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Abstract— In this paper we focus on the problem of content
distribution in wireless ad hoc networks. Our goal is to study the
performance of a cooperative content distribution mechanism to
distribute content from one source to a potentially large number
of destinations. Despite the large literature on content distribution
schemes available for wired settings we argue that the very
nature of the underlying ad hoc network poses new challenges
that cannot be addressed with current schemes. We propose a
cooperative peer-to-peer scheme that allows parallel download
of the content based on swarming protocols. Our scheme builds
a distribution overlay network that takes into account traffic
locality and allows peers to trade parts of the content while
sustaining cooperation. We evaluate through simulations the
performance of our scheme for different static scenarios using a
variety of metrics to characterize the impact of our solution
at different layers of the system stack. Our results highlight
the great benefits of our solution in terms of system fairness,
achievable throughput, and energy consumption. We also study
the scalability properties of our solution under the extended
network model.

I. INTRODUCTION

The goal of this paper is to study whether the advantages
of cooperative (peer-to-peer) content distribution as seen in
the Internet can carry over in ad hoc networks. To do this,
we develop an application layer content distribution scheme
and we study its performance extensively. Recent works have
mainly focused on the content lookup problem and on the
creation of multicast wireless overlays (e.g., application layer
multicast) in mobile ad hoc networks. In contrast, in this paper
we study the performance achievable at the application layer
by a content distribution scheme in a static ad hoc network,
neglecting the content lookup problem. Though node mobility
represents a challenging problem that needs to be addressed
to achieve efficiency in a mobile environment, in our work
we are interested in the issues caused by node interference
and the multi-hop nature of the underlying network. Indeed,
recent works [11], [15] show that the throughput achievable in
an ad hoc network is inversely proportional to the route length
of data flows: traffic locality determines to a large extent the
capacity scaling of ad hoc networks. The seminal work [13]
also shows the role of interference on performance degradation
of a static ad hoc network.

We address these issues using cooperative content distribu-
tion (CCD) in which a mesh of cooperating peers download
the content in parallel. In a CCD scheme the content is split
into pieces available at one or more sources (that we call

seeds). The mesh overlay, which also includes all the available
seeds, is constructed on an on-demand basis by peers (that
we call leechers) interested in downloading the content. Peers
trade pieces they may hold until all pieces of the content are
available at every peer. We focus on CCD schemes based on
a distributed piece scheduling algorithm wherein scheduling
decisions are based on the statistical distribution of pieces in
the mesh overlay.

In this paper we propose an overlay construction mechanism
that mitigates the issues raised by the underlying ad hoc
network by favoring local interactions among the peers. On
top of the on-demand overlay, peers involved in the content
distribution execute a piece scheduling algorithm inspired by
the BitTorrent protocol [1]. We study the impact of the overlay
structure on the performance of the CCD scheme and show
the improvements of our overlay construction technique over
a randomized approach. We also study the piece propagation
process and the number of parallel connections (thus the
spatial reuse) that we can achieve. Our measurements are taken
at different levels of the protocol stack: we show the fairness
of the CCD scheme that characterizes energy consumption and
investigate on potential issues due to message retransmission
both at the MAC and at the transport level. Finally, we study
the overhead and the scalability of our protocol.

The remainder of the paper is organized as follows: in
Section II we detail our CCD scheme, specifying the overlay
construction mechanism and the content distribution protocol.
In Section III, we define our simulation-based study and
present detailed results of our investigation. We conclude in
Section VII where we also point out our future work.

II. THE PROTOCOL

In this section we describe the building blocks of our CCD
scheme: the overlay construction mechanism and the piece
scheduling algorithm. We also describe an additional algorithm
used by peers to foster collaboration. An extended description
of our protocol can be found in [18].

A. Overlay construction

The goal of the overlay construction scheme is to build
logical connections among peers while mitigating the prob-
lems due to the underlay network. Our distributed overlay
mechanism is executed both by seeds and leechers on an on-
demand basis.



