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Abstract

Peer-to-peer networks have been commonly used for tasks such as file sharing or
file distribution. We study a class of cooperative file distribution systems where a file is
broken up into many chunks that can be downloaded independently. The different peers
cooperate by mutually exchanging the different chunks of the file, each peer being client
and server at the same time. While such systems are already in widespread use, little is
known about their performance and scaling behavior. We develop analytic models that
provide insights into how long it takes to deliver a file to N clients given a distribution
architecture. Our results indicate that even for the case of heterogeneous client popula-
tions it is possible to achieve download times that is almost independent of the number
of clients and very close to optimal.

1 Introduction
Peer-to-peer systems, in which peer computers form a cooperative network and share their
resources (storage, CPU, bandwidth), have attracted a lot of interest lately. They provide
a great potential for building cooperative networks that are self-organizing, efficient, and
scalable.

Research in peer-to-peer networks has so far mainly focused on content storage and
lookup; fewer efforts have been spent on content distribution. By capitalizing on the band-
width of peer nodes, cooperative architectures offer great potential for addressing some of
the most challenging issues of today’s Internet: the cost-effective simultaneous distribution
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†This work was done while P. Felber was with Institut EURECOM
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of bandwidth-intensive content to thousands of users both Internet-wide and in private net-
works.

Cooperative content distribution networks are inherently self-scalable, in that the overall
bandwidth capacity of the system increases as more peers arrive: each new peer requests ser-
vice from, but also provides service to, the other peers. The network can thus spontaneously
adapt to the demand by taking advantage of the resources provided by every peer.

We present a deterministic analysis that provides insights into how different approaches
for distributing a file to a large number of clients impact on performance. We consider the
simple case of N peers that simultaneously request to download the same file. Initially, the
file exists in a single copy stored at a node called source or server. We assume that the file
is broken up into chunks and that peers cooperate, i.e., a peer that has completely received a
chunk will offer to upload this chunk to other peers. The time it takes to download the file to
all peers will depend on how the chunks are exchanged among the peers, which is referred
to as peer organization strategy, or distribution architecture.

To get some insights into the performance of different peer organization strategies, we
analytically study three different distribution models:

• A linear chain architecture, referred to as Linear, where the peers are organized in
a chain with the server uploading the chunks to peer P1, which in turn uploads the
chunks to P2 and so on.

• A tree architecture, referred to as Treek, where the peers are organized in a tree with
an outdegree k. All the peers that are not leaves in the tree will upload the chunks to k
peers.

• A forest of trees consisting of k different trees, referred to as PTreek, which partitions
the file into k parts and constructs k spanning trees to distribute the k parts to all peers.

We analyze the performance of these three architectures and derive an upper bound on
the number of peers served within an interval of time t. We consider both the homogeneous
case, where all peers have the same bandwidth, and the heterogeneous case, where peers are
divided in classes based on their access bandwidth. In the heterogeneous case we consider
different cooperation schemes between the classes in order to understand how heterogeneity
affects the performance of the distribution scheme. For the sake of simplicity, we completely
ignore the bandwidth fluctuation in the network or node failures. We assume that the only
constraint is the upload/download capacity of peers.

The model presented in this paper represents a high level description of different pro-
tocols that uses similar mechanisms to distribute the content. The file to be distributed, in
fact, is broken into independent chunks and each chunk can be distributed individually. This
methodology is a basic functionality of BitTorrent [1], so, leaving out details such as chunk
selection strategies and peer selection strategies, our model is able to catch performance
bounds that can be obtained using such protocols.

Moreover, we suppose to have collaborative peers, i.e., each peer, if necessary, help
distributing the chunks. This principle is also known as swarming or hoarding: chunks
reach all the peers through the other peers, using their resources. The different distribution
architectures define different organizations of the paths that chunks can follow during the
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distribution process, and the topological properties of the distribution overlay network. Since
we have complete knowledge of the network, and the peer bandwidths are stable, these paths
can be considered deterministic, i.e., giving simple content distribution policies that are run
locally by each peer, the content follows paths that can be calculated (giving the desired
performance metrics we are interested in).

In this paper we disregard protocol details, focusing on general properties of the dis-
tribution organization. For instance, Avalanche [2] and BitTorrent differ in techniques for
chunk selection and encodings. We do not consider such properties, while both Avalanche
and BitTorrent can, with some modifications, be used to provide file distribution following
the general organization schemes studied in this paper.

1.1 Related Work
The early work by Saroiu et al. [3] analyzes Gnutella and Napster traces; the aim of the study
is to characterize end-user hosts, their connectivity and behavior. The results of the analysis
show the presence of significant heterogeneity in peer capacity, availability and behavior;
moreover, there is a fraction of peers that act primarily as clients (i.e., they only download)
and other primarily as servers (i.e., they are altruists).

In [4] authors analyze the trace of BitTorrent P2P application [1]; in this case the aim is to
assess the performance of the algorithm used in BitTorrent. They conclude that mechanisms
used by BitTorrent allow efficient and rapid replication of contents, even in presence of flash
crowd phenomena.

The work in [5] is among the first to propose an analytical model of a P2P system, eval-
uating its performance. The paper represents a P2P system as a multi-class closed queuing
network and it shows the influence of the design parameters, like peer request rate and file
popularity, on stationary performances.

