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Abstract

In this report we present a Diagnostic tool for ASR systems (DASR). The aim was
to develop a tool capable to perform statistical analysis of output of ASR decoding
process. Many error patterns in the output might be observable directly by humans,
but if number of tracking variables (possible causes of errors) is very high, the task
for humans becomes too complex. Machines are able to process as much variables
as necessary, and performs a statistical analysis on data as well. We discuss design
and implementation of the tool.

In addition, we present an example of usage of the tool. This is an explorative
study of diagnostics of speech recognition for finding subsets of features that are
most informative in terms of incorrect speech recognition, if variable speech is
recognized. The impact on both MFCC and PLP features is investigated.
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1 Introduction

Most of research in the field report results in terms of ever-lower WER acquired
over some baseline, leaving questions about the causes of failures open. Evalua-
tion of recognizer performance is usually expressed in terms of few figures like
WER and confusion matrix. Diagnostics complements the evaluation. While eval-
uation is defined as an assessment of the system, measuring some parameters of
the system, diagnostics is a computing mechanism to identify faults of the system.
In other words, diagnostics is the identification and more challenging, the under-
standing of incorrect speech recognition. Diagnostics of speech recognition should
provide error patterns of the decoding process as well as of the training process.

Recognition may be studied in detail considering different linguistic or pho-
netic properties [1]. The recognition results are usually identified using the acoustic-
phonetic classes [2, 3]. Some authors go further and try to find a reason of phoneme
confusion, or even their deletions and insertions. In a recent work [4], authors ex-
plored some articulatory properties of confused consonants. Comparing human
and computer speech recognition, they concluded, that voicing information should
actually be used for better performance of machine speech recognition.

In our work we use a decision tree analysis, following work of [5, 6, 7]. The
idea is to incorporate statistics of building decision trees for finding factors that
cause the systematic recognition errors. We are motivated by development of Lin
Chase’s CMU Error Region Analysis (ERA) tool1, which was our starting point for
further consideration about the task of ASR diagnosis. The aim of our work was
also to develop a tool capable to perform statistical analysis of output of ASR de-
coding process. The tool was designed to use within European DIVINES project2,
using TORCH machine-learning library [8] and OLLO speech database [9], but it
could be easily adapted for other system and task setups.

The report is structured as follows. Section 2 introduces DASR tool. Next
section 3 shows an example of its usage focusing on an analysis of standard feature
sets (MFCC and PLP) of ASR systems. Section 4 describes comparison of the tool
with other tools and section 5 concludes the report.

2 Main Concepts of DASR Tool

DASR tool is an implementation of decision tree analysis in the context of
ASR diagnosis task. The process of diagnosis is shown in Fig. 1. It is necessary to
provide to DASR the following data:

• ASR output in the form of reference (henceforth REF) and hypothesized
(henceforth HYP) sequences.

• Feature representations as possible causes of errors.

1http://www.cs.cmu.edu/afs/cs/user/lindaq/ERA/
2http://www.divines-project.org/
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Figure 1: Overview of diagnostic process. The question mark represents any other
inputs in addition to acoustic representation for feature calculation, such as phono-
logical and/or articulatory information.

It is important to note here that DASR tool is able to perform statistical analy-
sis in order to look for relation between ASR errors and possible causes of errors
(factors represented by speech features), but the specification of factors must be
done by user. In other words, the user has to have some intuition about possible
causes of errors. These speech features3 might be seen in three levels: the dis-
crete phonological representation of an utterance, the acoustic pattern that results
from the utterance, and the articulatory gestures that create the links between the
phonological and acoustic representations.

We designed and implemented the DASR (Diagnostics of ASR) tool in MAT-
LAB environment. We did it purposely, because this environment supports many
publicly available algorithms for easy speech feature extraction, that is necessary
for features calculator block (see Fig. 1). Our speech recognition decoder (see Sec-
tion 3.1 for more details) generates either ERAIN files or CTM files, witch both
store the reference and decoded phoneme sequences with time boundaries (see a
description of file formats in appendixes A and B respectively). This gives users of
the DASR Tool an opportunity to use also Lin Chase’s CMU Error Region Analysis
(ERA) tool, and scoring the output of speech recognizers via the NISTsclite()
program. We found interesting to use both programs during our work on speech
recognition diagnostics.