The core objective of our mechanism is to guarantee a
maximal number of close neighbors, a parameter that plays a
crucial role for limiting interference and long underlay routes:
indeed, the distance in underlay hops between two overlay
neighbors should be minimal to achieve good performance
[19]. Moreover, our scheme guarantees logical connectivity,
trading off on the search horizon used to contact potential
overlay neighbors.

For each peer pi, we define the size ki of the set of overlay
neighbors a peer wants to achieve. A peer uses the expanding
ring search technique and uses the size ki as a stop criterion.
In practice, peer pi first obtains its physical neighborhood
from the routing layer: with few exceptions all ad hoc routing
protocols have an initial neighbor discovery phase that pro-
duces 1-hop neighborhood information. An application-level
broadcast message is then propagated in the network in order
to search for peers (both seeds and leechers) interested in a
particular content. We call this message an overlay request
(OREQ) message, which contains: the pi identifier, a content
identifier, a sequence number and a TTL field. The pi identifier
can be for example the corresponding node identity, such as
its IP address. The content identifier can be for example a
message digest computed over the filename of the content.
The TTL field is initially set to one. The sequence number is
used to discard duplicate query messages.

Upon reception of a OREQ message, if a peer pj is
downloading the requested content, if pj has not reached her
target of kj neighbors, and if pi is not an overlay neighbor
of pj , it replies with a overlay reply (OREP) message. The
OREP message contains pj identifier, and is unicast back
to the requestor pi. Note that neighborhood relationships are
symmetrical: if pj is in the logical neighborhood of pi, then
the opposite is also true. If the TTL in the OREQ message is
greater than zero, pj decrements its value by one and broadcast
the modified OREQ message to its neighbors. The process
continues until TTL=0.

The OREQ originator collects OREP messages and checks
the size of its overlay neighborhood, breaking ties uniformly
at random when the size is greater than ki. If the current size
is less or equal to ki the originator increments the TTL field
by one and the process starts over, until the target ki has been
reached.

We extend this method by introducing an exception to the
size criterion. The TTL field cannot be increased arbitrar-
ily, but has a maximum value MAXTTL. If this value is
reached, the expanding ring search algorithm stops. Note that
MAXTTL depends on content popularity; e.g., high values
of MAXTTL are required for an unpopular content, as peers
holding pieces of the content might be far away.

Our search process requires a stop criterion based on two
parameters that we empirically tune in our simulations. In our
experiments we set ki = k ∀pi; furthermore, we focus on
the extreme case of a very popular content: all nodes in the
network except the seed are leechers. We believe this scenario
to be the most stressful for the underlay network and in this
work we study the performance of our CCD scheme in such

context.

B. Piece scheduling algorithm

The piece scheduling algorithm allows a peer to decide
which pieces it wants to receive from remote peers. Our
algorithm is decentralized and based on local information:
peers use the statistical distribution of pieces in their overlay
neighborhood to determine which piece is best to replicate.
In this work we borrow the heuristic adopted by BitTorrent
[1]: rare pieces, that is pieces that have the lowest number
of replicas in the neighborhood, are selected for download. A
downloading peer selects among the set of rare pieces the one
it is missing. This technique is known as the local rarest first
(LRF) piece scheduling and it has been shown to surmount
the last piece problem [16]. The ultimate goal of LRF is to
enforce diversity in the piece distribution process, avoiding
the undesirable case of a single peer holding a rare piece thus
becoming a bottleneck for the system [16]. Recent works (
[4], [5], [25]) have shown the benefits of LRF over a random
scheduling approach.

In our scheme, only overlay neighbors trade pieces of the
content, hence peers need to exchange only a limited amount
of information on the pieces they hold that depends on the
neighborhood size ki of a peer. We assume pieces to be
identified by a numerical value, ranging from 1 to the number
of pieces the content is split into. Once the overlay construc-
tion phase has completed, a peer pi performs an handshake
transaction with all peers in its logical neighborhood. During
the handshake, peers exchange a bit vector in which an element
set to one indicates that the corresponding piece is available
at that peer. The bit vector’s size is equal to the number of
pieces the content is broken into.

