

- 1 -

Designing Cooperative Media-
Integrated Mobile Applications

Max Mühlhäuser, Bernard Merialdo*,
Hans-Werner Gellersen, Oliver Frick, and Stefan Gessler

University of Karlsruhe, Institute for Telematics,

 POB 6980, D-76128 Karlsruhe,

{max|hwg|frick|gessler}@tk.telematik.informatik.uni-karlsruhe.de

*: Institut Eurecom., POB 193

F-06904 Sophia Antipolis Cedex, merialdo@eurecom.fr

Abstract:

We believe that the trend towards cooperative applications is
interwoven with trends towards both multimedia and mobile
computing and with the trend towards integrated software solu-
tions. This means that the design and development of coopera-
tive applications should be treated in a larger context: the
design and development of “customized enterprise-wide coop-
erative media-integrated (i.e. multimedia and multimodal)
mobile applications” —

advanced cooperative applications

for
short. In our paper, we will motivate the importance of such a
holistic approach and introduce a design framework for
advanced cooperative applications, called Items. This design
framework draws from the ideas of scenario-based design and
offers five interrelated view types for describing an advanced
cooperative application at different levels of detail and from
different perspectives. The cooperation-related view types will
be emphasized in the paper. Items represents work in progress.

- 2 -

1 Motivation

Synergy:

We view cooperative software systems as an attempt to promote the syn-

ergy of humans at, e.g., a working environment (enterprise). Such synergetic work is

investigated today in two traditionally disjunct research domains which converge only

slowly:

workflow computing

and

workgroup computing

.

1

 Workflow computing

addresses

rather

large groups / asynchronous cooperation / strict decoupling of indi-

vidual activities, whereas workgroup computing addresses

rather

small groups / syn-

chronous cooperation / closer coupling. Typical application examples are travel claim

processing and joint editing, respectively. The characterization raises evidence that

both fields represent only two extremes in a continuous spectrum of synergetic group

work.

“Serious” synergy via software can only be effective if the software for group support

and the software for individual daily work (TP, MIS, email software etc.) are closely

coupled. This corresponds to an actual trend towards integrated software solutions

reflected in terms like office automation, computer-integrated manufacturing, etc.

(this might also be coined as “synergy

of

 software”). Consequently, cooperative appli-

cations should be customized towards enterprise-integrated solutions, rather than be

out-of-the-box groupware. This leads to the demand for

general

software technology

for complex software (enterprise-wide, distributed) which

includes

cooperative-work

aspects (which, in turn, spans the range from workgroup to workflow computing).

Ubiquity:

today, individual (daily-work) software is typically desktop-based. To a

certain extent, cooperative software can also be desktop-based: cooperation is in this

case based on

mobile [software] objects

 which mediate between group members (cf.

desktop conferencing software and cooperating intelligent software agents). To a cer-

tain extent, however, cooperative software involves

mobile users

which, e.g., walk

1. The meaning of these terms is in transition: a year ago, one would have written “workflow manage-
ment and CSCW”; note also that most of todays “workgroup” software on the market is not really
“groupware”; CSCW is viewed more and more as the embracing term

- 3 -

around or travel in order to meet other humans; these mobile users may or may not

carry

mobile devices

(flash memory, notebooks, …). In any case, the fact that their

cooperation is software-based makes them depend on computers heavily and at virtu-

ally any place. In other words: the demand for (some degree of) ubiquitous computing

increases heavily in the context cooperative software, and it has to be founded on sup-

port for mobile (software) objects, mobile users, and mobile devices.

Modality:

multimedia plays a very special role as the linking element between “syn-

ergy” and “ubiquity”. Obviously, multimedia helps to support remote cooperation,

e.g., with audiovideo conferences; we even expect that multimedia data will make a

transition from being used in rather specialized applications to being used in virtually

all areas of normal enterprise computing: we coin this as the transition to media-inte-

grated applications. From a modeling / design point of view, we see a high demand for

two particular features in multimedia application development:

media transparency

and

orthogonal media

. In terms of modeling, it should be possible to abstract from the

actual media used, e.g., for a conversation between several cooperating users; the

choice between, e.g., audiovideo, audio-only, or mirrored keyboard input should be

made at runtime

rather than at design-time (media transparency). This feature leads

directly to the requirement that different media may be used interchangeably (ortho-

gonal media).