3We use the term ’features’ in diagnostic process for various representations of a part of speech
vaweform; not be confused with the features extracted from thewaveform decoding purposes.
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Figure 2: Data flow in DASR. The schema highlights the main functional modules.
The input is provided by speech decoder, and the tool further processes the data
using decision tree analysis. Dashed boxes are optional, showing that DASR tool
should be independent of used ASR system.

The overview of our tool is depicted in Fig. 2. Data processing can be split
into following tasks:

1. Load ASR data. The output files of the decoder are converted and stored in
an internal format, which stores all HYP and REF sequences.

2. Alignment of the sequences. The initial list is split in two parts, the first
containing REF sequences and the second part of HYP sequences, which are
aligned using maximal substring matching [10].

3. Merge ASR and aligned data. Here a data list is generated, which contains
all available data. Data structure is shown in Fig. 3. User can choose a
predictee (predicted variable) for decision tree analysis.

4. Generation of training and testing lists for decision tree analysis. The train-
ing and testing files for decision tree analysis are generated.

5. Load parametrization of HYP sequence. The features (at the acoustic, pho-
netic, phonologic level) are loaded or calculated. Any feature calculation has
to be done individually; it is not included in DASR tool.

6. Training of decision trees. Here decision tree analysis is performed. The
primary technique for the analysis that the tool supports, is the CART tech-
nique described in [11]. In addition, C4.5 technique [12] is supported, as its
importance for diagnostic purposes has been already shown in [13].
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Figure 3: Structure of a data list produced by DASR tool. First part contains pre-
dictees for decision tree analysis, second part is consisted of information about
features.

7. Testing and printing of decision trees. Misclassification scores may be cal-
culated, and trained trees may be printed in a text tabular fashion.

To help categorize the errors, we use similar concepts as in [6] and [14]. Lettwi

denote the start frame of thei-th phone in a transcription, then the central position
of the i-th phone can be written as:

c(wi) = (twi+1 − twi)/2 (1)

Using maximum substring matching algorithm we assign to each HYP phoneme
one of the following categories: match, substitution, insertion or deletion. Using
this information we add a label about correct or incorrect decoding as well. In
addition, using two aligned sequencesŵ for decoded sequence andw for refer-
ence sequence, we definewj as the REF phoneme to the HYP phonemeŵi in the
following way:

1. If ŵi has a label match or substitution, we definewj as its REF phoneme if
j = i. Herej is an index to the REF sequence andi is an index to the HYP
sequence.

2. If ŵi has a label insertion or deletion, we definewj as its REF phoneme if:

twj < c(ŵi) <= twj+1, (2)

wherej is an index to the REF sequence,i is an index to the HYP sequence,
twj is the start frame of the REF phonemewj , andc(ŵi) is the central posi-
tion of the HYP phonemêwi.
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3 How To Use DASR Tool: An Example

Recently we have introduced a concept of Phoneme Diagnostic Trees (PDTs)
[15]. For each basic phoneme used in an ASR system a PDT is constructed, which
links incorrect recognitions of the phoneme with a-priori specified sources of er-
rors (factors). Decision trees PDTs then describe how a given input (reference
phoneme) can correspond to specific outputs (decoded phoneme), as a function of
these factors. These PDTs can be generated by DASR tool, if the user chooses
from generated data list (see Fig. 3) only incorrect recognition items and the REF
labels as predictees for the analysis.

In addition, we present here an another example. There is an extensive liter-
ature on acoustic features for ASR and their selection (see e.g. [16, 17]), which
is still difficult task. The aim of this example is to get better understanding of the
performance of the different feature sets and their subsets in the terms of speech
variabilities.

In speech recognition, speech variability is one of the major error sources.
Speech variabilities may be classified to the two main categories: extrinsic variabil-
ities are due to the environment (noise, telecommunication channels), and intrinsic
variabilities that convey information about the speaker himself (gender, age, social
and regional origin, health and emotional state) [1]. There is also a well studied
impact of stressed speech on speech and speaker recognition [18]. Stress in this
context refers to speech produced under cognitive, physical, emotional stress, and
stress due to presence of noise (known as the Lombard effect). Research on im-
pact of intrinsic speech variabilities and stressed speech on speech recognition is
overlapped. We have recently found a link between intrinsic speech variations and
emotional speech (as a kind of stressed speech) [19].