In [6], authors use an age dependent branching process to model the transient evolution of
a P2P system and a simple Markovian model to analyze the steady state regime. This paper
introduces the concept of service capacity as the number of available copies in the network.
The results of this paper indicate that the number of clients that complete the download grows
exponentially in time and are in accordance with our results.

Fluid models have been recently considered given their analytical tractability and their
potential to describe dynamic and transient behavior. The work in [7] proposes a fluid model
for the analysis of the Squirrel protocol [8]. The result is an accurate model that estimates the
performance of the protocol. In [9] the authors study the BitTorrent protocol with a simple
fluid model. The model is able to catch the transient and the steady state behavior of the
system with a few simple parameters; moreover, an analysis of the different mechanisms of
BitTorrent is provided. In [10] a stochastic fluid flow model is proposed to study the file
distribution: the model computes the cumulative distribution of file transfer time and evalu-
ates the impact of the system parameters, such as file popularity, bandwidth characteristics,
concurrent downloads and uploads, on the performance.

Of the works above only [5] and [10] tackle the problem of presence of different access
capacities among peers which is instead one of the focuses of this paper. In contrast to our
work, both approaches do not consider file distribution process and do not take into account
distribution architectures.
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A related topic where distribution architectures are explicitly taken into account is the
delivery of streaming services through overlay multicast. Narada [11], ALMI [12], NICE
[13], and SplitStream [14] (from which the inspiration for PTree was taken), for instance,
define a set of mechanisms to efficiently distribute the content to many overlay nodes. They
build in different ways distribution trees and manage the dynamics of leaving and joining
nodes. Nevertheless most of these studies are focused on protocol design and do not analyze
the impact of distribution architectures on performance. Performance evaluation is only
focused on the proposed protocol.

Other studies, [15] and [16], analyze file swarming but do not consider any particular
architecture and are focused on other problems, like replication strategies and peer selection.
The work in [17] studies how to build the tree topology, but it does not compare different
topologies.

This paper extends the analysis made in [18] (partially replicated here) considering the
presence of different access bandwidths.

2 Homogeneous Case

2.1 General Assumptions
We consider a scenario where each peer has the same upload and download bandwidth b. The
case of asymmetric bandwidths (typically, with download greater than upload as in ADSL)
corresponds to the case with symmetric bandwidth equal to the upload bandwidth: in all the
presented schemes, in fact, the upload bandwidth is always saturated, so a greater download
bandwidth cannot contribute in improving the performance.

The upload bandwidth of the server is also b. We focus on the distribution of a single
file that is partitioned into C chunks. The time needed to download the complete file at
bandwidth b is referred to as one round or 1 unit of time. Thus, the time needed to download
a single chunk given a bandwidth b is 1/C.

We make the following assumptions:

• The server uploads the file indefinitely to one peer at time;

• Each peer starts serving the file once it has completely received the first chunk, and
uploads the whole file once to k peers, k = 1, 2, . . .

2.2 Linear: A Linear Chain Architecture
In this section, we study the evolution over time of the number of served peers for the Linear
architecture. At any point in time, the server uploads the file to a single peer. Each peer
has a bandwidth b and uploads the whole file to exactly one other peer (k = 1) before it
disconnects. Thus, each peer contributes the same amount of data to the system as it receives
from the system. At time 0, the server starts serving a first peer. At time 1/C, the first peer
has completely received the first chunk and starts serving a second peer. Likewise, once the
second peer has received the first chunk at time 2/C, it starts serving a third peer and so on.
As a result, peers are connected in a chain with each peer receiving chunks from the previous
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one and serving the next one. The length (i.e., the number of peers) of the chain increases by
one peer each 1/C unit of time. At time 1, the server finishes uploading the file to the first
peer. If there are still peers left that have not even received a single chunk, the server starts
a new chain. The same process repeats at each round, as shown in Fig. 1 (the black circle
represents the server, the black squares are peers that start downloading the file, and the lines
connecting the peers correspond to active connections). This makes (t + 1) chains within t
rounds. The number of served peers at time t over all those chains includes only the peers
that have joined the network on or before time t − 1. Given a chain initiated at time 0, its
length at time t is (1 + t · C) and the number of served peers in that chain is 1 + (t − 1)C
peers. Including all parallel chains, the number of served peers within t rounds is given by

NLinear(C, t) =

t
∑

i=1

(1 + (i − 1)C) = t +
C · t(t − 1)

2
. (1)

The number of peers served grows linearly with the number of chunks C and quadratically
with the number of rounds t. From Equation (1) we derive the time needed to serve N peers:

TLinear(C, N) =
(C − 2) +

√

(C − 2)2 + 8 · N · C
2 · C ≈ 1

2
+

√

1

4
+

2 · N
C

. (2)

N/C is the node to chunk ratio and we distinguish the following cases:

1. TLinear(C, N) ≈ 1
2

+
√

1
4

= 1, for N
C
� 1

2. TLinear(C, N) ≈ 1
2

+
√

2 ≈ 2, for N
C
' 1

3. TLinear(C, N) ≈
√

N
C

, for N
C
� 1

Fig. 2 plots TLinear(C, N) as a function of the number of peers for different values of the
number of chunks C. As expected, for a given number of peers N , the smaller the node to
chunk ratio N/C, the shorter the time to serve all N peers. In fact, for N/C � 1 all peers
are active uploading chunks for most of the time and TLinear is approximately one round.
On the other hand, for N/C > 1 only C out of the N peers will be uploading at any point
in time, while the other N − C peers have either already forwarded the entire file or not yet
received a single chunk.