However, if audio and video shall be used in exchange of “well-understood” media

like text and structured data, then all media must be semantically understood by the

software system; we coin this feature as

modality.

As an example, imagine a “tele-

meeting” software which understands that “meetings” comprise “topics” which in

turn comprise subparts like “introduction”, “discussion” and optionally “decision”.

Imagine that different conversation media shall be allowed (media transparency, see

above) and that the conversations during a meeting shall be recorded (on digital disk).

If the reporter of a meeting wants to complete the minutes, s/he may want to access

the conversation related to a topic discussion. In order to do this easily, every record-

- 4 -

ing must be semantically structured into named topics and further into introductions,

discussions, and decisions (and all this independent of the actual media used!). In this

example, sophisticated speech or video recognition is not even required: given sophis-

ticated telemeeting software, the topics and their subparts are treated with software

support during a meeting. This means that the telemeeting software knows exactly at

which time which topics and subparts are treated. Therefore, a simple time-code

mechanism can be used to identify, e.g., portions of audio and video recordings that

correspond to a topic/subpart.

Today, the term modality is mainly used in the context of human-computer interfaces

(HCI); our view harmonizes multimedia and HCI-based multimodality in the com-

mon area coined as modality. A multimodal HCI interprets several input channels to

the computer in order to recognize a user’s input (commands). This HCI-related

meaning of modality is important in the ubiquity context cited above: mobile cooper-

ating users tend to use a broad range of “terminals” including PDAs, notebooks, PCs,

multimedia workstations, liveboards etc. Such devices tend to exploit the input media

(modalities) which suit best, such as pens, speech, and keyboards. If ubiquitous access

to advanced cooperative applications is to be granted, such applications must be

accessible from the whole range of such “terminals”, i.e. with varying modalities. But

then, software technology ought to support a modality-independent layer of HCI

design

and

an adaption layer in which modality-specific aspects can be designed.

The three interdependent aspects of software technology for advanced (customized

enterprise-integrating, mobile, media-integrated) cooperative applications are sum-

marized below: enterprise-integration is reflected in aspect synergy, mobility in aspect

ubiquity, and media-integration in aspect modality. The latter aspect is a kind of link

between the other two.

advanced
enterprise integrating−

media integrated−
mobile

applications
SYNERGY

MODALITY

UBIQUITY

↔

- 5 -

2 Existing Approaches

For the sake of space, we will present a rather selective state of the art review.

Synergy:

most existing

workgroup computing

 approaches represent out-of-the-box

tools. Among the counter-examples (support for customized solutions), the prominent

ones include GroupKit [14] and GroupIE [15]. The GroupKit toolkit supports the

development of conferencing applications. Its abstractions remain on a very low level,

however, and lack notions for coordination support (e.g., floor control) and for more

customized concepts than just “group” and “participant”. GroupIE offers more elabo-

rate means for modeling workgroup computing solutions. Its seamless integration

with the Smalltalk programming language fosters the development of fully “coopera-

tion-aware” applications. GroupIE includes higher-level descriptive languages but

remains entirely on the implementation level, i.e. does not provide design support.

In the

workflow computing

 area, most approaches support customized solutions at first

sight (see [17] for a comparative overview). Workflows are decomposed into

sequences of isolated activities each of which must be distilled into a simple user-

level operation like “open editor with file travel_claim.doc”; more complex or even

cooperative “steps” are hardly supported [17].

To summarize, both workflow and workgroup computing solutions can be developed

today, but there are hardly any approaches for covering the full spectrum between

these two extremes, nor approaches to tightly integrate with all kinds of enterprise

computing, let-alone concepts to model modality and ubiquity aspects at the same

time.