Within the European DIVINES project (divines-project.org) we study speech
recognition deficiencies in dealing with speech recognition variabilities. The ulti-
mate goal would be to achieve better understanding of source of errors, or a signal
modeling framework and robust features which are immune to the intrinsic speech
variations. In the following sections, we are focused on an analysis of standard fea-
ture sets (MFCC and PLP) of ASR systems, exploring impact of intrinsic speech
variabilities on speech recognition.

3.1 Used Database and ASR System

We use the OLLO database, which has been recorded for the purpose of study
of speech recognition deficiencies in dealing with speech intrinsic variabilities. The
database is designed for recognition of individual phonemes that are embedded in
logatomes, specifically, CVC and VCV sequences. Several intrinsic variabilities in
speech are represented in OLLO, by recording from 40 speakers from four German
dialect regions, and by covering three speaker-dependent variabilities: gender, age
and dialect, and six speaker-independent variabilities: fast, slow, lound, quit, ques-
tion and statement speaking styles. We used NO-accent training and testing parts
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of OLLO database.
Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) based

speech recognition system is trained using public domain machine-learning library
TORCH on the training set that consists of 13446 logatome utterances. Three
states left-right HMM models were trained for each of the 26 phonemes in the
OLLO database including silence as well. Gaussian mixture models with 17 Gaus-
sians per state and diagonal covariance matrices were used to model the emission
probability densities of the 39 dimensional feature vectors - 13 cepstral coefficients
and their derivatives (∆s) and double derivatives (∆∆s). The phoneme HMMs are
connected with no skip. We extended the TORCH library in a package of cal-
culation and storage of feature data, necessary for further statistic processing. The
decoder collects the feature data by running on the testing set that consists of 13466
logatome utterances. We trained and tested two ASR systems, one with MFCC fea-
ture set and the second with the PLP front-end. All the features were calculated
using HTKhcopy tool. We calculated MFCC vectors every 10 msec using win-
dows of size 25 msec. The same settings were applied also for calculation of PLP
vectors, we only used power rather than the magnitude of the Fourier transform in
the binning process. Average phoneme recognition performance of the ASR sys-
tems on this task was 76.06 % (the lowest accuracy had recognition of fast speech:
71.94 %, and the highest accuracy had speech with statement style: 80.48 %). The
MFCC features performed slightly better than PLP features (all our experiments
were done on clean speech).

During the decoding process, both correct and incorrect decodings (cases in
the terminology of decision tree analysis) are collected. The REF sequence is
acquired by Viterbi forced alignment. At the end of the Viterbi computation for the
last frame of the utterance the aligner stores the phone assignments to the frames,
along with the actual scores associated with each segmentation.

3.2 Decision Tree Analysis

Decision tree analysis is performed based on the observation vectors of the
MFCC and PLP coefficients (c0, c1−12, their derivatives and double derivatives).
Motivated by [20], we calculated variance of the feature vectors for each HYP
phoneme. Fig. 4 overviews the calculation of the 39-D phoneme feature represen-
tation used for the further analysis.

Variance of speech features is calculated for each of HYP phonemes. This
new 39-D parametrization is stored in the list (one item for one HYP phoneme),
together with the labels about correct or incorrect decoding. These labels are later
predictees for decision tree training process (see Fig. 3, first column). We used
CART technique to create six decision trees, one for each speech variability (5
variabilities plus 1 normal, statement style, speech). All the presented results in
this paper were got using stopping grow criterions of minimal 10 of the cases in a
terminal node and minimal entropy gain of 3%. Splitting of the correct/incorrect
cases during the training was done using questions about variances of features.
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Figure 4: Calculation of 39-D phone feature representation used in decision tree
analysis. The picture shows an example of the calculation for four frames of the
HYP phonemêwi.

