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ABSTRACT

Imposing a joint conditionally unbiasedness constraint on a
vector of parameters reduces Bayesian estimation to deterministic
parameter estimation. In Component-Wise Conditionally Unbi-
ased (CWCU) Bayesian parameter estimation, every parameter in
turn is treated as deterministic while the others are being treated as
Bayesian. If the parameters are transmitted symbols, the CWCU
approach corresponds to unbiased symbol detection whereas joint
deterministic unbiasedness leads to a zero-forcing approach.
In this paper we consider an intermediate approach corresponding
to Block-CWCU (BCWCU) LMMSE estimation. We investigate
the interplay between block-size, joint bias and prior covariance
rank. We also investigate two Sequential Interference Cancella-
tion (SIC) implementations of BCWCU-LMMSE estimation. The
results are illustrated with concrete examples.

1. INTRODUCTION

In most applications, estimator designs are subject to a tradeoff
between bias and variance. Bias is due to ’mismatch’ between the
average value of the estimator and the true parameter (conditional
bias); whereas variance arises from fluctuations in the estimator
due to statistical sampling. The bias / variance tradeoff is typi-
cally fixed by minimizing the Mean Squared Error (MSE) under
some constraints on the bias. If prior information on the parameter
statistics is available, Bayesian estimation theory shows that under
the Bayesian unbiasedness constraint, the MSE is bounded below
by the Bayesian CRB. On the other hand, the MMSE estimator
minimizes �

���� , the parameter estimation error correlation matrix,
and not only the MSE, which is the trace of �

���� . Bayesian un-
biasedness for random parameters corresponds to unbiasedness on
the average, which is a very weak requirement. Indeed, in particu-
lar the MMSE estimator is unbiased. Hence, the MMSE estimator
minimizes �

�����
and the MSE, regardless of whether the Bayesian

unbiasedness constraint is imposed or not.
In recent years, the Bayesian formulation of channel estima-

tion has become popular, as it allows for instance the exploita-
tion of the power delay profile. This allows to reduce the effec-
tive number of parameters to be estimated from an a priori de-
lay spread range to the effective delay spread of the power delay
profile. For SIMO, MISO or MIMO channels, the Bayesian for-
mulation allows to exploit (spatial) correlation between antennas
and reduces the number of parameters from the physical number
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of antennas to a reduced effective number of uncorrelated anten-
nas. When the channel is fading in time, the Doppler spectrum and
hence correlation in time can be exploited via Wiener or Kalman
filtering to further reduce the MSE. Bayesian estimation leads to
biased channel estimates. This bias is detrimental for a number
of applications: Maximum Likelihood Symbol Detection (MLSD)
for e.g. a channel with delay spread using the Viterbi algorithm
(the bias is as detrimental as in biased LMMSE symbol receivers),
fitting a parametric (pathwise) model to the channel impulse re-
sponse, or using the channel estimate for the design of the receiver
or the transmitter. The type of unbiasedness that is required here is
conditional unbiasedness (again, unbiasedness for Bayesian esti-
mation corresponds to unbiasedness on the average). On the other
hand, conditional unbiasedness for vectors of parameters is usu-
ally introduced globally, requiring all parameter components to be
jointly unbiased. Such a stringent requirement, which corresponds
to zero-forcing when the parameters are multiple symbols, pre-
vents the exploitation of correlations between the parameters, and
hence leads to a significant reduction in the benefits brought about
by the Bayesian framework, the prior knowledge.

This motivated us to introduce the Component-Wise Condi-
tionally Unbiased (CWCU) Bayesian parameter estimation [2]. In-
stead of constraining the estimator to be globally unbiased, i.e.,

�� ��

��� � �� � �, we impose conditional unbiasedness on one

parameter component at a time, i.e.,

�� ���

���� � ��� � � � � � � � � (1)

where �� �� �������� �
�
���� ���� ��������� denotes the ex-

pectation of ���� � � on � conditionally to � � 	; and � �
��� � � � �� �� is the parameter vector to be estimated. In this way,
the parameter (component) of interest is constrained to be condi-
tionally unbiased, while the other parameters are treated as nui-
sance parameters. Note that the component-wise concept can be
defined at different levels. For example, consider multi-channel
impulse response estimation. The component-wise concept can
be defined at scalar level by considering conditional unbiased-
ness separately for different channels and time lags. It can also
be defined at a block level by considering conditional unbiased-
ness jointly for different channels, and separately for different time
lags, or even jointly for the different time lags and separately for
different SISO channels.

