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Abstract. Data aggregation has been put forward as an essential tech-
nique to achieve power efficiency in sensor networks. Data aggregation
consists of processing data collected by source nodes at each intermediate
node enroute to the sink in order to reduce redundancy and minimize
bandwidth usage.

The deployment of sensor networks in hostile environments call for
security measures such as data encryption and authentication to prevent
data tampering by intruders or disclosure by compromised nodes. Ag-
gregation of encrypted and/or integrity-protected data by intermediate
nodes that are not necessarily trusted due to potential node compromise
is a challenging problem. We propose a secure data aggregation scheme
that ensures that sensors participating to the aggregation mechanism
do not have access to the content of the data while adding their sensed
values thanks to the use of an efficient homomorphic encryption scheme.
We provide a layered secure aggregation mechanism and the related key
attribution algorithm that limits the impact of security threats such as
node compromises. We also evaluate the robustness of the scheme against
node failures and show that such failures are efficiently recovered by a
small subset of nodes that are at most m hops away from the failure.

1 Introduction

Wireless sensor networks (WSN) are viewed as a popular solution to various
monitoring problems such as safety monitoring, wildfire tracking and traffic
monitoring. A WSN consists of thousands of sensors that are in charge of both
monitoring and data transmission tasks. The data collected by each sensor is
transmitted via a network consisting of other sensors towards a well identified
destination node called sink. In the basic setting of a WSN, each individual piece
of data is thus independently transmitted over several hops towards the sink and
each sensor node is involved in the forwarding of a large number of data pieces
originated from other sensors. In the resource constrained WSN environment,
forwarding of large amounts of data becomes the major focus of energy and
bandwidth optimization efforts. Data aggregation has thus been put forward
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as an essential technique to achieve power and bandwidth efficiency in WSN.
Based on the principle that the sink does not necessarily need all raw pieces of
information collected by each sensor but only a summary or aggregate thereof,
data aggregation consists of processing data collected by source nodes at each
intermediate node enroute to the sink in order to reduce redundancy and mini-
mize bandwidth usage. A common way to aggregate data in sensor networks is
to simply sum up values as they are forwarded towards the sink. Such additive
aggregations are useful for statistical measurements such as mean or variance
computation.

As a distributed task achieved by several potentially compromised nodes, data
aggregation raises some new security concerns in addition to the basic vulnerabil-
ities of a WSN [1]. Data aggregation in WSN is thus exposed to various threats
such as node compromise, injection of bogus aggregates, disclosure of sensed
data and aggregate values to intruders or tampering with data transmitted over
wireless links. In this paper, we focus on the problem of data confidentiality with
a twofold objective: first to prevent intruders from accessing individual monitor-
ing results, second to prevent any node other than the sink from accessing the
aggregate values. While classical data encryption mechanisms easily meet the
first objective, the second objective raises a new requirement for sensor nodes
involved in the computation of intermediate aggregate values: each sensor node
must be able to combine the locally monitored value that is in cleartext with
the encrypted aggregate value received from adjacent nodes in order to come
up with a new encrypted aggregate value. This problem typically calls for some
form of homomorphic encryption technique. Existing solutions based on homo-
morphic encryption [2,3] either suffer from excessive computational complexity
or are vulnerable to node compromise.

We suggest a secure additive data aggregation scheme based on the use of an
efficient homomorphic encryption technique combined with a multiple encryp-
tion scheme using symmetric algorithms. The homomorphism of the underlying
encryption technique allows sensors to aggregate their cleartext measurements
with the encrypted aggregate values whereas the multiple encryption scheme
assures that aggregate values and individual measurement results remain obliv-
ious to all intermediate nodes enroute to the sink. The joint use of the homo-
morphism and multiple encryption assures that a secret channel is established
between every sensor node and the sink without having to establish pairwise
security associations or a public-key infrastructure.