Subsequently, pi incrementally informs its neighborhood on
the piece it downloaded during the distribution process using
a small control message of size 1byte with the identifier of
the newly available piece. We adopt the suppression technique
described in [1]: control messages are only sent to peers that
do not have the indicated piece.

Note that the information on the piece statistical distribution
is delicate: a loss of a control message can alter the normal
execution of the scheduling algorithm leading to serious
inefficiencies, such as the creation of bottleneck peers. As
opposed to [19], we use a reliable transport mechanism (TCP)
to exchange control information as well as for piece exchange.

C. Peer selection algorithm

We now briefly describe an additional algorithm that we
use to foster peer cooperation. Our technique is inspired by
the BitTorrent protocol and has the goal of guaranteeing a
reasonable level of upload and download reciprocation.

While a peer schedules the next piece it wants to download,
we allow the peer holding the requested piece to decide
whether the request will be fulfilled. The selection is based on
a rate-level tit-for-tat strategy: peers that previously interacted
with the decision maker are ordered based on the service
capacity they offered. Only those peers that are in the top
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Fig. 1. Topology 1: dense network with 25 nodes.

3 positions will be served back. Our algorithm admits one
exception: one additional neighbor is selected randomly in
the overlay neighborhood regardless of the service capacity
it offered. This is done in order to allow peers to bootstrap
the download process when they have no pieces to trade; fur-
thermore, it allows a peer to seek a large overlay neighborhood
for peers with a high service capacity. This algorithm is also
executed by seeds. However, instead of giving priority to peers
with a high download capacity, seeds uniformly distribute
pieces to leechers, as documented in [16].

Note that our algorithm is executed locally: peers only need
to keep statistics on the download rate perceived from other
peers they interacted with. We do this in our implementation
by using a sliding window of size 10sec.

III. PERFORMANCE EVALUATION

In this section we examine the impact on the performance of
our CCD scheme of the main system parameters. Furthermore,
we study the scalability properties of our scheme when the
number of peers in the network increases reasonably.

A. Simulation set-up

Our evaluation is done using the Qualnet [3] network
simulator. In our simulations we use the CSMA/CA 802.11a
MAC protocol and use the RTS/CTS-Data/ACK mechanism.
We set the data rate at 36Mbps, which leads to a 230m data
radio range in free-space. We use the unicast proactive ad
hoc routing protocol OLSR [2]. Data packets and signaling
messages are sent using the TCP transport protocol while
messages for the overlay construction are sent using UDP.

If not otherwise stated, we consider ad hoc networks formed
by N = 25 nodes. We study the performance of our scheme
under two scenarios. The first is characterized by a dense
network wherein interference issues are exacerbated: Figure 1
shows an instance of nodes uniformly deployed over a 700m2

square area. In the second scenario we emphasize the effects
of multi-hop routes with a sparse network: Figure 2 shows an
instance of nodes uniformly deployed over a 1000m2 square
area

In our experiments the size of the content is set to 5MB.
and is split into pieces of 16 blocks, each block being of
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Fig. 2. Topology 2: sparse network with 25 nodes.

size 16KB. The choice of piece and block sizes follow the
heuristic proposed by BitTorrent and by the work presented
in [19]. We run several experiments to understand the impact
of different piece and block sizes: due to space limitations we
do not present these results as the impact on performance is
negligible.

We assume peer arrival rates to be representative of a
flashcrowd scenario: peers bootstrap the content distribution
overlay and fetch the content at the same time. In our exper-
iments we focus on a popular content: we have one seed and
all other nodes in the network are leechers.

Each point in the following plots is the average result over
5 independent simulation runs for every simulation setting.

