EURECOM

S o p h i a A n t i p o | i s

Institut Eurécom
2229, route des Cretes
B.P. 193
06904 Sophia Antipolis
FRANCE

Research Report RR-06-181 _
Secure data aggregation with multiple encryption
March 2006

Melek Onen, Refik Molva

Tel : (+33) 4 93 00 81 00
Fax : (+33) 493 00 82 00
Email : {onen, molva} @eurecom.fr

2This research is supported by Institut Eurcom’s industrial members: BMW, Bouygues Tlcom,
Cisco Systems, France Tlcom, Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.

Abstract

Data aggregation has been put forward as an essential technique to achieve
power efficiency in sensor networks. Data aggregation consists of processing data
collected by source nodes at each intermediate node enroute to the sink in order to
reduce redundancy and minimize bandwidth usage.

The deployment of sensor networks in hostile environments call for security
measures such as data encryption and authentication to prevent data tampering by
intruders or disclosure by compromised nodes. Aggregation of encrypted and/or
integrity-protected data by intermediate nodes that are not necessarily trusted due
to potential node compromise is a challenging problem. We propose a secure data
aggregation scheme that ensures that sensors participating to the aggregation mech-
anism do not have access to the content of the data while adding their sensed values
thanks to the use of an efficient homomorphic encryption scheme. We provide a
layered secure aggregation mechanism and the related key attribution algorithm
that limits the impact of security threats such as node compromises. We also eval-
uate the robustness of the scheme against node failures and show that such failures
are efficiently recovered by a small subset of nodes that are at most m hops away
from the failure.

1 Introduction

Wireless sensor networks (WSN) are viewed as a popular solution to various
monitoring problems such as safety monitoring, wildfire tracking and traffic mon-
itoring. A WSN consists of thousands of sensors that are in charge of both moni-
toring and data transmission tasks. The data collected by each sensor is transmit-
ted via a network consisting of other sensors towards a well identified destination
node called sink. In the basic setting of a WSN, each individual piece of data is
thus independently transmitted over several hops towards the sink and each sen-
sor node is involved in the forwarding of a large number of data pieces originated
from other sensors. In the resource constrained WSN environment, forwarding of
large amounts of data becomes the major focus of energy and bandwidth optimiza-
tion efforts. Data aggregation has thus been put forward as an essential technique
to achieve power and bandwidth efficiency in WSN. Based on the principle that
the sink does not necessarily need all raw pieces of information collected by each
sensor but only a summary or aggregate thereof, data aggregation consists of pro-
cessing data collected by source nodes at each intermediate node enroute to the
sink in order to reduce redundancy and minimize bandwidth usage. A common
way to aggregate data in sensor networks is to simply sum up values as they are
forwarded towards the sink. Such additive aggregations are useful for statistical
measurements such as mean or variance computation.

As a distributed task achieved by several potentially compromised nodes, data
aggregation raises some new security concerns in addition to the basic vulnerabil-
ities of a WSN [?]. Data aggregation in WSN is thus exposed to various threats
such as node compromise, injection of bogus aggregates, disclosure of sensed data
and aggregate values to intruders or tampering with data transmitted over wireless
links. In this paper, we focus on the problem of data confidentiality with a twofold
objective: first to prevent intruders from accessing individual monitoring results,
second to prevent any node other than the sink from accessing the aggregate val-
ues. While classical data encryption mechanisms easily meet the first objective,
the second objective raises a new requirement for sensor nodes involved in the
computation of intermediate aggregate values: each sensor node must be able to
combine the locally monitored value that is in cleartext with the encrypted aggre-
gate value received from adjacent nodes in order to come up with a new encrypted
aggregate value. This problem typically calls for some form of homomorphic en-
cryption technique. Existing solutions based on homomorphic encryption [?, ?]
either suffer from excessive computational complexity or are vulnerable to node
compromise.

