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Abstract

This paper addresses distant-talking speech recognition
by means of remote sensors in a reverberant room. Recog-
nition performances is investigated for different ways of ini-
tializing, steering, and optimizing the related beamformer.
Results show how much critical that front-end processing
may be in such a challenging setup, according to the differ-
ent positions and orientations of the speaker.

1 Introduction

Distant-talking speech recognition is a very challenging
topic. To tackle it, microphone arrays [1] are generally em-
ployed thanks to the capabilities of beamforming techniques
to enhance the speech message, while attenuating undesired
contributions of environmental noise and reverberation. Mi-
crophone arrays can be steered toward the most convenient
look direction, which ensures the best speech recognition
performances. This can be accomplished by adopting a
suitable filter-and-sum beamforming [2, 3], i.e. a combi-
nation of filtered versions of all the microphone signals. In
the past, a wide literature addressed beamforming mainly
with the target of deriving an enhanced signal with good
properties from the perceptual point of view rather than
maximizing speech recognition performances. More recent
works have addressed the task of improving recognizer ac-
curacy, which can represent a quite different objective. To
this regard, a technique that deserves to be mentioned is
Limabeam [4], which aims to optimize the beamformer pa-
rameters, given the most likely HMM state sequence that
has been observed in a first processing step.

Moreover, an intensive activity of evaluating perfor-
mances of microphone array based speech recognizers is
being conducted world-wide, in particular in the commu-
nities related to the EC AMI [5] and CHIL [6] projects:
NIST has recently organized benchmarking campaigns (see
http://www.nist/gov/speech) which showed that the error

rate provided by a 64-microphone array based recognizer is
about twice the error obtained on the corresponding close-
talking microphone signal, given a large vocabulary spon-
taneous speech recognition task. We observe that, when
dealing with a real reverberant environment, the direction
that ensures the best automatic speech recognition (ASR)
performances can be different from the one determined by
speaker localization techniques. In the past, accurate time
delay estimation methods and related speaker localization
systems were addressed which can be used to select a pos-
sible steering direction. However, also given this approach
in a real-world situation one may encounter problems due to
the head orientation that represents another source of vari-
ability very difficult to address: in other words, when the
speaker is not aiming toward the array, the speech captured
by each microphone of the array will be mostly character-
ized by contributions due to reflections. This paper investi-
gates on distant-talking speech recognition in a real highly
reverberant environment given different speaker positions,
in most of the cases not oriented toward the microphone
array. Existing techniques are presented and some new pos-
sible improvements are proposed. The purpose of the work
is: to describe the parameters of a general microphone array
processing system (Section 2), focusing to the beamform-
ing techniques; to outline the possible performances that
can be obtained steering the array in different directions
(Section 3); to understand the potential of delay-and-sum
beamforming, given delays extracted by a technique typi-
cally used for speaker localization purposes (Section 4); to
outline the room for improvements estimating “recognition-
oriented” filters (Sections 5 and 6 ) or exploiting additional
information related to the environment such as the room im-
pulse responses (Section 7). Finally, Section 8 describes the
experimental setup and results (derived by using a multi-
microphonic version of the well known TI connected digit
recognition task) and Section 9 draws our conclusions and
discussions for future work.
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Figure 1. Amount of the pi-space spanned by a mi-
crophone array with M=8, d=0.04m, fmax=7500 Hz
and steered for 19 different angles. The main lobe of
a single beampattern appears in bold, while the side-
lobes, not plotted, are negligible.

2 Microphone Arrays for ASR

Microphone arrays can be effectively used to improve
the quality of speech signals by steering the array toward a
specific look direction. Because a linear microphone array
is a sampled version of a theoretical continuous sensor, the
superposed response which approximates the correspond-
ing continuous aperture response is a function of both the
frequency of the received signal and its direction. The func-
tion, called directivity pattern, can be represented as:

D(f, θ) =
M−1∑

m=0

Wm(f)e
j
2πf

c
md cos θ

(1)

where f denotes frequency, θ is the angle of arrival of sig-
nals in radians, relative to the array axis, M is the number of
microphones, Wm(f) is the complex weight for sensor m,
c is the sound speed and d is the inter-microphone distance.
The main lobe of the directivity pattern is as much narrow
as the frequency or d increases. If d exceeds half the signal
minimum wavelength, spatial aliasing occurs. Expressing
the array output as the sum of weighted channels, we have:

X(f, θ) =
M−1∑

m=0

Wm(f)Sm(f)e
j
2πf

c
md cos θ

(2)

where Sm(f) is the frequency domain signal received at
at the m-th microphone and X(f, θ)) is the output of the
beamformer. Note that the output is equal to the directivity
pattern if the received signals are equal to 1. In this work
we focus on finding the set of parameters that shape the
directivity pattern so that the recognition features extracted
from X(f, θ) give the highest recognition rate, and not just
the highest SNR.

