archive [66], from which we selected a
heterogeneous image collection of 130 images depicting “Beach” (see Figure 36).

Figure 36. Example of training images.

During training each image is split into blocks of 16x16 pixels, and the observation
vector for each block is computed as the average and variance of the well-known
LUV (CIE LUV color space)'® coding {L, UV, Ls,Us, Vi) combined with six
quantified DCT coefficients (Discrete Cosine Transform). Thus each block is repre-
sented by a 12 dimensional vector. Those images have been manually segmented and
annotated, so that every feature vector is annotated with a sub-class.

To define the initial output probabilities, a GMM (Gaussian Mixture Model) is
trained with the feature vectors corresponding to each sub-class. We allow three
GMM components for every state, so the GMM for the sub-class sky has 21 compo-
nents and for vegetation (c.f. Table 3). Then we group the components into as many
clusters as there are states for this sub-class (using the k-means algorithm). Finally,
the GMM model for each state is built by doubling the weight of the components of
the corresponding cluster in the GMM of the sub-class. The transition probabilities
are initialized uniformly. Then, during training we iterate the following steps:

1% We started to use the LUV color space since it has been shown to perform better in similar experi-
ments [39]. It is used in calculation of small color differences, and it is often chosen because of its

good perception correlation properties (see section A.2).
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e We generate a random dependency tree and perform a Viterbi alignment to gener-
ate a new labeling of the image. The Viterbi training procedure is modified to
consider only states {s(k)} that correspond to the annotated sub-class (cx) at each
position, thus constraining the possible states for the observations (the manual
annotation specifies the sub-class for each feature vector, but not the state).

e We re-estimate the output and transition probabilities by relative frequencies (4.1)
(emission of an observation by a state, horizontal and vertical successors of a state)
with Lagrange smoothing.

4.1.5 Experiment

During training, we can observe the state assignments at each iteration as an indica-
tion of how the model fits the training data. For example, the first ten iterations on
the training image to the left in Figure 36 above provide the following assignments:

T re—

Figure 37.  State segmentation after 0, 2, 6 and 10 iterations.

The sequence in Figure 37 shows that the model has rapidly adapted each sub-class
to a particular set of observations. As such, the Viterbi labeling provides a relevant
segmentation of the image. The graph below shows the evolution of likelihood of the
training data during the training iterations. We can see that the likelihood for the
model given the data has an asymptotic shape after 10 iterations.
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Figure 38.  Likelihood of the training data.
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Once the model is trained, we can apply it on new images. Below is an example of
the state assignment for an image in the test set; 72% of the blocks are correctly
classified.

Figure 39.  State segmentation on test image.

It should be emphasized that this is not just a simple segmentation of the images, but
that each region is also assigned one of the 36 states (which belong to one of the 8
sub classes). The definition of those states has been generated while taking into
account all training data simultaneously, and provides a model for the variability of
the visual evidence of each sub-class.

During training, we impose a minimum variance for the Gaussian distributions, in
order to avoid degeneracy. This minimum has an impact, as we noted that the num-
ber of correct labeled blocks in the example above increased to 72% when changing
the minimum variance from 10 to 10"°. An explanation for this is that if the se-
lected minimum variance is too high, some Gaussians will be flattened out and
collides with Gaussians from states representing similar observations.

(a) original image b) min. variance 10 (c) min. variance 1071

Figure 40.  Better performance with smaller minimum variance for GMMs.

Sometimes the result is degraded because of visually ambiguous regions, as in the
examples below (video effects or sky reflection on the sea). Because the output
probabilities of model have generally a greater dynamic range than the transition
probabilities, they often play the major contribution in the choice of the best state
assignment.
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Figure 41.  Test images with ambiguous regions.

Comparison with the Mixture Model

Still, to show the effect of transition probabilities, we compared the model with a
Gaussian mixture model. We can view a mixture model as a special hidden Markov
model with the underlying state process being i.i.d (identical independent distribu-
tion), i.e. a reduced Markov chain where the transition probabilities are uniform.

The experiment was carried out by semantically segment 40 test images. We com-
pare the best state assignment obtained by the Viterbi algorithm (this takes into
account both output and transition probabilities) with the assignment where each
feature vector is assigned the state which has the highest output probability. The
experiment was performed on a Pentium 2.99 GHz PC with a LINUX operating
system. The approximate time to classify an image was 2 s.

The average rate of correctly labeled blocks was 38% when taking transition prob-
abilities into account and 32% with only the output probabilities. Figure 42 shows an
example, with the original example image, the sub-class assignment without transi-
tion probabilities (56% blocks correctly labeled), and the Viterbi assignment (72%
correct).

sl

(a) (b) (c)
Figure 42.  Labeling without/with transition probabilities.

4.1.6 Conclusion

In this section we have demonstrated the application of the DT HMM to semantic
segmentation of an image. We show how the model can be trained on manually
segmented data, and used for labeling new test data. In particular, we use a modified
version of the Viterbi algorithm that is able to handle the situation when a visual sub-
class is represented by several states, and only the sub-class annotation (not the state
annotation) is available. We investigated several properties of this process. The
motivation for this approach is that it can be easily extended to a larger number of
classes and sub-classes, provided that training data is available. Allowing several
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states per sub-class gives the model the flexibility to adapt to sub-classes which may
have various visual observations.

The confusion table below shows the number of classified blocks for each class. The
miscellaneous class has zero blocks since it was excluded during the test phase. We
can see that sky is sometimes confused with sand (because of reflections, as in Figure
43 b), and sea with sand (because they overlap) and mountain with sand (because of
similar descriptors). The class vegetation, building and boat are weak because of
small training sets.

Table 4. Confusion Table.

Annotated

Classified | misc sky sea sand mount veg pers build boat

misc 0 0 0 0 0 0 0
sky 636 228 59 4 115 50 21
sea 382 136 314 168 28 89 165 66
sand 245 677 573 452 181 152 51
mountain 101 66 120 86 31 94 24
vegetation 84 84 42 183 17 45 7
person 305 260 287 601 271 145 196 128
building 54 11 62 90 24 7 20
boat 2 15 2 2 0 0 1 1

We could observe that the average classification rate was degraded by non consistent
images in the test set and by confusion of visually similar observations from different
sub-classes (see examples below). To cater for this problem we plan to extend the
model to multiple resolutions in order to introduce global context. We also investi-
gated to what extent the transition probabilities in the hidden Markov model
improves the classification rate.

a) 72% correct classified

b) 28% correct classified

¢) 32% correct classified

Figure 43.  Example of segmented images.
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Comments on the Concept beach

This dataset is particularly challenging due to wide within-class variance in the
appearance of the data, further the category beach proves to be difficult to classify. It
has one of the lowest average precision rates in the TREC workshop (0.017). The
explanation for this can be that the combination of a broad semantic definition and
very varying lightening conditions (c.f. Figure 36) makes the category hard to
discriminate. Apart from the problem of inconsistency, there were images in the
training set that were consistent in the sense of subsequent sub-classes. For example
sky followed by sea and then sand, but then the sky was reflected in the sea, which
would affect the transition probabilities (c.f. Figure 41).

4.2 Multiresolution Hidden Markov Model

It has been shown that the human visual system (HVS) uses both global and local
information to make decisions of what an image is depicting. Ambiguous regions are
examined more closely while the major entities can be located by a brief glance;
hence the effort is unevenly distributed [78].

Multiresolution analysis on images has long been an active research field. The desire
is to extract important details and context at different resolutions and then combine
the results to form a powerful image model.

Global context information can be introduced by a joint decision procedure for the
image on several resolutions. Several classification algorithms based on multiresolu-
tion modeling have been developed [79], [80], [81], [82]. In this chapter we extend
the 2-D HMM described in section 3.1 to multiple resolutions, which we shall refer
to as DT MHMM. We demonstrate the application of this novel model to multiple
scale analysis in the context of image classification. To investigate the quality of the
model we compare it to another known block-based multiresolution model [79] (see
section 2.5.4).