2.3 Treek: A Tree Distribution Architecture
As we have just seen, for N/C > 1 the linear chain fails to keep all the peers working most of
the time. To alleviate this problem we now consider Treek, a tree architecture with outdegree
k where the number of “hops” from the server to the last peer is approximately logk N , as
compared to N for the linear chain. We make the following assumptions:

• The server uploads to k peers in parallel, each with a bandwidth of b/k;

• Each peer downloads the whole file at bandwidth b/k;
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Figure 2: TLinear(C, N) as a function of N
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• A peer that is interior (i.e., non leaf) node of the distribution tree starts uploading the
file to k other peers, each at a bandwidth b/k, as soon as it has received the first chunk.
This means that interior nodes upload an amount of data equivalent to k times the size
of the file, while leaf nodes do not upload the file at all;

Given a download bandwidth of b/k, a peer needs k/C units of time to receive a single
chunk. To compute the download times in a tree architecture we need to know the number of
levels l in a tree with N nodes. Without loss of generality, we assume that the tree is full. At
the first level, the tree contains k nodes (the level 0 is the server itself), the second k2 nodes
and so on; therefore N =

∑l
j=1 kj = k kl−1

k−1
and l = logk

(

N k−1
k

+ 1
)

. The total download
time is

TTree(C, k, N) = k +

[

logk

(

N
k − 1

k
+ 1

)

− 1

]

· k

C
. (3)

The term k/C is the transfer delay of each level in the tree. Leaf peers start receiving the
first chunk after (logk

(

N k−1
k

+ 1
)

− 1) · k
C

units of time. They complete the download k
units of time later. We subtract 1 to the number of levels because the time to upload the first
chunk to the leaves is included in the time to upload the whole file.

We derive from Equation (3) the number of peers served within t rounds

NTree(C, k, t) ≈
(

k(t−k) C
k

+1 − 1
) k

k − 1
. (4)

It follows from Equation (3) and (4) that the performance of file distribution directly depends
on the degree k of the tree.

The optimal outdegree kopt depends on the peer to chunk ratio N/C (see Fig. 3). For
N/C ≤ 1, the optimal outdegree is 1, i.e., a linear chain, since the peers are uploading
most of the time at their full bandwidth capacity. For N/C > 1, an increase in N/C leads
to an increase in the optimal outdegree as the linear chain becomes less and less effective
(remember that only C out of the N peers are uploading simultaneously).
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In practice, the outdegree can only take integer values and we see that for N/C > 1 the
binary tree yields lower download times than the linear chain. The binary tree is also the
optimal tree. Remember that in Ttree the outdegree k appears as an additive constant that is
typically much larger than the other term ((logk

(

N k−1
k

+ 1
)

− 1) · k/C)
Trees, however, suffer from two important shortcomings:

1. While the maximum upload and download bandwidth is b, the peers in a tree down-
load only at bandwidth b/k. As a consequence, the download time is at least k-times
the time it takes if the file were downloaded at the maximum possible download band-
width;

2. In a tree of outdegree k and height l, there are kl leaf nodes and kl−k
k−1

interior nodes.
Since only the interior nodes upload chunks to other peers, this means that (in a binary
tree) more than half of the peers will not upload even a single block. Also, the peers
that upload must upload the entire file k times.

2.4 PTreek: An Architecture Based on Parallel Trees
The overall performance of the tree architecture would be significantly improved if we could
capitalize on the unused upload capacity of the leaves to utilize the b− b/k unused download
capacity at each of the peers. It is not possible, however, for a leaf to serve other peers upward
its tree because it only holds chunks that its ancestors already have. Given a tree architecture
with k trees rooted at the server, the basic intuition underlying the PTreek architecture, as
described in [18], is to “connect” the leaves of one of the trees to peers of the other k − 1
trees to ultimately produce k spanning trees, and have the server send distinct chunks to each
of these trees.

More specifically, the PTreek architecture organizes the peers in k different trees such
that each peer is an interior peer in at most one tree and a leaf peer in the remaining k − 1
trees. The file is then partitioned into k parts, where each part is distributed on a different
tree: tree T k for part P k. All k parts have the same size in terms of number of bytes. If the
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entire file is divided into C chunks, each of the k parts will comprise C/k disjoint chunks.1

Such a distribution architecture was first proposed under the name of SplitStream [14] to
increase the resilience against churn (i.e., peers failing or leaving prematurely) in a video
streaming application.

