
482 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

Channel Predictive Proportional Fair Scheduling
Hans Jørgen Bang, Torbjörn Ekman, and David Gesbert

Abstract— Recent work on channel modeling and prediction
has shown the feasibility of predicting the mobile radio channel,
quite accurately, several milliseconds ahead in time for realistic
Doppler spreads. Motivated by these results we consider op-
portunistic scheduling algorithms that exploit both current and
future channel estimates. We demonstrate how this extra channel
information can be used to improve the scheduling. Simulations
show that the proposed algorithm can improve the inherent
tradeoff between throughput, fairness and delay. The current
approach builds on proportional fair scheduling but can also be
generalized to other criteria.

Index Terms— Channel prediction, fairness, multiuser diver-
sity, proportional fair scheduling.

I. INTRODUCTION

OPPORTUNISTIC scheduling has recently attracted much
attention as a means to increase the spectrum efficiency

of wireless data networks. By allocating the common radio
resource to the users that are currently best able to utilize it
the inherent multiuser selection diversity is exploited [1], [2].
There is however a fundamental tradeoff between throughput
on one hand and fairness and delay on the other. Techniques
that are able to push this tradeoff (improving one without
sacrificing the other) are therefore of great interest.

Several channel-aware scheduling techniques for the down-
link of wireless data networks have already been proposed in
the literature. For a recent survey see [3]. One of the most
popular ones is the Proportional Fair Scheduler (PFS) [1]. In
this approach a time constant parameter is chosen to specify
over what time period fairness between the users should be
maintained.

In parallel and much independently, recent work on channel
modeling and prediction has shown the feasibility of predicting
fading channels over horizons of up to 0.25 wavelengths
with reasonable accuracy [4]–[6]. Combined with reduced
feedback delays and shorter scheduling intervals in proposed
4G systems [7], this opens up the possibility of combining
channel prediction with resource allocation. In this paper we
examine how channel predictions can help to improve the
tradeoff between throughput and fairness. More specifically
we develop a framework for scheduling algorithms that rely
on both current and future channel estimates. The intuition

Manuscript received September 20, 2006; revised March 30, 2007 and
June 7, 2007; accepted August 31, 2007. The associate editor coordinating
the review of this letter and approving it for publication was Y. Ma. This
work was presented in part at SPAWC’2005, New York, June 2005.

H. Bang is with the UniK-University Graduate Center, University of Oslo,
Norway (e-mail:hans@unik.no).

T. Ekman is with the Dept. of Electronics and Telecommunications,
Norwegian University of Science and Technology, Norway (e-mail: torb-
jorn.ekman@iet.ntnu.no).

D. Gesbert is with the Eurécom Institute, Sophia Antipolis, France (e-mail:
david.gesbert@eurecom.fr).

Digital Object Identifier 10.1109/TWC.2008.060729.

behind our approach is that future channel estimates, even
imperfect ones, are beneficial since they allow the scheduling
to be planned over several time slots ahead in time. To the best
of our knowledge, this idea has not been investigated before
with the exception of [8]. We make the following key points:

• For scenarios where fairness is to be maintained over
long periods of time compared to the coherence time
of the fading, capacity maximization can be obtained
through the use of memoryless schedulers. Thus, channel
prediction is of minor interest1.

• For scenarios where tighter fairness and delay constraints
are used, there is a significant gain in terms of throughput
to be obtained from a channel prediction-aware scheduler.

Clearly, there are some major challenges associated with
prediction-aware scheduling. First, the quality of the pre-
dictions degrade rapidly with the prediction horizon. Thus,
robustness with respect to prediction errors is crucial. Second,
the complexity of the scheduling tends to increase significantly
when additional channel information is introduced. In this
paper we address both these issues. Specifically, we propose
a generalization of the PFS algorithm that incorporates future
channel estimates. We demonstrate that this algorithm is
capable of increasing the throughput without compromising
fairness and delay compared to the standard PFS algorithm.

II. SYSTEM MODEL AND CHANNEL-AWARE SCHEDULING

A. System Model

We consider the downlink of a single cell with N simul-
taneously active users served by one base station (BS). The
scheduling is organized on a slot by slot basis, i.e. one and
only one user is served during any given slot. The scheduler
resides at the BS and decides prior to each slot which user
the BS shall transmit data to. We use i∗(k) to denote the user
scheduled in slot k.