We suggest a secure additive data aggregation scheme based on the use of an
efficient homomorphic encryption technique combined with a multiple encryption
scheme using symmetric algorithms. The homomorphism of the underlying en-
cryption technique allows sensors to aggregate their cleartext measurements with
the encrypted aggregate values whereas the multiple encryption scheme assures
that aggregate values and individual measurement results remain oblivious to all

intermediate nodes enroute to the sink. The joint use of the homomorphism and
multiple encryption assures that a secret channel is established between every sen-
sor node and the sink without having to establish pairwise security associations or
a public-key infrastructure.

We first analyze the security requirements raised by secure data aggregation
and describe the need for homomorphic encryption functions. We then briefly
present the CTRM encryption scheme proposed by Bellare et al. in [?], and its
extension in [?] for the context of multicast confidentiality. We show that CTRM
is homomorphic and introduce the proposed layered secure aggregation scheme
based on CTRM. We then evaluate the effectiveness of the proposed scheme in
terms of security, safety and performance.

2 Problem Statement

2.1 Aggregation in Wireless Sensor Networks

We model a wireless sensor network (WSN) as a rooted tree 7 = (V, £) where
V is the set of nodes corresponding to the sensors and £ is the set of edges between
these nodes. The root S of the tree corresponds to the sink. Each other node has
one or more incoming edges but a unique outgoing edge.

Aggregation techniques are used to reduce the amount of data communicated
within a WSN. As measurements are recorded periodically at each sensor, one way
to aggregate such information is the additive aggregation that is the addition of
values as they are forwarded towards the sink. Each node receives packets from
the incoming edges, aggregates them and sends the result via the outgoing edge.
The sink collects the final set of aggregated packets and completes the aggregation
task. Additive aggregation techniques are very useful for statistical measurements
in sensor networks. Hence, once the sink receives the addition of some values, it
can easily compute the mean or variance of the received values.

2.2 Security requirements

In the context of secure data aggregation, we distinguish two confidentiality
requirements:

e generic confidentiality whereby sensors not participating to the aggregation
mechanism, should not have access to the content of the data.

e end-to-end confidentiality whereby sensors actively participating to the ag-
gregation mechanism do not access the data that is already aggregated.

As to generic confidentiality, sensors need to use some cryptographic encryp-
tion algorithms in order to let only authorized sensors access the content of the
data. Since sensor nodes have very limited resources, symmetric encryption al-
gorithms are more suitable for such networks. However, with the use of classical

encryption schemes such as AES [?], every sensor should first decrypt the received
measurements in order to aggregate their own measured value and then re-encrypt
the result in order to send it to the next sensor enroute to the sink. In this case, all
sensors would have access to aggregated measurements. In order to prevent such
access and thus to ensure end-to-end confidentiality, we propose a new framework
that implements homomorphic encryption algorithms.

2.3 Theproposed framework

We propose a framework whereby sensors participate to a secure aggregation
mechanism without having access to the protected data. In order to ensure end-
to-end confidentiality, the framework uses additive homomorphic encryption al-
gorithms. Moreover, measurements are protected with multiple encryption layers.
Sensors receiving encrypted data would be able to suppress some encryption lay-
ers, aggregate their measurements and add new encryption layers. Thanks to a new
key attribution algorithm, only the sink is able to suppress all encryption layers and
thus access the finally aggregated result. Since each sensor modifies the encryption
of the data, the compromise of some intermediary nodes does not provide access
to the protected data.

In the following section, we describe the CTRM homomorphic encryption al-
gorithm that is extended in our framework. We then introduce the new key attribu-
tion algorithm that is used in the new secure aggregation scheme that ensures both
generic and end-to-end confidentiality.