Variability Misclass. rate Features

Fast 16.39 % c12

Slow 24.53 % c12, c0,∆∆c8, c5,∆c3

Loud 18.26 % c12
Quiet 27.80 % c12
Question 27.43 % c12, c8, c9,∆c9,∆∆c10

Normal 15.27 % c12

Table 1: Major MFCC coefficients selected

3.3 Results

In this section, we present major results obtained from this study. We inves-
tigated both MFCC and PLP features. We went over the trained trees, following
paths leading to the most probable classification of incorrect decodings. We col-
lected all the features associated with these paths. We can interpret these features
as most significant features for prediction of incorrect decoding. The results for
MFCC and PLP front-ends are shown in the tables 1 and 2, respectively. Decision
trees for normal speech (trained on both MFCC and PLP features) have the low-
est misclassification rates (the lowest estimated accuracies of trained classifiers).
This implies that building classifiers/predictors for correct/incorrect recognition
for variable speech is more difficult. In addition, PLP decision trees have higher
misclassification rates than MFCC trees. We observed that it follows the trend of
lower ASR performance if PLP features are used (in clean speech).
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Variability Misclass. rate Features

Fast 18.44 % c12

Slow 26.49 % c12, c0,∆∆(c12, c0),∆c12

Loud 22.37 % c12, c0, c7,∆∆c4,∆c11

Quiet 31.82 % c12, c0

Question 26.37 % c12, c0,∆∆c12,∆c6, c6

Normal 17.85 % c12

Table 2: Major PLP coefficients selected

In [21, 22] the authors shows that the lower quefrency coefficients generally
have higher F-ratio (a measure of separability between multiple speech classes)
and should therefore offer better class separation and so better ASR performance.
Arslan and Hansen [23] have also confirmed, that coefficients in the middle of que-
frency region are the most relevant for dialect classification. Our findings imply
that upper quefrency region (plus deltas and double deltas) is the most informa-
tive for predicting incorrect speech recognition. The most informative coefficient
across all the variable speech recognition for this prediction was in our studyc12 co-
efficient. For slow and questioning styled speech also dynamic features were found
most informative. Dynamic features were found relevant also for loud speech in
using PLP frond-end.

The general conclusion of this study is that the upper quefrency region and less
middle region are the most informative for predicting incorrect speech recognition.
Discarding the higher cepstral coefficients is sometimes normal practice in ASR.
We confirmed that these coeffiences are problematic. In addition, we proposed the
diagnostic technique for exact specification of problematic coefficients. Some pre-
vious works confirmed different contribution of quefrency regions to recognition
of stressed speech [23, 24]. New frequency scales have been there proposed, which
are less sensitive to variations caused by stress without degrading the performance
of neutral speech recognition. Having results of our study we confirm that upper
quefrency region is also very important in terms of incorrect speech recognition.

4 Comparison With Other Tools

To our knowledge there is no other tool designed specifically for ASR diag-
nosis. However, it is worth to study Lin Chase’s PhD thesis and her Error Region
Analysis ERA tool [6]. Fig. 5 shows graphical presentation of some error re-
gions as specified automatically by ERA tool. The analysis clearly separates con-
tributions of acoustic and language modeling. Similarly as Eide [5], Chase used
decision tree analysis for further processing. As features she used representation
often described in works that deal with confidence measures for ASR (see e.g.
[25, 26, 27]).
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Figure 5: An example of Lin Chase’s graphical presentation of errors done by ASR.
HYP acoustics here is better than REF acoustics. According to [6] the reason might
be that (a) speech is not modeled well (this includes e.g. fast speech) and (b) there
is the presence of confusions between acoustic models that allow data that actually
represent one phone to be decoded as another with a high score.
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5 Conclusion

We have presented DASR tool for making diagnostics of automatic speech
recognition systems. The aim was to contribute to ASR diagnostics, as an impor-
tant issue toward better understanding of causes of ASR errors. We tried to make
the tool platform independent, and independent of used ASR system as well. The
tool was designed as an evolution of current published approached to ASR diag-
nostics, with emphasis to be redistributed, used, and last but not least contributed
by other researchers in the field.
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A ERA IN File Format

Reproduction of Lin Chase’s visERA.input.file.spec:

Error Region Analysis (ERA) program input file format.
Lin Chase
Carnegie Mellon University
20 July 1995