We first analyze the security requirements raised by secure data aggregation
and describe the need for homomorphic encryption functions. We then briefly
present the CTR encryption scheme proposed by Bellare et al. in [4], and its
extension in [5] for the context of multicast confidentiality. We show that CTR
is homomorphic and introduce the proposed layered secure aggregation scheme
based on CTR. We then evaluate the effectiveness of the proposed scheme in
terms of security, safety and performance.
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2 Problem Statement

2.1 Aggregation in Wireless Sensor Networks

We model a wireless sensor network (WSN) as a rooted tree T = (V , E) where V
is the set of nodes corresponding to the sensors and E is the set of edges between
these nodes. The root S of the tree corresponds to the sink. Each other node
has one or more incoming edges but a unique outgoing edge.

Aggregation techniques are used to reduce the amount of data communicated
within a WSN. As measurements are recorded periodically at each sensor, one
way to aggregate such information is the additive aggregation that is the addition
of values as they are forwarded towards the sink. Each node receives packets
from the incoming edges, aggregates them and sends the result via the outgoing
edge. The sink collects the final set of aggregated packets and completes the
aggregation task. Additive aggregation techniques are very useful for statistical
measurements in sensor networks. Hence, once the sink receives the addition of
some values, it can easily compute the mean or variance of the received values.

2.2 Security Requirements

In the context of secure data aggregation, we distinguish two confidentiality
requirements:

– generic confidentiality whereby sensors not participating to the aggrega-
tion mechanism, should not have access to the content of the data.

– end-to-end confidentiality whereby sensors actively participating to the
aggregation mechanism do not access the data that is already aggregated.

As to generic confidentiality, sensors need to use some cryptographic encryp-
tion algorithms in order to let only authorized sensors access the content of the
data. Since sensor nodes have very limited resources, symmetric encryption al-
gorithms are more suitable for such networks. However, with the use of classical
encryption schemes such as AES [6], every sensor should first decrypt the re-
ceived measurements in order to aggregate their own measured value and then
re-encrypt the result in order to send it to the next sensor enroute to the sink.
In this case, all sensors would have access to aggregated measurements. In order
to prevent such access and thus to ensure end-to-end confidentiality, we propose
a new framework that implements homomorphic encryption algorithms.

2.3 The Proposed Framework

We propose a framework whereby sensors participate to a secure aggregation
mechanism without having access to the protected data. In order to ensure end-
to-end confidentiality, the framework uses additive homomorphic encryption al-
gorithms. Moreover, measurements are protected with multiple encryption lay-
ers. Sensors receiving encrypted data would be able to suppress some encryption
layers, aggregate their measurements and add new encryption layers. Thanks to
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a new key attribution algorithm, only the sink is able to suppress all encryption
layers and thus access the finally aggregated result. Since each sensor modifies
the encryption of the data, the compromise of some intermediary nodes does not
provide access to the protected data.

In the following section, we describe the CTR homomorphic encryption al-
gorithm that is extended in our framework. We then introduce the new key
attribution algorithm that is used in the new secure aggregation scheme that
ensures both generic and end-to-end confidentiality.

3 The Proposed Encryption Algorithm

3.1 Additive Homomorphic Encryption

End-to-end confidentiality as defined in section 2.2 requires a homomorphic en-
cryption scheme. A homomorphism is defined as a map φ : X −→ Y such that:

φ(x · y) = φ(x) ◦ φ(y) (1)

where · and ◦ respectively are the operations in X and Y . If φ is a homomorphic
encryption algorithm, and if · is the aggregation operation, thanks to the homo-
morphism of φ encrypted individual measurements can be aggregated into an
encrypted aggregate value. Hence, let Ni be a sensor receiving encrypted mea-
surements φ(Vj) and φ(Vk). Ni first senses Vi, computes φ(Vi) and aggregates
the three encryptions as φ(Vj) ◦ φ(Vk) ◦ φ(Vi). Thanks to the homomorphism
of φ, this result is identical to the encrypted aggregate value: φ(Vj · Vk · Vi). It
should be noted that Ni was able to aggregate its measurement with the received
values without accessing the measurements in this example.