This paper is organized as follows. In section 2, we introduce
Block-CWCU-LMMSE estimation for a linear Gaussian Model.
The interplay between block-size, joint bias and prior covariance
rank is investigated in section 3. Application of the concept to
channel estimation for mobile localization is presented in section 4.



2. BCWCU-LMMSE ESTIMATION FOR LINEAR
GAUSSIAN MODEL

We consider a linear Gaussian model:


 � �� � � (2)

where 
 is  � � vector containing the measured signal, � �
 ��� ���� is a �� � vector containing the parameters to be esti-
mated, and � � 

�
�� �����

�
is an �� additive white Gaussian

noise independent from �. �� represents the identity matrix of size
 . As � and 
 are jointly Gaussian, minimizing the MSE leads to
the LMMSE estimator:
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where tr denotes the trace operator.
Under the joint unbiasedness constraint, minimizing the MSE

leads to
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Then, joint unbiasedness prevents the exploitation of correlations
between the parameters, and leads to a significant reduction in
the benefits brought about by the Bayesian framework: the prior
knowledge. Indeed, under global unbiasedness, the MMSE esti-
mator corresponds to the BLUE, i.e.,

���	�� � ����
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LMMSE and BLUE estimators are related by
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where �	

�� represents the bias of LMMSE estimation.
Assume that � � ���� � � � �

�
� �� represents a decomposition in

� sub-sets. �� � � � � � can be either a scalar or vector compo-
nents. We denote by �� the size of ��

��
� �� � �

�
. Imposing

the BCWCU constraints leads to
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where �� � � � � ��� � � �� is the � � �� matrix such that
��� � � ��.
If the ����� are decorrelated (��� is block-diagonal), the CWCU
constraint becomes ��� ���� � ��. In this case, the component

of interest �� is treated as deterministic, whereas the other (cor-
related) parameter components �������� continue to be treated as
Bayesian. Using Lagrange optimization, one can show that the
BCWCU-LMMSE is given by:

�������	

�� � ����
��	
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where ���� � bdiag ����� �bdiag ��	

�������
� is a block-

diagonal matrix that ensures the component-wise unbiasedness con-
straint; and ���� denotes the Moore-Penrose pseudoinverse opera-

tor. bdiag ��� �
��
���

��
�
��� ���

�
��� is a �� � block-diagonal

matrix formed by the block-diagonal elements of the matrix �.

Special cases:

� If the parameters �� are decorrelated (��� � bdiag �����),
���� can be simplified to:

���� � �bdiag ��	

����
�� (7)

If furthermore all �� � � (and ��� � bdiag �����), hence
the CWCU-LMMSE corresponds to the Unbiased-LMMSE.

� If there is no-coupling between the parameters �� neither
through prior nor through data (�	

�� is block-diagonal),
the BCWCU-LMMSE corresponds to the BLUE estima-
tion. The BCWCU-LMMSE estimation is of interest if
there is a coupling through prior (��� is not block diago-
nal), and/or data (

�
���

�
is not block diagonal).

Reciprocally, one can show that

� If���� is block-diagonal, then the ����� are decorrelated.

� If���� � ���
	

�� , then the ����� are decoupled.

Remark that in linear multi-user detection (��� is diagonal), CWCU-
LMMSE estimation corresponds to Unbiased LMMSE; whereas,
the (jointly) conditionally unbiased estimator (BLUE) corresponds
to MMSE-ZF reception.

3. INTERPLAY BETWEEN GLOBAL BIAS AND PRIOR
COVARIANCE RANK FOR BCWCU-LMMSE

We shall illustrate the concepts through an example. Consider a
Base Station (BS) using � -element antenna array. The received
signal over single-path propagation is an � � � vector given by:


��� � 	����� ��� � ���� (8)

where 	��� is a known scalar training sequence transmitted by
the user, � in a � �� known matrix describing the coupling
between the antenna elements, ���� is an additive white Gaussian
noise, i.e.,� 	 ��� ����� ), and � ��� denotes the array response
(function of the array geometry, and the direction of arrival �).

The Direction of Arrival (DoA) � is generally estimated using
a two step approach:

1. Estimate the array response vector ����.

2. Compute the DoA based on the array manifold ����.

In the literature, the Least-Squares (LS) technique (which corre-
sponds to BLUE in this problem) is proposed for the estimating of
the array response vector [3, 4, 5]
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where ��� �
�

� 
	���

� represents the energy of the training se-

quence �	�����.
As we have seen in the previous section, BLUE provides an unbi-
ased, but noisy estimate, i.e.