The BS operates at fixed transmit power and employ rate
adaption to adjust to instantaneous channel conditions. Our
key assumption is that estimates of the users’ supported data
rates for the current and L−1 future slots are available to the
scheduler. The supported rate for the ith user in slot k + l, as
predicted in slot k, will be denoted R̂i(k+ l|k). We use Ri(k)
as shorthand for R̂i(k|k). For an arbitrary vector i we let (i)l

denote its lth component.

B. Channel-Aware Scheduling

In order to realize a multiuser diversity gain the the schedul-
ing criterion must be a function of the users’ current supported

1In a practical system channel prediction must still be employed to obtain
estimates of the users’ current channel conditions due to non-zero feedback
delay

1536-1276/08$25.00 c© 2008 IEEE

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008 483

rates. A straightforward approach is to let

i∗(k) = arg max
i=1,.,N

fi(Ri(k)), (1)

where fi(·) is a monotonically increasing function indepen-
dent of time k. In particular for fi(x) = x we obtain the
Max SNR scheduler which select the user with the highest
supported rate directly. However other choices of fi(·) might
lead to better long-term fairness properties. Recently several
memoryless channel-aware scheduling policies that maximizes
capacity under various long-term fairness criteria have been
proposed [2], [9], [10].

A main limitation with memoryless schedulers is that fair-
ness can only be ensured over long time windows compared
to the coherence time of the fading. To improve the short term
performance the priority of users that has not been selected
for a long time must raised. This is exemplified by the PFS
algorithm. In this approach the user with the highest supported
rate relative to past average throughput is selected in each time
slot. Thus, the user scheduled in time slot k is given by

i∗(k) = arg max
i=1,.,N

Ri(k)
Ti(k)

, (2)

where Ti(k) is user i’s past average throughput. The average
throughputs are updated in each time slot according to

Ti(k + 1) = (1− 1
tc

)Ti(k) +
1
tc

Ri(k)δ(i− i∗(k)), (3)

where δ(·) is the Kronecker delta function and tc is a pre-
determined constant. The particular value of tc determines the
time horizon over which the throughputs are computed and
gives a tradeoff between long-term throughput and delay. Even
though the above scheduling criterion can be easily motivated
there exists a second formulation that provides additional
insight into the nature of the PFS algorithm [11], [12]. To
this end we consider the following system utility function

U(k) =
N∑

j=1

log Tj(k). (4)

It can then be shown (see Proposition 2) that (2) is equivalent
to selecting the user that leads to the largest instantaneous
increase in U . More precisely this can be formulated as

i∗(k) = arg max
i=1,.,N

U(k + 1). (5)

This suggests that the underlying goal of the PFS algorithm
is to maximize the system utility function U .

III. PREDICTION-AWARE SCHEDULING

In an attempt to improve the scheduling even further,
we now turn to prediction-aware schedulers. This class of
schedulers exploit both current rate estimates and predictions
of the users’ future supported rates. We will in the following
refer to these schedulers as being simply predictive.

A. Predictive Block-Based Scheduling

We first consider an approach where adjacent time slots are
grouped into non-overlapping blocks of length L time slots.
Every Lth time slot (say time slot k) a scheduling vector

i∗(k) = {i∗(k + l)}L−1
l=0 (6)

dictating the next L transmissions is computed according to

i∗(k) = arg max
i∈F

O(k)(i), (7)

where O(k)(i) is an appropriate objective function and F is
the set of feasible scheduling combinations. In time slot k+L
a new scheduling vector determining the schedule for the next
block of time slots is computed. The main motivation for the
above approach is that the scheduling can be better planned
if several scheduling decisions are made simultaneously. The
objective function should reflect the underlying goals of the
scheduling and can be a function of a number of parameters
including predictions of the users future rates.

B. Predictive Proportional Fair Scheduling

In this subsection we extend the PFS algorithm to a pre-
dictive scheduling scenario. We first define the following two
quantities

T̃i(k|i) = (1− 1
tc

)Ti(k) +
1
tc

L−1∑
l=0

wlR̂i(k + l|k)δ(i− (i)l+1)

(8)

O(k)
pf (i) =

N∑
i=1

log T̃i(k|i), (9)

where w0, . . . , wL−1 are positive weights in (8). With O(k)
pf (i)

as objective function we can directly adopt the block-based
scheduling strategy. Note that for w0 = 1 and L = 1 we
obtain (5) and hence the PFS algorithm as a special case. For
L > 1 we obtain a family of predictive schedulers depending
on the particular combination of weights wl. The next result
illustrates an even deeper connection with the PFS algorithm.