Modality:

distributed multimedia

 application development support is still mostly a

research topic (cf. “MediaSpace” toolkits [9], modeling / implementation concepts

such as HeiMAT [16], integrated development / support systems such as Mode [1],

and many others). As one of the few industry standards, the IMA (Interactive Multi-

media Association, including IBM, HP and SunSoft) has proposed a technology for

- 6 -

Multimedia System Services in a distributed environment [4]. In this technology for

instance, real devices are controlled by objects called virtual devices which contain

information about the actual capabilities of the real device. The description of virtual

devices are supposed to be standardized across platforms. Virtual devices can be con-

nected together under the control of a virtual connection object. In particular, this

object performs format negotiation about the data being transmitted from one device

to the other. The management of these distributed objects follows standardized

(CORBA) technology. IMA and all other approaches handle explicit media types

early on in the software development process, i.e. they do not support sufficient media

transparency.

Approaches to media perception have greatly advanced in the past years and lead to

fairly general-purpose concepts (cf. wordspotting and face-recognition technology),

representing an important step towards orthogonal media and modality; however,

these approaches have not yet made their way into the application development

frameworks mentioned.

Multimodal HCI

 development is poorly support in present UI development

approaches. Existing methods are paradigm-bound; they impose metaphors, modali-

ties (usually mouse/keyboard-gesture and graphics display), media, and dialogue

structure. Most design decisions are not supported explicitly but hidden in application

code and can not easily be revisited. This results in UIs difficult to port and extend and

difficult to adapt to, e.g., varying devices and user preferences. In particular, dialogue

semantics are usually not kept separate from domain-related semantics. Only few

UIMS support interaction semantics explicitly [7]. Cooperation support is usually

missing in UIMS work [11], except for dedicated solutions [9]. Workplace-integration

(for disjunct activities) does not draw from “workflow knowledge” [13] [12]. Support

for multimodality is in an early stage only [7].

To summarize, current approaches towards distributed multimedia application model-

ing and development support neither a sufficient degree of media transparency nor do

- 7 -

they address the aspects of orthogonal, interchangeable media. Support for “media

spaces” combines cooperation and multimedia aspects, but leads to very specific

kinds of applications. HCI design is kept as an issue separate from other multimedia

aspects and from synergy and ubiquity aspects; it does not foster media-transparency.

Ubiquity:

 Ideally, ubiquitous computing can be reached either by offering accessible

on-site

computers virtually “everywhere” plus full home environment support (provi-

sion of the usual working environment known to the user) or by offering very power-

ful

portable

 computers to every user plus full connectivity to both the home

environment and the local non-portable resources (such as high-quality printers) from

“everywhere”. Today, a fairly restricted level of the second solution is state of the art,

at its best combined with some home environment support which maps logical

resources of the home environment (e.g., “Postscript Printer”) to the actual environ-

ment. Corresponding research usually assumes low connectivity of users outside the

office (“low” with respect to both bandwidth and connection establishment / sustain

probability) and is usually categorized as “mobile computing support”.

As to application support, the main focus in mobile computing research is on what we

would call

mobility transparency:

the operating system supports mobile computing

with no need for the application software to be changed. Such support is mainly

focussed on so-called

disconnected operations

 [6] [8] [10] which are embraced by

the

hoarding

of necessary source files during high connectivity (e.g., based on manual

user-interception using the briefcase metaphor) and by the

reintegration

of multiple

copies of files or databases after reconnection (e.g., based on database reconciliation

techniques). Studies have shown, however, that knowledge about application seman-

tics can greatly reduce the number of unresolvable conflicts at reintegration time. This

goal is only feasible if application design integrates a model of mobility (mobility-

awareness).

Even more drastically, [18] argues that advanced ubiquitous computing requires a

revision of many areas which were supposed to be well resolved, such as HCI modu-

- 8 -

larization (cf. the network interface and protocol of X window

). These issues can

only be resolved if mobility (or rather ubiquity in the above-defined sense) is modeled

along with aspects of synergy and modality. Obviously, the “mobility model” in

search has to describe the movements of users, devices, and software objects in the

sense of a “configuration model” (much like the configuration support offered in dis-

tributed programming approaches, but with a focus on mobility).

Up to now, the mobile computing community has discussed configuration models

mainly for the design and evaluation of issues in the lower layers of the communica-

tion architecture (physical, media access, network, etc.), and

not

in the context of

application support.