�� ��

� ���	��� � ���� (10)

On the other hand, if prior information is available, it can be
used to reduce the estimation SNR. In the following, we will in-
vestigate the effect of the use of a Bayesian prior on the estimation
bias. We assume that the direction of arrival is varying around a
unknown nominal DoA ��, i.e.,

� � �� � Æ� (11)

And, we will have to estimate multiple instances of �. Using a first
order approximation, we have

� ��� � � ���� � Æ� �� ���� (12)

where �� ���� � �����
��

�
�����

denotes the gradient of ���� at

� � ��. ���� is random due to Æ�. Assuming Æ� to have zero
mean and variance ��Æ , the covariance matrix of ���� becomes:
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As rank���� � �, using the eigen decomposition, the prior co-
variance matrix can be written as:
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where � is a �� � diagonal matrix, and � is a unitary matrix.
By introducing �� � �

�
�� � � � � �

��
, �� can be simplified

to
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�
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Note that �����, ������ are unknown. Only the covariance ��
(and ��) is known. Remark also that ���� lives in the subspace
spanned by ��. Then, we can introduce zero-mean random vari-
ables �, and � such that
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From (5), one can show that
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where � � ��
�
���

�
��
� is a � � � matrix, not necessarily

diagonal. Then, the expected value of the LMMSE estimate is
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In summary, the LMMSE estimates the array response in the right
subspace, but with biased weighing. If � is not a multiple of

identity, the LMMSE estimate of���� leads to erroneous DoA es-
timation.

If we impose Block-CWCU constraints, under some regularity
assumptions, one can show that using a block-size 2 ��� � � ��:

�����	

���� � ������� � ��

Thus, the BCWCU-LMMSE (with a bloc-size 2), guarantees joint
unbiasedness, i.e., the expected value of the BCWCU-LMMSE es-
timate is
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In figure 1, we plot the estimation MSE� tr
�
�

�� ��

�
of the BLUE,

LMMSE, and BCWCU-LMMSE estimates. The MSE is averaged
over 500 Montecarlo runs. The matrices ��� (having rank 2), and
� are generated randomly. � was chosen equal to 10.

Fig. 1. Estimation MSE of the BLUE, LMMSE, and BCWCU-
LMMSE estimators as a function of SNR

Thus, for the limited rank prior covariance matrix case, BCWCU-
LMMSE reduces the estimation noise, while guaranteeing joint
unbiasedness.
The result can be easily generalized to an arbitrary prior covariance
rank. This leads to the following theorem.

Theorem: Let� denotes the rank of the prior covariance ma-
trix ��� . Then BCWCU-LMMSE , with block sizes of at least�,
guarantees the joint unbiasedness.

4. BCWCU-LMMSE FOR MULTIPLE CHANNEL
ESTIMATION

In this section, we will focus on one particular problem setting, in
which the channels from different Base Stations (BSs) to a Mobile
Station (MS) need to be estimated jointly. The estimation of the
transmission channel plays a crucial role in communication sys-
tems (for mobile positioning applications, multi-user detection...).
Channel parameters are observed indirectly by the received data
: convolved with a known training sequence and embedded in a
(white Gaussian) noise.
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��
denotes received data.  is the data

length.

� � �
�
��� � � � ���

��
represents the additive white gaussian

noise.

� � is the number of base stations.
� �� �

�
����� � � ��

�
����

��
denotes the Channel Impulse Re-

sponse (CIR) between the MS and the ��� BS. �� is ���

CIR length.

� �� �

�
��
	� � � � 	�

...
...

	� � � � 	�����

�
�� is an ��� Hankel ma-

trix characterizing the training sequence of the ��� BS.
Using a compact notation, the received data can be written as:


 � ��� � (20)

where � � ��� � � ��� �, and � �
�
��� � � � �

�
�

��
.

Whereas the direct use of a Bayesian channel estimate for an
interfering signal allows to better suppress the interference, its use
for the user of interest may lead to a bias problem. This bias is
detrimental for a number of applications. For example, the estima-
tion bias is undesirable for mobile localization applications (e.g.
Time of Arrival (ToA) is estimated by fitting a parametric model
to the channel impulse response) [1]. That is why the Bayesian
prior is rarely taking into account for such applications. Chan-
nel estimation is done typically based on Least-Squares (LS) or
Matching Pursuit (MP) approaches [3, 5, 7, 6]. On the other hand,
imposing joint unbiasedness between the CIRs coming from dif-
ferent base-stations is not required: we can allow for interference
(contribution of other base-stations), if this can be motivated by a
noise reduction.

Note that the problem has a special structure. In fact, the chan-
nel impulse responses and their individual coefficients are decor-
related (��� is diagonal). On the other hand, the data covariance

matrix ��� �

�
��
��
� �� � � � ��

� ��

...
...