3 Theproposed encryption algorithm

3.1 Additive homomorphic encryption

End-to-end confidentiality as defined in section 2.2 requires a homomorphic
encryption scheme. A homomorphism is defined asamap ¢ : X — Y such that:

d(z - y) = d(z) o (y) 1)

where - and o respectively are the operations in X and Y. If ¢ is a homo-
morphic encryption algorithm, and if - is the aggregation operation, thanks to the
homomorphism of ¢ encrypted individual measurements can be aggregated into
an encrypted aggregate value. Hence, let N; be a sensor receiving encrypted mea-
surements ¢(V;) and ¢(Vy). V; first senses V;, computes ¢(V;) and aggregates the
three encryptions as ¢(V;) o ¢(Vy) o ¢(V;). Thanks to the homomorphism of ¢,
this result is identical to the encrypted aggregate value: ¢(V; - Vi - V;). It should
be noted that N; was able to aggregate its measurement with the received values
without accessing the measurements in this example.

Let M be the set of plaintext messages and C be the set of encryption keys.
In the context of secure data aggregation, we propose that the encryption function

¢ represents an additive homomorphic encryption scheme that encrypts a message
x € M with the encryption key & € K as follows:

o M,K)— M
¢(z,k) = (z+k)modn 2)

n is the cardinality of M. It is easy to show that ¢ is a homomorphic func-
tion. Hence, let z, and z; two different plaintext messages in M and k&, and &,
encryption keys in 1C. We have:

(Taska) = (2a
O(xp, kp) = (xp+ kb) mod n
(Tas ka) + d(p, kp) (Ta + ko + @ + kp) mod n
= O(xq + zp, ko + kp)

kq) mod n

The security of this scheme relies on the unique utilization of the key. Hence,
as one-time pads, for each message, the encryption must use a different key. Thus,
an efficient key generation algorithm is required for each encryption operation. We
propose to implement the basic CTRM function proposed by Bellare et al. in [?]
that allows the generation of a different key for each encryption operation. Thanks
to this scheme that is briefly described in the following section, sensors are able to
update their encryption key without receiving any additional information from the
sink.

3.2 CTRM encryption scheme

In [?], Bellare et al. describe and analyze various cipher modes of operation.
In this section, we briefly describe their proposed counter based block cipher mode
of operation (CTR-mode) which we extend in our proposed scheme. We denote &
as the binary XOR operation and define f,, as a I-bit pseudorandom permutation
such as AES [?] where a is the encryption key. The CTR-mode scheme is a triplet
(K, &, D) defined as follows:

e C flips coins and outputs a random key a;

e E(ctr,x) splits x into n blocks of [bits z = x4, .., z,,, and for each z; returns
y; = fa(ctr 4+ 1) @ z;. Finally, ctr is updated by ctr + n;

e Symmetrically, D(ctr,y) first splits y into n blocks of [bits y = y1, .., yn,
and for each y;, it returns z; = f,(ctr +14) @ y;. Similarly, ctr is updated by
ctr + n.

The counter ctr is maintained by the encryption algorithm across consecutive
encryptions with the same key. Thanks to this counter, the receiver that knows the
key a can recompute each f,(ctr + i) and thus retrieve the original message x.

3.3 Multiplekey CTRM encryption for secure data aggregation

In order to introduce the secure data aggregation, we propose an extended ver-
sion of the CTRM encryption with the use of multiple keys for both encryption
and decryption. We first replace the XOR operation by the additive homomorphic
encryption scheme defined in equation 2. In the sequel of this paper a + b and
a — b are respectively defined as (a + b) mod n and (a — b) mod n. The new basic
encryption is again a triplet (1, £, D) such that:

e C flips coins and outputs a random key a;

o E(ctr,x) splits z into n blocks of [bits and for each z; returns y; = f,(ctr+
i) + x;. Finally ctr is updated by ctr + n;

e D(ctr,y) splits y into n blocks of [bits and for each y; returns z; = y; —
fa(ctr,+17).Finally, ctr is updated by ctr + n.