To summarize, mobile software objects and mobile users/devices are not regarded in a

common context today. Support for mobile users and devices is investigated in the

“mobile computing” community, but usual solutions provide operating system level

support for mobility-transparent applications which is often insufficient. Rather, soft-

ware technology should support the development of mobility-

aware

applications;

such support should include mobility-focussed configuration models and ways for

communicating application semantics to, e.g., the “disconnected operation” support.

3 An overview of Items.

Project Items aims at software technology for advanced cooperative applications

which include media-integration (multimedia, multimodality) and mobile computing

and which represent enterprise-wide software solutions. Such advanced cooperative

applications are by nature complex and include aspects which are traditionally

addressed in dedicated software development approaches like the ones described in

section 2. Items, in contrast, addresses these aspects as part of a

general

software

technology. In the remainder, we will concentrate on the

modeling and design

of such

advanced cooperative applications as emphasized in the first phase of project Items.

- 9 -

Our primary goal was the provision of a means for expressing designs such that users

and software engineers could understand and discuss them. Given the high complex-

ity of advanced cooperative applications, this was found even more important than the

ability to generate code or to apply formal validation methods on a model (these are of

course

also

goals of the project). According to this primary goal, the following princi-

ples have governed the design of our modeling (/design) framework:

•

support synergy, modality, and ubiquity in a single, common framework;

•

apply

graph-based

 techniques extensively;

•

support several interdependent

views

on a model rather than express everything in

a single complex view; different

types

of views should be possible;

•

support

scenario-based

design, i.e. the ability to express arbitrary fragmentary

snapshots of an application as valid views of the model;

•

promote a

middle-out

design approach as the preferred method, without forcing the

designer to follow a rigid modeling technique; rather the modeling system, with its

support for keeping multiple views consistent, should leave enough freedom to

choose at any time – within limits – among several possible views to elaborate fur-

ther.

•

enable intuitive design in many ways: by permitting different alternative ways to

describe a certain fact; by supporting easy-to-use notations for situations common

to dynamic systems like “there is an unprescribed, dynamically changing number

of components of type X - an arbitrary one of these can play the following special

role: …”; by supporting hierarchical hyperlinked graphs as introduced by Harel

[5]; by allowing rough and refined ways of graphical specification; etc.

The five view types.

 The major five view-types offered in Items will be described in

the following, as depicted in figure 1. The sequence in which they are explained

below corresponds to the proposed middle-out approach in which the views can be

specified (remember that designers can switch between views at will, provided the

- 10 -

necessary minimal input from one view to another has been furnished).

Work Scenarios.

For a middle-out design, the designer is supposed to start modeling

an application by graphically specifying so-called work scenarios. Each such work

scenario specifies a way in which (usually several) users are linked to major applica-

tion components and to one another. Scenario graphs are based on three types of

nodes.

Nodes of type “user” model the access of a user to the application (the user

interface, in the largest sense) – within the given scenario, in a specific role, and

abstracting from a specific person via this role. Nodes of type “archive” represent data

repositories such as files or (maybe replicated, maybe globally distributed) databases.

Archives provide access to (a limited set of kinds of) documents, were the notion of a

document has a wide scope, see below. The third kind of node is called “agent”. It

denotes self-contained (maybe distributed) substantial non-obvious software compo-

nents. Counter-Examples i.e. “obvious” or “non-substantial” components – which

would

not

be modeled as separate agents – comprise editors and browsing compo-

nents for archives and documents, control components for connections (such as con-

ference managing modules for videoconferences), and everything that could be called

a part of a “user” node.

Document Networks Interaction Scenarios

Scenario Flow

Configuration Scenarios

holistic view

fragmentary views

detailed views

operational view

Work Scenarios

FIGURE 1. View types in the Items modeling framework

- 11 -

Several interconnected nodes of types user, agent, and archive form a scenario.