3 Delay-and-sum and angle-driven beam-
forming

The simplest way to beamform multi-channel signals is
Delay and Sum beamforming [7], i.e. when the weights
Wm(f) in Equation (1) are equal to 1. The aim is to set
the delays τm = md cos θ

c for each microphone. As the pur-
pose is to form a beam at a specific direction, given θ, a
different set of delays can be calculated for each desired an-
gle. In this work we focus on spanning the pi-space in front
of the microphone array and look at equi-angled directions.
For each direction we “steer” the array to a specific angle
θ, then beamforming (theta-D&S) and recognition are per-
formed: this results in getting a Recognition Directivity Pat-
tern (RDP), the main lobes of which will “point” to regions
where signals are better recognized. In order to cover all
the space in front of the array, while avoiding aliasing, we
propose to limit the number of beams R to:

R =
π

argθ D−3dB,l(fmax, θ) − argθ D−3dB,r(fmax, θ)
(3)

where fmax is the maximum frequency of interest and the
denominator is the main lobe width when the lobe atten-
uation is −3dB, which is the distance in radians between
the point to the left D−3dB,l and to the right D−3dB,r of
the main lobe peak at -3dB. Thus, steering the array results
in beamforming as depicted in Figure 1, where we consid-
ered 8 microphones, with 4 cm inter-microphone distance
and a maximum frequency of 7500 Hz. This setting ensures
aliasing to be negligible in the speech band. D&S generally
performs better in environments where speech is affected
by additive noise rather than reverberation, because it ex-
ploits the destructive interference of noise sources, which
are generally uncorrelated to the source of interest. How-
ever, in reverberant environments the main noise source is
the speaker himself. In our experiments we study the impact
that reflections have on Word Recognition Rates (WRR) by
observing the angles at which the RDP is higher.

4 Beamforming via Time Delay Estimation

The delays τm can also be estimated automatically. In
very reverberant environments it is not trivial to estimate
the inter-channel delays and perform D&S, because reflec-
tions behave like multiple highly correlated speech sources.
The easiest approach to perform Time Delay Estimation
(TDE) between two microphones is the maximization of
the value assumed by the cross-correlation as a function of
the time lag. The correlation can be calculated as inverse
Fourier transform of the cross-power spectrum Gm(f) =
Sm(f)Sr(f)∗, (a given microphone r can be the reference
for any pair, e.g the central microphone). In literature a mul-
tiplicity of variants of generalized cross-correlation have



been presented, basically introducing a weighting factor in
order to take into account the statistics of source signal and
noise. If a normalization factor is applied in order to pre-
serve only the phase information:

GPH,m(f) =
Sm(f)Sr(f)∗

‖Sm(f)‖‖Sr(f)‖ (4)

the Cross-Power Spectrum Phase (CSP) [8] or Phase Trans-
form (PHAT) [1] is obtained as:

CSPm(t) = IFFT [GPH,m(f)] (5)

Considering that the delay in time domain corresponds to
a phase rotation in frequency domain, it turns out that the
IFFT of the function (4) presents a delta pulse centered on
the delay τ . The delay estimate is derived from:

τ̃m = arg max
t

CSPm(t) (6)

Thus, the information in the CSP peaks, where the inter-
channel coherence is higher, locates the delays, and indi-
rectly the source position via trigonometry: the CSP can
drive a D&S beamformer (CSP-D&S) toward the maximum
coherence directions. As we will show, these directions are
sometimes the main reflections rather than the direct path
from the source to the array and this does generally not
imply to have a higher recognition rate especially if sound
sources are not facing the microphone array. We will also
show that, though the theta-D&S is useful to evaluate the
best directions in the pi-space for recognition, a CSP-D&S
works generally better.

