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Complex-Valued Matrix Differentiation:

Techniques and Key Results

Are Hjørungnes, Senior Member, IEEE, and David Gesbert, Senior Member, IEEE.

Abstract

A systematic theory is introduced for finding the derivatives of complex-valued matrix functions with respect

to a complex-valued matrix variable and the complex conjugate of this variable. In the framework introduced,

the differential of the complex-valued matrix function is used to identify the derivatives of this function. Matrix

differentiation results are derived and summarized in tables which can be exploited in a wide range of signal

processing related situations.
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I. INTRODUCTION

In many engineering problems, the unknown parameters are complex-valued vectors and matrices and, often, the

task of the system designer is to find the values of these complex parameters which optimize a chosen criterion

function. For solving this kind of optimization problems, one approach is to find necessary conditions for optimality.

When a scalar real-valued function depends on a complex-valued matrix parameter, the necessary conditions for

optimality can be found by either setting the derivative of the function with respect to the complex-valued matrix

parameter or its complex conjugate to zero. Differentiation results are well-known for certain classes of functions,

e.g., quadratic functions, but can be tricky for others. This paper provides the tools for finding derivatives in a

systematic way. In an effort to build adaptive optimization algorithms, it will also be shown that the direction of

maximum rate of change of a real-valued scalar function, with respect to the complex-valued matrix parameter, is

given by the derivative of the function with respect to the complex conjugate of the complex-valued input matrix

parameter. Of course, this is a generalization of a well-known result for scalar functions of vector variables. A

general framework is introduced here showing how to find the derivative of complex-valued scalar-, vector-, or

matrix functions with respect to the complex-valued input parameter matrix and its complex conjugate. The main
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TABLE I

CLASSIFICATION OF FUNCTIONS.
Function type Scalar variables z, z∗ ∈ C Vector variables z, z∗ ∈ C

N×1 Matrix variables Z , Z∗ ∈ C
N×Q

Scalar function f ∈ C f
�
z, z∗� f

�
z, z∗� f

�
Z , Z∗�

f : C × C → C f : C
N×1 × C

N×1 → C f : C
N×Q × C

N×Q → C

Vector function f ∈ C
M×1 f

�
z, z∗� f

�
z, z∗� f

�
Z , Z∗�

f : C × C → C
M×1 f : C

N×1 × C
N×1 → C

M×1 f : C
N×Q × C

N×Q → C
M×1

Matrix function F ∈ C
M×P F

�
z, z∗� F

�
z, z∗� F

�
Z , Z∗�

F : C × C → C
M×P F : C

N×1 × C
N×1 → C

M×P F : C
N×Q × C

N×Q → C
M×P

contribution of this paper is to generalize the real-valued derivatives given in [1] to the complex-valued case. This

is done by finding the derivatives by the so-called complex differentials of the functions. In this paper, it is assumed

that the functions are differentiable with respect to the complex-valued parameter matrix and its complex conjugate,

and it will be seen that these two parameter matrices should be treated as independent when finding the derivatives,

as is classical for scalar variables. The proposed theory is useful when solving numerous problems which involve

optimization when the unknown parameter is a complex-valued matrix.

The problem at hand has been treated for real-valued matrix variables in [2], [1], [3], [4], [5]. Four additional

references that give a brief treatment of the case of real-valued scalar functions which depend complex-valued vectors

are Appendix B of [6], Appendix 2.B in [7], Subsection 2.3.10 of [8], and the article [9]. The article [10] serves as

an introduction to this area for complex-valued scalar functions with complex-valued argument vectors. Results on

complex differentiation theory is given in [11], [12] for differentiation with respect to complex-valued scalars and

vectors, however, the more general matrix case is not considered. In [13], they find derivatives of scalar functions

with respect to complex-valued matrices, however, that paper could have been simplified a lot if the proposed

theory was utilized. Examples of problems where the unknown matrix is a complex-valued matrix are wide ranging

including precoding of MIMO systems [14], linear equalization design [15], array signal processing [16] to only

cite a few.

Some of the most relevant applications to signal and communication problems are presented here, with key results

being highlighted and other illustrative examples are listed in tables. For an extended version, see [17].

The rest of this paper is organized as follows: In Section II, the complex differential is introduced, and based on

this differential, the definition of the derivatives of complex-valued matrix function with respect to the complex-

valued matrix argument and its complex conjugate is given in Section III. The key procedure showing how the

derivatives can be found from the differential of a function is also presented in Section III. Section IV contains the

important results of equivalent conditions for finding stationary points and in which direction the function has the

maximum rate of change. In Section V, several key results are placed in tables and some results are derived for

various cases with high relevance for signal processing and communication problems. Section VI contains some

conclusions. Some of the proofs are given in the appendices.
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Notation: Scalar quantities (variables z or functions f ) are denoted by lowercase symbols, vector quantities

(variables z or functions f ) are denoted by lowercase boldface symbols, and matrix quantities (variables Z or

functions F ) are denoted by capital boldface symbols. The types of functions used throughout this paper are

classified in Table I. From the table, it is seen that all the functions depend on a complex variable and the complex

conjugate of the same variable. Let j =
√−1, and and let the real Re{·} and imaginary Im{·} operators return

the real and imaginary parts of the input matrix, respectively. If Z ∈ C
N×Q is a complex-valued1 matrix, then

Z = Re {Z} + j Im {Z}, and Z∗ = Re {Z} − j Im {Z}, where Re {Z} ∈ R
N×Q, Im {Z} ∈ R

N×Q, and the

operator (·)∗ denotes complex conjugate of the matrix it is applied to. The real and imaginary operators can be

expressed as Re {Z} = 1
2 (Z + Z∗) and Im {Z} = 1

2j (Z − Z∗).