4.2.1 Previous Work on 2-D MHMM

Many multiscale models have been developed to represent statistical dependence
among image pixels, with wide range of applications in image restoration, segmenta-
tion, classification, etc. In recent work by Kumar and Hebert at Carnegie Mellon
University [75], a two-layer hierarchical framework is presented to exploit contextual
information at several levels. Each layer is modeled as a conditional random field
(CRF) [76] that allows the capture of arbitrary observations-dependent label interac-
tions.
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The two layers are coupled with directed links. A node in layer 1 may represent a
single pixel or a patch while a node in layer 2 represents a larger homogeneous
region or a whole object. The nodes in the two layers are connected to its neighbors
through undirected links. In addition, each node in layer 2 is also connected to
multiple nodes in layer 1 through directed links. In this way the model encodes both
local context (e.g., pixel-wise label smoothing) as well as global interactions (e.g.,
relative configurations of objects or regions) in a tractable manner'".

Bouman and Shapiro [81] proposed the multiscale random field (MSRF) models for
images. Assume that an image is described by a random field X, and the pixel labels
(or classes) at resolution r are C, r = 1,...,R. Then the first assumption of the MSRF
is that the Markov property holds across resolutions, i.e.

P(C" =c"|C?" =c"I<r) (4.2)
— P(c(l’) =c" |C(r*1) — c(l’*l))

the second assumption is that X only depends on C*”:

P(Xedx|C"” =c",r=1,..,R) (4.3)
=P(X edx|C® =c"®)

During block classification, the model follows two restrictions. First the classes in
" are conditionally independent given the class in C"™". Second, every class in C*”
depends only on classes in a neighborhood at the coarser resolution r-1.

A difference from our approach is that features are observed only at the highest
resolution, while the coarser resolutions are only involved in prior probabilities of
classes.

Hidden Markov Tree

The hidden Markov tree (HMT) is a wavelet-domain hidden Markov model which
connects the state variables vertically across scale. They are designed for the intrinsic
properties of the wavelet transform and provide powerful signal models for denoising
and prediction [83].

Transform-domain models are based on the idea that often a linear, invertible trans-
form will restructure an image, resulting in transform coefficients whose structure is
simpler to model. Most grayscale images are well characterized by their singularity
(i.e. edge and ridge) structure. The wavelet transform provides a powerful tool for
modeling singularity-rich images [88]. It can be interpreted as a multiscale edge

! The use of directed links between the two layers, instead of the undirected ones, avoids the intracta-

bility of dealing with a large partition function.
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detector that represents the singularity content of an image at multiple resolutions
and orientations. Wavelets covering a singularity field yield large coefficients;
wavelets overlying a smooth region yield small coefficients.

Resolution J

Resolution J-1

Figure 44.  Quad-tree view of the parent-child dependencies of the 2-D wavelet.

Four wavelets at a given scale nest inside one at the next coarser scale, which gives
rise to a quad-tree structure of wavelet coefficients (c.f. Figure 44). Image singulari-
ties will manifest themselves as cascades of large wavelet coefficients through scale
along the branches of the quad-tree [88].

The HMT associates with each wavelet coefficient a hidden state variable that
controls whether it is “large” or “small”. The marginal density of each coefficient is
modeled as a two-component Gaussian mixture, using a large variance Gaussian for
the large state and a small variance Gaussian for the small state. The HMT captures
the cross-scale persistence of large/small coefficients by Markov chains between the
hidden states across scale. This multiscale singularity characterization makes the
HTM appropriate for modeling texture images.

The model proposed in [83] is based on the HMT. Wavelet coefficients across
resolutions are assumed to be generated by one-dimensional hidden Markov models
with resolution dependency instead of time as in the Markov chain. If we view
wavelet coefficients as a special case of features, the model considers features
observed at different resolutions. The approach is extended to general features in
[84].

As we shall see in section 4.2.2, the difference between our work (together with [79],
[81]) and the approaches in [83], [85], [84] is that the intra-scale dependencies are
not regarded. Our model regard an image as an instance of a 2-D random process
characterized by one model, which reflects the transition properties among
classes/states at all resolutions as well as the dependence of feature vectors. The set
of states with the maximum a posteriori probability is calculated according to the
model.

80



CHAPTER 4: ADVANCED 2-D APPLICATIONS

Further the states in wavelet-domain HMMs are not related to classes as in our case,
but “large” and “small” wavelet coefficient. To classify the blocks of an image, a
separate HMM is trained for each class. A local region (or block) is regarded as an
instance of a random process described by one of the HMMs. To decide the class of
the block, the likelihood is computed for each HMM, and the class yielding the
maximum likelihood is selected. Consequently the spatial dependencies between
classes are not accounted for in those models.

A two dimensional multiresolution model (2-D MHMM) that incorporates both intra-
scale and inter-scale dependencies was introduced by Jia Li et Al in [79]. The
2-D MHMM forms a hierarchical structure by introducing constraints to states
depending on states at the lower resolution level. A block at a lower resolution,
called a parent block, has a number blocks at the same spatial position at a higher
resolution, which are defined as its child blocks (see Figure 45).

Resolution 0, states: s;': (i,j) eN©

Siblings to parent block (0,0) . Resgfijtion 1, state%: sit™: (i) eN”
in resolution 0 e — —

)

Siblings to parent block (0,0) :

Resolution 2, states: ;" (i,j) eN®
in resolution 1 \ ’
Lz =

Figure 45.  Hierarchical Multiresolution Model.

The inter-scale dependencies are modeled by a Markov chain. Given the states and
features at the parent resolution, the states and features at the current resolution are
conditionally independent of the other previous resolutions. If we denote the state of
block (i,j) as sjj, with the observation ujj and the collection of resolutions R =
{1,...,R}, with r=R being the highest resolution we have;

Pisu) ireR,@G, ) eN =PV ul (G, ) e NV} 4.4)

ij 27 1,j 27,

x P{s? u® (i, j) e N? | s) : (k,1) e N}

i,j 2%,

$.x Pis™ u™ (i, j) e N® [ s8: (k, 1) e NFy

ij 27i,j
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Intrascale dependencies are modeled by 2-D HMMs. The observations at the coarsest
resolution are assumed to be generated by a single 2-D HMM, at all higher resolu-
tions sibling blocks belonging to the same parent (see Figure 45) are assumed to be
generated by a 2-D HMM. But the HMMs vary according to the state of the parent
block, thus for each resolution with M states there are M HMMs in the next resolu-
tion, except for the highest resolution.

To retain a modest computational complexity the image at each resolution is divided
into sub-images and a computational efficient variant of the Viterbi alignment is
deployed: the variable-state Viterbi [39] (see also section 2.5.4). The algorithm
isolates state dependencies along diagonals in the sub-image. Then only the n-best
state sequences on a diagonal are considered when computing the most probable
path. A fast algorithm is also proposed by relaxing the maximum a posteriori (MAP)
classification rule. First at the lowest resolution

© 0. )
59,9 G, j) e N} (4.5)

1s search to maximize
logP{s,Ffj?,uffj? (1, /) e N} (4.6)

The procedure is repeated for the next higher resolution; given the states at resolution
0, the child blocks at resolution 1 are governed by a single 2-D HMM. So

log P{s®,u : (i, j) € D(k, 1) | s (4.7)

i) 27,

is maximized. Where D(k,l) denotes the child blocks of block (k,l) at the previous
resolution.