Let M be the set of plaintext messages and K be the set of encryption keys. In
the context of secure data aggregation, we propose that the encryption function φ
represents an additive homomorphic encryption scheme that encrypts a message
x ∈ M with the encryption key k ∈ K as follows:

φ : (M, K) −→ M
φ(x, k) = (x + k) mod n (2)

n is the cardinality of M. It is easy to show that φ is a homomorphic function.
Hence, let xa and xb two different plaintext messages in M and ka and kb

encryption keys in K. We have:

φ(xa, ka) = (xa + ka) mod n

φ(xb, kb) = (xb + kb) mod n

φ(xa, ka) + φ(xb, kb) = (xa + ka + xb + kb) mod n

= φ(xa + xb, ka + kb)

The security of this scheme relies on the unique utilization of the key. Hence,
as one-time pads, for each message, the encryption must use a different key.
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Thus, an efficient key generation algorithm is required for each encryption op-
eration. We propose to implement the basic CTR function proposed by Bellare
et al. in [4] that allows the generation of a different key for each encryption op-
eration. Thanks to this scheme that is briefly described in the following section,
sensors are able to update their encryption key without receiving any additional
information from the sink.

3.2 CTR Encryption Scheme

In [4], Bellare et al. describe and analyze various cipher modes of operation.
In this section, we briefly describe their proposed counter based block cipher
mode of operation (CTR-mode) which we extend in our proposed scheme. We
denote ⊕ as the binary XOR operation and define fa as a l-bit pseudorandom
permutation such as AES [6] where a is the encryption key. The CTR-mode
scheme is a triplet (K, E , D) defined as follows:

– K flips coins and outputs a random key a;
– E(ctr, x) splits x into n blocks of l bits x = x1, .., xn, and for each xi returns

yi = fa(ctr + i) ⊕ xi. Finally, ctr is updated by ctr + n;
– Symmetrically, D(ctr, y) first splits y into n blocks of l bits y = y1, .., yn,

and for each yi, it returns xi = fa(ctr + i) ⊕ yi. Similarly, ctr is updated by
ctr + n.

The counter ctr is maintained by the encryption algorithm across consecutive
encryptions with the same key. Thanks to this counter, the receiver that knows
the key a can recompute each fa(ctr+i) and thus retrieve the original message x.

3.3 Multiple Key CTR Encryption for Secure Data Aggregation

In order to introduce the secure data aggregation, we propose an extended ver-
sion of the CTR encryption with the use of multiple keys for both encryption
and decryption. We first replace the XOR operation by the additive homomor-
phic encryption scheme defined in equation 2. In the sequel of this paper a + b
and a − b are respectively defined as (a + b) mod n and (a − b) mod n. The new
basic encryption is again a triplet (K, E , D) such that:

– K flips coins and outputs a random key a;
– E(ctr, x) splits x into n blocks of l bits and for each xi returns yi = fa(ctr +

i) + xi. Finally ctr is updated by ctr + n;
– D(ctr, y) splits y into n blocks of l bits and for each yi returns xi = yi −

fa(ctr + i).Finally, ctr is updated by ctr + n.

Since (K, E , D) is also homomorphic, we now focus on the problem of end-to-
end confidentiality whereby sensors perform aggregation operations using this
scheme. Since sensors are not authorized to access the content of their received ag-
gregated information, different keys should be distributed to each sensor. In this
case, we propose a triplet (K(r), E(r), D(r)) with r independent keys as follows:
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– K(r) chooses r random keys a1, .., ar;
– E(r)(ctr1, .., ctrr, x) splits x into n blocks of l bits x = x1, .., xn, and for each

xi returns yi = xi +
∑r

j=1 faj (ctrj + i);
– D(r)(ctr1, .., ctrr, y) splits y into n blocks of l bits y = y1, .., yn in order to

retrieve xi = yi −
∑r

j=1 faj (ctrj + i).

We recall the security property that claims that a message encrypted with
multiple keys is at least secure as any individual encryptions [7]. It is obvious that
(K(r), E(r), D(r)) is homomorphic since the encryption and decryption operations
are respectively defined by additions and subtractions that are by definition
homomorphic.