II. COMPLEX DIFFERENTIALS

The differential has the same size as the matrix it is applied to. The differential can be found component-wise,

that is, (dZ)k,l = d (Z)k,l. A procedure that can often be used for finding the differentials of a complex-valued

matrix function2 F (Z0,Z1) is to calculate the difference

F (Z0 + dZ0,Z1 + dZ1) − F (Z0,Z1) = First-order(dZ0, dZ1) + Higher-order(dZ0, dZ1), (1)

where First-order(·, ·) returns the terms that depend on either dZ 0 or dZ1 of the first order, and Higher-order(·, ·)
returns the terms that depend on the higher order terms of dZ 0 and dZ1. The differential is then given by

First-order(·, ·), i.e., the first order term of F (Z0+dZ0,Z1+dZ1)−F (Z0,Z1). As an example, let F (Z0,Z1) =

Z0Z1. Then the difference in (1) can be developed and readily expressed as: F (Z 0+dZ0,Z1+dZ1)−F (Z0,Z1) =

Z0dZ1 + (dZ0)Z1 + (dZ0)(dZ1). The differential of Z0Z1 can then be identified as all the first-order terms on

either dZ0 or dZ1 as dZ0Z1 = Z0dZ1 + (dZ0)Z1.

Let ⊗ and � denote the Kronecker and Hadamard product [18], respectively. Some of the most important rules on

complex differentials are listed in Table II, assuming A, B, and a to be constants, and Z, Z 0, and Z1 to be complex-

valued matrix variables. The vectorization operator vec(·) stacks the columns vectors of the argument matrix into

a long column vector in chronological order [18]. The differentiation rule of the reshaping operator reshape(·) in

Table II is valid for any linear reshaping3 operator reshape(·) of the matrix, and examples of such operators are

the transpose (·)T or vec(·). Some of the basic differential results in Table II can be derived by means of (1),

and others can be derived by generalizing some of the results found in [1], [4] to the complex differential case.

1
R and C are the sets of the real and complex numbers, respectively.

2The indexes are chosen to start with 0 everywhere in this article.
3The output of the reshape operator has the same number of elements as the input, but the shape of the output might be different, so

reshape(·) performs a reshaping of its input argument.
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TABLE II

IMPORTANT RESULTS FOR COMPLEX DIFFERENTIALS.

Function A aZ AZB Z0 + Z1 Tr {Z} Z0Z1 Z0 ⊗ Z1

Differential 0 adZ A(dZ)B dZ0 + dZ1 Tr {dZ} (dZ0)Z1 + Z0(dZ1) (dZ0) ⊗ Z1 + Z0 ⊗ (dZ1)

Function Z∗ ZH det(Z) ln(det(Z)) reshape(Z) Z0 � Z1 Z−1

Differential (dZ)∗ (dZ)H det(Z)Tr
�

Z−1dZ
�

Tr
�

Z−1dZ
�

reshape(dZ) (dZ0) � Z1 + Z0 � (dZ1) −Z−1(dZ)Z−1

From Table II, the following four equalities follows dZ = dRe {Z} + jd Im {Z}, dZ∗ = dRe {Z} − jd Im {Z},

dRe {Z} = 1
2 (dZ + dZ∗), and d Im {Z} = 1

2j (dZ − dZ∗).

Differential of the Moore-Penrose Inverse: The differential of the real-valued Moore-Penrose inverse can be

found in in [1], [3], but the fundamental result of the complex-valued version is derived here.

Definition 1: The Moore-Penrose inverse of Z ∈ C
N×Q is denoted by Z+ ∈ C

Q×N , and it is defined through

the following four relations [19]:

(
ZZ+

)H = ZZ+,
(
Z+Z

)H = Z+Z, ZZ+Z = Z, Z+ZZ+ = Z+, (2)

where the operator (·)H is the Hermitian operator, or the complex conjugate transpose.

Proposition 1: Let Z ∈ C
N×Q, then

dZ+ = −Z+(dZ)Z+ + Z+(Z+)H(dZH)
(
IN − ZZ+

)
+

(
IQ − Z+Z

)
(dZH)(Z+)HZ+. (3)

The proof of Proposition 1 can be found in Appendix I.