Since (I, £, D) is also homomorphic, we now focus on the problem of end-
to-end confidentiality whereby sensors perform aggregation operations using this
scheme. Since sensors are not authorized to access the content of their received
aggregated information, different keys should be distributed to each sensor. In this
case, we propose a triplet ("), £(") D(")) with - independent keys as follows:

e K(") chooses r random keys aq, .., ay,;

o EW)(ctry, .., ctry,x) splits z into n blocks of [bits © = z, .., z,, and for
each z; retumns y; = x; + 37, fa; (ctrj +i);

o D) (ctry, .., ctr,,y) splits y into n blocks of I bits y = y1, .., y, in order to
retrieve ; = y; — >y fa,(ctrj +1).

We recall the security property that claims that a message encrypted with mul-
tiple keys is at least secure as any individual encryptions [?]. It is obvious that
(K", £0) D)) is homomorphic since the encryption and decryption operations
are respectively defined by additions and subtractions that are by definition homo-
morphic.

4 Theproposed model: layered secure aggregations

Now that we have defined the security requirements specific to the problem of
data aggregation and that we have described the proposed CTRM encryption al-
gorithm, we describe the proposed layered secure aggregation scheme that allows

sensors to aggregate measurements while the data remains confidential. Thanks to
the addition of multiple encryption layers, the scheme remains secure against at-
tacks such as node compromise. We first introduce a new key attribution algorithm
that defines the keying material of each sensor and then present the aggregation
protocol.

4.1 Notation

As described in section 2.1, a wireless sensor network is represented by a tree
7. We define the function Depth that given a node identity NV; returns its depth
in the tree. We set Depth(S) = 0. Within this tree, we also define the following
relations between nodes:

e Root(7T) represents the data sink that collects and extracts the aggregated
data;

e Parent(N,m) is the mth parent of IV if it exists or S otherwise;

e Children(N,m) is the set of nodes N; such that Vi, N = Parent(N;,m).

In order to implement the CTRM encryption algorithm with multiple encryp-
tion keys in the context of secure data aggregation, we define a key attribution
algorithm that is explained in the following section. Thanks to this algorithm, any
node will be able to add or suppress some encryption layers without causing any
leakage of secret information.

4.2 The proposed key attribution algorithm

In this section, we describe a new key attribution algorithm for the proposed
aggregation protocol. Thanks to this algorithm, the sink is able to aggregate all the
measurements without leaking any secret information to any node including the
sensors that participate to the aggregation mechanism.

Each node N; shares a key a; ; and a counter ctr; ; with a node NN; where
N; = Parent(N;,m). We also define a different key and counter (a; , ctr;)
shared between a leaf node N; and N, = Parent(N;,t), foreach 0 < ¢t < m. The
key attribution algorithm is summarized in Table 1.

In order to illustrate this algorithm, we define a WSN with 11 nodes represented
in Figure 1. In this particular network, we set m = 2. Following the key attribution
protocol, all leaf nodes, N5, Ng, Ng and N1 share one key with their direct parent
and another one with their grandparent. For example, node Ng shares a7 g with
node N7 and a4,9 With node V4. Node N; which is an intermediate node, shares
a different key with nodes N5, Ng, N7 and Ng which are in Children(N1,2) and
with S since Parent(Ny,2) = S.

For each node N; in 7T
define (a; j, ctr; ;) for Ny and N; = Parent(N;, m);
if V; is a leaf node
then
foreacht <m
define (a; k, ctr;) for N; and N, = Parent(N;, t);
else
sett =0;
while Children(N;,m —t) =0
increment t by one;
define (a; j, ctr; ;) for Ny and N; € Children(N;,m — t);

Table 1: The key attribution algorithm

@asz:as,a:as4;asl

Figure 1: Implementation of the key attribution algorithm with m = 2

For each INV; with measured value V;

Receive {A;} from N; € Children(N;, 1);
Compute S; = > Aj;

J,Nj=Parent(N;,m)

for all [where N; = Parent(N;,m)
Compute Sd; = D(ctr;y, Si);

Compute A; = &(ctry;, Sd; + V;) such that Ny, = Parent(N;, m);

Table 2: The additive aggregation protocol

4.3 The aggregation protocol

Now that we have defined the key attribution algorithm, each node is ready to
aggregate its measurement with the received values from its children nodes. In this
paper, we define the aggregation operation as a sum computation. This operation
can also be a mean or variance computation. Since the encryption algorithm is
homomorphic, each node adds the received values to the measured value without
having to access the content of the aggregated data.