4 The Proposed Model: Layered Secure Aggregations

Now that we have defined the security requirements specific to the problem of
data aggregation and that we have described the proposed CTR encryption al-
gorithm, we describe the proposed layered secure aggregation scheme that allows
sensors to aggregate measurements while the data remains confidential. Thanks
to the addition of multiple encryption layers, the scheme remains secure against
attacks such as node compromise. We first introduce a new key attribution al-
gorithm that defines the keying material of each sensor and then present the
aggregation protocol.

4.1 Notation

As described in section 2.1, a wireless sensor network is represented by a tree T .
We define the function Depth that given a node identity Ni returns its depth
in the tree. We set Depth(S) = 0. Within this tree, we also define the following
relations between nodes:

– Root(T ) represents the data sink that collects and extracts the aggregated
data;

– Parent(N, m) is the mth parent of N if it exists or S otherwise;
– Children(N, m) is the set of nodes Ni such that ∀i, N = Parent(Ni, m).

In order to implement the CTR encryption algorithm with multiple encryp-
tion keys in the context of secure data aggregation, we define a key attribution
algorithm that is explained in the following section. Thanks to this algorithm,
any node will be able to add or suppress some encryption layers without causing
any leakage of secret information.

4.2 The Proposed Key Attribution Algorithm

In this section, we describe a new key attribution algorithm for the proposed
aggregation protocol. Thanks to this algorithm, the sink is able to aggregate all
the measurements without leaking any secret information to any node including
the sensors that participate to the aggregation mechanism.
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Each node Ni shares a key ai,j and a counter ctri,j with a node Nj where
Nj = Parent(Ni, m). We also define a different key and counter (al,k, ctrl,k)
shared between a leaf node Nl and Nk = Parent(Nl, t), for each 0 < t < m. The
key attribution algorithm is summarized in Table 1.

Table 1. The key attribution algorithm

For each node Ni in T :
define (ai,j , ctri,j) for Ni and Nj = Parent(Ni, m);
if Ni is a leaf node
then

for each t < m
define (ai,k, ctri,k) for Ni and Nk = Parent(Ni, t);

else
set t = 0;
while Children(Ni, m − t) = ∅

increment t by one;
define (ai,j , ctri,j) for Ni and Nj ∈ Children(Ni, m − t);

In order to illustrate this algorithm, we define a WSN with 11 nodes repre-
sented in Figure 1. In this particular network, we set m = 2. Following the key
attribution protocol, all leaf nodes, N5, N6, N9 and N10 share one key with their
direct parent and another one with their grandparent. For example, node N9
shares a7,9 with node N7 and a4,9 with node N4. Node N1 which is an interme-
diate node, shares a different key with nodes N5, N6, N7 and N8 which are in
Children(N1, 2) and with S since Parent(N1, 2) = S.

4.3 The Aggregation Protocol

Now that we have defined the key attribution algorithm, each node is ready
to aggregate its measurement with the received values from its children nodes.
In this paper, we define the aggregation operation as a sum computation. This
operation can also be a mean or variance computation. Since the encryption
algorithm is homomorphic, each node adds the received values to the measured
value without having to access the content of the aggregated data.

Table 2 illustrates the additive aggregation protocol. A sensor Ni first ag-
gregates the received values and its measurement. From this value, Ni subtracts
keys that it shares with its mth children nodes Nj and adds the key that it shares
with its mth parent node Nk. Then, Ni sends the aggregated value denoted by
Ai to its parent node.

As an example, we examine in Table 3 how the proposed additive aggregation
protocol is applied on the tree of Figure 1. For the sake of clarity, we define ki,j

as the one-time-key originating from ai,j and ctri,j .