4.2.2 DT MHMM

The purpose of multi-resolution analysis is to capture information in an image at
different resolutions. Therefore we are lead to consider linear combinations of 2D-
HMMs trained at different resolutions. Compared to hierarchical modeling this
approach is straight forward to construct. We simply have to individually train a
number of 2-D HMMs at different resolutions and then combine them by interpola-
tion or by joint likelihood. The architecture of the multi model system is depicted in
Figure 46.

82



CHAPTER 4: ADVANCED 2-D APPLICATIONS

o ()
P(I|mg)
g @\( )
\@/
An
P(1|m,)

Figure 46.  Linear combination of multiple resolution models.

4.2.3 Algorithms

As before mentioned we investigate two different combination schemes for our
multiresolution model; interpolation and joint combination. The interpolated model is
computed as a weighted sum of the probabilities from the individual models
m;je{1,.M}, where M is the number of models, given the observation:

P'(Ijm) =" 4,P(Ijm,) (4.8)

The weights A; je {1,2,...M} are found by expectation maximization (EM) estima-
tion. We compute the maximum a posterior likelihood for the combined model given
a held-out training set I;: i={1,2,...T}.

arg max L(A) =H P(Ii‘m)=HZAjP(I,

i

m) (4.9)

The iteration formula for A is given by computing the expected relative contribution
for each model m;:

2, P, (4.10)

t+1

1 m;)
/:?i

Zil; P(I,‘mk)
k

The initial value of A is set uniformly to 1/M. The joint model is expressed as a
product of the probability of the observation given the model for each resolution:

&3



CHAPTER 4: ADVANCED 2-D APPLICATIONS

P (tlm) =TT P(|m,) 4.11)

4.2.4 Experiment

We compare the models using the same image classification scenario as in Chapter 3.
An illustration of the classification scheme is shown in Figure 47. The models are
trained using 130 annotated training images from the TrecVid archive, and then
classification is performed with 100 arbitrary images which results in a rank list.

training image training feature
—> feat”'fe > bIO.Ck. » HMM training
extraction description
test image test feature result
feature block HMM
extraction description "] classification
AN AN
multiple resolutions number of blocks

Figure 47.  Multiresolution classification scheme.

In the first step we extract multi-resolution block-based feature vectors. The size of
the blocks is 4x4 pixels which is the same as in the experiments presented by Jia Li et
Al [39]. As in the first experiment (3.6) we use Gaussian Mixture Models as out-put
probabilities and variances and means for color descriptors, except that we use the
LUV color coding instead of HSV for its good perception correlation properties (see
section A.2). Again means and variances of DCT coefficients are used to describe
structural properties. Hence for each block, there are six color features and 6 DCT
coefficients { L,, Uy, V,, Ls, Us, Vo, Dij . ij € (0,1,2,3) }. Since our classifier is
trained over a sequence of observations; the number of dimensions is the same of that
of the block (12-dimensions).

Low-level features are extracted to produce a three-level model with a 4x4 split
between parent- and child blocks (c.f. Figure 45). By iteratively resizing the image
while keeping the block size constant we obtain the resolutions (a) 4x3, (b) 16x12
and (c) 64x48 blocks, as illustrated below.
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Figure 48.  Three resolutions with constant block size: (a) 4x3, (b) 16x12 and (c)
64x48 blocks.

In this experiment we used a DT MHMM model with: 9, 16, 16 states for resolution:
0, 1 and 2 respectively. The HMMs are initiated with an alignment where one state
covers a region of a regular 3x3 grid (or 4x4 for 16 states) over the image. Each
model is trained on a consistent set of images corresponding to its resolution. As
training data we use videos from the TRECVid database [66], which consists of
60hrs of annotated news broadcast. In this experiment we selected images annotated
as “Beach” as shown below.

Figure 49.  Examples of training images for “beach”.

The models are trained using the adapted Baum-Welch algorithms as described in
section 3.4. Figure 50 shows the evolution of the total likelihood for the DT-MHMM
during training.
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Figure 50. Total likelihood during training.

To compare with another algorithm we trained the 2-D MHMM described in section
4.2.1 on the same training set, using the same number of resolutions and states.
Figure 51 shows the precision recall curve for the 2-D MHMM model and the two
DT-MHMM models.
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Rdm Precision &

03 / ]
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Figure 51.  Precision recall for 2D-MHMM and DT-MHMM.

In our initial experiments we have already noticed the problem of one known draw-
back of the HMMs, that the output probability plays a more important role than the
transition probability. The output distribution ranges over greater dispersion than the
transition probability which range over 16 states only, with a majority of transitions
from a state to itself. This explains why an image which has an almost uniform color
(see the first six images in Figure 52) is likely to get a high output probability from
one of its states. We can see in Figure 51 that the precision is low for the top ranked
images, because the single colored images are ranked higher, than the true positives.
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Figure 52.  Top ranked images by the DT-MHMM.

We can observe that the model at the lowest resolution introduces global information
that penalizes uni-colored images, but depending on the fusion scheme the higher
resolution models sometimes takes over. The mean average precision for the differ-
ent models are listed in Table 5.

Table 5. Mean average precision for DT HMM and 2-D MHMM.

Model MAP
DT MHMM Joint combined 0.24
2-D MHMM 0.17
DT MHMM Interpolated 0.13

4.2.5 Conclusion

We have shown that the novel dependency tree HMM can be extended to multiple
resolutions. The results indicate that we can improve the performance depending on
the combination algorithm. By using fewer blocks, i.e. letting each block cover a
larger part of the image we can improve the result since we reduce the chance of
having single colored output probabilities. We must further investigate this and also
what is the appropriate resolution for the lowest scale to model the global context so
as to avoid the dominant output probabilities that arises from uni-colored blocks
during training.
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Chapter 5
Opening to 3-D Applications

5.1 Introduction

As a research direction of computer vision, object detection and tracking provides
useful access to high-level information about objects obtained in an image and has
attracted persistent interests.

In the past object tracking problems have been studied extensively and many differ-
ent approaches have been proposed [97], [98], [99]. An approach based on color
object tracking was presented in [100], where object training and tracking is modeled
in the spatial domain rather than in the temporal domain.

A type of HMM for real-time tracking is proposed in [96] by using parametric shape
model object contours. The authors also introduce a joint probability data association
filter (JPDAF) to compute the transition probabilities with an enforced inter-
relationship between neighbors.

The main obstacle to robust object tracking is that distracting features, such as clutter
in the background regions, compete for the attention of the tracker and may succeed
in pulling the tracker away from the foreground (target objects). To make the tracker
reliable, it is common practice to discriminate the foreground pixels from the back-
ground pixels. Earlier researchers have attempted to increase the robustness of the
tracker by image differentiation techniques [97].

Different domains of problems occur, the object to be tracked can be any mobile
object in a scene or it can be a specific object that is already known and the desire is
to follow its trajectory. In this chapter we focus on the latter case; where the ob-
ject(s) can be trained in the first frame when the representation of the object is
available. Once the training has been performed, object tracking consists of searching
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the occurrence of the object in the successive frames of the video. This can be seen as
a pattern recognition problem that can be solved by statistical machine learning tools.

A number of researches have introduced systems that employ statistical modeling
techniques to video segmentation and object tracking [100], [102], [104]. In [101] the
authors present a system for tracking vehicles based on a hidden Markov model. The
HMM/MRF-based segmentation method is capable of classifying regions in an
image into three different categories: vehicles, shadows of vehicles and background.
The temporal continuity of the categories is modeled as single HMMs along the time
axis independently of the neighboring regions. To incorporate spatial dependencies
into the tracking process the output from the HMMs are regarded as a MRF gener-
ated through a stochastic relaxation process. This method has proven some success in
discriminating foreground (vehicles) and non-foreground regions.