Table 2 illustrates the additive aggregation protocol. A sensor N; first aggre-
gates the received values and its measurement. From this value, NV, subtracts keys
that it shares with its mth children nodes N; and adds the key that it shares with
its m¢h parent node Ny. Then, N; sends the aggregated value denoted by A; to its
parent node.

As an example, we examine in Table 3 how the proposed additive aggregation
protocol is applied on the tree of Figure 1. For the sake of clarity, we define &; ; as
the one-time-key originating from a; ; and ctr; ;.

5 Evaluation

In the following sections, we review the proposed framework with respect to:

¢ confidentiality whereby intruders and sensors should not have access to the
content of the data (generic and end-to-end confidentiality);

e robustness whereby the impact of a node compromise or a node failure on
the aggregation scheme should be minimized.

We then evaluate the performance of the scheme in terms of memory and CPU
usage and in terms of communication overhead.

10

Layer 4:

Node Ng: Computes Ag = Vo + k79 + ka9
Node Nyo: Computes A9 = Vig + ks 10 + k4,10

Layer 3:

Node N5: Computes A5 = Vs + ka5 + k15
Node Ng: Computes Ag = Vs + ks 6 + k16
Node N7: Receives Ag = Vo + k79 + kag
Suppresses a layer Sdy = Ag — kr g
Computes V7 + kq 7
Adds a Iayer Ay = Vo + Vo + k479 + k1)7
Node Ng: Receives A1g = Vig + ks 10 + k4,10
Suppresses a layer Sdg = A1p — ks 10
Computes Vg + k18
Adds a Iayer Ag =Vig+ Vs + k4,10 + k178

Layer 2:

Node N»: Receives As = Vs + ka5 + k15
Suppresses a layer Sdy = As — ko 5
Computes Vo + ks o
Adds a layer Ay = Vs + Vo + k15 + ks 2
Node N3: Receives Ag = Vs + k36 + k16
Suppresses a layer Sds = Ag — k3¢
Computes V3 + ks 3
Adds a layer Az = Vs + Va3 + k16 + ko3
Node N4: Receives A7 and Ag
Aggregates Sy = A7 + Ag
Suppresses two layers Sdy = A7 + Ag — ka9 — k4,10
Computes V4 + ks 4
Adds alayer Ay = Vig+ Vo + Ve + Ve + Vi + k17 + kig + ks

Layer 1:

Node Ni: Receives Ay, Az and Ay
Aggregates S; = As + A3z + Ay
Suppresses four layers Sdy = Ay + Az + Ay — k15 — kig — ki,7 — k18
Computes V7 + kg 1
Adds alayer Ay =310 Vi + koo + ks + ks + ks

Layer O:

Sink S: Receives A;
Suppresses all layers Sdy = Ay — kso — ks3 — ksa — ks 1

Table 3: The Additive Aggregation Protocol: an example
11

5.1 Security evaluation

In this section, we first show that the proposed framework ensures generic con-
fidentiality and then consider the node compromise scenario that could prevent the
end-to-end confidentiality of the scheme.

Proposition 1 The scheme ensures generic confidentiality.