B. Performance metrics

The first metric we use to evaluate the performance of
our scheme refers to the time to distribute the content to
all receivers. We define the time to download metric (TTD)
that indicates the time at which a peer received the whole
content and study its cumulative distribution function (CDF).
In Section IV-B we use the following additional performance
metrics:
• Piece propagation: for every leecher in the system, we

study the reception time of the first and the last piece of
the content1. This allows to deduce the speed at which
pieces propagate in the network at two significant time
phases and to observe any variation of that speed in the
distribution process.

• Aggregate upload capacity: we evaluate the service ca-
pacity of our system by summing up the upload rates for
every peer. Upload rates are obtained by summing the
total bytes uploaded by a peer in 10sec.
This metric allows to deduce the efficiency of our CCD
mechanism.

• Number of parallel downloads: the number of concurrent
transmissions in the system is calculated by summing
up the number of unique peer identities involved in the
reception of a piece in 10sec.

1Note that piece are not ordered: the first/last piece received does not
correspond to first/last piece index.



The number of parallel transmissions is related to the
spatial reuse that we achieve in the network due to the
distribution overlay structure.

The choice of 10sec time intervals is determined by the
periodicity (10sec) used by peers to decide to serve pieces,
as described in Section II-C.

In Section IV-C we discuss on the performance of our
scheme using measures taken at different layers of the protocol
stack. We define an energy consumption metric that indicates
the energy consumed at the physical layer. The energetic
model implemented in Qualnet follows the one presented in
[9]: only the transmission and reception of data consumes
energy while no energy is consumed in idle state. We also
focus on the number of retransmissions at the MAC layer and
at the TCP layer. At the MAC level, we measure the aggregate
number of RTS retransmissions due to the expiration of the
timeout for the reception of the CTS and the aggregate number
of Packet retransmissions due to the timeout for the reception
of the corresponding ACK message. At the transport level,
we measure the aggregate number of message retransmissions
and the aggregate number of message fast-retransmissions. We
also evaluate the Average Download Rate metric derived from
the content size and the TTD distribution.

IV. SIMULATION RESULTS

A. Impact of the overlay structure

In this section we examine the impact of the overlay
structure on the performance of our mechanism in terms of
the TTD metric. We vary the target size k (which is the same
for every node) and the MAXTTL and study their influence
on two representative scenarios (topology 1 and 2).

Our goal is to evaluate empirically the parameters that
yield lower TTD values. In general, the problem we address
depends on the density of the network and on the popularity
of the content. We simplify the problem by focusing only on
the dependence on the network density, as we set the content
popularity to be 100%. For a fixed target size k, the choice of
MAXTTL depends on the physical node degree: for a dense
network the hop distance to search for overlay neighbors can
be smaller than for a sparse network. Note that the choice of
k also has an impact on the the TTD metric, as shown in
[24].

For a dense network (see Figure 1), we study the cases
< k = 3,MAXTTL = 1 > and < k = 5,MAXTTL = 2 >.
For a sparse network (see Figure 2) we use the following
configurations: < k = 2, MAXTTL = 1 >, < k =
3,MAXTTL = 2 > and < k = 4,MAXTTL = 3 >. Figures
3(a) and 3(b), show the CDF of the TTD for the two reference
networks.

The results in Figure 3(a) show that for a dense network,
increasing the target size k and expanding the search horizon
MAXTTL has a negligible effect on the TTD cumulative
distribution. This is mainly due to interference and collision
issues at the MAC level that we will analyze in more detail
in Section IV-C. As opposed to what has been observed for
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Fig. 3. Impact of the overlay structure: distribution of the time to download
the content for different network topologies. With our technique an increase
of the number of outgoing connections (OC) can improve performances at
the cost of expanding the search ring. System performance severely degrade
with a randomized approach to build the distribution overlay.

CCD mechanisms used in a wireline context such as the
Internet (see for example [24]) the benefits that derive from a
”rich” neighbor set (both in terms of peers and piece diversity)
are partially neutralized by the shared nature of the wireless
medium.