Scenario Flow:

scenario flows and work scenarios together, along with the below-

mentioned document networks, describe the

synergy

aspect of an application. In a

scenario flow, the above-mentioned work scenarios are shrinked into a single node

each. Such a node is then called “cooperation description unit” (CDU). Two scenarios

(and two CDU nodes in the scenario flow) may be related in very different ways and

degrees. First, they may indeed be two

fragments

 of an application which run at the

same time and under the same circumstances. Secondly, they may represent two dif-

ferent cooperation

situations

 of a group of people, interrelated basically by events (a

telemeeting topic with or without an expert to be called upon, a request for voting

suddenly raised, etc.). Thirdly, they may represent two subsequent or parallel

steps

 in

a workflow-like setup. It is the task of the scenario flow design to identify scenarios as

fragments, situations, or steps, to compose and interrelate them, and to identify the

flow of resources, roles, documents etc. via different link types (cf. Section 5).

In comparison with traditional approaches, steps and situations can be regarded as

similar to the building blocks of workflow and workgroup computing, respectively.

Note, however, that we do

not

prescribe a hierarchical order of these, so that, e.g.,

“lower-level” (workgroup type) situation-based layers of a scenario flow would have

to be subordinate to “top-level” (workflow type) step-based views. They can be inter-

leaved at will, just not in the same meta-node. Section 5 will also give an idea about

how steps and situations can be used to cover the seamless spectrum of cooperation

types.

Document Networks.

Following the proposed design approach, relevant document

types are first identified in work scenarios and then specified in more detail in the

views called “document network”, defining one such view per document type.

(Another approach may be to center an application design around the relevant docu-

ments and thus to start the design from the document networks.) Document networks

specify the internal structure of a document on the semantic level (the detailed docu-

- 12 -

ment layout is not part of the Items model). Document types are modeled as graphs

consisting of “units of information” in the sense of hypertext nodes. In contrast to a

concrete hypertext, a document network allows to leave open the number of nodes in

a sequence or in a “row” (a row denotes similar nodes which are all linked to the same

preceding node). Thus e.g., document structures with an open number of paragraphs

and cross references can be specified. Predefined node types in a document network

comprise “fixed” (presentation-only, for forms, multimedia-information, etc.), “pre-

edited”, “blanc”, “transient” (furnished live by an application or by a conversation

such as videoconference), and “virtual” (for navigation / editing rules, multimedia

synchronization, etc.).

Interaction Scenarios:

interaction scenarios, together with associated non-graphical

information and with information from the work scenarios, provide for the

modality

aspect (cf. [3]). The designer identifies one or more “user” nodes to be considered in

a common HCI. If several nodes are considered, they are supposed to be related to the

same physical user at a time (note that this “workplace integration” approach goes

beyond the scope of todays user interface design approaches). From the work scenar-

ios, all connections of these “user” nodes to other nodes (of type agent, archive, or

user) are retrieved. Thus the coarse “outline” of the workplace is already derived auto-

matically. Based on this coarse outline, the interaction scenarios are used to define

more details about the HCI for each connection (available commands and parameters,

their organization in contexts etc.) as well as for the overall workplace-wide HCI

design. In a first phase, this whole design is media-transparent and modality-transpar-

ent. Only in a second phase, modality specific information is added.

Configuration Scenarios.

 The fifth view-type is related to the ubiquity aspect of Items.

It provides a mapping of the “logical” application configuration (as defined in the

other four views) onto “operational” physical configurations with mobile objects,

users, and devices. The major design steps and building blocks are briefly sketched

here.

- 13 -

The logical configuration is based on the lowest level of step-type CDUs in the sce-

nario flow. For each such step, the transitive closure of situations and the join of frag-

ments is built. The resulting set of users, agents, archives and interconnections is

computed and graphically depicted. Non-relevant parts, i.e. non-mobile nodes, inter-

connected only to other non-mobile nodes (and users), can then be shrinked to black-

boxes. For the remainder, “fragments” may be defined: user fragments define

distributed user interfaces which can, e.g., be distributed between PDAs and con-

nected OfficePCs; agent fragments define distributed applications; archive fragments

define either replicated or distributed information, e.g., for disconnected operations.

With these design steps (merge of all CDUs which belong to a step, expansion into the

merge of all related work scenarios, shading-out of parts which are irrelevant for

mobility, definition of fragments), a logical configuration (mobility-compliant view)

of the application step is created.