Proposition 1: Assume that the rate predictions are perfect
and let

i∗(k) = arg max
i∈F

O(k)
pf (i), (10)

with wl = (1 − 1
tc

)−l for l = 0, . . . , L − 1. Then i∗(k)
maximizes U(k + L).

Proof: See Appendix 1.
Thus, for the weights wl specified in Proposition 1 the
scheduling vector i∗(k) is chosen to maximize U(k + L).
Observe that this is a natural generalization of the standard
PFS algorithm where i∗(k) maximizes U(k+1). Even though
this seems to justify this particular choice of weights one
important remark must be made. Since (1− 1

tc
)−1 > 1 we can

infer from (8) that increasing emphasis is put on more distant
rate predictions. In the case of poor prediction accuracy this
might not be the best practical design. Generally the optimum
weights will be a function of the prediction quality.

484 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

C. Robust Predictive Scheduling

In the block based-scheduling strategy a schedule is fixed
for a block of future time slots. Although conceptually simple
there are certain drawbacks to this approach that we now
address.

Most notably we rely on imperfect estimates of the users’
supported rates. Although reliable short range predictors have
been proposed, the predictions degrade rapidly for longer
prediction ranges [4]–[6]. This is a common problem to all
predictive schedulers, but to fix the schedule several time
slots ahead might result in additional sensitivity to prediction
errors. A better and more robust approach is to re-optimize
the schedule in each time slot as the predictions are updated.
Furthermore, estimates of the users’ supported rates for the
L−1 subsequent time slots are available in each slot, but only
the scheduling decision for the first slot within a block utilizes
this prediction range fully. In fact, the scheduling decision for
the last slot within a block is independent of the rate estimates
in the slots subsequent to it. A final concern is that of the
complexity of the algorithm. In order to compute an optimal
scheduling vector according to (7) an exhaustive search will
generally be required. With a total of |F| = NL potential
scheduling combinations this is only practical for very short
scheduling horizons.

Motivated by the first two points we propose an strategy
where the schedule is re-optimized in each time slot in a
receding horizon fashion. The algorithm is summarized below.

In each time slot k:

1) Update the rate predictions, R̂i(k + l|k).
2) Search for i∗(k) that maximizes O(k)(i) .
3) Schedule the user given by the first component of i∗(k),

i.e i∗(k) = (i∗(k))1.

Observe that a full schedule is computed in each slot, but only
the scheduling decision for the current slot is implemented. In
this way all available channel information is utilized in each
time slot and for each scheduling decision. We further note
that the joint computation of all components of the scheduling
vector greatly affects the final outcome even though only the
first component is directly used.

Clearly, this modification does not reduce the computation-
ally complexity compared to the original block based version.
However, the schedule from the previous time slot provides
an excellent starting point for an iterative search of a new
updated schedule in the current time slot. Based on this idea
we next present a low complexity algorithm that renders at
least locally optimum scheduling vectors i∗(k). Note that we
will still use i∗(k) to denote the computed scheduling vector
even though it might differ from (7).

D. A Suboptimal Algorithm for Obtaining i∗(k)

As opposed to an exhaustive search we propose an itera-
tive search algorithm, based on cyclic coordinate ascent. To
initialize the search we use the schedule from the previous
time slot. Then in each subsequent iteration one component
of the scheduling vector is updated with the other components
held fixed. This process is repeated in a cyclic fashion until

TABLE I

ITERATIVE ALGORITHM FOR OBTAINING i∗(k)

1) Initialization
To initialize the algorithm let

i0(k) =
(
i∗2(k − 1), i∗3(k − 1), . . . , i∗L(k − 1), 1

)
.

2) Main iteration
At each iteration recompute one component of the
scheduling vector. For the (n + 1)th iteration let

in+1(k) = in(k) l← in+1
l (k),

where l = L− (n mod L) and

in+1
l (k) = arg max

i=1,.,N
O(k)

(
in(k) l← i

)
. (11)

3) Termination
When in(k) = in−L(k) we have im(k) = in(k) for all
m ≥ n and we have converged to a solution.

we converge to solution. To describe the algorithm we use the
following notation:

- in(k) =
(
in1 (k), . . . , inL(k)

)
denotes the computed

scheduling vector after n iterations.
- For an arbitrary vector i =

(
i1, . . . , iL

)
, i l← i denotes

the vector i with the lth component exchanged with i.
Thus i l← i =

(
i1, . . . , il−1, i, il+1, . . . , iL

)
.