Proof Inawork evaluating the security of cryptosystems in the multi-user setting
[?], Bellare et al. have essentially shown that if a cryptosystem is secure in the
sense of indistinguishability, then the cryptosystem in the multi-user setting, where
related messages are encrypted using different keys, is also secure. This result can
be applied to the proposed scheme using CTRM. When a message is encrypted
with r keys it is at least as secure as any individual encryption. Thus, the scheme
is at least as secure as a one layer encryption layer, if no node is compromised.
Moreover the security of encryption operation that simply is a modulo » addi-
tion depends on the unique utilization of the encryption key. Thanks to the exis-
tence of a counter, at each encryption operation, the encryption key is updated and
thus the operation is perfectly secure. |

We now consider the node compromise scenario.

Proposition 2 An intruder can have access to an aggregated data originating from
node N; only in two cases:

e Case 1: all the nodes in the subtree 7* of 7 whose root is N; and depth is
m — 1 are compromised,;

e Case 2: all nodes N; such that N; = Parent(N;, k) forall 1 <k <m —1
are compromised;

Proof Let’s assume that node NNV; is compromised. Then the intruder has access
to all keys stored by N;, that are:

e {a; ;} shared between NN; and N; such that N; = Parent(N;, m);
e a; j shared between IV; and Ny, such that N, = Parent(N;, m);

When N; receives aggregated values from its children nodes, these values are
still encrypted with different keys by the nodes N; € Children(N;, k) with 1 <
k < m. Consequently, in addition to V;, the intruder needs to compromise all the
nodes in the subtree 7 of 7 whose root is NV; and depth is m — 1. This proves the
Case 1 of proposition 2.

Furthermore, the keys used for the encryption of aggregated values by nodes
N; that construct 7 are by definition shared with nodes N; such that N; =
Parent(Nj, m). Consequently if the intruder compromises these nodes, it also

12

can access the aggregated data originating from N;. Since N; = Parent(N;, k)
with 1 < k < m, the intruder needs to compromise nodes N, such that N; =
Parent(N;,n) with 1 < n < m — 1. This result proves the Case 2 of proposition
2.

|

Therefore, the security of the scheme in terms of end-to-end confidentiality de-
pends on the choice of the value m. The larger values for m imply a larger popula-
tion to compromise for the intruders. However, if m is very large, the scheme be-
comes inefficient since the number of encryption layers decreases and the scheme
tends to be vulnerable to threats such as node compromise. Hence, if m equals the
depth of 7 denoted by h, all nodes would share one key with the sink. In this case,
the advantage of the use of multiple encryption layers disappears and the proposed
scheme would be similar to the secure data aggregation scheme in [?]. The scheme
would still ensure end-to-end confidentiality, but a node failure would have a strong
impact on the aggregation scheme since in addition to the aggregated data, sensors
must include additional information about the identities of nodes participating to
the aggregation. Thus m must not exceed h — 1. As a result, m should be as large
as possible for security reasons and small enough for the sake of robustness. The
ideal value for m would be the minimum depth of all leaf nodes in 7.

5.2 Robustness of the scheme

Data aggregation in WSN is exposed to the following threats:

e node compromise whereby intruders can have access to the security ma-
terial of a sensor participating to secure data aggregation. In this case, the
aggregation scheme is exposed either to the injection of bogus aggregates or
to some passive behavior from the compromised node;

e node failure whereby the node is off and thus cannot participate to the ag-
gregation mechanism;

e communication failure whereby messages enroute to the sink are lost;

e poisoning whereby intruders inject some bogus data and thus break the ag-
gregation mechanism.

The impact of a node failure or a communication failure remains the same as
the impact of passive behavior originating from a compromised node. Hence, in all
cases, a sensor does not receive any message from some of its children nodes and
thus should exclude some of its keying material from the next aggregation process.
The impact of such failures should be minimized.