Give the rich resource of successful work using HMMs for 1-D and 2-D problems; it
appears natural to extend 2-D HMM to three dimensions for object tracking in video.
However until present 3-D HMMs have been very rarely used, and only on simplistic
artificial problems [102].

In the following section we show how our proposed model is easily extended to three
dimensions. Then, in section 5.3, we experiment this model on the problem of
tracking objects in a video. We explain the initialization and the training of the
model, and illustrate the tracking with examples of a real video.

5.2 3-DDT HMM

The DT HMM formalism is open to a great variety of extensions and tracks; for
example other ancestor functions or multiple dimensions. Here we consider the
extension of the framework to three dimensions. We consider the case of video data,
where the two dimensions are spatial, while the third dimension is temporal. How-
ever, the model could be applied to other interpretations of the dimensions as well.

In three dimensions, the state s;;i of the model will depend on its three neighbors s;.
1jks Sij-Lk> Sijk-1. This triple dependency increases the number of transition probabili-
ties in the model, and the computational complexity of the algorithms such as Viterbi
or Baum-Welch. However the use of a 3-D Dependency Tree allows us to estimate
the model parameters along a 3-D path (see Figure 53) which maintains a linear
computational complexity.
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Figure 53. Random 3-D Dependency Tree.

The “direction” function for the 3-D tree becomes:

Vo ift=(-1,jk) (5.1
D(t)z H ’..ft:(i’j_lak)
Z ift=(,j,k-1)

In 3-D modeling, images are represented by feature vectors on a 3-D grid. Let us
denote the observation vector ojjx as the observation of a block (i,j,k) in a 3-D image,
volume image or sequence of 2-D images. In an analogous way the HMM state
variables s;jx represents the state at position (i,j,k) that produce the observation vector
oijk. Thus now we can extend (3.6) to three dimensions:

5.2
p(Si,j,k ‘Si—l,j,k 58 koS j k-1 1) (5-2)

= Ppa.jiy (Si,j,k St(i,j,k))

In this chapter we use Viterbi training to fit our model, thus we need to iterate the
search for the optimal combination of states and then re-estimate the model parame-
ters.

5.2.1 3-D Viterbi Algorithm

The Viterbi algorithm finds the most probable sequence of states which generates a
given observation O:
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" 53
S = argmax P(O,S|t) (5-3)
S

Let us define T(i,j,k) as the sub-tree with root (i,j,k), and define B;;(s) as the maxi-
mum probability that the part of the observation covered by T(i,j,k) is generated
starting from state s in position (i,j). We can compute the values of B;;k(s) recursively
by enumerating the positions in the opposite of the raster order, in a backward
manner:

if (1,j,k) is a leaf in T(i,j,k):
Biju ()= P(0; ;4]9) (5.4)
e if (i,j,k) has only an horizontal successor, by adopting equation (5.2) we get:
Bi s (5) = P04 |9)Max Py (519)8, 114 5) (5.5)
e if (i,j,k) has only a vertical successor:
Biju(8)=p0, ;) max py, (') 1,14 (8 (5.6)
e if (i,j,k) has only a z-axis successor:

ﬁi,j,k (s)= P(oi,j,k |s ) msng Dz (s'|s)ﬁi,j,k+l (s") (5.7)

e if (i,j,k) has both an horizontal and a vertical successors (and respectively for the
other two possible combinations):

,Bi,j,k (s)= p(oi,j,k |s ) (m\ax Pu (s'|s):8i,j+1,k (s')) (5.8)
(msglx Py (s'|s)ﬂi+1,j,k (s'))

e if (i,j,k) has both an horizontal, a vertical and z-axis successors:

ﬂi,j,k (s)= p(oi,j,k |s ) (msax Py (s'|s)ﬂi,j+1,k (s')) (5.9)
(ms{ix Py (81981 (S')ij1X | ACIDY: . (S'))
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Then the probability of the best state sequence for the whole image is Bo,0,0(s1). Note
that this value may also serve as an approximation for the probability that the obser-
vation was produced by the model.

The best state labeling is obtained by assigning sg00 = Si and selecting recursively
the neighbor states which accomplish the maxima in the previous formulas. Note that
the computational complexity of this algorithm remains low: we explore each block
of the data only once, for each block we only have to consider all possible states of
the model, and for each state, we have to consider at most three successors. There-
fore, if the video data is of size (w, h, t), and the number of states in the model is N,
the complexity of the Viterbi algorithm for 3-D DT HMMs is only O(whtN).

5.2.2 Relative Frequency Estimation

The result of the Viterbi algorithm is a labeled observation, i.e. a sequence of images
where each output block has been assigned a state of the model. Then, it is straight-
forward to estimate the transition probabilities by their relative frequency of
occurrence in the labeled observation, for example:

N, ,(s,s") (5.10)

07N

Pu(s'

where Ny (s,s") is the number of times that state s’ appears as a right horizontal
neighbor of state s in the dependency tree t, and N(s) the number of times that state s

appears in the labeling. (This probability may be smoothed, for example using
Lagrange smoothing). The output probabilities may be also estimated by relative
frequency in the case of discrete output probabilities, or using standard Multi-
Gaussian estimation in the case of continuous output probabilities.

With these algorithms we can estimate the model parameters from a set of training
data, by so called Viterbi training: starting with an initial labeling of the observation
(either manual, regular or random), or an initial model, we iteratively alternate the
Viterbi algorithm to generate a new labeled observation and Relative Frequency
estimation to generate a new model. Although there is no theoretical proof that this
training will lead to an optimal model, this procedure is often used for HMMs and
has proven to lead to reasonable results.

Note that with 3D-DT HMMs, the Baum-Welch algorithm and the EM reestimation
lead to a computational complexity that is similar to the Viterbi algorithm, so that a
true Maximum Likelihood training is computationally feasible in this case. We have
not yet implemented those algorithms, but started with the simple Viterbi and Rela-
tive Frequency for our initial experimentations on 3-D video data.
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5.3 Experiment

Video can be regarded as images indexed with time. Considering the continuity of
consecutive frames, it is often reasonable to assume local dependencies between
pixels among frames. If a position is (i,],t), it could depend on the neighbors (i-1,j,t),
(i,j-1,t), (i,j,t-1) or more. Our motivation is to model these dependencies by a 3-D
HMM. As described in 5.2, images are represented by feature vectors on an array of
2-D images.

To investigate the impact of the time-dimension dependency we explore the ability of
the model to track objects that cross each other or pass behind another static object.
To this end we have chosen a video sequence with two skiers that pass behind each
other and static markers that remain fixed on the scene. The video contains 24
frames.

The method is mainly composed of two phases: the training phase and the segmenta-
tion phase. In the training phase, the process learns the unknown HMM parameters
using the Viterbi training explained in section 5.2.1. In the segmentation phase, the
process performs a spatio-temporal segmentation by performing a 3-D Viterbi state
alignment.

5.3.1 Model Training

We consider a 3-D DT HMM with 9 states and continuous output probabilities. Our
example video contains 24 frames which are divided into 44 x 30 blocks; hence the
state-volume has dimension 44 x 30 x 24. For each block, we compute a feature
vector as the average and variance of the CIE LUV color space coding {L,,U,,V,,
Ls,Us, Vs combined with six quantified DCT coefficients (Discrete Cosine Trans-
form). This constitutes the observation vector ojjx.

Initial Model

The first step of the training is to build the initial model. To build initial estimates of
the output probabilities, we manually annotated regions in the first frame of the video
by segmenting the image into arbitrary shaped regions using the algorithm proposed
in [86] and then manually associating each region with a class category. As it can be
seen in the figure below, the segmentation is rather coarse, which means that parts of
the background may be included in the object regions.
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Cur. Frame bsmber: 0 -1

Figure 54.  Training image and initial state configuration using annotated regions.