The following lemma is used to identify the first-order derivatives later in the article. The real variables Re {Z}
and Im {Z} are independent of each other and hence are their differentials. Although the complex variables Z and

Z∗ are related, their differentials are linearly independent in the following way:

Lemma 1: Let Z ∈ C
N×Q and let Ai ∈ C

M×NQ. If A0d vec(Z)+A1d vec(Z∗) = 0M×1 for all dZ ∈ C
N×Q,

then Ai = 0M×NQ for i ∈ {0, 1}.

The proof of Lemma 1 can be found in Appendix II.

III. COMPUTATION OF THE DERIVATIVE WITH RESPECT TO COMPLEX-VALUED MATRICES

The most general definition of the derivative is given here from which the definitions for less general cases follow

and they will later be given in an identification table which shows how the derivatives can be obtained from the

differential of the function.

Definition 2: Let F : C
N×Q×C

N×Q → C
M×P . Then the derivative of the matrix function F (Z,Z ∗) ∈ C

M×P

with respect to Z ∈ C
N×Q is denoted DZF , and the derivative of the matrix function F (Z,Z ∗) ∈ C

M×P with

respect to Z∗ ∈ C
N×Q is denoted DZ∗F and the size of both these derivatives is MP × NQ. The derivatives

DZF and DZ∗F are defined by the following differential expression:

d vec(F ) = (DZF ) d vec(Z) + (DZ∗F ) d vec(Z∗). (4)
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TABLE III

IDENTIFICATION TABLE FOR COMPLEX-VALUED DERIVATIVES.
Function type Differential Derivative with respect to z, z , or Z Derivative with respect to z∗, z∗ , or Z∗ Size of derivatives

f
�
z, z∗� df = a0dz + a1dz∗ Dzf

�
z, z∗� = a0 Dz∗f

�
z, z∗� = a1 1 × 1

f
�
z, z∗� df = a0dz + a1dz∗ Dzf

�
z, z∗� = a0 Dz∗f

�
z, z∗� = a1 1 × N

f
�
Z , Z∗� df = vecT (A0)d vec(Z) + vecT (A1)d vec(Z∗) DZf

�
Z , Z∗� = vecT (A0) DZ∗f

�
Z , Z∗� = vecT (A1) 1 × NQ

f
�
Z , Z∗� df = Tr

�
AT

0 dZ + AT
1 dZ∗� ∂

∂Z
f
�
Z , Z∗� = A0

∂
∂Z∗ f

�
Z , Z∗� = A1 N × Q

f
�
z, z∗� df = b0dz + b1dz∗ Dzf

�
z, z∗� = b0 Dz∗f

�
z, z∗� = b1 M × 1

f
�
z, z∗� df = B0dz + B1dz∗ Dzf

�
z, z∗� = B0 Dz∗f

�
z, z∗� = B1 M × N

f
�
Z , Z∗� df = β0d vec(Z) + β1d vec(Z∗) DZf

�
Z , Z∗� = β0 DZ∗f

�
Z , Z∗� = β1 M × NQ

F
�
z, z∗� d vec(F ) = c0dz + c1dz∗ DzF

�
z, z∗� = c0 Dz∗F

�
z, z∗� = c1 MP × 1

F
�
z, z∗� d vec(F ) = C0dz + C1dz∗ DzF

�
z, z∗� = C0 Dz∗F

�
z, z∗� = C1 MP × N

F
�
Z , Z∗� d vec(F ) = ζ0d vec(Z) + ζ1d vec(Z∗) DZF

�
Z , Z∗� = ζ0 DZ∗F

�
Z , Z∗� = ζ1 MP × NQ

DZF (Z,Z∗) and DZ∗F (Z,Z∗) are called the Jacobian matrices of F with respect to Z and Z ∗, respectively.

Remark 1: Definition 2 is a generalization of Definition 1, page 173 in [1] to include complex-valued matrices.

In [1], several alternative definitions of the derivative of real-valued functions with respect to a matrix are discussed,

and it is concluded that the definition that matches Definition 2 is the only reasonable definition. Definition 2 is also

a generalization of the definition used in [10] for complex-valued vectors to the case of complex-valued matrices.

Table III shows how the derivatives of the different function types in Table I can be identified from the differentials

of these functions.4 To show the uniqueness of the representation in (4), we subtract the differential in (4) from the

corresponding differential in Table III to get (ζ0 −DZF (Z,Z∗)) d vec(Z) + (ζ1 −DZ∗F (Z,Z∗)) d vec(Z∗) =

0MP×1. The derivatives in the last line of Table III then follow by using Lemma 1 on this equation. Table III is an

extension of the corresponding table given in [1], valid in the real variable case. In Table III, z ∈ C, z ∈ C
N×1,

Z ∈ C
N×Q, f ∈ C, f ∈ C

M×1, and F ∈ C
M×P . Furthermore, ai ∈ C

1×1, ai ∈ C
1×N , Ai ∈ C

N×Q, bi ∈ C
M×1,

Bi ∈ C
M×N , βi ∈ C

M×NQ, ci ∈ C
MP×1, Ci ∈ C

MP×N , ζi ∈ C
MP×NQ, and each of these might be a function

of z, z, Z, z∗, z∗, or Z∗.