In PTreek, a peer receives the k parts in parallel from k different peers, each part at band-
width b/k, while the peer helps distributing at most one part of the file to k other peers.
Therefore, the total amount of data a peer uploads corresponds exactly to the amount con-
tained in the file, regardless the outdegree k of the trees.
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Figure 4: Evolution of the PTreek=2 architecture
with time.
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Fig. 4 depicts the basic idea of PTreek=2, where k denotes the outdegree of each tree.
Each peer, except for peer 4, is an interior peer in one tree and a leaf peer in another tree. It
is easy to show that, independent of the outdegree k, there will always be one peer in PTreek

that is leaf in all k trees.
The deterministic analysis of a PTreek architecture begins observing that the server starts

k different distribution trees and each tree contains all N nodes. The number of levels l in a
tree with N nodes2 can be found considering that the first level contains 1 node, the second k

nodes, the third k2 nodes, and so forth; so N =
∑l

j=0 kj = kl+1−1
k−1

and l = logk

(

N(k−1)+1
k

)

.

A PTreek peer is a leaf node in k−1 trees and an interior node in one tree, and it receives
all k parts in parallel. This means that all peers complete their download at the same time
1 + (l − 1) · k/C. We subtract 1 to the number of levels because the time to upload the first
chunk to the leaves is included in the time to upload the whole file. The total download time
is then

TPTree(C, k, N) = 1 +

[

logk

(

N(k − 1) + 1

k

)

− 1

]

· k

C
. (5)

We derive from Equation (5) the number of peers served within t rounds as

NPTree(C, k, t) ≈
(

k(t−1) C
k

+1 − 1

k

)

k

k − 1
. (6)

1For the sake of simplicity, we assume that the number of chunks C is a multiple of the number of parts k.
2Again, we assume a full tree.
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As for the tree architecture in Section 2.3, there is an optimal value k for PTreek that mini-
mizes the service time. Intuitively, a very deep tree should be quite inefficient in engaging
peers early since leaves are quite far from the source. In fact, PTreek=1 is equivalent to Lin-
ear, which is very inefficient in engaging peers for N/C > 1. On the other hand, when the
outdegree of the tree is large, leaf peers are only a few hops from the source and can be en-
gaged fast. However, this intuition is not completely correct: flat trees with large outdegrees
suffer from the problem that, as the outdegree k increases, the bandwidth b/k at which each
chunk is transmitted from one level to the next one decreases linearly with k. This bandwidth
reduction can negate the benefits of having many peers reachable within few hops.

We can compute the optimal tree outdegree that provides the best PTreek performance
by taking the derivative of Equation (5) with respect to k and equating the result to zero.

Fig. 5 depicts the performance of PTreek as a function of the outdegree. We see that
the optimal PTreek performance is obtained for trees with an outdegree k = 3. However, the
performance for k = 2 and k = 4 is almost the same as for k = 3. As the outdegree increases
the performance of PTreek degrades: for N/C ≈ 1 the degradation is very small while for
N/C � 1 it is quite pronounced. It is interesting to notice that the optimal outdegree k for
PTreek architectures is different from that of a single Treek.

By striping content across multiple trees, PTreek can ensure that the departure of one
peer causes only a minimal disruption to the system, reducing the peers’ throughput only by
b/k. Given that the overhead caused by churn can be minimized by striping content across
a higher number of trees, one can consider slightly higher outdegrees than the optimal value
(e.g., 5) to minimize the impact of churn at the expense of a minimal increase in transfer
time.

2.5 Comparative Analysis for the Case of Homogeneous Peers
In this section, we compare the performance of the Linear, Treek and PTreek architecture.
We first investigate how the time needed to serve N peers varies as a function of the number
of peers N and the number of chunks C.
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Figure 6: Performance of Linear, Treek={2,3} and PTreek={2,3} as a function of N .

From Fig. 6, we see that regardless of the number of nodes, chunks and outdegree k,
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PTreek is able to offer download times close to 1. On the other hand, as already pointed out,
the download times for Treek are always larger than k units of time (see Equation (3)).

When the propagation delay of the first chunk is very small compared to the transmission
time of the file, the peers stay engaged most of the time in the linear chain and the benefit of
PTreek diminishes. This is the case when the number of chunks is very large (C → ∞), the
number of peers is small, or the transmission bandwidth is very high. The pivotal point where
PTreek starts to significantly outperform Linear is around N/C > 10−1 (see Fig. 6(b)).

3 Heterogeneous Case

3.1 General Assumptions
So far we have assumed that all peers have the same constant upload and download band-
width. We now study the case where we have two classes of peers, referred to as fast peers
and as slow peers. We look at different types of collaborative strategies among the two
classes and are interested in how the fast peers can help the slow ones to improve their
download time and how this will affect the download time of the fast peers. In addition to
those described for the homogeneous case, the main assumptions are as follows:

• There are only two classes of peers in the network: class 1 (fast peers) with upload and
download bandwidth b1 and class 2 (slow peers) with upload and download bandwidth
b2; b1 > b2. In this case we define one round the time it takes to download the complete
file at bandwidth b2;

• The number of peers in class 1 and class 2 is equal to N1 and N2 respectively; the total
number of peers is N = N1 + N2;

• The server has sufficient bandwidth to upload concurrently to the two classes, i.e., its
upload bandwidth bS is equal to b1+b2; this hypothesis simplifies calculations and does
not greatly influence the final results since the impact is only on peers that download
from the server3;

• Peers can be selfish, i.e., they disconnect as soon as they finish downloading the con-
tent, or altruistic, i.e., they remain in the system for a certain period of time after
finishing the download (the time lapse is related to the specific used policy).