In contrast, Figure 3(b) shows that the simple heuristic of
limiting the MAXTTL = 1 might be sub-optimal for sparse
networks. In this case, selecting only physical neighbors to
take part in the overlay might result in some nodes (see for
example node 4 and 6 in Figure 2) to be dependent on one peer
only to obtain the content. This explains the small fraction of
nodes with TTD values greater then 200 seconds. However,
extending the search perimeter using MAXTTL = 3 results
in a performance degradation due to longer underlay routes to
exchange pieces of the content. In Figure 3(b) we show that
the configuration < k = 3,MAXTTL = 2 > yields a TTD
distribution equivalent to the one obtained in Figure 3(a), with
a maximum time to distribute the content of approximatively
150 seconds.

For the sake of completeness, we compare our technique
with a centralized approach equivalent to the tracker compo-
nent in BitTorrent [1]. We simulate the presence of a central



entity to bootstrap the distribution overlay in a random fashion:
each peer is provided with k = 4 neighbors to connect
to, chosen at random among all the nodes of the network.
Figures 3(a) and 3(b) show that traffic locality determines to
a large extent the performance of our CCD mechanism. Both
the median and the variance of the TTD increase when a
randomized approach is used.

We also studied the impact of the position of the initial
seed in a dense network. Figure 4 shows that a central or
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Fig. 4. Impact of the seed position on the CDF of the time to download the
content for the topology in Figure 1. The impact of a central or peripheral
position of the content source does not severely impact the solution proposed
in this paper.

peripheral position have a little impact on the performance
of our solution. Indeed, because of our particular distribution
overlay, the content propagates along routes with a bounded
hop count.

B. Detailed protocol behavior

In this section we explore the behavior of the proposed CCD
mechanism in more detail. We chose the parameters of the
overlay construction technique such that k = 3,MAXTTL =
2. We only present results for the topology in Figure 1, as
similar results hold for the latter topology.

In Figures 5, 6 and 7 we show the piece propagation, the
aggregate upload capacity of the system and the number of
parallel downloads of our system.

Figure 5 illustrates a relatively high propagation speed for
the first piece of the content: in less than 30 seconds all
leechers get their first piece. However, the initial thrust is not
sustained throughout the content distribution process, as the
dispersion in the reception time of the last piece indicates. In
Section IV-C we show that this decrease in performance is
mainly due to MAC level retransmissions.

Figure 6 shows that the average service capacity of the
system is approximatively 850 KBps. Pieces of the content
are injected in the system at a relatively high pace.

In Figure 7 we show a metric related to the spatial reuse of
the network. The localized approach used to build the distri-
bution overlay allows multiple communications to take place
at the same time, as shown by the high number of parallel
downloads. The drop in the number of parallel downloads

corresponds to the system reaching a full regime (i.e. all peers
are able to trade pieces). When all peers have data to transmit
interference and MAC-level collisions are substantial. Note,
however, that the decrease in number of parallel downloads is
also due to an increasing number of peers that completed their
download (see Figures 5 and 7).

C. A baseline scenario

In this section we further analyze the performance of our
CCD scheme using measures taken at different levels of the
protocol stack. Note that our goal here is not to compare the
performance of our approach with alternative applications for
content distribution. A fair performance comparison should
be done for example with application layer multicast [10]. In
contrast, we investigate on the characteristics of our scheme
using a baseline scenario as a lower-bound reference. We use
as a basis the performance of a naive client-server (FTP)
approach: an FTP server runs on the source and all the other
nodes in the network fetch the content using an FTP client.

Figure 8 and 10 show respectively the CDF of the TTD
for networks in Figures 1 and 2 for the CCD and the FTP
schemes. We observe that for both network types the median
of the TTD is smaller for the CCD case (roughly 100 seconds
as compared to 180 seconds). Similarly, the performance of
our scheme is above the baseline scenario when considering
the variance and the maximum of the TTD. We further remark
that the FTP solution is more sensitive to the network density
than our solution. Indeed, the maximum time for the content
to be distributed in a sparse network doubles as compared to
a dense network. The literature is rich of mechanisms, such as
cooperative caching [22], [26], used to mitigate these problems
although they don’t fall within the scope of our work.

