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ABSTRACT

This work aims at improving speech recognition in noisy
environments using a microphone array. The proposed ap-
proach is based on a preliminary generation of N-best hy-
potheses. The use of an adaptive maximum likelihood bea-
mformer (the Limabeam algorithm), applied in parallel to
each hypothesis, leads to an updated set of transcriptions,
among which the maximally likely to clean speech models
is selected. Results show that this method improves recog-
nition accuracy over both Delay and Sum Beamforming and
Unsupervised Limabeam especially at low SNRs. Results
also show that it can recover the recognition errors made in
the first recognition step.

1. INTRODUCTION

The use of microphone arrays in Automatic Speech Recog-
nition (ASR) has shown significant improvements in the
last years [1, 2]. The problem of coupling array process-
ing with distant talking ASR has been recently addressed
[3] due to the observation that improving speech intelligi-
bility does not necessary increase recognition performance
to the same extent. Advancements were obtained optimizing
a Filter-and-Sum Beamformer through a Maximum Likeli-
hood (ML) criterion: this setup showed improvements over
both other adaptive filtering techniques [4] and the traditional
Delay-and-Sum (D&S) beamformer [1]. Seltzer [5, 6, 3]
proved that, by adapting a set of FIR filters on a set of
clean speech models in an unsupervised manner, the input
signal could be properly beamformed and the likelihood of
test data increased. However, a careful analysis of this un-
supervised maximum likelihood beamformer showed (see
Section 5) that the improvements obtained over D&S were
marginal with respect to the best results obtained with super-
vised methods. This suggested that when performing some
kind of ASR feedback, one should rather consider the N-best
hypotheses instead of the best one (in a maximum likelihood
sense). In this work we propose and discuss an extension of
the Limabeam algorithm. The proposed system applies N-
best parallel beamformers to multi-channel signals; it inde-
pendently optimizes and recognizes each hypothesized utter-
ance; then it re-scores the likelihoods to provide a new maxi-
mally likely transcription. The paper is organized as follows:
Section 2 justifies the use of this approach with a microphone
array. Section 3 outlines the Limabeam algorithm, Section
4 describes our N-best approach to the Unsupervised Lima-
beam, and Section 5 gives the experimental results. Finally,
Section 6 presents discussion and future activity.

1This work was conducted while L. Brayda was at ITC-irst.

2. N-BEST RECOGNITION WITH MICROPHONE
ARRAYS

N-best recognition is known to be a useful approach when
using progressive knowledge sources in multi-pass search
strategies [7]. When performing ASR in noisy environments,
it is well known that the correct transcription could be found
in a very late position in an N-best list. Microphone array
processing can be adopted to increase the SNR [8], to com-
pensate for additive noise [4] and convolutional distortion or
to maximize the likelihoods of the test set utterances with
respect to given clean speech models [3]. Actually an ar-
ray spans one dimension more (i.e. the spatial dimension)
than the usual time-frequency domain spanned by its single-
microphone counterpart. Thus, one can expect that the use of
a microphone array can raise the position of the correct tran-
scription in the N-best list. Let us assume to have a system
that outputs the N-best hypotheses for known sentences and
thus is able to select the correct one. Figure 1 depicts the per-
formance of the system when one or eight microphones (in
this case D&S is applied) are used in our experimental con-
ditions (see Section 5). It is evident that the use of the array
increases the amount of correct sentences among the N-best,
i.e. the chances of picking up the correct transcription. This
happens because all the candidates are more intelligible, less
noisy, or better matching the models, depending on the ar-
ray processing method adopted. At this point one would like
the correct transcription be the first choice rather than the n-
th. One way to do that is to re-process each hypothesis until
it better matches the models to which it will be compared.
We chose the Limabeam algorithm (see Section 3) to opti-
mize and recognize in parallel each hypothesis (see Section
4), then re-score them and produce a final transcription.