Definition 3: Let f : C
N×1 × C

N×1 → C
M×1. The partial derivatives ∂

∂zT f(z,z∗) and ∂
∂zH f(z,z∗) of size

M × N are defined as

∂

∂zT
f(z,z∗) =

⎡
⎢⎢⎢⎢⎣

∂
∂z0

f0 · · · ∂
∂zN−1

f0

...
...

∂
∂z0

fM−1 · · · ∂
∂zN−1

fM−1

⎤
⎥⎥⎥⎥⎦ ,

∂

∂zH
f(z,z∗) =

⎡
⎢⎢⎢⎢⎣

∂
∂z∗

0
f0 · · · ∂

∂z∗
N−1

f0

...
...

∂
∂z∗

0
fM−1 · · · ∂

∂z∗
N−1

fM−1

⎤
⎥⎥⎥⎥⎦ , (5)

where zi and fi is component number i of the vectors z and f , respectively.

4For the functions of the type f (Z , Z∗) two alternative definitions for the derivatives are given. The notation ∂
∂Z

f (Z, Z∗) and

∂
∂Z∗ f (Z , Z∗) will be defined in Subsection V-A.
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Notice that ∂
∂zT f = Dzf and ∂

∂zH f = Dz∗f . Using the partial derivative notation in Definition 3, the derivatives

of the function F (Z,Z∗), in Definition 2, are:

DZF (Z,Z∗) =
∂ vec(F (Z,Z∗))

∂ vecT (Z)
, (6)

DZ∗F (Z,Z∗) =
∂ vec(F (Z,Z∗))

∂ vecT (Z∗)
. (7)

This is a generalization of the real-valued matrix variable case treated in [1] to the complex-valued matrix variable

case. (6) and (7) show how the all the MPNQ partial derivatives of all the components of F with respect to all

the components of Z and Z ∗ are arranged when using the notation introduced in Definition 3.

Key result: Finding the derivative of the complex-valued matrix function F with respect to the complex-valued

matrices Z and Z∗ can be achieved using the following three-step procedure:

1) Compute the differential d vec(F ).

2) Manipulate the expression into the form given (4).

3) Read out the result using Table III.

For less general function types, see Table I, a similar procedure can be used.

Chain Rule: One big advantage of the way the derivative is defined in Definition 2 compared to other definitions

of the derivative of F (Z,Z∗) is that the chain rule is valid. The chain rule is now formulated, and it might be

very useful for finding complicated derivatives.

Theorem 1: Let (S0, S1) ⊆ C
N×Q×C

N×Q, and let F : S0×S1 → C
M×P be differentiable with respect to both

its first and second argument at an interior point (Z,Z ∗) in the set S0×S1. Let T0×T1 ⊆ C
M×P ×C

M×P be such

that (F (Z,Z∗),F ∗(Z,Z∗)) ∈ T0×T1 for all (Z,Z∗) ∈ S0×S1. Assume that G : T0×T1 → C
R×S is differentiable

at an interior point (F (Z,Z∗),F ∗(Z,Z∗)) ∈ T0 × T1. Define the composite function H : S0 × S1 → C
R×S by

H (Z,Z∗) � G (F (Z,Z∗),F ∗(Z,Z∗)). The derivatives DZH and DZ∗H are obtained through:

DZH = (DF G) (DZF ) + (DF∗G) (DZF ∗) , (8)

DZ∗H = (DFG) (DZ∗F ) + (DF∗G) (DZ∗F ∗) . (9)

Proof: From Definition 2, it follows that d vec(H) = d vec(G) = (DFG) d vec(F ) + (DF∗G) d vec(F ∗). The

differentials of vec(F ) and vec(F ∗) are given by:

d vec(F ) = (DZF ) d vec(Z) + (DZ∗F ) d vec(Z∗), (10)

d vec(F ∗) = (DZF ∗) d vec(Z) + (DZ∗F ∗) d vec(Z∗). (11)

By substituting the results from (10) and (11), into the expression for d vec(H), using the definition of the derivatives

with respect to Z and Z∗ the theorem follows.
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IV. COMPLEX DERIVATIVES IN OPTIMIZATION THEORY

In this section, two useful theorems are presented that exploit the theory introduced earlier. Both theorems are

important when solving practical optimization problems involving differentiation with respect to a complex-valued

matrix. These results include conditions for finding stationary points for a real-valued scalar function dependent on

complex-valued matrices and in which direction the same type of function has the minimum or maximum rate of

change, which might be used in the steepest decent method.

1) Stationary Points: The next theorem presents conditions for finding stationary points of f(Z,Z ∗) ∈ R.