The features of our CCD scheme appear evident if we
measure the amount of energy consumed by the nodes. Figure
9 and 11 show that in the baseline scenario nodes consume
an order of magnitude more energy than in our solution.
Moreover, we observe that in our solution the seed does not
consume more energy than any other peer, and that peers
consume roughly the same amount of energy.

To explain the difference in energetic consumption between
the CCD and the baseline case, we focus on the topology
in Figure 1. In Figure 12 we show the average number of
retransmissions at MAC and transport layer, as explained in
Section III-B. While the transport layer is affected similarly
in both schemes (right plot in Figure 12), the number of
retransmissions at the MAC layer is the main factor that
differentiate the CCD from the baseline scenario. The loss of
MAC-level control and data packets triggers the exponential
backoff mechanism typical of the 802.11 protocol, which leads
a node to wait an increasingly larger amount of time before
(re)transmitting a packet. Hence the poor performance and
the higher energy consumption in the FTP case. Note that
our scheme is also affected by MAC-level retransmissions:
however, our approach in building the CCD overlay drastically
reduces the number of unnecessary retransmissions due to
interference and collisions.
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D. Scalability properties

In this Section we study the scalability properties of our
CCD mechanism. In our experiments we follow the extended
network model [7] whereby we maintain the density of the
nodes in the network constant, while increasing both the
number of nodes and the (square) area on which nodes are
deployed. We scale the network up to 100 nodes and use a
control script to rule out partitioned networks before executing

the simulation.
Results are presented in Figure 13, where we show the

average download throughput of a peer, i.e. the per-peer
capacity.

With the sake of fitting our experimental values to an
analytical expression we report a scaled version of the per-
node capacity law Θ(1/

√
n log n) as introduced by Gupta

et. al. in [13]. Although the scaling law obtained in [13]
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assumed a random network deployed on a unit disk area (we
deploy our nodes on a square area), optimal scheduling of
packet transmission and random source-destination pairs the
experimental and the analytical curves loosely match and differ
only by a constant factor. Our scheme scales no worse than
what has been predicted in [13]. Note that our results hold
for a realistic packet scheduling; furthermore, using random
source-destination pairs (i.e. a random overlay) would have
yield worse performance, as shown in Section IV-A; lastly,
current analytical models neglect the effects of a transport
protocol such as TCP on the scaling law of the network.

V. PROTOCOL OVERHEAD

We present now the per-peer overhead of our protocol. At
the application layer, the protocol overhead is due to control
messages used by the piece scheduling algorithm to infer piece
statistical distribution. In our computation we assume that:
control messages are not lost, which is reasonable since we use
TCP for their transmission; there are no peers joining or leav-
ing the overlay network; and that the suppression technique
explained in section II-B is not used. Then, every peer in the
system exchanges one control message (of 1byte) with every

other peer in its overlay neighborhood for every piece of the
content. Thus the per-peer overhead is (k−1)∗(k−1)∗c bytes,
where k is the size of the neighbor set of each peer and c is
the number of pieces the content. We also need to count the
handshake messages exchanged by peers to establish overlay
connections, which are c bit long (see Section II-B).

For example, in our simulations we have k = 3, c = 20: the
per-peer overhead for a 5MB file is 10bytes for the handshake
messages and 80bytes for subsequent control messages, which
constitutes a negligible overhead.

VI. RELATED WORK

Peer-to-peer applications for mobile ad hoc networks have
recently gained a lot of attention in the research community.
Several works [6], [8], [17], [23] have studied efficient lookup
mechanisms with the goal of overcoming the issues due to
node mobility. Some works, such as [6], [17] focus on DHT-
based techniques, enriched with positioning information and
compare them with alternative approaches based on optimized
flooding. In contrast, [8], [23] propose search techniques based
on optimized flooding. These works have been carried out with
the ultimate goal of mitigating the impact of node mobility on
the query response time and on content availability.