5 The Limabeam algorithm

Once the τm have been calculated, either by fixing a cer-
tain angle or by performing TDE via CSP, one can fur-
ther shape the directivity pattern by finding the optimal
weights Wm(f) in Equation (1). These filters can be fixed
or adapted on a per-channel or per-frame basis, depending
on a chosen criterion. In this work we seek to find op-
timal filters which increase the recognition performances
rather than the Signal to Noise Ratio (SNR): for example,
the obtained adapted filters can decrease the distance be-
tween reverberated speech features and the clean speech
models used for recognition. The goal is reached by us-
ing the Limabeam algorithm. Indeed, this algorithm, in-
troduced by Seltzer [9, 4], estimates an adaptive filter-and-
sum beamformer. In the discrete time domain Equation 2
becomes:

x[k] =
M∑

m=1

hm[k] ∗ sm[k − τm] (7)

where hm[k] = IFFT (Wm(f), k) is the FIR filter for the
m-th channel, ∗ denotes convolution and k is the time index.
The whole set of FIR coefficients of all microphones can be
represented by a super-vector h. For each frame, recogni-
tion features can be derived and expressed in function of
h:

yL(h) = log10

(
W ‖FFT(x(h))‖2

)
(8)

where x(h) is the observed vector, ‖FFT(x(h))‖2 is the
vector of individual power spectrum components, W is the
Mel filter matrix and yL(h) is the vector of the Log Filter
Bank Energies (LFBE). Cepstral coefficients are derived via
a DCT transform:

yC(h) = DCT (yL(h)) . (9)

Limabeam aims at deriving a set of M FIR filters, which
maximize the likelihood of yL(h) given an estimated state
sequence of a hypothesized transcription. This is expressed
by:

ĥ = arg max
h

P (yL(h) |w ) (10)

where w is the hypothesized transcription, P (y(h) |w ) is
the likelihood of the observed features given the transcrip-
tion considered and ĥ is the FIR parameter super-vector de-
rived. The optimization is done via the non-linear Con-
jugate Gradient. The state sequence can be estimated
either using the array beamformed output (Unsupervised
Limabeam or UL) or, alternatively, assuming that the cor-
rect transcription is available (Oracle Limabeam or OL). In
both cases the filters are estimated on-line, meaning that for
each test sentence a new set of filters is generated starting
from the D&S configuration. Alternatively, one can op-
timize just one set of filters and keeping it for the whole
session (Calibrated Limabeam or CL). More details can be
found in [10].

6 Improving Limabeam: Nbest and TCL

In our previous work [11] we showed that both in simula-
tions and in a real environment affected mainly by additive
noise, Limabeam can be improved. This is done by opti-
mizing in parallel the multi-channel signal not just on the
first hypothesized transcription, but on the N-best hypothe-
ses, where N is as high as possible. The criterion adopted
is

ĥn = arg max
h

P (yL(h) |wn ) (11)

where wn is the n-th hypothesized transcription at first
recognition step, P (y(h) |wn ) is the likelihood of the ob-
served features given the n-best transcription considered.
Note that Equation (11) is equivalent to Unsupervised
Limabeam when n is 1. After all the N-best FIR vectors
are optimized in parallel, new features are calculated and



recognition is performed. The transcription which gives the
ML is then chosen:

n̂ = arg max
n

P (yC(ĥn) |ŵn ) (12)

where ŵn is the transcription generated at second step
recognition and n̂ is the index of the most likely transcrip-
tion, which is ŵn̂. The proposed N-best approach improves
the performances of the Unsupervised Limabeam. In this
work we propose to improve also the Calibrated Limabeam
by estimating the filters differently. Instead of calibrating
the set of filters on a sentence extracted from the test set, we
try to derive a set of filters which improves performances
independently on the position of the speaker. To this aim,
we optimize filters using clean speech from the Training set
convolved with a set of room impulse responses which do
not match the test conditions. We find that for sufficiently
short FIR filters, the recognition performances is indepen-
dent on the set of room impulse responses used for perform-
ing the proposed Training-set Calibrated Limabeam (TCL).
Our experiments will show that, when no information about
the speaker location is available, TCL performs on average
better then any version of the Limabeam algorithm.