Theorem 2: Let f : C
N×Q × C

N×Q → R. A stationary point5 of the function f(Z,Z∗) = g(X ,Y ), where

g : R
N×Q × R

N×Q → R and Z = X + jY is then found by one of the following three equivalent conditions:6

DXg(X ,Y ) = 01×NQ ∧ DY g(X ,Y ) = 01×NQ, (12)

DZf(Z,Z∗) = 01×NQ, (13)

or

DZ∗f(Z,Z∗) = 01×NQ. (14)

Proof: In optimization theory [1], a stationary point is a defined as point where the derivatives with respect to

all the independent variables vanish. Since Re{Z} = X and Im{Z} = Y contain only independent variables, (12)

gives a stationary point by definition. By using the chain rule in Theorem 1, on both sides of f(Z,Z ∗) = g(X ,Y )

and taking the derivative with respect to X and Y , the following two equations are obtained:

(DZf) (DXZ) + (DZ∗f) (DXZ∗) = DXg, (15)

(DZf) (DY Z) + (DZ∗f) (DY Z∗) = DY g. (16)

From Table II, it follows that DXZ = DXZ∗ = INQ and DY Z = −DY Z∗ = jINQ. If these results are inserted

into (15) and (16), these two equations can be formulated into block matrix form in the following way:⎡
⎢⎣ DXg

DY g

⎤
⎥⎦ =

⎡
⎢⎣ 1 1

j −j

⎤
⎥⎦

⎡
⎢⎣ DZf

DZ∗f

⎤
⎥⎦ . (17)

This equation is equivalent to the following matrix equation:⎡
⎢⎣ DZf

DZ∗f

⎤
⎥⎦ =

⎡
⎢⎣ 1

2 − j
2

1
2

j
2

⎤
⎥⎦

⎡
⎢⎣ DXg

DY g

⎤
⎥⎦ . (18)

Since DXg ∈ R
1×NQ and DY g ∈ R

1×NQ, it is seen from (18), that (12), (13), and (14) are equivalent.

5Notice that a stationary point can be a local minimum, a local maximum, or a saddle point.
6In (12), the symbol ∧ means that both of the equations stated in (12) must be satisfied at the same time.
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2) Direction of Extremal Rate of Change: The next theorem states how to find the maximum and minimum

rate of change of f(Z,Z∗) ∈ R.

Theorem 3: Let f : C
N×Q×C

N×Q → R. The directions where the function f have the maximum and minimum

rate of change with respect to vec(Z) are given by [DZ∗f(Z,Z∗)]T and − [DZ∗f(Z,Z∗)]T , respectively.

Proof: Since f ∈ R, df can be written in the following two ways df = (DZf) d vec(Z) + (DZ∗f) d vec(Z∗),

and df = df ∗ = (DZf)∗ d vec(Z∗)+(DZ∗f)∗ d vec(Z), where df = df ∗ since f ∈ R. Subtracting the two different

expressions of df from each other and then applying Lemma 1, gives that DZ∗f = (DZf)∗ and DZf = (DZ∗f)∗.

From these results, it follows that: df = (DZf) d vec(Z) + ((DZf) d vec(Z))∗ = 2Re {(DZf) d vec(Z)} =

2Re {(DZ∗f)∗ d vec(Z)}. Let ai ∈ C
K×1, where i ∈ {0, 1}. Then

Re
{
aH

0 a1

}
=

〈⎡
⎢⎣ Re {a0}

Im {a0}

⎤
⎥⎦ ,

⎡
⎢⎣ Re {a1}

Im {a1}

⎤
⎥⎦
〉

, (19)

where 〈·, ·〉 is the ordinary Euclidean inner product between real vectors in R
2K×1. Using this on df gives

df = 2

〈⎡
⎢⎣ Re

{
(DZ∗f)T

}
Im

{
(DZ∗f)T

}
⎤
⎥⎦ ,

⎡
⎢⎣ Re {d vec(Z)}

Im {d vec(Z)}

⎤
⎥⎦

〉
. (20)

Cauchy-Schwartz inequality gives that the maximum value of df occurs when d vec(Z) = α (DZ∗f)T for α > 0

and from this, it follows that the minimum rate of change occurs when d vec(Z) = −β (DZ∗f)T , for β > 0.

V. DEVELOPMENT OF DERIVATIVE FORMULAS
A. Derivative of f(Z,Z∗)

For functions of the type f (Z,Z∗), it is common to arrange the partial derivatives ∂
∂zk,l

f and ∂
∂z∗

k,l
f in an

alternative way [1] than in the expressions DZf (Z,Z∗) and DZ∗f (Z,Z∗). The notation for the alternative way

of organizing all the partial derivatives is ∂
∂Zf and ∂

∂Z∗ f . In this alternative way, the partial derivatives of the

elements of the matrix Z ∈ C
N×Q are arranged as:

∂

∂Z
f =

⎡
⎢⎢⎢⎢⎣

∂
∂z0,0

f · · · ∂
∂z0,Q−1

f

...
...

∂
∂zN−1,0

f · · · ∂
∂zN−1,Q−1

f

⎤
⎥⎥⎥⎥⎦ ,

∂

∂Z∗ f =

⎡
⎢⎢⎢⎢⎣

∂
∂z∗

0,0
f · · · ∂

∂z∗
0,Q−1

f

...
...