Poisoning attacks and the injection of bogus aggregates by compromised nodes
first imply a strong need for an authentication mechanism that allows a sensor
to verify the origin and the integrity of the received data. We assume that there

13

let1=0;
at layer I, foreach N; € T
verify(agg value, expected_value)
if OK then
ACCEPT agg_value;
else
if Children(N;,2) = () then
send_alert(identity(Children(N;)))
else
send (expected value, keying material) to Children(N;,1);

Table 4: The discovery of compromised nodes

is an underlying authentication mechanism such as digital signatures. However,
compromised nodes still can inject bogus aggregates although the verification of
their signature succeeds. In this particular case, since sensors do not have access to
the content of aggregates, such attacks are not detected and thus bogus messages
cannot be immediately discarded. We thus propose, a recovery mechanism rather
than a prevention mechanism that allows the sink to react against such attacks by
determining the origin of the attacks.

We thus mainly distinguish two classes of robustness problems and come up
with some recovery mechanisms for each of them: the bogus message injection
originating from compromised nodes and the loss of messages.

5.2.1 Protection against bogus message injection

We first evaluate the performance of the scheme when the intruder compro-
mising NV; performs some bogus injection. In this case, the sink might possibly
notice the attack once the aggregation protocol is complete, that is, when it de-
crypts the aggregated value. Therefore, the sink cannot prevent such attacks but
can react against them by determining the origin of the attacks. Hence, when the
sink notices such attacks due to some exaggerated values that would result from
aggregation, it first contacts its children nodes and sends them the required de-
cryption material (that is one-time) in order to let them discover the origin of the
failure. This process is recursively run along the tree. Thus, the cost of discovering
the compromised node is in the order of log(N') where N is the number of sen-
sors and the verification task is distributed to all nodes of the tree. The process of
compromised nodes discovery is summarized in Table 4.

5.2.2 Protection against message losses

We now consider the case when there is a node or communication failure that
imply some message loss: an error may occur during the decryption of the aggre-

14

gated data. The same problem can happen when an intruder compromising a node
shows a passive behavior. In this case, a node that did not receive any aggregated
information from one of its children nodes, alerts nodes that are at most m distant
from it about the identity of the misbehaving node. All nodes receiving this alert,
will remove the keys that are related with the misbehaving node and proceed the
aggregation protocol with the remaining keys. The alert messages only reach nodes
that are m distant from the misbehaving node and thus have a local impact on the
communication overhead.

In order to illustrate this recovery mechanism, we again refer to the WSN rep-
resented in Figure 1 and we assume that node N1 did not send its measurement
to Ng. For the sake of simplicity, we again denote the one-time key resulting from
a; ; and the actual ctr; ; by k; ;. In this particular case, keys kg 10 and k4 19 should
not be used during the aggregation protocol. Thus, Ng sends an alert message with
the identity of Ny to Ny. Since m = 2 and Ny = Parent(N19,m), Ny does not
need to forward this alert message to its parents. Table 5 illustrates the aggregation
process for nodes that are on the path from Ny, to the sink. While computing As,
Ny only includes V5 that is encrypted with k; g. When N, receives Ag, and Av, it
does not use k4 109 and suppresses the only encryption layer originating from node
Ny and finally adds an encryption layer with k, 4. Once N4 sends A4 to Ny, there
is no more modification in the aggregation process and N; will follow the additive
aggregation protocol as defined in Table 2.

5.3 Performance evaluation

In this section, we evaluate the performance of the scheme in terms of memory
storage, computational cost and communication overhead. The computational cost
and communication overhead have a direct impact on the battery usage.

First of all, the computational activity of each sensor for the encryption and
decryption operations is only the sum and substraction operations modulo n. The
encryption or decryption operations do not have an impact on the communication
overhead. There is no additional information with respect to these two operations.
The sink only receives messages from its children nodes and proceeds to the final
step of aggregation.

Furthermore, thanks to the inherent key generation process provided by CTRM,
there is no additional overhead originating from the update of any sensor’s keys.