Other works [10], [12] focus on application layer multicast
for mobile ad hoc networks. These works study the effects
of mobility on routing efficiency and on the construction of
the overlay mutlicast tree. In principle, the construction of
multicast overlays is similar to the problem discussed in this
paper, although the resulting logical structure is more rigid.
Hence, studying the impact of mobility on overlay mainte-
nance is fundamental. Furthermore, a performance analysis of
the content distribution has not been the main focus of these
works.

Works closely related to ours are [14], [19]–[21]. In [14],
Klemm et. al. propose a complete p2p system, ORION that
features a search and an original data transfer mechanism. In
ORION, the transfer protocol schedules the transmission of
parts of the content based on node mobility and implements
a simple retransmission mechanism to recover from failures.
Peer cooperation is not taken into account. The simulation-
based performance evaluation of ORION targets user satisfac-
tion in terms of the percentage of successful data transfers
rather than effective data transfer rates; moreover, the content
is assumed to be already replicated on some specific nodes.

In [19], the authors present a content distribution scheme for
vehicular networks and validate it using simulations, empha-
sizing the effects of mobility. The design is inspired by the Bit-
Torrent protocol: they propose a random overlay construction
mechanism and modify the original piece scheduling algorithm
to take into account both statistical information (rarity) and
distance (in hops) from the requesting peer. However, the
authors do not evaluate the impact of such a choice on the
diversity of piece distribution in the system. In contrast, recent
works [16], [18] show that piece diversity achieved by the
scheduling algorithm in BitTorrent (that we also use in our
work) plays an important role on the efficiency of the system.



In [20], [21] the authors adapt the BitTorrent protocol to
mobile ad hoc networks and study the effects of mobility on
the performance of their scheme. However, they use a random
piece scheduling algorithm and an overlay construction mech-
anism tightly coupled with an ad hoc routing protocol through
cross-layer optimization. They do not take into account peer
cooperation and introduce the notion of proxy peers, that is
they replicate the original content at multiple locations to help
with the distribution process. The validation of the scheme
is limited to very unpopular contents distributed to a small
(three) set of destinations. To the best of our knowledge
an accurate performance evaluation of cooperative content
distribution and its salient features on ad hoc networks is
not available in the literature. We use algorithms that exhibit
exceptional performance in the Internet [16] and adapt them to
a context wherein interference and multi-hop routing invalidate
the typical assumption that the bottleneck for the capacity of
peers to serve a content is due to a limited access link capacity,
whereas the capacity of the core network is traditionally
assumed to be unconstrained. We study these issues in our
simulations and show that our scheme performs remarkably
well under different network topologies. Moreover, as opposed
to [20], our mechanism is routing independent.

VII. CONCLUSION AND FUTURE WORK

In this paper we study the performance achieved by our
cooperative content distribution scheme in a static multi-hop
network. Our scheme features a decentralized mechanism to
build a wireless overlay, an algorithm to trade pieces of the
content among peers and an algorithm to foster peer collabo-
ration. Rather than on mobility, we focus on the performance
limitations imposed by the underlying multi-hop network and
the shared nature of the medium used by wireless nodes
to communicate. We mitigate these problems by taking into
account traffic locality as a key to build the wireless overlay.
With our solution the cost associated to the content distribution
is evenly shared among the peers and cooperation is fostered.

Our simulation results show that the performance in terms
of the total time to distribute the content of our mechanism
are reasonably good for scenarios characterized by different
network topologies. We show that the energy consumption
is uniformly shared by peers and that our scheme partially
mitigates the effects of MAC-level retransmissions due to
interference and collisions. We conclude our analysis showing
that the capacity scaling of our solution decreases as the one
predicted by analytical models for an ideal system and that
the protocol overhead is low.

In our future research we will present performance results
for the mobile case and focus on new scenarios whereby we
will vary the content popularity, the peer departure rates and
the peer cooperation level. We will also explore the potential
benefits of using network coding as a replacement of our piece
scheduling algorithm.
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