∂
∂z∗

N−1,0
f · · · ∂

∂z∗
N−1,Q−1

f

⎤
⎥⎥⎥⎥⎦ . (21)

∂
∂Zf and ∂

∂Z∗ f are called the gradient7 of f with respect to Z and Z∗, respectively. (21) generalizes to the

complex case of one of the ways to define the derivative of real-valued scalar functions with respect to real

matrices in [1]. The way of arranging the partial derivatives in (21) is different than than the way given in (6) and

(7). If df = vecT (A0)d vec(Z) + vecT (A1)d vec(Z∗) = Tr
{
AT

0 dZ + AT
1 dZ∗}, where Ai,Z ∈ C

N×Q, then it

can be shown that ∂
∂Zf = A0 and ∂

∂Z∗ f = A1, where the matrices A0 and A1 depend on Z and Z ∗ in general.

7The following notation also exists [6], [13] for the gradient ∇Z f � ∂
∂Z∗ f .
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TABLE IV

DERIVATIVES OF FUNCTIONS OF THE TYPE f (Z , Z∗)

f
�
Z , Z∗� Differential df ∂

∂Z
f ∂

∂Z∗ f

Tr{Z} Tr {IN dZ} IN 0N×N

Tr{Z∗} Tr
�

IN dZ∗� 0N×N IN

Tr{AZ} Tr {AdZ} AT 0N×Q

Tr{ZHA} Tr
�

AT dZ∗� 0N×Q A

Tr{ZA0ZT A1} Tr
��

A0ZT A1 + AT
0 ZT AT

1

�
dZ

�
AT

1 ZAT
0 + A1ZA0 0N×Q

Tr{ZA0ZA1} Tr {(A0ZA1 + A1ZA0) dZ} AT
1 ZT AT

0 + AT
0 ZT AT

1 0N×Q

Tr{ZA0ZHA1} Tr
�

A0ZH A1dZ + AT
0 ZT AT

1 dZ∗� AT
1 Z∗AT

0 A1ZA0

Tr{ZA0Z∗A1} Tr
�

A0Z∗A1dZ + A1ZA0dZ∗� AT
1 ZHAT

0 AT
0 ZT AT

1

Tr{AZ−1} −Tr
�

Z−1AZ−1dZ
�

−
�

ZT
�−1

AT
�

ZT
�−1

0N×N

Tr{Zp} p Tr
�

Zp−1dZ
�

p
�

ZT
�p−1

0N×N

det(A0ZA1) det(A0ZA1)Tr
�

A1 (A0ZA1)−1 A0dZ
�

det(A0ZA1)AT
0

�
AT

1 ZT AT
0

�−1
AT

1 0N×Q

det(ZZT ) 2 det(ZZT )Tr

	
ZT

�
ZZT

�−1
dZ



2 det(ZZT )

�
ZZT

�−1
Z 0N×Q

det(ZZ∗) det(ZZ∗) Tr
�

Z∗(ZZ∗)−1dZ + (ZZ∗)−1ZdZ∗� det(ZZ∗)(ZHZT )−1ZH det(ZZ∗)ZT
�

ZHZT
�−1

det(ZZH) det(ZZH )Tr

	
ZH(ZZH )−1dZ + ZT

�
Z∗ZT

�−1
dZ∗



det(ZZH)(Z∗ZT )−1Z∗ det(ZZH )

�
ZZH

�−1
Z

det(Zp) p detp(Z) Tr
�

Z−1dZ
�

p detp(Z)
�

ZT
�−1

0N×N

λ(Z)
vH
0 (dZ)u0
vH
0 u0

= Tr

�
u0vH

0
vH
0 u0

dZ

�
v∗
0uT

0
vH
0 u0

0N×N

λ∗(Z)
vT
0 (dZ∗)u∗

0
vT
0 u∗

0
= Tr

�
u∗

0vT
0

vT
0 u∗

0
dZ∗

�
0N×N

v0uH
0

vT
0 u∗

0

This result is included in Table III. The size of ∂
∂Zf and ∂

∂Z∗ f is N × Q, while the size of DZf (Z,Z∗) and

DZ∗f (Z,Z∗) is 1×NQ, so these two ways of organizing the partial derivatives are different. It can be shown, that

DZf (Z,Z∗) = vecT
(

∂
∂Zf (Z,Z∗)

)
, and DZ∗f (Z,Z∗) = vecT

(
∂

∂Z∗ f (Z,Z∗)
)
. The steepest decent method can

be formulated as Zk+1 = Zk + μ ∂
∂Z∗ f(Zk,Z

∗
k). The differentials of the simple eigenvalue λ and its complex

conjugate λ∗ at Z0 are derived in [1] and they are included in Table IV. One key example of derivatives is developed

in the text below, while others useful results are stated in Table IV.

1) Determinant Related Problems: Objective functions that depend on the determinant appear in several parts

of signal processing related problems, e.g., in the capacity of wireless multiple-input multiple-output (MIMO)

communication systems [15], and in an upper bound for the pair-wise error probability (PEP) [14].