We consider four different variations for each of the architectures that differ in the way
the peers cooperate. The most obvious policy is one where the peers in each class behave
as if the peers in the other class do not exist. This scheme is referred to as independent. In
the other three policies the fast peers always help the slow peers while the slow peers either
do not upload any data at all or upload data to other slow peers. We analyze in detail the
variations on the linear distribution architecture and then extend the results on the Treek and
PTreek architectures.

3We are interested in keeping the number of peers that download from the server as small as possible,
otherwise the network departs from a P2P architecture and resembles more a traditional client/server one.
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3.2 Linear Architecture and Independent Classes
In this case the server uploads chunks independently to each class; peers belonging to a
class do not exchange contents with other class’s peers. Fig. 7 shows the chunk distribution
methodology.

Figure 7: Chunk distribution with two independent classes

Generalizing the result of Eq. (2), it is straightforward to derive the time necessary to
distribute the content to Ni peers with bandwidth bi using a Linear scheme is

T Class i
Lin, Ind(bi, C, Ni) =

F

bi
· (C − 2) +

√

(C − 2)2 + 8NiC

2C
(7)

where F is the file size in bits and bi the capacity of the class i in bit/s. Since the two classes
evolve independently, the total time necessary to reach N peers depends, considering N �
C, whether N2 > N1

(

b2
b1

)2

(slow peers terminate after fast peers) or not (fast peer terminate
after slow ones). The above threshold is obtained from the simplification of Equation (1).

Fig. 8 shows the total time against the number of peer n: in this example we have two
classes with the same number of peers, i.e. N1 = N2 = N/2, where N = 104, and different
bandwidth ratios: we assume that the bandwidth of class 2 is fixed, with F/b2 = 1 and the
bandwidth of class 1 is 2, 5, 10 and 100 times greater.

3.3 Linear Architecture with Generous Fast Peers
With this configuration slow peers do not upload any chunk; they only download from fast
peers; fast peers upload in parallel the chunks to one fast and one slow peer. Each fast
peer stops after it has completely served one slow peer. Fig. 9 shows the chunk distribution
scheme in this case.

At the beginning, the evolution in time is equivalent to a single class with capacity b∗1 =
b1 − b2. Each slow peer finishes to download F

b2
+ F

Cb∗1
− F

b∗1
rounds after the correspondent

fast peer terminates. When all the peers of one class are reached by the content, the evolution
of the system is different depending whether N1 is larger or smaller than N2. Let n be the
number of peers that have already finished downloading at time t, 0 < n < N . If N1 < N2

then fast peers finish before slow ones (see Fig. 9 ) and, when n > 2N1, the remaining slow
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Figure 8: Linear chain with independent classes: time necessary to complete the download
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Figure 9: Chunk distribution with generous fast peers

peers can only download from the server (they are not collaborative, so they do not upload to
any other peers); in this case bS/b2 peers finish the download every F/b2. If N1 > N2 then
slow peers finish before fast ones and, when n > 2N2, the remaining fast peers evolve with
full bandwidth b1.

Fig. 10 shows the behavior in two cases. When N1 < N2 (here N2 = 10N1, with N1 '
900) it is possible to see that, after 2N1, the system evolves very slowly, since only the server
uploads the content. On the contrary, when N1 > N2 (here N1 = 10N2, with N2 ' 900),
only a small part of fast peers are involved in helping slow peers; after 2N2 peers are served,
the system evolves faster. The figure shows how the system evolves: to see the difference
between the phase when class 1 has a capacity equal to b∗1 and when it has a capacity equal
to b1, the dashed line represents the evolution if class had always a capacity b∗1. In case of
greater bandwidth ratios (not shown here), the difference becomes entirely negligible.

Considering the case N1 < N2 (the results for N1 > N2 are trivial), the total download
time for class 1 is

T Class1
Lin, Gen(b

∗
1, C, N1) =

F

b∗1
· (C − 2) +

√

(C − 2)2 + 8N1C

2C
. (8)

For class 2 we have to distinguish between the two phases: let n2 be the number of slow
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Figure 10: Linear chain with generous fast peer: time necessary to complete the download
(N = 104, C = 102); (a) N1 < N2, when fast peers have completed, slow peers can
download only from the server; (b) N1 > N2, after helping slow peers, fast peers evolve with
full bandwidth

peers that have completed the download, we have

T Class2
Lin, Gen(b2, C, N2) =

{

T Class1
Lin, Gen(b

∗
1, C, n2) + F

b2
+ F

Cb∗1
− F

b∗1
if n2 < N1

T Class1
Lin, Gen(b

∗
1, C, N1) + F

bS
n2 if n2 > N1

(9)

3.4 Linear Architecture with Generous Fast Peers and Collaborating
Slow Peers

In this configuration the system evolves as in the previous case, except that each slow peer
served by a fast peer starts a new chain of slow peers. In this case each fast peer serves one
fast peer and one slow peer, and each slow peer serves another slow peer. Fig. 11 shows the
chunk distribution methodology in this case.