��
��� � � � �

�
���

�
�� can not be assumed

to be block-diagonal due to:

� The limited length of the training sequence (for example
in 3G, the channel estimation is done only in the Idle Pe-
riod Down-Link (IPDL) [1]). Thus, despite the input being
white, the training sequence is not long enough to lead to a
spherical estimate of the input covariance matrix ��� .

� The range of the CIR powers. In fact, despite the quan-
tities ��

� �� being approximately white (� ������ ), e.g.
��
� �� can not be neglected with respect to ��

��� .

Thus, the channel impulses are coupled through the data covari-
ance matrix��� and the BCWCU-LMMSE is of interest.
The LMMSE estimate is given by:
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The bloc component-wise unbiasedness constraint is formulated
as

�
!������� � �� � � � � � (21)

As the prior covariance matrix is diagonal, minimizing the MSE
(under BCWCU constraints) leads to

�������	
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4.1. SIC implementation of the BCWCU-LMMSE estimator

The inherent complexity of the BCWCU-LMMSE scheme is cu-
bic in � �

�
� �� (the same as for the LMMSE and the BLUE

estimators). For practical implementation, the Successive Interfer-
ence Cancellation (SIC) approach can be used to approximate the
BCWCU-LMMSE estimator, with a complexity linear in �.

Successive interference cancellation multi-channel estimation
is a scheme in which CIR’s are estimated successively. The ap-
proach successively cancels the interference from the next strongest
channel. Assume that channels have been ordered in order of de-

creasing ��� �
��� ����

�

���
�
���
���

at the channel estimator input.

First, we compute an unbiased estimate of the first (strongest) CIR
(the BLUE is proportional to the matched filter). The contribution
of weaker CIRs is ignored, i.e.,
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Then, the LMMSE estimator is derived, the interfering signal is
recreated at the receiver, and subtracted from the received wave-
form.
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Remark that even if��� is not approximately diagonal, the non-
diagonal elements of ��

� �� can be neglected (as the number of
unkowns is � times less). One recursion of the SIC implementa-
tion of the BCWCU-LMMSE is described in the table below:

SIC implementation of the BCWCU-LMMSE

# Computation cost

channel estimation
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In this manner successive BS CIRs does not have to encounter

interference caused by initial BS CIRs. SIC leads to good per-
formance for all channel estimates: initial CIR estimates improve
because the later channels have less power which means less in-
terference for the initial channels, and later CIR estimates improve
because early BS’s interference has been cancelled out.



4.2. Modified SIC implementation of the BCWCU-LMMSE
estimator

In the linear SIC approach above there are two sources of error:

� Ignoring the contribution of channels with lower powers.

� Non-perfect cancellation of estimated channels.

In the following, we will try to alleviate the propagation of the es-
timation error (due to non-perfect interference cancellation). We
suggest taking, at each step �, the estimate ��� computed from the
joint LMMSE estimation of ���� �

�
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�
�

��
. As in the clas-

sic SIC approach, the contribution of channels with lower powers
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is ignored.

The LMMSE solutionis given by
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Then, the component of interest is given by:
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We recognize the same structure as in the classic SIC. The modi-

fied SIC algorithm is described in the table below

Modified SIC implementation of the BCWCU-LMMSE

# Computation cost

channel estimation
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Remark that the complexity of the scheme is ��	� (as BCWCU-
LMMSE). From this point of view, it presents no advantage. How-
ever, the performance of the proposed scheme can be interpreted
as a bound on the performance of the SIC approach in section 4.1
(there is no propagation of the estimation error).

Motivated by the fact that channels are ordered by decreasing power
and the observation that ��

� �� is approximately proportional to
the identity matrix, we approximate �� and !��� in (24) by diago-
nal matrices. We call the resulting scheme Modified � Simplified
SIC, It has a computational complexity of  ���� .

We analyze the performance of the proposed algorithms by com-
paring their estimation MSE (computed by Monte Carlo simula-
tions). The received signal is assumed to be the superposition of
the contribution of 5 base stations, and embedded in a white Gaus-
sian noise. The relative received signal powers are respectively
0, -5, -10, -15, -20 dB. The power delay profile is generated ac-
cording to the channel model ”Vehicular B”. Figure 2 plots the
curves of the estimation MSE of the ��� (the weakest) BS. The
curves show that the SIC implementations well approximate the
BCWCU-LMMSE estimator at low SNR. We remark also that the
simplifications introduced to the modified scheme do not affect
the estimation accuracy, and that the modified SIC outperforms
the classic one (at the expense of additional complexity).
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