The image was labeled using four different categories: background, skierl, skier2
and marker (static object in the scene). Since semantic video regions do not usually
have invariant visual properties, we assign a range of states to allow for a flexible
representation for each category (or sub-class). The sub-class background can for
instance have the colors: white or light grey with different texture properties such as
regular or grainy. The table below lists the sub-classes and their associated number of
states.

Table 6. The number of states for each sub-class.

Sub Class No. states
Background 3
Skier 1 2
Skier 2 2
Marker 2
4 sub-classes 9 states

Each state has an output distribution which is represented by a GMM (Gaussian
Mixture Model) with five components. To estimate these probabilities, we collect the
observation vectors for each category, cluster them into the corresponding number of
states, and perform a GMM estimation on each cluster. The transition probabilities
are estimated by Relative Frequency on the first frame for the spatial dependencies,
and by uniform distribution for the temporal dependency.

3D Dependency tree

The observation volume has size 44 x 30 x 24, and each observation is supposed to
be generated by a hidden state. We build a random 3-D dependency tree (see Figure
53) by creating one node for each observation, and randomly selecting an ancestor
for each node out of the three possible directions: horizontal, vertical and temporal.
The border nodes have only two (if they lie on a face of the volume), one (if they lie
on an edge) or zero (for the root node) possible ancestors. In our experiments, we
generated a random 44 x 30 x 24 dependency tree which contains:
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Table 7. Number of ancestors for each direction.

Direction No. ancestors
Horizontal 10 604
Vertical 10 694
Temporal 10 382
Total 31 680

As previously explained, we perform Viterbi training by iteratively creating a new
labeling over the observation, using Viterbi training, and generating a new model,
using Relative Frequency estimation. The iterations stop when the increase in the
observation probability p(O | S, t) is less than a threshold.

Data size vs. Model Complexity

According to the Bayesian information criterion (BIC) the quality of the model is
proportional to the logarithm of the number of training samples and the complexity
of the model [87]. Thus since our training data is sparse, we shall use a small mixture
size. The necessary complexity of the GMM depends of the data class to model,
which in this case is relatively uniform since the image is segmented into annotated
object regions (each one represented by a number of states as shown in Table 6).

The EM-algorithm is used for training, which has a tendency to make very narrow
Gaussians around sparse data points. To avoid this potential problem we construct

the GMMs so that there are always a smallest number of samples in each component,
and we constrain the variance to a minimum threshold.

5.3.2 Object Tracking

The original video contains two skiers passing yellow markers on a snowy back-
ground with shadows. Figure 55 depicts every second frame of the sequence.

96



CHAPTER 5: OPENING TO 3-D APPLICATIONS

Figure 55.  Original video sequence; first frame in upper left corner, followed by
every second frame.

The first frame was manually annotated and used to estimate the initial model, while
the following frames constitute the 3-D observation (or a sequence of 2-D observa-
tions) on which the Viterbi training was performed. Then, we use the trained model
to get a final labeling of the complete 3D observation. In the final labeling, each
observation block is assigned to a single state of the model. The final labeling
provides a spatio-temporal segmentation of the 3D observation. The experiment was
performed on a Pentium 2.99 GHz PC with a LINUX operating system. The average
time to perform a 3-D Viterbi alignment was 20s.

As the states of the model correspond to semantic categories, it is possible to inter-
pret the content of specific blocks in the video sequence. Figure 57 shows the
segment classification for frame 1, 12 and 24.

Figure 56.  Frame segmentation in the final labeling (a) frame 1, (b) frame 12, (c)
frame 24.

Object tracking is then performed easily, by selecting in each frame the blocks which
are labeled with the corresponding semantic category. For example, we can easily
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create a video sequence containing only the skiers by switching off the states for the
background- and marker-classes as shown in Figure 57.

Figure 57.  Object tracking of two skiers.

We can see in the figure above that some blocks are incorrectly assigned to the skier
categories. An explanation for this may be that with a single dependency tree many
blocks inside the video corresponds to leaves in the tree, and are therefore not
constrained by any successor. This motivates the combination of several dependency
trees so that no node is left without any constraints from its successors.

Complementary Dual Trees

We would like to consider dependencies in every direction for each node. Therefore,
given a random dependency tree t, it is reasonable to consider its dual trees, which
are trees where for each node, we select one direction among those not used in t
(except when the node has a single possible ancestor). Note that in 2D, the dual tree
is unique, while in 3D, there are a lot of different dual trees for a given t. However,
we can select a pair of complimentary dual trees so that every possible dependency
for every node appears at least once in one of the three trees. We use a majority vote
to compute the best labeling for the triplet of trees. Figure 63 show the result of the
segmentation on various frames.
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Figure 58.  Frame segmentation using complementary dual trees, (a) frame 1, (b)
frame 12, (c) frame 24.

As previously, we can construct a video sequence showing only the tracked objects:

Figure 59.  Perspective view of object tracking using complementary dual trees.

Unfortunately, this combination shows only minor improvement over the segmenta-
tion with a single tree.

Multiple tree labeling

Although using a triplet of tree and complimentary dual trees takes every dependency
from every node into account, this is only a local constraint between neighbors,
which may not be sufficient to propagate the constraint to a larger distance. Notice
that, for every pair of nodes (not necessarily neighbors), there is always a depend-
ency tree where one of the nodes will be the ancestor of the other. So, the idea now is
to use a large number of trees (ideally all, but they are too numerous), so that we
increase the chance of long-distance dependency between non-neighbor nodes.

For each dependency tree, we can compute the best state alignment, then use a
majority vote to select the most probable state for each block. This is an approxima-
tion for the probability of being in this state for this block during the generation of
the observation with an unknown random tree (a better estimate could be obtained

99



CHAPTER 5: OPENING TO 3-D APPLICATIONS

using the extended Baum-Welch algorithm, but we have not implemented this
algorithm yet, so we just use the Viterbi algorithm here). Figure 60 shows the video
obtained with this multiple tree labeling, using a set of 50 randomly generated trees.

Figure 60.  Object tracking with smoothing over 50 random trees.

As can be seen from these results, the objects are much clearly defined in this ex-
periment, and most of the noise in the labeling has disappeared.

5.3.3 Conclusion

In this chapter, we have proposed a new approximation of multi-dimensional Hidden
Markov Model based on the idea of Dependency Tree. We have focused on the
definition and use of 3-D HMMs, a domain which has been very weakly studied up
to now, because of the exponential growth of the required computations.

Our approximation leads to reasonable computation complexity (linear with every
dimension). We have illustrated our approach on the problem of video segmentation
and tracking. We have detailed the application of our model on a concrete example.
We have also shown that some artifacts due to our simplifications can be greatly
reduced by the use of a larger number of dependency trees.

In the future, we plan to explore other possibilities of 3-D HMMs, such as classifica-

tion, modeling, etc... on various types of video. Because of the learning capabilities
of HMMs, we believe that this type of model may find a great range of applications.
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Chapter 6

Conclusions

6.1 Summary and Contributions

After presenting an out-of-the box introduction to image understanding, we give a
review of current statistical machine learning algorithms in chapter 2. It was sug-
gested that in order to improve image classification, contextual constraints among
visual features should be taken into account.

The hidden Markov model has both a rich mathematical structure, and (when applied
properly) work very well for modeling context in sequential data. Thus we proposed
to represent images by 2-D hidden Markov models with the underlying state proc-
esses being 2™ order Markov meshes. However due to the exponential computational
complexity that arises for 2-D problems, we were motivated to conceive an algorithm
that can make the estimation of the model parameters tractable.

Consequently the main contribution of this dissertation consists in the proposal and
study of an efficient method (the DT HMM) for approximating the parameters of a
multidimensional hidden Markov model based on a random dependency tree.

