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ABSTRACT

Many feature enhancement methods make use of probabilistic mod-
els of speech and noise in order to improve performance of speech
recognizers in the presence of background noise. The traditional ap-
proach for training such models is maximum likelihood estimation.
This paper investigates the novel application of variational Bayesian
learning for front-end models under the Algonquin denoising frame-
work. Compared to maximum likelihood training, it is shown that
variational Bayesian learning has advantages both in terms of in-
creased robustness with respect to choice of model complexity, as
well as increased performance.

Index Terms— Speech recognition, Speech enhancement, Ro-
bustness, Variational methods

1. INTRODUCTION

The performance of speech recognizers can drop significantly in
the presence of background noise. If the recognition models have
been trained in clean conditions, the problem becomes even more
severe due to the resulting mismatch between training and test con-
ditions. To improve robustness in such situations, there are two ba-
sic categories of compensation approaches: feature-based compen-
sation and model-based compensation. Feature-based compensation
schemes aim to estimate clean speech from noise-corrupted speech
based on a noise-model or knowledge about how the noise changes
the signal statistics, while model-based compensation schemes ad-
just the system parameters in order to obtain a model better suited
for recognition in the noisy environment.

The main advantage of feature-based approaches compared to
model-based approaches is that they are computationally less de-
manding. For the feature-based methods there has been increasing
interest in taking advantage of probabilistic models of speech and
noise [1, 2, 3, 4]. Such front-end models are normally chosen to be
much simpler than the recognizer models in order to retain the ad-
vantage of computational simplicity. A common choice is the Gaus-
sian mixture model (GMM).

Training of such probabilistic models is also an active field of
research. Approximate Bayesian learning has been made possible
during the past few years through the use of variational methods
[5]. Variational Bayesian (VB) training offers several advantages
over traditional maximum likelihood (ML) training. Examples of
previous applications of VB learning to speech recognition are train-
ing of GMMs for recognition of confusable phones [6] and HMM
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model-selection and training for large vocabulary speech recogni-
tion [7]. The novelty of this paper is the application of VB training to
front-end models for speech denoising using the Algonquin frame-
work [3]. Compared to ML training, we show that the VB approach
gives increased robustness w.r.t. choice of model complexity, as well
as increased performance.

This paper starts by briefly reviewing variational Bayesian learn-
ing in section 2, before describing VB training of the GMM in sec-
tion 3. Then, we review the Algonquin algorithm for denoising in
section 4. Section 5 describes the application of VB trained models
to feature enhancement and our motivations for doing so. Experi-
ments and results are presented in section 6 before the conclusion in
section 7.

2. VARIATIONAL BAYESIAN LEARNING

In [5] Attias proposed a variational approach for Bayesian learning
of graphical models. LetX = {x1, · · · ,xN} denote the observed
data,S = {s1, · · · , sN} denote hidden variables andΘ denote the
parameters. For a given model structurem the goal is to compute
the parameter posteriorp(Θ|X,m). In addition, for the purpose of
model selection, the posterior of model structuresp(m|X) is of in-
terest.

To make Bayesian computations tractable, the key point is to
approximate the joint posteriorp(S,Θ|X) by a variational posterior
q(S,Θ|X) which is restricted to a factorized form as

q(S,Θ|X) = q(S|X)q(Θ|X). (1)

Note thatq should always be understood as conditioned onX, al-
though it is common not to write this explicitly. We will also follow
this convention. It is now possible to reformulate the problem of
computing the posterior as an optimization problem, where the cost
functionFm is defined by

Fm =

Z

q(S)q(Θ) log
p(X,S,Θ)

q(S)q(Θ)
dΘdS. (2)

This quantity is also often referred to asfree energy. It follows from
Jensen’s inequality thatFm is bounded from above by the marginal
log likelihood, i.e.