7 Matched Filtering

The techniques presented so far do not make use of any
knowledge of the speaker position in the room. Being that
available, one can use the punctual information related to
a specific pair “source-microphone” for generating the so-
called Matched Filter, that realigns not only the primary de-
lay (usually associated to the direct path) but also the sec-
ondary delays. In short, the filter is derived from a flipped
and truncated version of the impulse response [12]. If hp

m,
impulse response in position p with respect to microphone
m is known, the following filters are considered:

gp
m[k] = hp

m[K − k] (13)

where K in the final filter length. The enhanced signal is the
product of the consequent “filter-and-sum” processing:

x[k] =
M∑

m=1

gp
m[k] ∗ sm[k] (14)

which is equivalent at shaping the directivity pattern in
Equation (1) with Wm(f) = FFT (gp

m[k]). Having knowl-
edge of the impulse responses at test time can provide an
upper bound for performances. We propose to get a po-
tentially higher upper bound if MF is used instead of D&S
prior to Limabeam. In this case Equation (14) becomes:

x[k] =
M∑

m=1

h′
m[k] ∗ sm[k] (15)

where h′
m[k] = hm[k] ∗ gp

m[k] is the per-channel filter to be
optimized.

8 Experiments and Results
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Figure 2. Map of the ITC-irst CHIL room (6m ×
5m), reporting on positions of array and acoustic
sources.

The experimental setup consists of a recognition task of
1001 connected English digits sentences: the original TI-
digits signals have been reproduced by a high-quality loud-
speaker in the CHIL room available at ITC-irst (T60 is ap-
proximately 0.7 s) and acquired at a sampling frequency
of 44.1kHz by means of a linear array of 64 microphones
(Mark III board [13]). This test set has been evenly di-
vided in subsets, varying position and orientation of the
loudspeaker with respect to the array for a total number of
10 different configurations. Figure 2 identifies in the room
map the 10 subsets, indexed by C0 to C9. As a result the
Signal-to-Noise-Ratio, evaluated at one microphone of the
array, varies from 10 to 25dB, depending on position, ori-
entation and energy of the original signal.

Experiments were conducted using the HTK HMM-
based recognizer [14] trained on the clean TI-digits cor-
pus. Word models are represented by 18 state left-to-right
HMMs. Output distributions are defined by 1 Gaussian pdf.
The training set consists of 8440 utterances, pronounced by
110 speakers (55 men and 55 women). The FIR filters to be
optimized by the Limabeam are 10 taps long. The feature
extraction in the front-end of the speech recognizer involves
12 Mel Frequency Cepstral Coefficients and the log-Energy
together with their first and second derivatives, for a total of
39 coefficients. Features were calculated every 10 ms, us-
ing a 25 ms sliding Hamming window. The frequency range
spanned by the Mel-Scale filterbank was limited to 100-
7500 Hz to avoid frequency regions with no useful signal



energy. Cepstral Mean Normalization was applied. A sub-
array of the MarkIII was chosen for our experiments: we
used 8 microphones spaced by 4 cm. This was done both to
get a high directivity under spatial aliasing constraints and
to limit the system complexity (the more the microphones,
the higher the number R of beams of Equation (3) and the
more difficult the filter optimization).

Figure 3. Polar Recognition Directivity Pattern
when speaker is in configuration C2: the array points
with a very narrow beam toward the speaker, while
smaller sidelobes between 0◦ and 60◦ collect minor
reflections. Unsupervised Limabeam (solid line) al-
most always gains on theta-D&S (dashed line). The
pattern magnitude is measured in WRR, starting from
50%.

Figure 4. Polar RDP when speaker is in configu-
ration C5. The array definitely points toward the
speaker, which in turns faces the door. Early reflec-
tions on the closer side wall are beneficial between
30◦ and 60◦. UL is very effective in the most relevant
direction.