124 M. Önen and R. Molva

N1

N3

N6 N7
N8

N9
N10

a7,9 a4,9;

N4

a8,10 a4,10

a7,9 a1,7
a8,10 a1,8

N2

N5
a3,6 a1,6a2,5 a1,5

a2,5 as,2
a3,6 as,3 a4,9 a4,10 as,4

a1,5 a1,6 a1,7 a1,8 a1,s

as,2 as,3 as,4 as,1S

;

; ;;;

; ; ; ;

; ; ; ;

; ; ;

Fig. 1. Implementation of the key attribution algorithm with m = 2

5 Evaluation

In the following sections, we review the proposed framework with respect to:

– confidentiality whereby intruders and sensors should not have access to
the content of the data (generic and end-to-end confidentiality);

– robustness whereby the impact of a node compromise or a node failure on
the aggregation scheme should be minimized.

We then evaluate the performance of the scheme in terms of memory and
CPU usage and in terms of communication overhead.

5.1 Security Evaluation

In this section, we first show that the proposed framework ensures generic con-
fidentiality and then consider the node compromise scenario that could prevent
the end-to-end confidentiality of the scheme.

Proposition 1. The scheme ensures generic confidentiality.

Proof. In a work evaluating the security of cryptosystems in the multi-user set-
ting [8], Bellare et al. have essentially shown that if a cryptosystem is secure in
the sense of indistinguishability, then the cryptosystem in the multi-user setting,
where related messages are encrypted using different keys, is also secure. This
result can be applied to the proposed scheme using CTR. When a message is
encrypted with r keys it is at least as secure as any individual encryption. Thus,
the scheme is at least as secure as a one layer encryption layer, if no node is
compromised.
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Table 2. The additive aggregation protocol

For each Ni with measured value Vi

if Children(Ni, 1) = ∅ then
Set Ai = Vi and l = 1;
for each l ≤ m

Ai = E(ctri,k, Ai) such that Nk = Parent(Ni, l)
else

Receive {Aj} from Nj ∈ Children(Ni, 1);
Compute Si =

∑

j,Nj∈Children(Ni,1)

Aj ;

for all l where Ni = Parent(Nl, m)
Compute Sdi = D(ctri,l, Si);

Compute Ai = E(ctrk,i, Sdi + Vi) such that Nk = Parent(Ni, m);

Send Ai to Parent(Ni, 1)

Moreover the security of encryption operation that simply is a modulo n
addition depends on the unique utilization of the encryption key. Thanks to
the existence of a counter, at each encryption operation, the encryption key is
updated and thus the operation is perfectly secure.

We now consider the node compromise scenario.

Proposition 2. An intruder can have access to an aggregated data originating
from node Ni only in two cases:

– Case 1: all the nodes in the subtree T ∗ of T whose root is Ni and depth is
m − 1 are compromised;

– Case 2: all nodes Nl such that Nl = Parent(Ni, k) for all 1 ≤ k ≤ m − 1
are compromised;

Proof. Let’s assume that node Ni is compromised. Then the intruder has access
to all keys stored by Ni, that are:

– {ai,j} shared between Ni and Nj such that Ni = Parent(Nj , m);
– ai,k shared between Ni and Nk such that Nk = Parent(Ni, m);

When Ni receives aggregated values from its children nodes, these values
are still encrypted with different keys by the nodes Nj ∈ Children(Ni, k) with
1 ≤ k ≤ m. Consequently, in addition to Ni, the intruder needs to compromise
all the nodes in the subtree T ∗ of T whose root is Ni and depth is m − 1. This
proves the Case 1 of proposition 2.
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Table 3. The Additive Aggregation Protocol: an example

Layer 4:

Node N9: Computes A9 = V9 + k7,9 + k4,9

Node N10: Computes A10 = V10 + k8,10 + k4,10

Layer 3:

Node N5: Computes A5 = V5 + k2,5 + k1,5

Node N6: Computes A6 = V6 + k3,6 + k1,6

Node N7: Receives A9 = V9 + k7,9 + k4,9

Suppresses a layer Sd7 = A9 − k7,9

Computes V7 + k1,7

Adds a layer A7 = V9 + V7 + k4,9 + k1,7

Node N8: Receives A10 = V10 + k8,10 + k4,10

Suppresses a layer Sd8 = A10 − k8,10

Computes V8 + k1,8

Adds a layer A8 = V10 + V8 + k4,10 + k1,8

Layer 2:

Node N2: Receives A5 = V5 + k2,5 + k1,5

Suppresses a layer Sd2 = A5 − k2,5

Computes V2 + ks,2

Adds a layer A2 = V5 + V2 + k1,5 + ks,2

Node N3: Receives A6 = V6 + k3,6 + k1,6

Suppresses a layer Sd3 = A6 − k3,6

Computes V3 + ks,3

Adds a layer A3 = V6 + V3 + k1,6 + ks,3

Node N4: Receives A7 and A8

Aggregates S4 = A7 + A8

Suppresses two layers Sd4 = A7 + A8 − k4,9 − k4,10

Computes V4 + ks,4

Adds a layer A4 = V10 + V9 + V8 + V7 + V4 + k1,7 + k1,8 + ks,4

Layer 1:

Node N1: Receives A2, A3 and A4

Aggregates S1 = A2 + A3 + A4

Suppresses four layers Sd1 = A2 + A3 + A4 − k1,5 − k1,6 − k1,7 − k1,8

Computes V1 + ks,1

Adds a layer A1 =
P10

i=1 Vi + ks,2 + ks,3 + ks,4 + ks,1

Layer 0:

Sink S: Receives A1

Suppresses all layers Sds = A1 − ks,2 − ks,3 − ks,4 − ks,1
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Furthermore, the keys used for the encryption of aggregated values by nodes
Nj that construct T ∗ are by definition shared with nodes Nl such that Nl =
Parent(Nj , m). Consequently if the intruder compromises these nodes, it also
can access the aggregated data originating from Ni. Since Ni = Parent(Nj , k)
with 1 ≤ k ≤ m, the intruder needs to compromise nodes Nl such that Nl =
Parent(Ni, n) with 1 ≤ n ≤ m−1. This result proves the Case 2 of proposition 2.

Therefore, the security of the scheme in terms of end-to-end confidentiality de-
pends on the choice of the value m. The larger values for m imply a larger
population to compromise for the intruders. However, if m is very large, the
scheme becomes inefficient since the number of encryption layers decreases and
the scheme tends to be vulnerable to threats such as node compromise. Hence,
if m equals the depth of T denoted by h, all nodes would share one key with
the sink. In this case, the advantage of the use of multiple encryption layers
disappears and the proposed scheme would be similar to the secure data aggre-
gation scheme in [2]. The scheme would still ensure end-to-end confidentiality,
but a node failure would have a strong impact on the aggregation scheme since
in addition to the aggregated data, sensors must include additional information
about the identities of nodes participating to the aggregation. Thus m must not
exceed h − 1. As a result, m should be as large as possible for security reasons
and small enough for the sake of robustness. The ideal value for m would be the
minimum depth of all leaf nodes in T .

5.2 Robustness of the Scheme

Data aggregation in WSN is exposed to the following threats:

– node compromise whereby intruders can have access to the security ma-
terial of a sensor participating to secure data aggregation. In this case, the
aggregation scheme is exposed either to the injection of bogus aggregates or
to some passive behavior from the compromised node;

– node failure whereby the node is off and thus cannot participate to the
aggregation mechanism;

– communication failure whereby messages enroute to the sink are lost;
– poisoning whereby intruders inject some bogus data and thus break the

aggregation mechanism.

The impact of a node failure or a communication failure remains the same as
the impact of passive behavior originating from a compromised node. Hence, in
all cases, a sensor does not receive any message from some of its children nodes
and thus should exclude some of its keying material from the next aggregation
process. The impact of such failures should be minimized.

Poisoning attacks and the injection of bogus aggregates by compromised nodes
first imply a strong need for an authentication mechanism that allows a sensor
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to verify the origin and the integrity of the received data. We assume that there
is an underlying authentication mechanism such as digital signatures. However,
compromised nodes still can inject bogus aggregates although the verification
of their signature succeeds. In this particular case, since sensors do not have
access to the content of aggregates, such attacks are not detected and thus
bogus messages cannot be immediately discarded. We thus propose, a recovery
mechanism rather than a prevention mechanism that allows the sink to react
against such attacks by determining the origin of the attacks.