Fm ≤ log p(X|m). (3)

The objective function can also be written as

Fm = ES,Θ

»

log
p(X,S|Θ)

q(S)

–

−KL[q(Θ)||p(Θ)], (4)



whereES,Θ[·] denotes the expectation w.r.t.q(S,Θ) andKL de-
notes the Kullback-Leibler distance. While the first term corresponds
to the averaged likelihood, the second term can be interpreted as a
penalty term for more complex models. As we increase the num-
ber of parameters in order to increase the average likelihood, the KL
distance will also increase and thus reduce the total value ofFm.
Assuming equal prior probabilities for all model structuresm, the
model with the highest value ofFm corresponds to the model with
the highest posterior probability.

For optimization of the objective function, an EM-like algorithm
is used. The E-step consists of computing the variational posterior
over hidden variables as

q(S) ∝ exp {EΘ[log p(X,S|Θ)]} . (5)

The M-step is then to compute the variational parameter posterior as

q(Θ) ∝ exp{ES [log p(X,S|Θ)]}p(Θ). (6)

3. VB LEARNING FOR GMM

The application of VB learning as described in section 2 for the
GMM was also presented in [5].

The GMM has the form

p(xn|Θ,m) =
m
X

s=1

p(xn|sn = s,Θ)p(sn = s|Θ) (7)

wheresn denotes the hidden component that generated observation
xn. In this case, the model structure is simply the number of com-
ponents, denotedm. Each component has a Gaussian distribution
N (µs,Γs), whereµs is the mean vector, andΓs is the precision
matrix. The mixture weight for components is denoted byπs, i.e.
p(sn = s|Θ) = πs.

It is useful to choose prior densities from conjugate families,
since the posterior densities will then belong to the same families as
the priors. As a consequence, the VB learning simply amounts to
updating the hyperparameters of the posteriors. Thus, the following
conjugate priors are defined for the parametersΘ.

p({πs}) = D(λ0) (8)

p(µs|Γs) = N (ρ0, β0
Γs) (9)

p(Γs) = W(ν0,Φ0) (10)

HereD andW denote Dirichlet and Wishart densities respectively.
Defineγn

s = q(sn = s|xn). The objective of the E-step is to
computeγn

s , and this can then be done as follows:

γn
s ∝ π̃sΓ̃

1/2
s e−(xn−ρ

s
)T Γ̄s(xn−ρ

s
)/2e−d/2βs , (11)

where

log π̃s = EΘ[log πs] = ψ(λs) − ψ

 

X

s′

λs′

!

(12)

log Γ̃s = EΘ[log |Γs|]

=
d
X

i=1

ψ

„

νs + 1 − i

2

«

− log |Φs| + d log 2 (13)

Γ̄s = EΘ[Γs] = νsΦ
−1
s . (14)

In the above equations,ψ denotes the digamma function. The nor-
malization constant ofγn

s can be found using the constraint that
Pm

s=1 γ
n
s = 1.

The M-step can be divided into two stages. In the first stage,
which is the same as in the ordinary EM algorithm, the following
quantities are computed.

π̄s =
1

N

N
X

n=1

γn
s (15)

µ̄s =
1

N̄s

N
X

n=1

γn
s xn (16)

Σ̄s =
1

N̄s

N
X

n=1

γn
s C

n
s (17)

Here,Cn
s = (xn − µ̄s)(xn − µ̄s)

T , andN̄s = Nπ̄s. The hyperpa-
rameters of the posteriors are then updated in the second stage.

λs = N̄s + λ0, νs = N̄s + ν0, βs = N̄s + β0 (18)

ρs =
N̄sµ̄s + β0

ρ
0

N̄s + β0
(19)

Φs = N̄sΣ̄s +
N̄sβ

0

N̄s + β0
(µ̄s − ρ

0)(µ̄s − ρ
0)T + Φ

0 (20)

Since posteriors are computed instead of parameters, the pre-
dictive density is used for unseen data. In this density the param-
etersΘ are integrated out. This gives us a mixture of multivariate
t-distributions on the form

p(x|X) =

m
X

s=1

π̄stωs
(x|ρs,Λs). (21)

For components, the degrees of freedom areωs = νs + 1 − d, the
mean isρs and the covariance isΛs = ((βs + 1)/βsωs)Φs. The
mixture weight is given bȳπs = λs/

P

s′ λs′ .