3. THE LIMABEAM ALGORITHM

The Limabeam algorithm uses an adaptive filter-and-sum
beamformer. Such a beamformer can be represented as fol-
lows:

x[k] =
M

∑
m=1

hm[k]∗ sm[k] (1)

where sm[k] is the discrete time domain signal received at the
m-th microphone, hm[k] is the FIR filter for the m-th channel,
x[k] is the output of the beamformer, ∗ denotes convolution
and k is the time index. The whole set of FIR coefficients
of all the microphones can be represented by a super-vector
h. For each frame, recognition features can be derived and
expressed in function of h:

yL(h) = log10
(

W |FFT(x(h))|2
)

(2)
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Figure 1: Percentage of correct sentences found by a system
that recognizes the N-best hypotheses over transcribed sen-
tences in a noisy environment. With more microphones the
correct sentence is “pushed up” in the first alternatives. This
result represents an upper-bound for system performance re-
ported in the following.

where x(h) is the observed vector, |FFT(x(h))|2 is the vec-
tor of individual power spectrum components, W is the Mel
filter matrix and yL(h) is the vector of the Log Filter Bank
Energies (LFBE). Cepstral coefficients are derived via a DCT
rotation:

yC(h) = DCT(yL(h)) . (3)

Limabeam aims at deriving a set of M FIR filters, which
maximize the likelihood of yL(h) given an estimated state
sequence of a hypothesized transcription. This is expressed
by:

ĥ = argmax
h

P(yL(h) |w ) (4)

where w is the hypothesized transcription, P(y(h) |w ) is the
likelihood of the observed features given the transcription
considered and ĥ is the FIR parameter super-vector derived.
The optimization is done via non-linear Conjugate Gradi-
ent. The state sequence can be estimated either using the
array beamformed output (Unsupervised Limabeam) or, al-
ternatively, assuming that the correct transcription is avail-
able (Oracle Limabeam). More details can be found in [5].
The Unsupervised Limabeam works well in noisy environ-
ments, even with a single channel. However, we found that
preliminary experiments revealed two facts: first, the Ora-
cle Limabeam performance on a single channel was close to
the simple D&S on eight channels; second, there was still a
margin of improvement between the Unsupervised and the
Oracle Limabeam version applied to the multi-channel sig-
nals.

4. COMBINING N-BEST RECOGNITION AND ML
BEAMFORMING

The Limabeam algorithm increases the likelihood of the first
hypothesized transcription after a first recognition step. We
propose to apply N-best parallel such optimizations: this ap-
proach is based on the fact that the N-best list, prior to paral-
lel optimization, is ordered by likelihood and not necessarily

by Word Error Rate (WER), which should be the optimal cri-
terion. Applying the Limabeam algorithm on each hypothe-
sis, the ranking order of the N-best list changes. We show at
experimental level that the new hypothesis chosen (the new
maximally likely) in this new list has, on average, a lower
WER than the first chosen in the old list. The system is de-
scribed in the following. For each of the N-best hypotheses 2

we derive a set of FIR filters:

ĥn = argmax
h

P(yL(h) |wn ) (5)

where wn is the n-th hypothesized transcription at first recog-
nition step, P(y(h) |wn ) is the likelihood of the observed
features given the n-best transcription considered. Note that
Equation (5) is equivalent to Unsupervised Limabeam when
n is 1. After all the N-best FIR vectors are optimized in paral-
lel, new features are calculated and recognition is performed.
The transcription which gives the ML is then chosen:

n̂ = argmax
n

P(yC(ĥn) |ŵn ) (6)

where ŵn is the transcription generated at second step recog-
nition and n̂ is the index of the most likely transcription,
which is ŵn̂. Note that the optimization is done in the LFBE
domain, while recognition is done in the Cepstral domain
as in [3]. We re-score likelihoods in the Cepstral domain
as well. The system we propose is depicted in Figure 2.
The signal coming from a microphone array is processed via
conventional D&S, then Feature Extraction (FE) and a first
recognition step is performed (REC). The HMM recognizer
generates N-best hypotheses. For each hypothesis and in par-
allel, the Limabeam algorithm is applied: first a Viterbi align-
ment is performed (switch to 1: ALIGN) and fixed, then FIR
coefficients are adaptively optimized via Conjugate Gradient
(switch to 2: OPT). After convergence, the N-best features
are recognized (switch to 3: REC) and another set of new
transcriptions is produced. Finally, the last block compares
the new N-best Log-LikeliHoods (LLH-rescoring) choosing
the highest and the recognized sentence is produced.