In chapter 3 we have discussed the theoretical framework of hidden Markov models
as developed in the machine learning field in the last twenty years. Then we showed
how to perform the extension to two dimensions and how to solve the three funda-
mental problems of HMM design [37], given our new framework.

Formulas were derived for estimating the model, based on the EM algorithm devel-

oped for maximum likelihood estimation with incomplete data. Following the idea of
the forward-backward algorithm for estimating 1-D HMMs, we developed a similar
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algorithm that reduces computation to O(wh) in complexity instead of O(wN2"),
where N is the number of states in the model and (w,h) is the width respectively
height of the image.

We developed the components of the DT HMM, along with other involved mathe-
matical tools such as GMMs, k-Means and Vector Quantization (see Appendix B) in
order to conduct experiments on the model.

To study the influence of the dependency tree we investigated the variation of the
observation probability with respect to the particular dependency tree that is used.
The results showed that there are great chances that a random tree will provide a
value which is close to the average. We also compared three different approxima-
tions of the exact probability (3.44) which results may suggest the choice of the best
approximation method, based on the deviation which is considered reasonable for a
given application.

In searching for the point of operation of the model, we encountered an intrinsic
weakness of the HMH; that the output probability plays a more important role than
the transition probability. This explains why images with uniform colors get a very
high probability; because they have a very large emission probability.

It was also confirmed that the contextual model sometimes fails to discriminate sub-
classes with-in the concept which might suggest the scale is too low. At one hand we
need high scale to distinguish fine details in objects, and low scale to capture global
properties. This gave rise to the ideas of introducing restrictions to the states in order
to enforce sub-classes, as well as to form a multiscale model in order to combine
global and local context.

Therefore in 4.1 we explored the inherent ability of the DT HMM to automatically
associate image blocks to semantic sub-classes represented by the states of the
Markov model. We used a modified version of the Viterbi algorithm that is able to
handle the situation when a visual sub-class is represented by several states, and only
the sub-class annotation (not the state annotation) is available. We investigated
several properties of this process. The performance of this joint probabilistic map-
ping of states was evaluated on a wide within-class database to illustrate its tolerance
to invariant visual evidences.

Finally we investigated the role of the transition probabilities. The experiment was
carried out by letting the model label 40 in-class but unseen test images. The average
rate of correct labeled blocks was 38% when taking transition probabilities into ac-
count and 32% with only the output probabilities modeled by the Gaussian mixture
models.

Since we had detected the problem of high output probabilities in chapter 3, we
wanted to introduce global context to overcome the effect of dominant uni-colored
images. Chapter 4.2 deals with the extension to multiple resolutions. The extension
allows an image to be represented by observations in several resolutions which
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corresponds to local and global context. When the DT HMM is extended to multiple
resolutions, it shows that it has a competitive performance in comparison to other
known algorithms. We could observe that the model at the lowest resolution intro-
duced global information that penalize uni-colored images, but depending on the
fusion scheme the higher resolution models sometimes takes over. The mean average
precision for the different models are listed in Table 5.

Finally in Chapter 5 we illustrated that the DT HMM formalism is open to a great
variety of extensions and tracks. Since 3-D HMMs has been little studied we investi-
gated the extension of the framework to three dimensions. We considered the case of
video data, where two dimensions are spatial, and the third is temporal. The model is
applied to the problem of video segmentation and tracking. The approximation lead
to reasonable computation complexity and we showed that some artifacts, due to our
simplifications, can be greatly reduced by the use of a larger number of dependency
trees
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6.2 Future Work

In the conclusion of chapter 4 and 5 we recognized the importance of the block size.
By using fewer blocks, i.e. letting each block cover a larger part of the image we can
improve the result since we reduce the chance of having single colored output
probabilities. We can further investigate this and also what is the appropriate resolu-
tion for the lowest scale to model the global context so as to avoid the dominant
output probabilities that arises from uni-colored blocks during training.

Because of the learning capabilities of HMMs, we believe that this type of model
may find a great range of applications. We may consider other 3-D applications such
as 3-D classification or image reconstruction.

Further since the dependency tree introduces discontinuities we may find other ways
to select a tree. For example make an optimal tree for a set of images or application
by first analyzing each image and make more connections between boundary regions,
or consider other non-random trees.

A future way to approach the problem of discontinuities is to use hierarchical mod-
els, since a block in a lower resolution may introduce connections that does not exists

in the smaller scale.

The model may also be extended to higher dimensions (n>3). In that case the contex-
tual connections become weaker since for each dimension we will have one
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connection out of n neighbors. For this reason the choice of the tree will become
even more important.

In conclusion we believe that the DT HMM is a powerful model that hopefully will
lead to powerful applications in the future.
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Appendix A

Training Data

A.1 TRECVid Archive

Much of the experimental work in this thesis was accomplished by using the TREC-
Vid [66] archive for training and testing. As a participant of the workshop TRECVid
2005 [108] we had access to 133 hours of annotated ABC/CNN TV newscasts,
composed of news, weather, sports, financial reports, and commercial advertise-
ments.

Common Feature Annotation

A common annotation effort was organized by Lin et al. at IBM [105]. The work was
carried out by dividing the participants into 23 groups who used IBM software to
manually annotate the development collection of over 60 hours of video content with
respect to 133 semantic labels. The application facilitated the annotation process by
given the shot boundaries; the corresponding key frame was presented through a
graphical user interface that permitted the user to associate regions or the entire
image with a semantic label.

There were significant contributions from other participants as well; Jean-Luc
Gauvain of the Spoken Language Processing Group at LIMSI provided automatic
speech recognition (ASR) output for the entire collection [109]. Georges Quénot of
the CLIPS-IMAG [106] group provided a common set of shot boundary definitions
and keyframes, which served as the predefined units of evaluation for the feature
extraction (see section A.2). The data was then made available to all participants in
MPEG-7 format for subsequent use such as development, training and testing.

In total, the development collection contained 133 videos in MPEG-1 format and
35,067 shots as defined by the common shot reference, together with its annotations.
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The advantage of the common annotated data is primary to have access to a large
quantity of high quality annotated image/video data, and to have the possibility to
objectively compare the performance of different systems.

Contribution

I participated in the feature extraction task, which was to contribute with search
results for evaluating the effectiveness of detection methods for semantic concepts
such as “People", “Waterscape", “Explosion" etc., which occur frequently in video
information.

More precise, the task was defined as follows: given a feature test collection, the
common shot boundary reference for the feature extraction test collection, and the list
of feature definitions (see below), participants returned for each feature the list of at
most 2000 shots from the test collection, ranked according to the highest possibility
of detecting the presence of the feature. Each feature was assumed to be binary, i.e.,
it was either present or absent in the given reference shot.

The feature extraction task has two objectives: to continue work on a benchmark for
evaluating the effectiveness of detection methods for various semantic concepts, and
allowing exchange of feature detection output for use in the TRECVID search test set
prior to the search task results submission date.

The number of features (which was discussed and proposed online by participants) to
be detected was kept small (10) so as to be manageable and the features were ones
for which more than a few groups could create detectors. Another consideration was
whether the features could, in theory, be used in executing searches on the video data
using the topics.

1. People walking/running: segment contains video of more than one person

walking or running

Explosion or fire: segment contains video of an explosion or fire

Map: segment contains video of a map

US flag: segment contains video of a US flag

Building exterior: segment contains video of the exterior of a building

Waterscape/waterfront: segment contains video of a waterscape or waterfront

Mountain: segment contains video of a mountain or mountain range with

slope(s) visible

8. Prisoner: segment contains video of a captive person, e.g., imprisoned, behind
bars, in jail, in handcuffs, etc.

9. Sports: segment contains video of any sport in action

10. Car: segment contains video of an automobile

NownkwD
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A.2 Low-level Features

Images are represented by features that are extracted directly from their digital
representations which are therefore often called low-level features. The process of
extracting features is the basis for image classification, and it is decisive for the final
quality of the system.