Let f : C
N×Q × C

Q×N → C be f(Z,Z∗) = det(P + ZZH), where P ∈ C
N×N is independent of Z and

Z∗. df is found by the rules in Table II as df = det(P + ZZH)Tr
{
(P + ZZH)−1d(ZZH)

}
= det(P +

ZZH)Tr
{
ZH

(
P + ZZH

)−1
dZ + ZT (P + ZZH)−T dZ∗

}
. From this, the derivatives with respect to Z and

Z∗ of det
(
P + ZZH

)
can be found, but since these results are relatively long, they are not included in Table IV.

B. Derivative of F (Z,Z∗)

1) Kronecker Product Related Problems: An objective functions which depends on the Kronecker product of

the unknown complex-valued matrix is the PEP found in [14]. Let K N,Q denote the commutation matrix [1]. Let

F : C
N0×Q0 ×C

N1×Q1 → C
N0N1×Q0Q1 be given by F (Z0,Z1) = Z0 ⊗Z1, where Zi ∈ C

Ni×Qi . The differential

of this function follows from Table II: dF = (dZ0)⊗Z1 + Z0 ⊗ dZ1. Applying the vec(·) operator to dF yields:
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TABLE V

DERIVATIVES OF FUNCTIONS OF THE TYPE F (Z, Z∗)

F
�
Z , Z∗� Differential d vec(F ) DZF

�
Z , Z∗� DZ∗F

�
Z , Z∗�

Z INQd vec(Z) INQ 0NQ×NQ

ZT KN,Qd vec(Z) KN,Q 0NQ×NQ

Z∗ INQd vec(Z∗) 0NQ×NQ INQ

ZH KN,Qd vec(Z∗) 0NQ×NQ KN,Q

ZZT
�

I
N2 + KN,N

�
(Z ⊗ IN ) d vec(Z)

�
I

N2 + KN,N

�
(Z ⊗ IN ) 0

N2×NQ

ZT Z
�

I
Q2 + KQ,Q

� �
IQ ⊗ ZT

�
d vec(Z)

�
I

Q2 + KQ,Q

� �
IQ ⊗ ZT

�
0

Q2×NQ

ZZH �
Z∗ ⊗ IN

�
d vec(Z) + KN,N (Z ⊗ IN ) d vec(Z∗) Z∗ ⊗ IN KN,N (Z ⊗ IN )

Z−1 −
�
(ZT )−1 ⊗ Z−1

�
d vec(Z) −(ZT )−1 ⊗ Z−1 0

N2×N2

Zp
p


i=1

�
(Z

T
)
p−i ⊗ Z

i−1
�

d vec(Z)

p

i=1

�
(Z

T
)
p−i ⊗ Z

i−1
�

0
N2×N2

Z ⊗ Z (A(Z) + B(Z))d vec(Z) A(Z) + B(Z) 0
N2Q2×NQ

Z ⊗ Z∗ A(Z∗)d vec(Z) + B(Z)d vec(Z∗) A(Z∗) B(Z)

Z∗ ⊗ Z∗ (A(Z∗) + B(Z∗))d vec(Z∗) 0
N2Q2×NQ

A(Z∗) + B(Z∗)

Z � Z 2 diag(vec(Z))d vec(Z) 2 diag(vec(Z)) 0NQ×NQ

Z � Z∗ diag(vec(Z∗))d vec(Z) + diag(vec(Z))d vec(Z∗) diag(vec(Z∗)) diag(vec(Z))

Z∗ � Z∗ 2 diag(vec(Z∗))d vec(Z∗) 0NQ×NQ 2 diag(vec(Z∗))

d vec(F ) = vec ((dZ0) ⊗ Z1) + vec (Z0 ⊗ dZ1). From Theorem 3.10 in [1], it follows that

vec ((dZ0) ⊗ Z1) = (IQ0 ⊗ KQ1,N0 ⊗ IN1) [(d vec(Z0)) ⊗ vec(Z1)]

= (IQ0 ⊗ KQ1,N0 ⊗ IN1) [IN0Q0 ⊗ vec(Z1)] d vec(Z0), (22)

and in a similar way it follows that: vec (Z0 ⊗ dZ1) = (IQ0 ⊗ KQ1,N0 ⊗ IN1) [vec(Z0) ⊗ IN1Q1 ] d vec(Z1).

Inserting the last two results into d vec(F ) gives:

d vec(F ) = (IQ0 ⊗ KQ1,N0 ⊗ IN1) [IN0Q0 ⊗ vec(Z1)] d vec(Z0)

+ (IQ0 ⊗ KQ1,N0 ⊗ IN1) [vec(Z0) ⊗ IN1Q1 ] d vec(Z1). (23)

Define the matrices A(Z1) and B(Z0) by A(Z1) � (IQ0 ⊗ KQ1,N0 ⊗ IN1) [IN0Q0 ⊗ vec(Z1)], and B(Z0) =

(IQ0 ⊗ KQ1,N0 ⊗ IN1) [vec(Z0) ⊗ IN1Q1 ]. It is then possible to rewrite the differential of F (Z0,Z1) = Z0 ⊗Z1

as d vec(F ) = A(Z1)d vec(Z0) + B(Z0)d vec(Z1). From d vec(F ), the differentials and derivatives of Z ⊗ Z,

Z ⊗ Z∗, and Z∗ ⊗ Z∗ can be derived and these results are included in Table V. In the table, diag(·) returns the

square diagonal matrix with the input column vector elements on the main diagonal [19] and zeros elsewhere.