Figures 3, 4, 5, and 6 show that in all scenarios the RDP
has a main lobe corresponding to the speaker direction, i.e.
the direct path. Both C2 and C5 represent favorable cases,
where the speaker (located at 90◦ and 60◦ respectively) is
pointing to the array, while in C7 and C9 the direct path
reaches a wall first, but the RDP points to the speaker any-
way (located at 60◦ and 150◦ respectively). This is evi-
denced by the presence of larger recognition sidelobes. We
verified that peaks of the RDP (e.g., in C9) can correspond
to the main reflections detected by the CSP: Figure 7 re-

Figure 5. Polar RDP when speaker is in configura-
tion C7: the array points toward the source, located
at 60◦, but a large lobe ’seeks’ the main reflection at
150◦. In this configuration the CSP-D&S points to
the latter recognition lobe, which is related to a CSP
peak with more coherence but less impact on recog-
nition performances. UL gains over theta-D&S from
45◦ to 180◦

Figure 6. Polar RDP when speaker is in configura-
tion C9: the array points at the speaker, but two lobes
collect the contribution of the correspondent main re-
flections. UL is always effective.

ports the superposition of a CSP and a RDP in Cartesian
Coordinates. The configuration C7 is the most difficult and
challenging to evaluate. In this case a beamformer is ef-
fective only if it points at a specific direction in the space.
In particular here a theta-D&S performs better than a CSP-
D&S, because the former directs the beamformer to the
weak-coherence path, which is more relevant from a recog-
nition oriented perspective than the strong, main reflection.
We tried to manage this situation by automatically select-
ing the two main peaks, sentence by sentence (this was
done simply by finding the maxima of the CSP function
with linear regression and zero crossing of the first CSP dis-
crete derivative) and we achieved the single-channel perfor-
mances, which is roughly the average of the two main peaks
performances. In all the scenarios depicted the Unsuper-
vised Limabeam is effective, and the best relative improve-
ments over D&S are obtained if it is applied to directions
toward the speaker. Apart from C7, the CSP-D&S performs
generally better and its filters can be used to initialize any
Limabeam-based algorithm. Figure 8 shows the WRR in



0 20 40 60 80 100 120 140 160 180
35

40

45

50

55

60

65

theta−D&S
theta−UL
CSP

Figure 7. RDP in Cartesian Coordinates for config-
uration C9: the RDP peaks are well related to the
main CSP peaks. CSP peak heights were normalized
for plotting purposes only.

function of the 10 test positions: clearly the use of D&S is
improving performances and as much as the speaker is both
pointing to and close to the array. This is intuitive, because
by pointing to the speaker, performances tend to be propor-
tional to the the signal-to-reflection ratio. UL and OL both
give improvements on average over D&S. Table 1 shows the
results relative to CSP-D&S and its coupling with UL, i.e.
when estimation on both the delays and the filters is done
without any prior knowledge of the environment.
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Figure 8. Baseline results: Word Recognition
Rates (%) in the 10 test position using single-
channel, Delay-and-Sum beamforming and Unsuper-
vised Limabeam.

TCL is a version of the Calibrated Limabeam where fil-

single mic. CSP-D&S CSP-D&S+ UL
ave(c0-c9) 59.3 63.7 65.6

Table 1. Table reporting Average Word Recognition
Rates (%) over the 10 test configurations.

ters are estimated offline on a contaminated training phrase:
it differs from CL because the contamination is done with
impulse responses of positions different from the one in test
set. The filter length has been limited to 10 taps because
we verified that any technique based on Limabeam (with 8
microphones) improves performances up to a certain filter
length: Figure 9 reports the WRR of a TCL in function of
the number of taps. Note that performances of TCL for po-
sition cX are measured as an average of the performances
when the training impulse response owns to all the positions
except cX. Indeed, Figure 10 shows that training with the
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Figure 9. WRR for TCL technique as a function of
the filter’s length.

(very different) impulse responses from positions c0, c1, or
c8, lead almost to the same results. In this sense TCL pro-
vides a sort of “room equalization”, because it can estimate
filters that perform in the same way across all the positions
and thus are independent from them. Furthermore we com-
pare all the Limabeam-based techniques in Figure 11 posi-
tion by position and in Table 2 on average. The N-best ap-
proach was successfully tested in another environment and
with mostly additive noise [11]. We observe that in such
a reverberant environment a technique based on calibration
is more suitable than a sentence-by-sentence adaptation: in
fact the filters generated, for example, by the UL, are very
similar across the sentences, and being limited by few taps
increases the likelihood of the different positions.

This is why TCL has the highest performances in six po-
sitions out of ten, while the other four it is second only
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to CL. Being the filters so short, the effectiveness of the
Limabeam-based techniques resides in modifying just the
spectral tilt: this motivates us in searching for a possible
longer filter, which could represent an upper bound for our
performances.