Figure 11: Chunk distribution with generous fast peers and collaborative slow peers

With this scheme we try to exploit the unused capacity of slow peers. While fast peers
continue to upload chunks to slow peers, each slow peer starts a new chain. The rate of slow
chain creation is equal to the rate new fast peers are involved in the distribution process.
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Looking at fast peers, the download time can be found, as in the previous case, simply
considering a Linear evolution with capacity b∗1 = b1 − b2. When class 2 completes before
class 1, the remaining fast peers evolve with full bandwidth b1. We can approximate the total
download time of class 1 using an upload bandwidth b∗1 and obtain

T Class1
Lin, GenColl(b

∗
1, C, N1) =

F

b∗1
· (C − 2) +

√

(C − 2)2 + 8N1C

2C
. (10)

As slow peers are concerned, in order to find the total download time we first find the number
of slow peers that have completed the download at time t and then it is possible to derive the
formula of total download time against the number of served slow peers.

Consider the first chain of fast peers. A new fast peer is reached by a chunk every
F/(Cb∗1), so the number of fast peers in the first fast chain is tclass1−F/b∗1

F/(Cb∗1)
+ 1, where, for

notation simplicity, we use tclass1 instead of T (b1, C, N1). For each fast peer a new slow
chain is started. The number of slow peers in a slow chain at time t is 1 + t−tstart−F/b2

F/(Cb2)
, where

tstart is the time when the chain is started. The number of slow peers contained in all the slow
chains generated by the first fast chain is then

tclass1−F/b∗1
F/(Cb∗1)

+1
∑

j=1

max

(

0,

⌊

1 +
t − j F

Cb∗1
− F

b2

F/(Cb2)

⌋)

(11)

where tclass1 is the time necessary to class 1 to complete.
The second fast chain generates a number of slow chains equal to tclass1−2F/b∗1

F/(Cb∗1)
, so the

number of slow peers contained in all the slow chains generated by the second fast chain is

tclass1−2F/b∗1
F/Cb∗

1
+1

∑

j=1

max



0,







1 +
t −
(

j F
(Cb∗1)

+ F
b∗1

)

− F
b2

F/(Cb2)











 . (12)

Applying the calculus for every fast peer chain, we obtain the total number of slow peer
reached at time t

n2(t) =

tclass1
F/b∗

1
∑

k=0

tclass1−(k+1)F/b∗1
F/(Cb∗

1
)

+1
∑

j=1

max



0,







1 +
t −
(

j F
Cb∗1

+ k F
b∗1

)

− F
b2

F/(Cb2)











 . (13)

From this relation, it is possible to find

T Class2
Lin, GenColl(b2, C, N2) such that n2(T

Class2
Lin, GenColl) = N2 . (14)

It is important to note that equation (13) does not take into account the possible contribution
of the server if it becomes available (this happens if class 1 terminates before all slow peers
finish): nevertheless we consider the contribution not significant, since there is a slow chain
started every fast peer.

Fig. 12 shows the total time versus the number of peers n: in this case N2 = 10N1, where
N1 + N2 = N = 104. The collaboration of slow peers ensures that the whole capacity of the
system is well exploited even when the number of fast peers is relatively small.
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Figure 12: Linear architecture: system evolution with Generous scheme with Collaboration
(N2 = 10N1, N = 104)

3.5 Linear Architecture with Altruistic Fast Peers
In this configuration each fast peer, after uploading the content to a fast peer, stays on-line
and serves slow peers; when b1 � b2, parallel upload is employed to fully exploit the upload
capacity of the fast peers and b1/b2 slow peers start to download from a single fast peer to
finish their download F/b2 time later. For simplicity, we suppose no collaboration of slow
peers, i.e., slow peers do not start new chains. We suppose that fast peers are able to serve
all the slow peers, i.e., b1

b2
N1 > N2. Fig. 13 shows the chunk distribution scheme in this case.

Figure 13: Chunk distribution with altruistic fast peers

Considering an instant t, the number of slow peers that has completed is equal to the
number of fast peers that have completed at time t − F/b2 multiplied by a factor b1/b2. The
total download time for class 1 is equal to the total download time found for the Independent
case, i.e.,

T Class1
Lin, Altr(b1, C, N1) =

F

b1
· (C − 2) +

√

(C − 2)2 + 8N1C

2C
. (15)

The total time for class 2 to complete is

T Class2
Lin, Altr(b2, C, N2) = F

b2
+ T Class1

Lin, Altr(b1, C, b2
b1

N2) given that N1 > b2
b1

N2 (16)
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where the last term is the time necessary to reach a number of fast peers that is able to
serve all the slow peers. Fig. 14 shows the total time against the number of peers n, with
N1 = N2 = N/2, where N = 104.
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Figure 14: Linear chain architecture: system evolution with Altruistic scheme (N1 = N2,
N = 104)

3.6 Comparative Analysis for Linear Architecture
We consider the four cases obtained combining b1 = 5b2, b1 = 10b2 and N2 = N1, N2 =
10N1. In particular we focus on a total number of peers equal to 104: the analyzed cases
correspond to (i) N2 = N1 = 5000 and (ii) N1 ' 900 and N2 = 10N1 ' 9000. We suppose
a number of chunks equal to 102 or 103. We consider the file size and the bandwidth b2 such
that F/b2 = 1 round. Other combinations of parameters yield results that confirm the insight
achieved with these simple cases.