2) Moore-Penrose Inverse Related Problems: In pseudo-inverse matrix based receiver design, the Moore-

Penrose inverse might appear [15]. This is applicable for MIMO, CDMA, and OFDM systems.

Let F : C
N×Q × C

N×Q → C
Q×N be given by F (Z,Z∗) = Z+, where Z ∈ C

N×Q. The reason for including

both variables Z and Z∗ in this function definition is that the differential of Z+, see Proposition 1, depends on

both dZ and dZ∗. Using the vec(·) operator on the differential of the Moore-Penrose inverse in Table II, in addition

to Lemma 4.3.1 in [18] and the definition of the commutation matrix, result in:

d vec(F ) = −
[(

Z+
)T ⊗ Z+

]
d vec(Z) +

[(
IN − (

Z+
)T

ZT
)
⊗ Z+

(
Z+

)H
]
KN,Qd vec(Z∗)
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+
[(

Z+
)T (

Z+
)∗ ⊗ (

IQ − Z+Z
)]

KN,Qd vec(Z∗). (24)

This leads to DZ∗F =
{[(

IN − (
Z+

)T
ZT

)
⊗ Z+

(
Z+

)H
]

+
[(

Z+
)T (

Z+
)∗ ⊗ (

IQ − Z+Z
)]}

KN,Q and

DZF = −
[(

Z+
)T ⊗ Z+

]
. If Z is invertible, then the derivative of Z+ = Z−1 with respect to Z∗ is equal to the

zero matrix and the derivative of Z+ = Z−1 with respect to Z can be found from Table V.

VI. CONCLUSIONS

An introduction is given to a set of very powerful tools that can be used to systematically find the derivative of

complex-valued matrix functions that are dependent on complex-valued matrices. The key idea is to go through the

complex differential of the function and to treat the differential of the complex variable and its complex conjugate

as independent. This general framework can be used in many optimization problems that depend on complex

parameters. Many results are given in tabular form.

APPENDIX I

PROOF OF PROPOSITION 1

Proof: (2) leads to dZ+ = dZ+ZZ+ = (dZ+Z)Z++Z+ZdZ+. If ZdZ+ is found from dZZ+ = (dZ)Z++

ZdZ+, and inserted in the expression for dZ +, then it is found that:

dZ+ = (dZ+Z)Z+ + Z+(dZZ+ − (dZ)Z+) = (dZ+Z)Z+ + Z+dZZ+ − Z+(dZ)Z+. (25)

It is seen from (25), that it remains to express dZ+Z and dZZ+ in terms of dZ and dZ∗. Firstly, dZ+Z is

handled:

dZ+Z = dZ+ZZ+Z = (dZ+Z)Z+Z + Z+Z(dZ+Z) = (Z+Z(dZ+Z))H + Z+Z(dZ+Z). (26)

The expression Z(dZ+Z) can be found from dZ = dZZ+Z = (dZ)Z+Z + Z(dZ+Z), and it is given by

Z(dZ+Z) = dZ − (dZ)Z+Z = (dZ)(IQ − Z+Z). If this expression is inserted into (26), it is found that:

dZ+Z = (Z+(dZ)(IQ−Z+Z))H +Z+(dZ)(IQ−Z+Z) = (IQ−Z+Z)
(
dZH

)
(Z+)H+Z+(dZ)(IQ−Z+Z).

Secondly, it can be shown in a similar manner that: dZZ+ = (IN −ZZ+)(dZ)Z++(Z+)H
(
dZH

)
(IN −ZZ+).

If the expressions for dZ+Z and dZZ+ are inserted into (25), (3) is obtained.

APPENDIX II

PROOF OF LEMMA 1

Proof: Let Ai ∈ C
M×NQ be an arbitrary complex-valued function of Z ∈ C

N×Q and Z∗ ∈ C
N×Q.

From Table II, it follows that d vec(Z) = d vec(Re {Z}) + jd vec(Im {Z}) and d vec(Z∗) = d vec(Re {Z}) −
jd vec(Im {Z}). If these two expressions are substituted into A0d vec(Z) + A1d vec(Z∗) = 0M×1, then it follows

that A0(d vec(Re {Z}) + jd vec(Im {Z})) + A1(d vec(Re {Z}) − jd vec(Im {Z})) = 0M×1. The last expression

is equivalent to: (A0 + A1)d vec(Re {Z}) + j(A0 −A1)d vec(Im {Z}) = 0M×1. Since the differentials dRe {Z}
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and d Im {Z} are independent, so are d vec(Re {Z}) and d vec(Im {Z}). Therefore, A 0 + A1 = 0M×NQ and

A0 − A1 = 0M×NQ. And from this it follows that A0 = A1 = 0M×NQ.
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