4. FEATURE ENHANCEMENT BASED ON ALGONQUIN

Algonquin [3, 8] is a feature cleaning method that typically operates
in the log-spectrum domain. The method takes advantage of proba-
bilistic models of speech and noise in order to remove additive noise.
(Note that the method can also handle distortion from the channel,
but this will not be considered here.)

Let x, n andy denote clean speech, noise and noisy speech
vectors respectively. Given GMM priorsp(x) andp(n) for speech
and noise, the Algonquin method uses a variational algorithm to find
an approximation of the posteriorp(x|y). This variational posterior
is denoted asqy(x). Givenx andn, the distribution ofy is modeled
as

p(y|x,n) = N (y;x + log(1 + exp(n − x)),Ψ) (22)

whereΨ is the covariance matrix. Thus, the joint distribution be-
tweenx, n, speech GMM componentsx and noise GMM compo-
nentsn is given by

p(y,x,n, sx, sn) = p(y|x,n)p(sx)p(x|sx)p(sn)p(n|sn)

= N (y;g(x,n),Ψ)πx
sxN (x; µsx

x ,Σsx

x )

· πn
snN (n; µsn

n ,Σsn

n ) (23)

whereg(x,n) = x+log(1+exp(n−x)). Algonquin approximates
the true posterior by a variational distribution which is also modeled
as a GMM, i.e.

qy(x,n) =
X

{sx,sn}

q(sx, sn)qy(x,n|sx, sn). (24)



Set 1 Set 2
m ML VB ML VB
10 70.22 71.11 69.48 69.82
14 70.65 69.88 70.19 71.23
18 70.56 71.05 69.42 70.22
22 72.28 71.29 69.30 69.30
26 71.72 72.24 68.44 69.97
30 71.08 71.35 — 70.80
34 69.70 71.97 — 70.95
38 — 72.74 — 71.26
42 — 72.18 — 70.37
46 — 71.17 — 69.94
50 — 70.31 — 70.43

Table 1. Recognition performance (word accuracy) after denoising
files containing subway noise at 5 dB, using models trained with two
different training sets

Set 3 Set 4
m ML VB ML VB
10 69.48 70.53 70.10 70.68
14 69.54 69.20 67.64 69.88
18 69.79 70.22 70.28 70.86
22 68.93 69.63 69.97 70.92
26 69.17 71.02 67.88 70.37
30 68.38 71.02 69.39 71.85
34 — 70.80 — 72.24
38 — 71.94 — 71.72
42 — 71.02 — 70.74
46 — 71.57 — 70.62
50 — 71.05 — 71.85

Table 2. Recognition performance (word accuracy) after denoising
files containing subway noise at 5 dB, using models trained with two
different training sets

The parameters of this distribution are found by maximizing the fol-
lowing objective function.

F =
X

{sx,sn}

Z

qy(x,n, sx, sn)

· log
p(y,x,n, sx, sn)

qy(x,n, sx, sn)
dxdn (25)

See [3, 8] for details on the equations for the posterior param-
eters. After having found the posterior parameters, the minimum
mean square error (MMSE) estimate of the clean speech feature vec-
tor is found as

x̂ =

Z

xp(x|y)dx ≈

Z

x
X

s

qy(s)qy(x|s)dx. (26)

5. TRAINING THE FRONT-END USING VB

There are several advantages to the Bayesian learning approach com-
pared to traditional ML training. When only a small amount of data
is available, ML training suffers from overfitting problems if the cho-
sen model structure is too complex. In addition, if a component is
assigned very few observations during ML training, numerical prob-
lems often arise. Because of the regularization effects from the pri-
ors, the VB training has no such numerical problems. In addition,

since the VB objective function contains a penalty term for complex
models, the training has an ability to prune the trained model accord-
ing to the amount of data available. Thus, even if the model structure
is chosen too complex, the model will not have the same overfitting
problems as ML. Moreover, the VB free energy can be used as a
model selection criterion to choose the right model complexity.