The resulting algorithm is given in Table I. Observe that, for
each iteration, we either obtain the same or a better solution in
the sense O(k)

(
in+1(k)

)
> O(k)

(
in(k)

)
. Hence the algorithm

will necessarily converge since there are only a finite number
of scheduling combinations. The solution will be locally
optimal in the sense that it can not be improved by changing
any single component. We can expect fast convergence as
limited amount of new channel state information is introduced
in each time step and we use the schedule computed in the
previous time step to initialize the search2. The exact rate
of convergence will depend on the prediction quality and the
Doppler spread, but will be roughly linear in the product LN .

We next present a useful result that shows that the computa-
tional complexity can be further reduced with (9) as objective
function.

Proposition 2: Let O(k)
pf

(
i
)

be used as objective function
in (11). Then (11) is equivalent to

in+1
l (k) = arg max

i=1,.,N

R̂i(k + l − 1|k)

T̃i(k + L|in(k) l← 0)
. (12)

Proof: See Appendix.
Thus, according to the above result, the complexity per
iteration is equal to that of the standard PFS algorithm
per slot. Nevertheless, this results in considerable computa-
tional savings compared to explicitly evaluating the function
O(k)

pf

(
in(k) l← i

)
as suggested in (11).

2The last component of i0(k) is set to 1. This particular value is arbitrary
and will not affect subsequent iterations.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008 485

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we evaluate the robust version of the
predictive PFS algorithm together with the iterative algorithm
in Table I numerically. For a neutral design we let wl = 1 for
l = 0, . . . , L− 1. Note however that the optimum weights are
likely to be dependent on the quality of the predictions. The
simulation results are obtained for Rayleigh fading channels
with time correlations given by Jakes’ model. All users have
symmetrical channels with average SNR 0 dB and time slot
Doppler frequency product 0.01. This means that the terminals
move one wavelength in 100 time slots, e.g. 5.5 km/h with
a time slot length of 1 ms in the 2 GHz band. We use the
Shannon Capacity to estimate the supported rates and we
assume that the BS always has data to send to each user.

In order to generate realistic estimates of the users’ future
supported rates we use a linear FIR (Finite Impulse Response)
MMSE predictor with 128 coefficients to predict the future
complex fading gains from past noisy observations of the
channel. The channel power gain used in the Shannon Capac-
ity is obtained as the absolute square of the predicted complex
fading gain. The quality of the prediction will depend on the
Channel to Estimation Error Ratio which is set to 20 dB.
The NMSE (Normalized Mean Square Error) for the complex
fading gain prediction ten time slots ahead is roughly 10−2

but for one step ahead it is only 10−3. Thus, the error in the
estimated rate for one time slot ahead can be disregarded.

A. Qualitative Example of Predictive Scheduling

We first compare the performance of the predictive and
standard PFS algorithm with a qualitative example. Consider
a scenario with 15 users, tc = 100 and L = 21. Fig. 1
shows a snapshot of the supported rates for one user, where
a superimposed cross corresponds to an allocated slot. The
standard algorithm is shown to the left and the predictive ver-
sion to the right. By inspection there appears to be significant
increase in performance by using prediction since the allocated
slots are clustered more tightly around fading peaks. Fig. 1
also indicates that potential gain in performance by doing full
searches for the optimum scheduling vectors is very limited.

B. Long-Term Throughput

We next compare the total long-term throughput as a
function of the parameter tc for the standard and the predictive
PFS algorithm with 15 users. The prediction horizon L − 1
is set to 10 slots for the predictive algorithm. On average
20 iterations were required to compute i∗(k) in each time
slot. It can be seen from Fig. 2 that there is an increase in
throughput with the predictive algorithm for all values of tc.
Note however, that the largest gains (20%) occur for smaller
tc values. This is intuitive because for large values of tc both
algorithms approach the Max SNR scheduler.