5. EXPERIMENTAL RESULTS

Experiments were conducted using the HTK HMM-based
recognizer [9] trained on the clean TI-digits corpus. Word
models are represented by 18 state left-to-right HMMs. Out-
put distributions are defined by 1 Gaussian pdf. The training
set consists of 8440 utterances, pronounced by 110 speakers
(55 men and 55 women). The test set consists of 104 phrases,
pronounced by 52 men and 52 women. Both training and
test data were up-sampled to 44.1 kHz via a polyphase fil-
ter prior to any processing. This sampling frequency was
chosen in order to guarantee a high temporal resolution for
the FIR filters and to ensure consistency with the real exper-
imental framework being addressed [10]. In this work real
noise coming from a computer fan was recorded in an office,
measuring 4 X 4 meters, and synthetically added to the clean
speech. The fan noise was properly shifted channel by chan-
nel: this resulted in simulating a 8-microphone array with
7 cm inter-microphone distance, a source of speech on-axis
with the array and a source of fan noise in end-fire position.

2Note that here “N-best” results from a preliminary reduction to a list
that does not include repetitions of the same word sequence, which could be
caused by different number and location of silences/background noise units.
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Figure 2: Block diagram of the N-best Unsupervised Lima-
beam.

The FIR filters to be optimized are 10 taps long. The feature
extraction involves 12 Mel Frequency Cepstral Coefficients
(MFCC) and the log-Energy together with their first and sec-
ond derivatives, for a total of 39 coefficients. Features were
calculated every 10 ms, using a 25 ms sliding Hamming win-
dow. The frequency range spanned by the Mel-Scale filter-
bank was limited to 100-7500 Hz to avoid frequency regions
with no useful signal energy. Cepstral Mean Normalization
is applied. While recognition is performed in the cepstral do-
main, the optimization process is done in the LFBE domain
using 24 coefficients for the features and single-Gaussian
output distributions [3] for the models, but without CMN.
In our implementation of the Limabeam algorithm the Con-
jugate Gradient algorithm [11] is the same adopted in [3] and
no modifications were applied to the original one. This was
done to ensure compliance with Seltzer’s work.
Preliminary results show the usefulness of a microphone ar-
ray in a noisy environment. Table 1 reports the performance
obtained with D&S, with Unsupervised Limabeam and with
Oracle Limabeam (transcription is known). In this case the
amount of fan and office noise caused a SNR of -5 dB. The
Oracle on one channel performs only slightly better than the
simple D&S on eight channels. Furthermore, note that Un-
supervised Limabeam gives 16% relative improvement over
D&S, while performance could be improved up to a 35%.

-5 dB D&S Uns. Lim. Oracle Lim.
1 ch 63.79% 66.11%(6%) 70.43%(18%)
8 ch 69.10% 74.09%(16%) 80.07%(35%)

Table 1: Usefulness of Limabeam with respect to a single
microphone. Relative improvements over D&S are reported
in parentheses. Results are in terms of digit accuracy.

