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1 From 2D to 3D 
Evaluations such as the FERET Tests and Face Recognition Vendor Test 2002  [6], have underlined that the current state 

of the art in 2D face recognition is not yet sufficient for use in biometric applications. Indeed, although recent 

algorithms show fairly high accuracy under tightly constrained conditions, their performances degrade significantly 

when these constraints are relaxed. Thus, variations due to pose, facial expression, aging, occlusion of parts of the face 

and illumination of the scene bring to the face recognition community new problems to solve. Of course, some efforts 
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have already been made in order to overcome these difficulties, but obtained results, in terms of recognition rate 

confirmed that these types of variations are a real challenge. 

Since the beginning of the nineties, 3D has been believed to be a good means to tackle some of the cited problems, as it 

is intrinsically pose and illumination invariant. But this technique has long been left aside by the community due to the 

cost and inaccuracy of 3D sensors. In the recent years, these sensors have become cheaper, faster and more accurate, 

allowing works of face recognition using 3D models of faces to be carried out. 

Unlike in the 2D case, only a few databases of 3D face model are publicly available to date and in most cases the 

number of subjects and the quality of the 3D models are quite low. This leads in a fairly high number of works to 

testing promising techniques on ad-hoc, small 3D face databases and makes the real efficiency of the techniques 

difficult to evaluate. . The 3D_RMA is an example of a database of  3D face models represented by clouds of points. 

For a long time it has been the only publicly available database, and was of rather low quality. On the other hand 3D 

meshes (wrl, 3ds, …) are available today from the newest technologies, but in most cases are proprietary databases. 

Nevertheless, the constant progress of 3D capturing technologies is influencing the quality of the recognition 

techniques. Indeed, the first algorithms applied directly on clouds of points  [8], after a suitable triangulation, while more 

recent ones work directly on meshes, considering in some cases the information provided both by the 3D shape and  

texture. 

2 Short Background 
To date, the majority of research works in the field of face recognition, and all of the major commercial face recognition 

systems use intensity images of the face. This paradigm is referred to as 2D face recognition. On the other hand, 3D 

face recognition takes into consideration the shape of  the head, and in particular brings information about the depth, 

which is lost in 2D. 

For both 2D and 3D, the word identification refers to a one-to-many matching where the best matched person of the 

database is sought. Verification is means a one-to-one matching, through which is verified a claimed identity. Finally,  

multi-modal refers to a strategy that combines 2D and 3D information in order to achieve the recognition task. 

A brief description of the most interesting recognition schemes available in the literature is given in the following. 

2.1 The most interesting 3D recognition systems 

2.1.1 Face Recognition Using Range Images  [1] 
Some of the first approaches to the 3D face recognition worked on range data directly obtained by range sensors, due to 

the low costs of this hardware, respect to the laser scanners used for example by Gordon in  [5]. In fact, in [1] the range 

images are acquired by means of a structured light approach. The most important disadvantage of this choice are the 

missing data due to the occlusions or improperly reflected regions. This problem is then avoided using two sensors 

rather than one, and applying a merging step for integrating the obtained 3D data. The initial step, consists in calibrating 

the sensors, so that such parameters as projection matrix, camera direction, … are computed. Then merged images are 

computed, that is for every original 3D data point, the coordinates in the merged range image are calculated based on 
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the parameters of the virtual sensor. If 3D points of two different surfaces have to be mapped onto the same pixel, a sort 

of z-buffering is applied to disambiguate the mapping. The template images obtained from this acquisition process are 

then used as training and testing set for two different approaches. The first one are the eigenfaces. The dimension of the 

space of face templates is reduces applying the Principal Component Analysis both for training and testing, so that for 

each testing image the nearest one in terms of euclidian distance is searched. Another method is also tested on the 

template images, the HMMs (Hidden Markov Models). As this technique is only applicable on one-dimensional signals, 

the template images are first transformed in a mono-dimensional signal by means of a slide window, that move on the 

image from the top to the bottom and from the left to the right. The HMM has five states. For every person in the 

database, the parameters of the HMM are calculated in a training phase. When a test image is presented, the probability 

of producing this image is computed by means of the Viterbi algorithm. All images in the database have a size of 

75×150 pixels. Since both the method require a training phase, the dataset has been partitioned in two subsets of 120 

training and 120 test images. Results are shown in Table 1. For the experiments reported under the category smoothing, 

no rotation was done, but an additional smoothing step was applied, with σ=0.5 and σ=1.5. On the contrary, the rotation 

are controlled, so that the rotation around the y axis is constantly 30° and the rotation around the x axis is 20°. 

 

Preprocessing Eigenfaces HMM 

No preprocessing 97.50 % 90.83 % 

Smoothing σ=0.5 98.33 % 90.00 % 

Smoothing σ=1.5 98.33 % 76.67 % 

Rotation 100.00 % 89.17 % 

Table 1 Results of the range based method in terms of recognition rate. 
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2.1.2 Face Recognition Based on Depth and Curvature Features  [5] 
In past 2D approaches, the features used in describing faces have been limited to eyes, nose, mouth and face boundaries, 

neglecting the additional information provided by low contrast area, such as jaw boundary, cheeks and forehead. Then 

is clear that an approach based on range and curvature data has several advantages over intensity image approaches by 

virtue of the more available information. Furthermore curvature has the valuable characteristic of being viewpoint 

invariant. This method defines a set of high level features, which are eyes, nose and head, and includes the following 

features: Nose bridge (nasion), Nose base (base of septum), Nose ridge, Eye corner cavities (inner and outer), Convex 

center of the eye (eyeball), Eye socket boundary, Boundary surrounding nose, Opposing positions on the cheeks. Each 

of these regions on the face image is described in terms of a set of relationships of depth and curvature values. Since 

several region can respect a set of constraints, this set is designed in order to reduce the search to a single definition of 

the feature. The set of constraints is given by:  

• sign of Gaussian and mean curvature,  

• absolute extent of a region on the surface, 

• distance from the symmetry plane, 

• proximity to a target on the surface, 

• protrusion from the surrounding surface, 

• local configuration of curvature extrema. 