C. Short-Term Throughput

Depending on the application the throughput over some
finite time scale might be the key metric of interest. To
quantify this performance let Ti(w) denote the throughput for
user i over a window of w time slots. We then define the

0 200 400 600
0

0.5

1

1.5

2

2.5

Time [slots]

S
up

po
rt

ed
 r

at
e

[b
ps

/H
z]

0 200 400 600
0

0.5

1

1.5

2

2.5

Time [slots]

S
up

po
rt

ed
 r

at
e

[b
ps

/H
z]

Fig. 1. Snapshot of supported rates for one user. A superimposed cross
corresponds to an allocated slot with the standard (to the left) and the
predictive PFS algorithm (to the right). The predictive algorithm leads to
higher throughputs since the allocated slots are more tightly clustered around
the fading peaks.

lowest achieved throughput (LAT) with outage probability ε
according to

Pr{Ti(w) < LATi(ε)} < ε. (13)

Thus the probability that Ti(w) falls below LATi(ε) is given
by ε. As w approaches infinity LATi(ε) approaches the long-
term throughput of user i, but for smaller time windows
LATi(ε) will be considerably less. LATi(ε) is an interesting
measure since it gives a good indication of the continuity of
the incoming data flow and is tightly related to the maximum
delay between two received packets for a user. Since we
assume all users to have statistical identical channel we will
drop the user-index i.

Fig. 3 shows LAT(0.01) as a function of window size for the
Round-Robin algorithm, the standard PFS algorithm and the
predictive PFS algorithm with tc = 100, 1000. The Max SNR
algorithm is not included as LAT(0.01) is zero for all window
sizes in the considered range. Observe that the predictive
PFS algorithm performs significantly better than standard PFS
algorithm, for all but very small window sizes, for tc = 100.
This also hold true for tc = 1000 although the improvement
with the predictive algorithm is more modest.

D. Fairness

To quantify the degree of fairness between the users we use
Jain’s fairness index[13]. Let xi be the resource of interest
allocated to user i. Jain’s fairness index is then defined as

J =

(∑N
i=1 xi

)2

N
∑N

i=1 x2
i

. (14)

Jain’s fairness index measures the spread in the allocated
resources and will always be in the range 1/N to 1. It is
easily be verified that J = 1 indicates absolute fairness and
J = 1/N indicates no fairness, i.e all resources are allocated
to one single user.

Since we assume all users to have statistical identical
channels we can expect fairness between the users over longer

486 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

100 200 300 400 500 600 700 800 900 1000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

t
c

T
ot

al
 th

ro
ug

hp
ut

 [b
ps

/H
z]

max SNR
P−PFS
PFS
Round Robin

Fig. 2. Total long-term throughput as function of tc for the predictive and
the standard PFS algorithm with 15 users. The prediction horizon L − 1 is
set to 10 slots for the predictive PFS algorithm.

100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Window size [slots]

LA
T

(0
.0

1)
 [b

ps
/H

z]

P−PFS, t
c
=100

PFS, t
c
=100

Round Robin

P−PFS, t
c
=1000

PFS, t
c
=1000

Fig. 3. LAT(ε) as a function of window size for ε = 0.01 in a system
with 15 users. The probability that the throughput of a single user falls below
LAT(ε) over the specified window size equals ε. The prediction horizon L−1
is 10 slots for the predictive PFS algorithm.

time scales. To measure the degree of fairness over shorter
time intervals we let xi = Ti(w) and compute the mean over
multiple realizations. Note that by adjusting the window size
w the time scale that the fairness is computed over is adjusted
accordingly.

Fig. 4 shows the average Jain’s fairness index as a function
of window size for the standard and predictive PFS algorithm
with tc = 100, 1000. Observe that the level of fairness is
virtually the same for the two algorithms. There is a negligible
reduction in fairness for tc = 100 and a slight increase in
fairness for tc = 1000 with the predictive algorithm.

V. CONCLUSION

We have extended the PFS algorithm to a scenario where
estimates of the users’ future rates are available. At a reason-
able increase in complexity and without compromising fair-
ness or delay the total throughput was significantly increased
compared to the standard PFS algorithm. The largest gains

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window size [slots]

A
ve

ra
ge

 J
ai

n’
s

fa
irn

es
s

in
de

x

Round Robin
PFS, t

c
=100

P−PFS, t
c
=100

P−PFS, t
c
=1000

PFS t
c
=1000

max SNR

Fig. 4. Jain’s fairness index as function of window size for the predictive
and the standard PFS algorithm with 15 users and tc = 100, 1000.

occurred when tighter fairness and delay requirements were
imposed.