We found this filter being the Matched Filter: Figure 12
shows the WRR in function of the MF length: depending
on the position, the peak in accuracy is reached for differ-
ent lengths. However, this length may well correlate with
the relative T60: the MF is effective once it includes the
direct path and the main reflections. In c0 these reflections
are 1000 taps away from the direct path and the accuracy
curve slowly lowers down, while for c1 the optimal length
is around 3000 and for c8 8000, which means there are use-
ful (from a recognition point of view) reflections at about

UL OL CL Nbest TCL
ave(c0-c9) 65.6 65.6 67.3 66.5 67.9

Table 2. Table reporting Average WRR (%) over
the 10 test configurations for Limabeam-based algo-
rithms.
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Figure 12. WRR (%) for Matched Filtering as a
function of number of taps.

70 and 180 ms respectively from the direct path.
Table 3 reports on the average performances across po-

sitions of the MF (limited to 1500 taps for every position),
also coupled with OL, the latter meaning that full knowl-
edge of the target is given (i.e. the exact impulse response
and the correct sentence for optimization). Results with MF
are high compared to Table 2 ( 35% relative improvement
of MF+OL over CSP-D&S), which means that there is still
a high margin for technique aiming at finding a maximal
WRR set of filter for a multi-channel signal. It is also worth
noting that the relative improvement of the OL after MF is
used is 12.5%, while after CSP-D&S is used is 5.2%, show-
ing that the initialization of filters is crucial for a Limabeam-
based technique. The Table also reports on the UnMatched
Filtering, which corresponds to applying Matched filters of
positions cX to test position cY, exactly as we did with
TCL: it is worth noting that with MF performances drop
down dramatically if the position impulse response is not
matched, thus this a-priori knowledge is not interchange-
able between test sets, as it happened with TCL. MF is thus
very effective but not realistic for a real world application.

9 Discussion and Conclusions

In this work we have investigated the use of micro-
phone array processing in a real reverberant room, analyz-



single mic. unMF MF MF+OL
ave(c0-c9) 59.3 53.2 73.0 76.4

Table 3. Table reporting Average WRR (%) over
the 10 test configurations for MF-based algorithms.
Matched Filtering (MF) requires additional knowl-
edge (i.e., room impulse response) but provides a
tangible performances boost. The adoption of un-
Matched filters (unMF), on the other hand, is harmful.

ing the impact of different beamforming techniques on per-
formances measured in terms of Word Recognition Rate on
a digit recognition task. Several beamforming techiques
based on inter-channel delay handling (theta-D&S, CSP-
D&S ) and on a likelihood-based filter-and-sum beam-
former (UL, OL, CL, N-Best UL, TCL) were presented and
tested, showing that, in some configurations, critical aspects
can be the correct estimation of the inter-channel delay and
the initialization of the filters. Performances are relatively
high when the speech source is directed to the sensors as
well as the array is steered toward the source, but in this
case it is very sensitive to steering errors. To cope with these
errors, a CSP-driven beamformer can automatically locate
the useful wavefront. On the other hand, when sources and
microphones are not faced to each other, which mimic for
example differently head oriented speakers, there is a direct
correspondence between the peaks of the CSP and RDP fig-
ures. A possible relation between their relative magnitude
is under investigation. Future work will be directed to es-
tablish a criterion for selecting higher recognition lobes in-
dependently of speaker location and orientation. Further-
more, in all the scenarios we were able to get further im-
provements, with respect to both a theta-driven and CSP-
driven D&S, by using the Unsupervised Limabeam, which
is as much effective as the initial configuration of FIR filters
steers the array to direction corresponding to high recogni-
tion lobes. The most performant version of Limabeam is
the proposed TCL, which derives a set of calibration filters
from a clean speech sentence contaminated with impulse
responses which do not match the test conditions. How-
ever, the improvement is limited and the few number of
taps used do not allow to consider the main reflections at
the current sampling rate. The use of Matched Filtering,
which well couples with Limabeam but can’t be used in
practice, shows that there exist a set of (long) filters which
dramatically increase performances, that the working point
in which the optimizations starts is crucial and that the mar-
gin of improvement is still high for technique aiming at find-
ing a filter optimum from the recognition point of view. A
method which can automatically select, based on different
confidence measures, the correct Matched Filter sentence
by sentence is under investigation.
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