Next, an operational configuration is created by specifying relevant physical devices

and device fragments (PCMCIA cards, etc.), networks (as relevant from a mobility

point of view) and their interconnections. Afterwards, logical configurations are

mapped onto operational ones and complemented with information about the required

mobility support (“roaming domains” and “roam paths” of the mobile users, “Quality-

of-Service Specifications” such as necessary security and consistency/reconciliation

support, etc.).

Following this overview of the five basic view types of Items, we will restrict our-

selves to a more detailed description of the first two (most cooperation-related) view

types for the sake of space.

4 Work scenarios

Scenarios have been identified as an appropriate means for requirements engineering,

particularly in the context of human-computer interaction and human-human coopera-

- 14 -

tion, since they depict both situations and dynamics, and since they depict situations

in a larger context which includes, e.g., resources and intentions, cf. [9].

Scenarios tend to be comprehensive in the sense that they include people involved,

flow of information, tools, etc. However, they do

not

intend to describe an application

“completely” at any level of abstraction; rather, a set of scenarios is supposed to be

needed to reach completeness.

In order to give an idea about work scenarios in Items beyond what was explained in

section 3, we will use two simple example work scenarios from the teleteaching

domain, as depicted in fig. 3. These two work scenarios may be considered two steps

of a workflow-like scenario flow. The graphical symbols for the three node types seem

to be obvious (“agents” carry a butler’s bowler hat). In work scenario “lecture”, sev-

eral students (“*” notation) and one teacher (“1” notation) are connected to the lecture

notes (“slides”). At any time, a single student (“1” notation for a node with the same

identifier) may be linked to the teacher directly (“conversation link”). Another explicit

user role “speaker” is defined, supposed to be taken on by either the teacher or a stu-

dent. This shows that nodes of type “user” denote either organizational roles or activ-

ity-related roles; the latter are related to a specific interaction context (speaker,

listener). Most often, organizational roles imply a certain behavior i.a. activity-related

role (student[*]=listener).

Scenario “groupwork” models the interaction between a group of students and an

lecture
1

*

1

slides

teacher

student

student

*
student

0

teacher

groupwork

tutor

FIGURE 2. work scenarios “teleteaching”

task

1

speaker

- 15 -

intelligent tutoring system “tutor” which guides the group of students based on a high-

level task description “task” which includes descriptions of possible misconceptions

and the student models. The teacher may connect to the group in order to respond to

particular questions. Since the teacher is optional, it is depicted using the “0” notation.

The above-mentioned scenarios illustrated several kinds of connections between

nodes, classified via the node-types they connect: user-user (conversion), user-archive

(EditBrowse), user-agent (dialog), agent-archive (perceive); agent-agent connections

(messaging) exist in addition. Note that the conversion connection exhibits media

transparency.

The scenarios described can be refined, e.g., in order to give more precise information

about the multiplicity of links, micro-coordination (access and operation policies,

etc.), macro-coordination (constraints) etc. Such detailed information provides further

interweaving with the other view types (macro-coordination

↔

 scenario flow, cooper-

ation policies

↔

 interaction scenarios, etc.).

5 Scenario Flows and Synergy

We recall the reasons for defining different work scenarios within a scenario flow:

•

a complex scenario may be separated into

fragments

 that happen at the same time

and under the same circumstances.

•

different work scenarios may describe different application

situations

, where all

situations are rather similar (e.g., share a number of common archive, user, or

agent nodes) but happen at different times or circumstances. The transition

between two situations is, for example, triggered by an event and results in a

slightly but structurally different scenario.

•

a set of work scenarios may be fairly disjunct and describes different subsequent or

parallel

steps

 that make up a workflow-type application.

- 16 -

In order to connect a set of work scenarios to a scenario flow, all work scenarios are

shrunk to their single node representation called “cooperation description unit”

(CDU). Connections between work scenarios are established by means of

flows

 which

graphically depict relations between nodes (on the work scenario level) and CDUs (on

the scenario flow levels), respectively – cf. figure 3-5. Just as the node types make up

the “design center” for work scenarios, flow types make up the design center for sce-

nario flows. Key flow types include:

role flow

 links which symbolize relations

between users or user groups of different scenarios;

document flow

 links which define

relations between archives;

control flow

 links which define relations between agents;

identical

 links which are used to define nodes within application fragments as being

identical (cf. figure 3).