We then applied the N-best Unsupervised Limabeam to the
same test set. Figure 3 depicts its behavior at -5 dB in terms
of digit accuracy against the number of N-best hypothesis
considered. The solid line corresponds to D&S performance,
while the upper flat line corresponds to the Oracle Lima-
beam. Except for the 2-best and the 3-best, where a major
boosting in accuracy is observed, performance grow roughly
linearly. When 19 hypotheses are considered in parallel, the
N-best Unsupervised Limabeam is comparable to the Oracle
Limabeam, showing a 34.4% relative improvement: in prac-
tice we achieved the same performance of a supervised algo-
rithm in an unsupervised manner. The non-monotonic behav-
ior is due to the mismatch between the maximum likelihood
and the minimum WER criterion: especially if few hypothe-
ses are considered (e.g 3 or 5 on this task, see Figure 3),
after LLH rescoring some new maximally likely transcrip-
tions can have a lower WER. The key is to consider as many
hypotheses as possible, because this increases the probability
of having a transcription which minimizes the WER as well.
Further experiments with higher SNRs did not show signifi-
cant improvements over D&S: Table 2 shows that the major
gain of the N-best Unsupervised Limabeam is at low SNRs.
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Figure 3: Performance of the N-best Unsupervised Lima-
beam compared to D&S and to the supervised version of
Limabeam at -5 dB: the N-best approach makes the unsuper-
vised optimization comparable to Oracle Limabeam when N
becomes high. For N=1 the system is equivalent to the origi-
nal Unsupervised Limabeam.

D&S Uns.Lim. N-best Lim. Oracle Lim.
15dB 98.34% 98.34% 98.34% (1) 98.34%
5 dB 95.68% 96.35% 96.68% (9) 96.68%
-5 dB 69.10% 74.09% 79.73% (19) 80.07%

Table 2: Comparison among D&S, Limabeam and N-best
Unsupervised Limabeam across different SNRs. At higher
SNRs the use of a ML-based beamformer does not seem to
provide significant improvement, while at low SNRs our N-
best approach performs almost as the Oracle Limabeam. The
performance is the one relative to the n-best in parenthesis.
Results are in terms of digit accuracy.



6. DISCUSSION AND FUTURE ACTIVITY

We found that an N-best approach to Unsupervised Lima-
beam, which optimizes in parallel a set of FIR filters on the
first N-best hypotheses in an unsupervised manner, is able
to reach performance comparable to the Oracle Limabeam.
This approach is an extension of the Limabeam algorithm,
which has the advantage of modifying the FIR coefficients
via a ML criterion.
One could expect that the N-best hypotheses of the first
recognition step should be optimized in the same way and,
consequently, their ranks should not change significantly.
This is generally not true. In fact an n-best hypothesis can
have, after the first recognition step, a lower likelihood with
respect to the 1-best, and a better WER at the same time.
Multiple instances of the Limabeam algorithm generate dif-
ferent Viterbi alignments, objective functions to be mini-
mized and FIR supervectors: it is our intuition that some of
these filters significantly increase (with respect to the first
step) the relative likelihoods of the minimal WER hypothe-
ses. This may be due to the fact that the Viterbi alignment is
closer to the correct transcription. Further work is planned to
clarify this aspect.
We also point out that in noisy environments it is not strictly
necessary to have the correct transcription, among the N-
best, to generate a more likely transcription, as the literature
states [7].
In conclusion, this work showed that performing N-best
recognition is a way to improve the potential of Limabeam
algorithm. The effectiveness of the proposed solution results
from the synergy between a multi-channel signal processing
and a multi-pass search strategy, which allows to recover er-
rors introduced in early recognition steps. The robustness of
the N-best Unsupervised Limabeam is still to be proved with
a larger real database, recorded in reverberant environments,
as meeting rooms, where such application would be desir-
able, but in which the overall performance is likely to de-
crease. Preliminary experiments on real-data indicated that
the margin between D&S and the Oracle is smaller than in
the here presented simulation. This is probably related to the
regularities characterizing simulations versus variabilities in
real-world experiments. As typical meeting room impulse re-
sponses are even more than 600ms long, the FIR filters length
would be much higher. The temporal resolution of the filters
should be guaranteed by the high sampling frequency (44.1
kHz) adopted, which complies with the microphone array we
plan to use in our future studies [10]. To this regard, other is-
sues to address in the next work will refer to the dimension-
ality of the problem (number of taps, number of microphones
etc...) and to a possible reduction of the system complexity.
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