Figs. 15 and 16 show how the system evolves in terms of the percentage of completed
peers for each class. Fig. 15 shows the case b1 = 5b2, with N1 = N2, whereas Fig. 16 shows
the case of b1 = 10b2, with N2 = 10N1. We see that when the fast peers help the slow ones,
the performance of slow peers is greatly improved, especially for N2 = 10N1. The Generous
scheme with Collaboration achieves near optimal performance, regardless of bandwidth ratio
and number of peers ratio. In particular, in Fig. 15, class 2 finishes even before class 1. The
reason is that a lot of slow chains are started almost at the same time (i.e., one slow chain
every F/(Cb1), whereas only one fast chain every F/b1 is created). Each of these slow
chains, after the whole file is uploaded, adds a new slow peer every F/(Cb2), so in few slots
of time (each slot is F/(Cb2)) a lot of slow peers are reached.

When we have many more slow peers than fast ones (Fig 16) the download time with the
Generous scheme is very high for most of the slow peers that will be served by the server.
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Figure 15: System evolution with Linear architecture (b1 = 5b2, N1 = N2, N = 104)
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Figure 16: System evolution with Linear architecture (b1 = 10b2, N2 = 10N1, N = 104)

3.7 Treek and PTreek Architectures and Overall Comparison for Het-
erogeneous Case

In order to compare different cooperation schemes compactly, we introduce a new metric that
measures how much longer it takes to download the file to all peers of a class as compared to
the time it would take a single peer of that class to download the file directly from the server.

Normalized Total Download Time for class i =
Total Download Time for class i

F/bi

Regardless of the architecture, scheme or bandwidth ratios, a value of one for the Normalized
Total Download Time is an optimal lower bound.

Figs. 17 and 18 show the complete set of results for N1 = N2 and N2 = 10N1 respec-
tively, for two different values of C. For each scheme (reported on the x-axis) the normalized
total download time of each class for different bandwidth ratios is shown.

Independently from the ratio between fast and slow peers (N1 = N2 and N2 = 10N1),
the impact of a collaboration policy on the total download time of fast peers is negligible.
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For class 2 (slow peers), the Generous scheme with Collaboration performance is close to
optimal. The altruistic scheme performs nearly as well, with normalized download times
that are slightly higher than for the Generous scheme with Collaboration. Notice that the
collaboration of slow peers becomes fundamental when they outnumber fast ones.

100

101

102

103

Indep. Gener. G.Collab. Altr.

N
or

m
al

iz
ed

 to
ta

l d
ow

nl
oa

d 
tim

e

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(a) C = 10
2

100

101

102

103

Indep. Gener. G.Collab. Altr.
N

or
m

al
iz

ed
 to

ta
l d

ow
nl

oa
d 

tim
e

b1=5b2 Cl 1
Cl 2

b1=10b2 Cl 1
Cl 2

b1=100b2 Cl 1
Cl 2

(b) C = 10
3

Figure 17: Normalized total download time with Linear architecture achieved by each class
with different schemes (N1 = N2, N = 104)
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Figure 18: Normalized total download time with Linear architecture achieved by each class
with different schemes (N2 = 10N1, N = 104)

We want to compare the different cooperation schemes of the linear architecture and
introduce results and

Completing the analysis requires the derivation of results for the Treek and PTreek ar-
chitectures. To avoid cluttering the paper we do not derive here the formulas for Treek and
PTreek for the heterogeneous case, since most of the calculations are cumbersome and the
basic ideas used to find the final results are the same to those we adopt for the Linear archi-
tecture. The only new parameter introduced here is f : the outdegree used from fast peers to
slow peers (while k is the outdegree within the same class). We present in Table 1 the final
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results that indicate how the different collaboration schemes perform for Treek and PTreek,
and refer to the technical report [19] for more details on how these formulas are obtained.
Note that the Independent scheme is equivalent to he homogeneous case with bandwidth b1

or b2. As the other schemes are concerned, fast peers evolve as in the independent scheme,
with a modified bandwidth; slow peers have a term equal to F

b2
(that is the minimum time to

upload the file F to a peer with bandwidth b2) plus the time necessary for the fast peer to
reach the leaves (Generous scheme) or to finish the download (Altruistic scheme).

Table 1: Treek and PTreek architectures performance comparison.

Archi-

tecture Scheme Dwld Time Class 1 Dwld Time Class 2

Linear Indep. F
b1
· (C−2)+

√
(C−2)2+8N1C

2C
F
b2
· (C−2)+

√
(C−2)2+8N2C

2C

Gener. same as Indep., with b∗1 = b1 − b2
F
b2

+ F
Cb∗1

− F
b∗1

+ tclass1

G.+Coll same as Indep., with b∗1 = b1 − b2 not explicitly reversible

Altr. same as Indep. F
b2

+ tclass1

Treek Indep. F
b1

{

k + k
C

[

logk

(

N1
k−1

k
+ 1
)

− 1
]}

F
b2

{

k + k
C

[

logk

(

N2
k−1

k
+ 1
)

− 1
]}

Gener. same as Indep., with b∗1 = b1 − fb2
F
b∗1

k
C
logk

(

N1
k−1

k
+ 1
)