Instead of describing the three kinds of scenario occurrences (fragment, situation,

step) and the different flow types in full detail, we will just give three examples of

small scenario flows below for the sake of space, continuing with the teleteaching

example from figure 2.

Figure 3 splits the “lecture” work scenario of figure 2 into two parts (note the freedom

in the design to depict the application either way); the “speaker” node is omitted for

the sake of simplicity. The first fragment shows that the teacher presents lecture notes

(slides) to all students, the second one shows that the teacher may in addition (!) open

a private conversation if a student has queued a question in the slides archive. As the

teacher as well as the slides are identical in both fragments, “identical” links are

drawn accordingly. The figure shows how scenario flow designers add information to

the work scenario level, it also shows the depiction on the scenario flow level itself

(CDU-based). On that level, the notation “identical: add” indicates that private con-

versations represent an optional add-on; the declarations in square brackets show

who

has the right to initiate a private conversation (teacher),

which conditions

must be sat-

isfied (a question must be stored), and

how

the transition is effected (by calling opera-

- 17 -

tion S_private which, e.g., identifies the student to talk to).

Figure 4 depicts a scenario flow with two

situations:

we suppose that the teacher may,

at any time during a lecture, suddenly decide to switch to an “audit” mode where a

selected student has to rephrase a subject. This second situation is supposed to have a

threefold purpose: an audit for the selected student, a repetition for all others, and a

feedback for the teacher who is called “auditor” in this scenario. Before switching to

an audit, the teacher is supposed to identify (and make electronically accessible to the

selected student) the part in the slides which make up the subject to be (re)taught dur-

ing the audit. As an auditor, s/he is supposed to take notes about the student’s perfor-

mance and about possible improvements to his own lecture. Figure 4 depicts the two

situations, the document flow from slides to the audit subject, and one of the role

flows: teacher

→

 auditor (other role flows are omitted for brevity). Like in figure 3,

the corresponding part of the scenario flow level is shown too; again, the information

in brackets indicates – this time twice for two possible directions – the valid initiator

for a mode switch (teacher), the fact that the transition is unconditional, and the names

of the operations to be carried out, sw_audit and sw_class (these are at the same time

the “events” which cause the transition); detailed information about the data flow is

omitted.

class lecture

1

*

slides

teacher

student

FIGURE 3. Scenario flow of work scenario fragments

private conversation

1
1

slides

teacher

student

class
lecture

private
conversation

work
scenario
level

scenario
flow
level [teacher / question_Q / S-private]

identical: add

- 18 -

Note that role flows, in contrast to the “identical” link, indicate that the corresponding

“user” nodes really change (switch) their role (even if the same identifiers are used as

in the case of “student”). Note also that it is mainly the fact that teachers may switch

back and forth between class lectures and audits which led to the decision to identify

the CDUs “class lecture” and “audit” as different

situations

as opposed to different

workflow type

steps.

For an example of two different

steps,

we can return back to figure 2, i.e. to the exam-

ple of lecture and groupwork scenarios. Figure 5 shows a primitive example with two

lectures followed by a groupwork scenario. Instead of an event-based switching back

and forth, a clear separation between the scenarios is assumed. In this case, one step is

even supposed to terminate entirely before the subsequent one starts, so that links of

type control flow are used.

For all of the above examples, please note that a complete scenario flow will usually

include a large number of CDUs, grouped at different levels where each grouping is

class lecture

1

*

1

slides

teacher

student

student

FIGURE 4. Scenario flow with changing situations

audit

1

*
subject

auditor

student

1

student

notes

class
lecture audit

work
scenario
level

scenario
flow
level

role flow

data flow

[teacher / / sw_audit; teacher //sw_ class]

FIGURE 5. Scenario flow “teleteaching” with three steps

lecture2 groupwork
scenario
flow
level control flow

lecture1

- 19 -

of type fragment, situation, or step. Note also that many details have been left out in

the examples above for brevity (further link types and links, more details about the

links such as initiators, rights, flow elements and conditions, etc). According to the

philosophy of the Items modeling technique, such details can be filled in at will with-

out leaving “incomplete” designs inconsistent.