The memory cost is related to the proposed key attribution algorithm. Sensors
share one key with their mth parent node and one key with each of their mth child
nodes. Furthermore, if a sensor is a leaf node of 7', this sensor shares one key with
each of its kth parent with 1 < k£ < m. Thus, the memory cost for each sensor
equals to:

e (|Children(N,m)| + 1) if Children(N,m) # 0,

e (|Children(N,k)|+1) if Children(N,k) # 0 and Children(N,k+1) =
0

15

Layer 3

Node Ng Does not receive Aqg
mark ks 10 as invalid
Computes Ag = Vg + k1 8
Sends Ag and failure_alert(Nyg)

Layer 2

Node N, Receives, A7, Ag and failure_alert(Nqp)
mark k4,10 as invalid
Aggregates Sy = A7 + Ag
Suppresses one layer Sdy = A7 + Ag — kag
Computes V4 + ks 4
Adds a Iayer Ay =Vo+ Ve + Ve +Vyi+ k1’7 —+ kl’g + k3’4

Layer 1

Node N, Receives As, Az and Ay
Aggregates S1 = Ay + Az + Ay
Suppresses four layers Sdy = Aa + A3+ Ay — k15 — ki — k17— kig
Computes Vi + kg 1
Adds a layer A, = Z?:l Vitkso+kss+ksatksa

Layer 0

Sink S: Receives A
Suppresses all layers Sdy = Ay — kso — ks — ksa — ks

Table 5: Failure recovery of Nyq in the path from Nyg to .S

16

6 Reated Work

In [?, ?], authors propose to use homomorphic encryption schemes to allow se-
cure data aggregation. They implement the Domingo-Ferrer encryption scheme [?]
that is based on the computationally expensive discrete exponential technique. The
feasibility of this scheme in the context of resource constrained sensor environment
is analyzed in [?] and authors gave performance results on the Mica2 motes [?] and
show that such measurements were quite reasonable.

In [?], authors propose a secure data aggregation scheme similar to ours that
is based on an extension of the one-time pad encryption technique using additive
operations modulo n. Even though our scheme seems to be more complex than
the solution of [?] due to the use of CTRM and multiple encryption layers, our
scheme clearly imposes a lower communication overhead than the latter. In [?],
each aggregate message is coupled with the list of nodes that failed to contribute
to the aggregation because of node or communication failures. As opposed to
[?], in our scheme each failure only needs to be reported during m hops from
the location of the failure enroute to the sink. Thus, our scheme does not require
the reporting of failures beyond the mth parent of the failure point in the tree.
Moreover, [?] overlooks the key update that is a mandatory security requirement for
additive encryption schemes whereas our solution includes a complete mechanism
for key update based on CTRM. Hence, the security of the additive encryption
operation is based on the unique utilization of the encryption key. Since in [?]
sensors only share keys with the sink, at each aggregation operation, all keys that
are used for such operation should be marked as invalid and separately updated by
the sink. In our proposed scheme, thanks to the use of CTRM, sensors are able to
update their keys without receiving any additional message from the sink.

7 Conclusion

In this paper, we analyze the problem of confidentiality in secure data aggre-
gation mechanisms for wireless sensor networks. We first define two specific con-
fidentiality requirements: the sink should first ensure that sensors not participating
to the aggregation mechanism do not access the content of the aggregated data
(generic confidentiality); moreover, sensors participating to the aggregation mech-
anism should not access the already aggregated data without the authorization of
the sink (end-to-end confidentiality). We show that the use of homomorphic en-
cryption algorithms is essential for aggregation mechanisms and propose the use
of an extension of CTRM encryption schemes. In order to protect aggregation
mechanisms against node compromise, we first define a key attribution algorithm
whereby sensors store several keys with respect to their location in the tree. We
then describe a layered secure aggregation mechanism where sensors basically add
and suppress some encryption layers with respect to their keying material. We
show that this new framework provides both generic and end-to-end confidential-

17

ity and is robust against bogus message injections and message losses.

Future work should focus on investigating the problem of key pre-distribution
mechanism [?] related to the key attribution algorithm that should be self-organized
and efficient. We sould also investigate on new solutions that prevent bogus injec-
tion rather than minimizing the impact of such attacks.

References

18