We applied the algorithm described in section 3 to train the
speech prior used by Algonquin. The noise prior was an ML-trained
single mixture estimated from the first 20 frames of each file, which
are assumed to consist only of noise. The result of the VB train-
ing is posteriors for the parameters ofp(x). Ideally, we should use
the predictive distribution given by eq. (21) when running Algo-
nquin. However, since Algonquin is based on the assumption that
the mixture components are Gaussian, we approximated each of the
multivariate t-distributions with the multivariate Gaussian that was
closest w.r.t. KL-distance. Given a components it can be shown
that this is a Gaussian with mean and covariance equal to that of the
multivariate t-distribution [9], i.e.

p(x) =

m
X

s=1

π̄sN (x; ρs,Λs). (27)

6. EXPERIMENTS AND RESULTS

The experiments in this study were performed on Aurora2, which
consists of spoken English digits with artificially added noise [10].
In order to investigate the performance of the feature enhancement
algorithm in a case where only a small amount of data was avail-
able for training the front-end models, we used four different train-
ing sets, each consisting of 50 randomly selected files. Then, we
trained models with different numbers of mixture components using
both ML and VB. The training was initialized using the k-means al-
gorithm. As a test set we chose the subset of Aurora2 containing
subway noise at 5 dB.

For the VB training, the prior was set as follows:

λ0 = 1, β0 = 1, ν0 = d (28)

ρ
0 = 0, Φ

0 = 10I (29)

whered denotes the feature dimension andI denotes thed× d iden-
tity matrix. The scaling constant for the prior covariance matrixΦ0

was determined through some preliminary experiments.
Using the four different training sets, we trained prior models

(p(x)) for Algonquin using ML and VB. Then, for each prior model
we denoised all the files containing subway noise at 5 dB, before run-
ning the recognizer on the resulting files. Algonquin was performed
in the log-spectrum domain, using 23 dimensional log filter bank
feature vectors. After cleaning, these vectors were transformed into
the cepstrum domain, where the feature vectors were 39 dimensional
MFCCs including delta and acceleration parameters, withC0 as en-
ergy. Using these feature vectors, recognition was then performed
with models trained in clean condition. The baseline recognition re-
sult, using no feature cleaning, was a word accuracy of 45.26%.

The recognition results for models with number of mixture com-
ponentsm varying from 10 to 50 can be seen in tables 1 and 2. The
ML results stop at around 30 mixtures where numerical problems
arose due to lack of training data. However, the results show that
for VB the results keep improving after that point. In addition, for a
given model size VB is slightly better than ML in most cases. Fig-
ure 1 shows the results averaged over all four training sets from 2
to 50 mixtures. For very few mixtures, the results are almost identi-
cal. This is as expected since ML has enough training data to obtain
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Fig. 1. Recognition performance after denoising files containing
subway noise at 5 dB

robust parameter estimates. However, for model sizes greater than
7 VB performs better. This is probably because ML starts to suffer
from overfitting problems. The VB learning, which has the advan-
tage of the regularization effect of the priors, continues to improve
until it reaches a peak at 38 mixtures.

In order to investigate what happens if the models size is in-
creased even further, we ran experiments up to 100 mixtures, now in
steps of 10. The value of the free energy was also examined. The top
plot of figure 2 shows the recognition performance using VB, and the
bottom plot shows the free energy. Both plots have been averaged
over the four training sets. It can be seen that even if the model size
is increased up to 100 mixtures, the performance remains at a rea-
sonably high level. This is due to the self-pruning ability of the VB
training. Since the free energy does not reflect the peak in perfor-
mance at 38 mixtures, it cannot be used as a criterion for selecting
the optimal model in this case. However, it still gives some useful
information. In the range where the free energy is reasonably flat,
the recognition performance is quite stable with a word accuracy of
more than 70%.

7. CONCLUSION

In this paper we applied variational Bayesian learning to probabilis-
tic models for feature enhancement. It was found that the Bayesian
approach had advantages compared to traditional maximum likeli-
hood training. The Bayesian approach avoided overfitting and nu-
merical problems because of lack of training data as the model size
was increased, and therefore resulted in improved recognition per-
formance after enhancement.
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