Many features (or descriptors) have been proposed; frequently used features for
images are color, shape, texture, color layout, etc. A comprehensive review can be
found in [115], [121]. In the following section I will introduce the features that were
studied in the course of this thesis.

Color descriptors

Color features are one of the most widely used, mainly because of its robustness and
invariance to image size and orientation. For humans, color is the perceptual result of
visible light, which lies within the spectrum wavelength of 380 nm - 750 nm. In
computer applications it is usually represented by three color channels corresponding
to the amount of red (R), green (G) and blue (B). To facilitate the specification of
colors in a standard way, the image processing community use colors models.

A color model (or color space) is a specification of a coordinate system and a sub-
space where each color is represented by a single point. There are several color
models oriented towards different hardware and software applications. Below I will
briefly present the most common models for image classification.

HSV is a natural representation color model, which means close to the physiological
perception of the human visual system (HVS). It consists of hue angle (H), color
saturation (S) and brightness (V). It is good in its capacity to recognize the presence
or absence of colors (hue) in an image, which is often explored since the HVS is
more sensitive to changes in hue than saturation or value.

A step to gain more control over color is to use a perceptual colors model like
CIE LUV, CIE Lab, or Munsell [113]. In 1976, the CIE (Commission Internationales
de I’Eclairage ) defined CIE LUV color space (based on CIE XYZ) to enable us to
get more uniform and accurate models. LUV is used in calculation of small color
differences, especially with additive colors, and it is often chosen because of its good
perception correlation properties [39]. This means that the Euclidean distance be-
tween two colors in the LUV color spaces is strongly correlated with the human
visual perception.

Another popular color space is YUV that is used in European TVs, and YIQ in North

American TVs (NTSC). Lim et al. [111] found that the YIQ color coding performed
better over other color spaces in there effort to extract semantics in home photo
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collections. Further studies of color perception and color spaces can be found in
[119], [120].

Texture descriptors

A texture can be described as the feature that captures spatial distribution of Iumi-
nance variations in terms of visual patterns. It is an innate property of most surfaces,
including clouds, vegetation, bricks, hair etc. It contains important information about
the structural arrangements of surfaces and their relationships to its neighborhood.

The Discrete Cosine transform (DCT) provides the visual information of an image
block with different frequencies. AC coefficients in the upper left corner reflect
information of lower frequencies, whereas those AC coefficients in the lower right
corner correspond to information of higher frequencies (c.f. Figure 61). The trans-
form has been a predominant tool in signal and image processing for decades due to
its computational efficiency and effectiveness in representing images.

Extensive psychological studies [112] conclude that human vision system is not of
uniform discrimination to details of different frequencies: changes occur in low
frequencies is far more distinguishable than those in high frequencies. Therefore, a
few coefficients can be chosen to represent the horizontal and vertical intensity
variations of an image as exemplified below.

Figure 61. DCT coefficients of an 8 x 8 image block.

Gabor wavelets, which are plane waves restricted by a Gaussian envelope, have long
been successfully applied to the problems of image analysis because of their biologi-
cal relevance and computational properties [116][117].

Basically, Gabor filters are a group of wavelets [110], with each wavelet capturing
energy at a specific frequency (w) and a specific direction (0). Expanding a signal
using this basis provides a localized frequency description. Often a set of Gabor
filters are produced for texture analysis, for example 4 scales and eight orientations
as depicted below.
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Figure 62.  Example of Gabor kernels at 4 scales and 8 orientations

A low scale (high frequency o), implies a compressed wavelet that captures rapidly
changing details, and inversely a high scale (low frequency ®) captures slowly
changing details. The Gabor wavelets have been found to be particularly suitable for
image decomposition and representation when the goal is the derivation of local and
discriminating features.

Shape Descriptors

To allow us to describe a structural content of images it is desirable to use shape or
structural descriptors. Usually a shape represents a specific edge feature that is
related to object contour. The Canny edge operator takes as input a gray scale image,
and produces as output an image showing the positions of tracked intensity disconti-
nuities (see Figure 63).

The operator works in several steps; first it uses linear filtering with a Gaussian
kernel to smooth noise and then applies a simple 2-D first derivative operator to
highlight regions with high first order spatial derivates, these edges give rise to ridges
in the gradient magnitude image (called edgels). The algorithm then tracks along the
top of these ridges and sets to zero all pixels that are not actually on the ridge top so
as to give a thin line in the output.
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Figure 63. Example of marked edges in an image using Canny's algorithm.

Problems might occur where three ridges meet in the gradient magnitude image, the
tracker will treat two of the ridges as a single line segment, and the third one as a line
that approaches, but doesn't connect to.

Another simple (but effective) edge detector is the Sobel detector, which uses a
simple convolution kernel to create a series of gradient magnitudes. However the
Sobel algorithm is very sensitive to noise in the picture which is often the case with
photographic images [118].

Summarizing

Depending on the application, features represent global or local properties in the
image. Local features can be computed over arbitrary regions or non-overlapping
blocks. In both cases the features are usually summarized within the region by
forming a histogram. Statistically, a histogram denotes the joint probability of the
attributes in the feature vector. Considering that most histograms are sparse and
sensitive to noise, Stricker and Orengo used cumulated histograms and to overcome
the quantization effects they proposed to use a color moments approach [122].

Since most of the information is concentrated on the low-order moments, and in the
light of the fact that I use GMMSs to represent the output probabilities (which are
difficult to train for highly skewed probability distributions), I decided to use means
and variances to represent the feature vectors in my experiments.

Dimension Reduction

When forming a signature it is common to concatenate several descriptors to one
high dimensional feature vector. To make the system scalable to large size image
collections, it is thus sometimes necessary to perform a dimension reduction.

Even though the dimension of the resulting feature vector is high, the embedded
dimension can be much lower. Principal Component Analysis (PCA) can be applied
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to transform the features to a reduced space by computing a new, smaller set of
uncorrelated variables which best represent the original data.

Experiments show that most real data set can be considerably reduced in dimension

without significant degradation in retrieval quality [123]. However in this thesis our
feature vectors never exceeds 36 dimensions, so we kept the full vector.
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Appendix B

Implementation Notes

The experiments are carried out by procedures developed in ANSI (GNU) C++ using
the Standard Template Library (STL). I would like to say an encouraging word about
this since I was used to work with object pointers; working with templates apparently
has several advantages:

1. It’s less error prone since by using automatic allocation (on the stack) of con-
tainer objects, they take care of the explicit memory allocation (using new,
delete).

2. Allows use of C++ scoping rules to avoid memory leaks.

3. The STL gives C++ a new level of abstraction. The Vector container for in-
stance knows its size, takes care of memory allocation and knows how to
serialize its self.