+ F
b2

G.+Coll same as Indep., with b∗1 = b1 − fb2 not explicitly reversible

Altr. same as Indep. F
b2

+ tclass1

PTreek Indep. F
b1

{

1 + k
C

[

logk

(

N1
k−1

k
+ 1

k

)

− 1
]}

F
b2

{

1 + k
C

[

logk

(

N2
k−1

k
+ 1

k

)

− 1
]}

Gener. same as Indep., with b∗1 = b1 − fb2/k
F
b∗1

k
C
logk

(

N1
k−1

k
+ 1

k

)

+ F
b2

G.+Coll same as Indep., with b∗1 = b1 − fb2/k
F
b∗1

k
C
logk

(

N1
k−1

k
+ 1

k

)

+ F
b2

Altr. same as Indep. F
b2

+ tclass1

Fig. 19(a) shows the results for all three architectures when b1 = 5b2 and N1 = N2. Look-
ing at class 1, as we already observed for the homogeneous case, the more sophisticated the
architecture, the closer the total download time to the optimum. The adopted collaboration
scheme has almost no impact on the performance of peers in class 1. The results obtained for
class 2 can be quite sensitive with respect to the collaboration scheme: A Generous scheme
can greatly improve the performance of slow peers and allows them to obtain, regardless of
the architecture, a near-optimal download time.

These results are confirmed when we have many more slow peers than fast ones (see
Fig. 19(b)). A small number of very fast peers can make the total download time of slow
peers come close to the optimal one.

As the PTreek architecture is concerned, near optimal performance for peers in both
classes is achieved even if the peers in the two classes operate independently: this means
that it is not possible to find a collaboration scheme that will significantly improve the per-
formance, as it can be expected since the PTreek scheme fully exploit all resources.
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Figure 19: Normalized total Download Time for different architectures and collaboration
schemes ( N = 104, C = 103)

The most remarkable observation, however, is that heterogeneity does not necessarily
jeopardize the performance. Indeed, in presence of heterogeneous peers, some simple forms
of cooperation between different peer classes can help improving the performance of the slow
peers without significantly affecting fast ones, even with simple distribution architectures.

4 Conclusions and Perspectives
The self-scaling and self-organizing properties of peer-to-peer networks allow to quickly and
efficiently distribute content to huge client populations. Cooperative distribution techniques
capitalize on the bandwidth of every peer to offer a service capacity that grows exponentially,
provided the blocks among the peers are exchanged in such a way that the peers are busy most
of the time. The architecture that best achieves this goal among those studied in the paper,
independently of the peer to chunk ratio N/C, is PTreek: For a wide range of parameters
the PTreek allows to serve a large population of peers in a time that is just slightly above the
time it would take a single peer to download the file from the server, and this also happens
independently from the presence of different speed in access links.

Our analysis provided some important insights as to how to choose certain key param-
eters such as C and k. First, the file should be partitioned into a large number of chunks
C, since the performance scales exponentially with C (but not too many as each chunk adds
some coordination and connection overhead). Second, each peer should limit the number k
of simultaneous uploads to other peers. We saw that for PTreek a good value for k is between
3 and 5.

Our results for a heterogeneous peer populations indicate that for the linear architecture
when the fast peers help the slow peers, the slow peers can achieve close to optimal download
times while the download time of the fast peers will not suffer. It is worth noticing how
different organization schemes are affected by heterogeneity. Linear architecture, that in
the homogeneous case is shown to have poor performances, in the heterogeneous case with
helping fast peers obtains performance near to optimality. In the more sophisticated Treek
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and PTreek organization schemes, finding appropriate ways for fast peers to help slow ones
is more difficult. In the PTree architecture in particular almost any devised helping scheme
leads to poorer performances, at least for fast peers.

The results of our study also guide the design of cooperative peer-to-peer file sharing
applications that do not organize the peers in a such a static way as do the linear chain or
tree(s) but use a mesh instead (e.g., BitTorrent [1]). Here, a peer must decide how many
peers to serve simultaneously (the outdegree k) and what chunks to serve next (the “chunk
selection strategy”). For each chunk, a peer selects the peer it wants to upload that chunk to
(the “peer selection strategy”).

Consider a peer selection strategy that gives preference to the peers that are closest to
completion (among those that have the fewest incoming connections), and a chunk selection
strategy that favors the chunks that are least widely held in the system. Assume that each peer
only accepts a single inbound connection. With 1 outbound connection per peer, we trivially
obtain a linear chain; with 2 outbound connections, we obtain a binary tree Treek=2; and so
on. Failures are handled gracefully as the parent of a failed peer automatically reconnects to
the next peer in the chain or tree.

If we now allow each peer to have k inbound and k outbound connections, we obtain
a configuration equivalent to PTreek. Indeed, the source will fork k trees to which it will
send distinct chunks (remember that we give preference to the rarest chunks). The leaves of
the trees, which have free outbound capacity, will connect to the peers of the other trees to
eventually create k parallel spanning trees. Such mesh-based systems [20], whose topology
dynamically evolves according to predefined peer and chunk selection strategies, offer ser-
vice times as low as the ones of PTreek and adjust dynamically to bandwidth fluctuations,
bandwidth heterogeneity, and node failures.
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