We thus mainly distinguish two classes of robustness problems and come up
with some recovery mechanisms for each of them: the bogus message injec-
tion originating from compromised nodes and the loss of messages.

Protection against bogus message injection. We first evaluate the perfor-
mance of the scheme when the intruder compromising Ni performs some bogus
injection. In this case, the sink might possibly notice the attack once the ag-
gregation protocol is complete, that is, when it decrypts the aggregated value.
Therefore, the sink cannot prevent such attacks but can react against them by
determining the origin of the attacks. Hence, when the sink notices such attacks
due to some exaggerated values that would result from aggregation, it first con-
tacts its children nodes and sends them the required decryption material (that
is one-time) in order to let them discover the origin of the failure. This process
is recursively run along the tree. Thus, the cost of discovering the compromised
node is in the order of log(N) where N is the number of sensors and the verifi-
cation task is distributed to all nodes of the tree. The process of compromised
nodes discovery is summarized in Table 4.

Protection against message losses. We now consider the case when there is a
node or communication failure that imply some message loss: an error may occur
during the decryption of the aggregated data. The same problem can happen
when an intruder compromising a node shows a passive behavior. In this case,
a node that did not receive any aggregated information from one of its children
nodes, alerts nodes that are at most m distant from it about the identity of the
misbehaving node. All nodes receiving this alert, will remove the keys that are
related with the misbehaving node and proceed the aggregation protocol with
the remaining keys. The alert messages only reach nodes that are m distant
from the misbehaving node and thus have a local impact on the communication
overhead.

In order to illustrate this recovery mechanism, we again refer to the WSN rep-
resented in Figure 1 and we assume that node N10 did not send its measurement
to N8. For the sake of simplicity, we again denote the one-time key resulting
from ai,j and the actual ctri,j by ki,j . In this particular case, keys k8,10 and k4,10
should not be used during the aggregation protocol. Thus, N8 sends an alert
message with the identity of N10 to N4. Since m = 2 and N4 = Parent(N10, m),
N4 does not need to forward this alert message to its parents. Table 5 illustrates
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Table 4. The discovery of compromised nodes

let l = 0;
at layer l, for each Ni ∈ T

verify(agg value, expected value)
if OK then

ACCEPT agg value;
else

if Children(Ni, 2) = ∅ then
send alert(identity(Children(Ni)))

else
send (expected value, keying material) to Children(Ni, 1);

the aggregation process for nodes that are on the path from N10 to the sink.
While computing A8, N8 only includes V8 that is encrypted with k1,8. When
N4 receives A8, and A7, it does not use k4,10 and suppresses the only encryp-
tion layer originating from node N9 and finally adds an encryption layer with
ks,4. Once N4 sends A4 to N1, there is no more modification in the aggrega-
tion process and N1 will follow the additive aggregation protocol as defined in
Table 2.

5.3 Performance Evaluation

In this section, we evaluate the performance of the scheme in terms of mem-
ory storage, computational cost and communication overhead. The computa-
tional cost and communication overhead have a direct impact on the battery
usage.

First of all, the computational activity of each sensor for the encryption and
decryption operations is only the sum and substraction operations modulo n.
The encryption or decryption operations do not have an impact on the commu-
nication overhead. There is no additional information with respect to these two
operations. The sink only receives messages from its children nodes and proceeds
to the final step of aggregation.

Furthermore, thanks to the inherent key generation process provided by CTR,
there is no additional overhead originating from the update of any sensor’s
keys.