APPENDIX

A. Proof of Proposition 1

Let wl = (1− 1
tc

)−l for l = 0, . . . , L−1. We first note that

(1− 1
tc

)L−1T̃i(k|i) = (1− 1
tc

)LTi(k)

+
L−1∑
l=0

(1− 1
tc

)L−lR̂i(k + l|k)δ(i− (i)l+1) (15)

equals Ti(k+L) given that the rate predictions are perfect and
that user (i)l is scheduled in time slot k+l−1 for l = 1, . . . , L.
This is easily verified by solving (3) as a difference equation.
Observe next that

i∗(k) = arg max
i∈F

O(k)
pf (i)

= arg max
i∈F

N∑
i=1

log T̃i(k|i)

= arg max
i∈F

N∑
i=1

log
(

(1− 1
tc

)L−1T̃i(k|i)
)

(16)

This proves that i∗(k) maximizes U(k + L) if the rate
predictions are perfect.

B. Proof of Proposition 2

Observe that

T̃j(k + L|in(k) l← i) = T̂j(k + L|in(k) l← 0) (17)

for j �= i and

T̃j(k + L|in(k) l← i) = T̂j(k + L|in(k) l← 0)

+
1
tc

wlR̂j(k + l − 1|k) (18)

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008 487

for j = i. We can therefore write

O(k)
pf

(
in(k) l← i

)
=

N∑
j=1

log T̃j(k|in(k) l← 0)

+ log
(

1 +
R̂i(k + l − 1|k)

T̃i(k + L|in(k) l← 0)

)
. (19)

This completes the proof since only the last term in the
expression above depends on i and log(·) is a monotone
increasing function.

REFERENCES

[1] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using
dumb antennas,” IEEE Trans. Inform. Theory, vol. 48, no. 6, pp. 1277–
1294, 2002.

[2] X. Liu, E. Chong, and N. Shroff, “Opportunistic transmission scheduling
with resource-sharing constraints in wireless networks,” IEEE J. Select.
Areas Commun., vol. 19, no. 10, pp. 2053–2064, 2001.

[3] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer
optimization in wireless networks,” IEEE J. Select. Areas Commun.,
vol. 24, no. 8, pp. 1452–1463, Aug. 2006.

[4] A. Duel-Hallen, S. Hu, and H. Hallen, “Long-range prediction of fading
signals,” IEEE Signal Processing Mag., vol. 17, no. 3, pp. 62–75, 2000.

[5] R. Vaughan, P. Teal, and R. Raich, “Short-term mobile channel pre-
diction using discrete scatterer propagation model and subspace signal
processing algorithms,” in Proc. VTS, Sep. 2000, pp. 751–758.

[6] T. Ekman, “Prediction of mobile radio channels, modeling and
design,” Ph.D. dissertation, Uppsala University, Sweden, 2002 [Online].
Available: http://www.signal.uu.se/Publications/abstracts/a023.html

[7] M. Sternad, T. Svensson, and G. Klang, “The WINNER b3g system
MAC concept,” in Veh. Technol. Conf., VTS-Fall 64th VTC, Sep. 2006,
pp. 1–5.

[8] N. C. Ericsson, A. Ahlen, S. Falahati, and A. Svensson, “Hybrid type-II
ARQ/AMS supported by channel predictive scheduling in a multi-user
scenario,” in Veh. Technol. Conf. IEEE VTS-Fall 52nd VTC, Sep. 2000,
vol. 4, pp. 1804–1811.

[9] S. Borst, “User-level performance of channel-aware scheduling al-
gorithms in wireless data networks,” IEEE/ACM Trans. Networking,
vol. 13, no. 3, pp. 636–647, 2005.

[10] D. Park, H. Seo, H. Kwon, and B. G. Lee, “Wireless packet scheduling
based on the cumulative distribution function of user transmission rates,”
IEEE Trans. Commun., vol. 53, no. 11, pp. 1919–1929, 2005.

[11] H. Kushner and P. Whiting, “Convergence of proportional-fair sharing
algorithms under general conditions,” IEEE Trans. Wireless Commun.,
vol. 3, no. 4, pp. 1250–1259, July 2004.

[12] H. Kim and Y. Han, “A proportional fair scheduling for multicarrier
transmission systems,” IEEE Commun. Lett., vol. 9, no. 3, pp. 210–212,
Mar. 2005.

[13] R. Jain, The Art of Computer Systems Performance Analysis. New
York: John Wiley and Sons, 1991.