-----
<int num_utterances> UTTERANCES
UTT <utterance_id_tag1>
REF
<int num_segmentsR> SEGMENTS
<string word1R>
<int start_frame1R>
<int end_frame1R>
<int32 acoustic_score1R>
<int32 language_score1R>
<string language_score_source1R>
<string word2R>
.
.
.
HYP
<int num_segmentsH> SEGMENTS
<string word1H>
<int start_frame1H>
<int end_frame1H>
<int32 acoustic_score1H>
<int32 language_score1H>
<string language_score_source1H>
<string word2H>
.
.
.
UTT <utterance_id_tag2>
REF
.
.
.
HYP
.
.
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.
EOF
-------------
Notes:
1. The integer in front of the token "UTTERANCES" indi-
cates how many "UTT", "REF" and "HYP" entries there will
be in the file.
2. For each REF the integer in front of the token
"SEGMENTS" indicates the number of word segmentations
that should be included before the next instance of the
"HYP" token is encountered.
3. For each HYP the integer in front of the token
"SEGMENTS" indicates the number of word segmentations
that should be included before the next instance of the
"REF" token is encountered.
4. "language_score_source" strings can be used to indi-
cate algorithmic origins of language model scores, such
as the branch of the Katz backoff algorithm used. The
blank string "" should be used if you’d like to skip this
bit.
5. The start frames of the REF and HYP sequences must be
the same. The end frames of the REF and HYP sequences
must be the same. The start frame of one segment within a
REF/HYP sequence must be one integer count greater than
the end frame of the previous segment in the sequence.
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B CTM File Format

NAME
ctm - Definition of time marked conversation
scoring input

DESCRIPTION
This describes the time marked conversation input
files to be used for scoring the output of
speech recognizers via the NIST sclite() program.
Both the reference and hypothesis input files
can share this format.

The ctm file format is a concatenation of time
mark records for each word in each channel of
a waveform. The records are separated with a
newline. Each word token must have a waveform
id, channel identifier [A | B], start time,
dura- tion, and word text. Optionally a confi-
dence score can be appended for each word.
Each record follows this BNF for- mat:

CTM :== <F> <C> <BT> <DUR> word [ <CONF> ]
Where :
<F> ->

The waveform filename.
NOTE: no pathnames or
extensions are expected.

<C> ->
The waveform channel.
Either "A" or "B". The text
of the waveform channel is
not restricted by sclite.
The text can be any text
string without witespace so
long as the matching string
is found in both the refer-
ence and hypothesis input
files.

<BT> ->
The begin time (seconds) of
the word, measured from
the start time of the file.

<DUR> ->
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The duration (seconds) of
the word.

<CONF> ->
Optional confidence score.
It is proposed that this
score will be used in the

future.

The file must be sorted by the first three
columns: the first and the second in ASCII
order, and the third by a numeric order. The
UNIX sort command: "sort +0 -1 +1 -2 +2nb -3"
will sort the words into appropriate order.

Lines beginning with ’;;’ are considered com-
ments and are ignored. Blank lines are also
ignored.

Included below is an example:
;;
;; Comments follow ’;;’
;;
;; The Blank lines are ignored
;;

7654 A 11.34 0.2 YES -6.763
7654 A 12.00 0.34 YOU -12.384530
7654 A 13.30 0.5 CAN 2.806418
7654 A 17.50 0.2 AS 0.537922
:
7654 B 1.34 0.2 I -6.763
7654 B 2.00 0.34 CAN -12.384530
7654 B 3.40 0.5 ADD 2.806418
7654 B 7.00 0.2 AS 0.537922
:

For CTM reference files, a format extension
exists to permit marking alternate transcripts.
The alternation uses the same file format as
described above, except three word strings,
"<ALT_BEGIN>", "<ALT>" and "<ALT_END>", are used
to delimit the alternation. Each tag is treated
as a word, with a conversation id, channel and
"*"’s for the begin and duration time.
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The alternation is begun using the word
"<ALT_BEGIN>", and terminated using the word
"<ALT_END>". In between the start and end, are
at least 2 alternative time-marked word
sequences separated by the word "<ALT>". Each
word sequence can contain any number of words.
An empty alternative sig- nifies a null word.

Below is and example alternate reference tran-
script for the words "uh" and "um".

;;
7654 A * * <ALT_BEGIN>
7654 A 12.00 0.34 UM
7654 A * * <ALT>
7654 A 12.00 0.34 UH
7654 A * * <ALT_END>

SEE ALSO
sclite(1)
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