The memory cost is related to the proposed key attribution algorithm. Sensors
share one key with their mth parent node and one key with each of their mth
child nodes. Furthermore, if a sensor is a leaf node of T , this sensor shares one
key with each of its kth parent with 1 ≤ k ≤ m. Thus, the memory cost for each
sensor equals to:

– (|Children(N, m)| + 1) if Children(N, m) �= ∅,
– (|Children(N, k)| + 1) if Children(N, k) �= ∅ and Children(N, k + 1) = ∅.
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Table 5. Failure recovery of N10 in the path from N10 to S

Layer 3

Node N8 Does not receive A10

mark k8,10 as invalid
Computes A8 = V8 + k1,8

Sends A8 and failure alert(N10)

Layer 2

Node N4 Receives, A7, A8 and failure alert(N10)
mark k4,10 as invalid
Aggregates S4 = A7 + A8

Suppresses one layer Sd4 = A7 + A8 − k4,9

Computes V4 + ks,4

Adds a layer A4 = V9 + V8 + V7 + V4 + k1,7 + k1,8 + ks,4

Layer 1

Node N1 Receives A2, A3 and A4

Aggregates S1 = A2 + A3 + A4

Suppresses four layers Sd1 = A2 + A3 + A4 − k1,5 − k1,6 − k1,7 − k1,8

Computes V1 + ks,1

Adds a layer A1 =
∑9

i=1 Vi + ks,2 + ks,3 + ks,4 + ks,1

Layer 0

Sink S: Receives A1

Suppresses all layers Sds = A1 − ks,2 − ks,3 − ks,4 − ks,1

6 Related Work

In [3,9], authors propose to use homomorphic encryption schemes to allow secure
data aggregation. They implement the Domingo-Ferrer encryption scheme [10]
that is based on the computationally expensive discrete exponential technique.
The feasibility of this scheme in the context of resource constrained sensor envi-
ronment is analyzed in [11] and authors gave performance results on the Mica2
motes [12] and show that such measurements were quite reasonable.

In [2], authors propose a secure data aggregation scheme similar to ours that
is based on an extension of the one-time pad encryption technique using additive
operations modulo n. Even though our scheme seems to be more complex than
the solution of [2] due to the use of CTR and multiple encryption layers, our
scheme clearly imposes a lower communication overhead than the latter. In [2],
each aggregate message is coupled with the list of nodes that failed to contribute
to the aggregation because of node or communication failures. As opposed to [2],
in our scheme each failure only needs to be reported during m hops from the
location of the failure enroute to the sink. Thus, our scheme does not require the
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reporting of failures beyond the mth parent of the failure point in the tree. More-
over, the security of the additive encryption operation is based on the unique
utilization of the encryption key. In order to update keys, [2] proposes to gen-
erate a key stream for each node using stream ciphers. This operation implies
an additional cost in terms of computation that is higher than the one resulting
from our scheme: Indeed, since in [2], sensors share keys only with the sink,
each time that a sink receives an aggregated message, it first needs to compute
all sensors’ keys in order to decrypt the corresponding message where as in our
scheme, the sink only needs to update keys that it shares with sensors that are
located in the subtree of depth m rooted at the sink.

7 Conclusion

In this paper, we analyze the problem of confidentiality in secure data aggrega-
tion mechanisms for wireless sensor networks. We first define two specific confi-
dentiality requirements: the sink should first ensure that sensors not participat-
ing to the aggregation mechanism do not access the content of the aggregated
data (generic confidentiality); moreover, sensors participating to the aggregation
mechanism should not access the already aggregated data without the autho-
rization of the sink (end-to-end confidentiality). We show that the use of ho-
momorphic encryption algorithms is essential for aggregation mechanisms and
propose the use of an extension of CTR encryption schemes. In order to protect
aggregation mechanisms against node compromise, we first define a key attribu-
tion algorithm whereby sensors store several keys with respect to their location
in the tree. We then describe a layered secure aggregation mechanism where
sensors basically add and suppress some encryption layers with respect to their
keying material. We show that this new framework provides both generic and
end-to-end confidentiality and is robust against bogus message injections and
message losses.

Future work should focus on investigating the problem of key pre-distribution
mechanism [13] related to the key attribution algorithm that should be self-
organized and efficient. We should also investigate on new solutions that prevent
bogus injection rather than minimizing the impact of such attacks.
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