6 Status and Outlook

We have presented a high-level introduction to a design framework for complex coop-

erative applications which exploit advanced features like enterprise-integration,

workgroup and workflow type cooperation, multimedia and multimodal interaction,

and support for mobility and ubiquity. Consistently interconnected, scenario-based

graphical views are used to keep the design of such very complex applications simple

and understandable. The paper presented work in progress; a graphical multi-view

editor is currently under construction. Large sample designs are used for evaluation.

References

[1] Blakowski, G., Hübel, J., Langrehr, U., Mühlhäuser, M.:

Tool Support for the
Synchronization and Presentation of Distributed Multimedia,

Butterworth Jl. on
Comp. Comm. 15 (10), 1992, pp. 611–618.

[2] Card, S.K., Mackinlay, J.D., Robertson, G.G. The Design Space of Input
Devices. Blattner, M., Dannenberg, R. (Ed.):

Multimedia Interface Design

, Add-
ison-Wesley, 1992.

[3] Gellersen, H.-W. Support of User Interface Design Aspects in a Framework for
Distributed Cooperative Applications. Taylor, R. (Ed.):

Software Engineering
and Human Computer Interaction

., Springer LNCS, 1994.

[4] Green, J., Corman, P.:

Interactive Multimedia Association Architecture Reference
Model.

Interactive Multimedia Association, Nov. 1992.

[5] Harel, D. On Visual Formalisms.

CACM

, 31(5), pp. 514–530, May 1988.

[6] Huston L., Honeyman P.:

Disconnected Operation for AFS

, Usenix Symposium
on Mobile and Location-Independent Computing, Aug. 1993, pp. 1–10

[7] Johnson, J. Selectors: Going Beyond User-Interface Widgets. Proc. of CHI ‘92,
Monterey, CA, Mai 1992, pp. 273–279.

- 20 -

[8] Kistler J. J., Satyanarayanan M.:

Disconnected Operation in the Coda File Sys-
tem

, ACM Trans. Comp. Sys. 10(1), 1992, pp. 3–25

[9] Multimedia in the Workplace. Special Issue, CACM 36 (1), 1993.

[10] Popek G. J., et al.:

Replication in Ficus Distributed File System

, IEEE Workshop
on the Management of Replicated Data, Nov.1990, pp. 5–9.

[11] Pickering, J., Grinter, R. Software Engineering and CSCW: A Common Research
Ground. In Taylor, R. (Ed.):

SW Engineering and Human Computer Interaction

.,
Springer LNCS, 1994.

[12] Roudaud, B., Lavigne, V., Lagneau, O., Minor, E. SCENARIOO: A New genera-
tion UIMS. Proc. of INTERACT ‘90, Aug. 1990, Elsevier Science Publ., pp.
607–612.

[13] Taylor, R., Johnson, G. Separation of Concerns in the Chiron-1 User Interface
Development and management System. proc. of INTERCHI ‘93, Amsterdam,
April 1993, pp. 367–377.

[14] Roseman, M., Greenberg, S.: GroupKit: A Groupware Toolkit for Building Real-
Time Conf. Appl. Proc. CSCW ‘92.

[15] Rüdebusch, T.:

Development and Runtime Support for Collaborative Applica-
tions

, in: Bullinger, H.-J. (Ed.): Human Aspects in Computing, Elsevier Amster-
dam etc., 1991, pp. 1128–1132.

[16] Steinmetz, R., Meyer, T.:

Modelling Distributed Multimedia Applications.

Int.
WS Adv. Comm. and Appl. for High Speed Networks, March 1992, Munich.

[17] Schäl, T., Zeller, B.: Supporting Cooperative Processes with Workflow Manage-
ment Technology. Tutorial on ECSCW ‘93, Milano, Italy, Sept. 1993

[18] Weiser M.:

Some Computer Science Issues in Ubiquitous Computing

, CACM 36
(7); 1993, pp. 75–85.