4. Common algorithms are already implemented such as sort, min/max and
search element.

Class Design

In coding algorithms for research purposes it is important to have a flexible object
structure to facilitate future modifications meanwhile retaining code reusability. We
therefore broke out some common objects that were inherited for different special-
ized models. The figure below gives a comprehensive view of the inheritance
structure used for implementing the multiresolution hidden Markov models used in
4.2.
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CbasepcHmm (abstract class)

CbaseHmm (abstract class)

-_nstates
-_ncomponents
-_ndimensions
-_resolution
-_startState = 0

-_max_no_metastates

-_border_state
-vector<Sequence<vector><Tuple>>>best_gamma
-vector<Diagonal<Tuple>> _Nbest_Y
-vector<vector<int>>_pre_Nbest_Y
-VariableField<double>_maxp_child

-_endState = _nstates
-vector<double>_ps1s2s3

+pure virtual ~CbaseHmm()
+ReestimateTransitions( CbaseCounts*)()
+Ps1s2s3()

+SetDimension()

-

+pure virtual Reestimate( CbaseCounts& )()
+pure virutal Gmm()()

+pure virtual Pso()

+virtual Load()

+virtual Save()

+LogvsViterbi( maxp_child )()

Owns the Gaussians

CpcHmm

-vector<GMM>_gmm

+MakeUniformModel()
+Reestimate( CbaseCounts& )()|
+TrainGMM()

+Gmm()

+Pso()

+Load()

+Save()

Refers to the Gaussians

CrefpcHmm

-vector<GMM*>_pgmm

L

+MakeUniformModel( CpcHmm& )()
+Reestimate( CbaseCounts& )()
+Gmm()

+Pso()

-vector<double> _cs1s2s3

+Reset()

+pure virtual ~CbaseCounts()
+pure virtual SetFromModel( CbasepcHmm )()
+pure virtual Reset()

+pure virtual RecalculateGaussians()
+pure virutal Cgmm()
+AccumulateFromHiddenState()
+AddCs1s2s3()

+Cs1s2s3()

+pure virutal AccumulateTransitionsFromHiddenState()

+AddCso()
+Cgmm()

+Nstates() +LogvsViterbi2(..., startState,endState)()
+Resolution() +get_best()
+Ncomponents() +get_best_from_Yi()
+Ndimensions() +get_next_best()
+Load() +get_nextbest_from_Yi()
+save() +Borderstate()
+MaxNmstates()
CbaseCounts (abstract class) Ccounts
-_nstates -vector<CountGMM>_cgmm
-_noutputs +SetFromModel()
-_ndimensions

+AccumulateFromHiddenState()|
+RecalculateGaussians()

observations

Crefcounts

Figure 64.

+Reset()

+SetFromModel( cbasepcHmm*)()

+AccumulateFromHiddenState()
+RecalculateGaussians(does nothing)()\
+Cgmm(does nothing)()

Accumulates states only

DT HMM object relations.

Accumulates states and output

F\Leestimtes
Hs1s2s3 and
GMMs

Reestimtes only
Ps1s2s3

The base classes ChaseHmm and ChaseCounts are abstract classes since they contain
pure virtual functions'? and can therefore not by instantiated. To implement the
multiresolution path constrained model proposed in [79], we instantiate an array of
CpcHmm and CrefpcHmm which are derived from ChasepcHmm. Since according to
the algorithm, each resolution share the same output probabilities, only CpcHmm
instantiates a GMM, to which the CrefpcHmm holds a pointer. Due to the fact that
the reestimation function is virtual, we can call the Reestimate() to all objects in the
array and let the objects themselves know what action to perform. In this case: update

the Gaussians or not.

12 A pure virtual function provides no default code in the base class.
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Low-level Feature Production

We used the Dali video library [125] to manage video streams and extract video
frames. The library is developed at Cornell University and contains an extensive set
of routines for manipulating video, audio, and image data. For image analysis and
processing I used VIGRA (Vision with Generic Algorithms) [124], which is heavily
based on templates and generic programming. An advantage is that it obviates tiles

and scanlines by using iterators. Other benefits are:

Supports very large images

Supports color models

Supports different bit depths through templating
Modern C++

Relatively small

Well-documented

The figure below shows the objects involved to perform image processing and

feature extraction.

Dali1.0

- mpeg1 decoder

v

- Mpeg?7 parser
Retrieve frames

1

Vigra1.3 ] Semantic files

w0380
- Dali wrapper
_| a0430a.x b0430.x
90401 : -Feature Factory Normalization | >
"| -Parse xml file Signature Divides each

feature by its

max value.

Imgprocessing.h

-lmage processing

A

Normalized

signatures

tools

i Frame number

sampleparser.h

-Rgb2hsv
-Subsa}mple -Define set/sub set
-Quantize -getNextSignature()
-Gabor -getNextSemantic()
-Canny -getSignature( pos )
datastruct.hpp a0430mr.x
~ContObs > -Make multi-resolution
-Sequence feature vectors
-Diagonal
sessseees = file export/import
= class import/header
Figure 65. Low-level feature extraction objects.
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The low-level features (signature files) were produced by a script file (a0430.x) that
automates the procedure which is divided in the following steps: for every key-frame
in the video archive, compute and store the demanded low-level features, update the
file index database. To avoid ill-conditioned problems during the training process, an

optional second step (b0430.x) was used to zero-mean normalize the data.

Training Algorithms

We implemented algorithms for k-Means, GMM, HMM, multi-dimensional algebra
and multivariate statistics in C++. The design goal was, as earlier mentioned, to make
use of the STL as much as possible. The figure shows the relations of the objects

involved for training a DT HMM model.

Semantic files

sampleparser.h

00429.x

-Define set/sub set

Frame number files

A script file (q0429.x) controls the training process. Given a concept class, it finds
the corresponding feature vectors in the low-level feature archive by calling
getNextSignature defined by the Sampleparser. The class feature data is fed to the

-getNextSemantic()

-getNextSignature(type)

-train dthmm model
< [~ Class = 'Beach’

# iterations
-getSignature( pos ) »
-hasNext() 2
datastruct.hpp hmm.h
-ContObs -LogViterbi
-Sequence —— | -AccumulateFromState
-Diagonal
-Variable Field

A
*

dVec gmm.h

- multi dimensional
double vector.

-Operators + -/
-DotProduct(),
-ArrayProd()
-Cluster
-Sample

-GMM( ncomponents )
-Train( observation )
-Prob( observation )

A 4

Figure 66.

DT HMM object relations.

classifier module which iteratively computes the statistical model.
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Appendix C

Notation and Abbreviations

A summary of the most commonly used notations and abbreviations are listed in the
tables below. I adopt the convention that random variables are written with capital
letters, and instantiations there of (values) are written with lower-case letters. When
working with linear algebra, we denote vectors as lower case and matrices with upper

casc.

When vectors are used in linear algebra manipulations (for instance as feature
vectors) with matrices and other vectors, we will assume that they are column vectors
so that strictly speaking the vector should be denoted x = (xo,xl,...,xk_l)T, where T

denote transpose.

Through out this thesis we employ the following terminology when discussing

concept learning:

Table 8. Machine learning terminology.

Term Meaning

Concept Comprehensive term for the
concept.

Ground truth Same as target concept also called
training data or feature vector with
class label.

Instance Feature vector/sample; the data
over which the model is defined.

Model Mathematical construction to

Target concept

explain the concept.
Class label; the concept to be learnt.
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Table 9. Notation for classification algorithms.

Symbol Meaning

® Estimation of the target class
function to be learnt, a.k.a.
hypothesis or model.

Ci Class label

X Feature vector

n No. attributes/dimensions

Table 10. Notation for HMMs.

Symbol Meaning

S = {s1,82,...8n] Individual states

N Number of states

T Initial probabilities

ajj Transition probabilities

Oij Observation

Yii Occupancy probability

A The parameters of the HMM
o Forward variable

B Backward variable
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Table 11. List of abbreviations.

Abbreviation Meaning

ANN Artificial Neural Network

ASR Automated Speech Recognition
BN Bayesian network

CIE Commission Internationales de I’Eclairage
CPD Conditional Probability Distribution
DCT Discrete Cosine Transform

DGM Directed Graphical Model

EM Expectation Maximization

GMM Gaussian Mixture Model

GM Graphical Model

GPM Gaussians Per Mixture

HMM Hidden Markov Model

HMT Hidden Markov Tree

HVS Human Visual System

LLD. Independent identically distributed
MLE Maximum Likelihood Estimation
MRF Markov Random Field

MMRF Markov Mesh Random Field
MAP Maximum A Posteriori

PCA Principal Component Analysis
PDF Probability Density Function

STL Standard Template Library
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