The high level features and regions are used to compute a set of low level features, where the most basic scalar features 

correspond to measurements of distances. The set of low level descriptors is given by: left and right eye width, eye 

separation, total span of eyes, nose height/width/depth, head width, maximum Gaussian curvature on the nose ridge, 

average minimum curvature on the nose ridge, Gaussian curvature at the nose bridge and base. For each face image, 

this set of features is computed, placing it in the space of all possible faces, while the Euclidean distance is used as 

measure in the scaled feature space. Two different training sets are used for feature detection and recognition. The 

former consists of 26 subjects, while the latter includes 8 faces with 3 views each for a total of 24 faces. Two different 

characteristics of the method are assessed in the experimentation. The first is a classification of the low level features on 

the basis of two main properties: robustness in detection (their measurements have to be consistent for the same face 

also when pose and/or expression change), discriminating power (their values must vary distinctly over the range of 

different individuals). The second is the recognition rate obtained for different sets of low level features. The results are 

shown in Table 2. For each of the targets there are two faces with the same identity remaining in the database. Table 2 

shows for each feature set the percentage of targets for which the best match was correct (top), and the percentage of the 

targets for which the second best match was also correct (bottom). The basic set denoted (I), includes the best 4 features 

head width, nose height, depth and width, while the other three set include increasing numbers of features added 

according to their discriminating power. 

 

Feature set considered Recognition Rates 

I 
75.0 % 

70.8 % 
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II 
91.7  % 

83.3 % 

IV 
95.8 % 

79.2 % 

III 
100.00 % 

79.2 % 

Table 2 Results of the depth and Curvature based face recognition method. 

2.1.3 A New Attempt To Face Recognition Using 3D Eigenfaces  [8] 
This method apply on the face models of the 3D_RMA database, in which models are represented by scattered point 

clouds. So the first problem to be addressed consists in building the mesh from the clouds of points. This is done by 

means of an iterative algorithm. At first the nose tip is localized as the most prominent point in the point cloud. Then a 

basic mesh is aligned with the point cloud, subdivided and tuned step by step as shown in Fig. 1. Four step are 

considered enough for the refinement process. Point clouds have different orientations, and resulting meshes preserve 

this orientation, so an average model is computed and all the meshes are aligned with it, tuning six parameters for the 

rotations and six for the translations. Due to the noise, some built mesh models cannot describe the geometric shape of 

the individual. These mesh models are called non face models. Each mesh contains 545 nodes and it is used as a bi-

dimensional intensity image, in which the intensity of the pixel is the Z-coordinate of the corresponding node. The 

eigenfaces technique is applied to these intensity images. A subset of the computed images is used for the training. Let 

M1, M2, …, Mn the mesh images in the training set and let be Maver the average mesh image and Φi= M1 - Maver. Then 

the covariance matrix is computed as: 

Tn

i
T
ii AA

n
C =ΦΦ= ∑ =1

1
 

The eigenvalues and the eigenvectors of the matrix C are computed, keeping only the e<n orthogonal eigenvectors u1, 

u2, …, ue, which correspond to the e<n largest eigenvalues. Both training and testing mesh images are projected on this 

space, while 20 most dominant 3D eigenfaces are considered, so that a vector V∈R1×20 is associated to each mesh 

model. The database used for the experiments is the 3D_RMA, which consists of subjects acquired in two different 

sessions. From these sessions two databases are built: automatic DB (120 persons) and manual DB (30 persons). After 

computing the similarity differences between test samples and the training data, the nearest neighbor classifier (NN) and 

the k-nearest neighbor classifier (KNN) are used for recognition. 
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Fig. 1 The regulated mesh models in different levels. (a) Basic mesh. (b) Level one. (c) Level two. (d) Level three. 

(e) Level four. 

 

The identification accuracy is evaluated on different subsets of the 3D_RMA database. Because of the limited quantity 

of samples, the Leave-one-out Cross Validation method is used (i.e. each time a mesh image is left out as a test sample 

and the training is done on the remainder), while the CMS (Cumulative Match Score) is used to evaluate the 

identification performances. Results are reported in the following tables which show the CCR (Correct Classification 

Rate) in manual DB (using NN and KNN), the CCR in the first 30 persons of the automatic DB (with and without non-

face meshes, using NN and KNN) and the CCR in the automatic DB (with and without non-face meshes, using NN and 

KNN). Table 3, Table 4 and Table 5 

 

Database NN KNN 

Manual DB, session 1 

(3 instances for each) 
92.2 % 92.2 % 

Manual DB, session 2 

(3 instances for each) 
84.4 % 84.4 % 

Manual DB, sessions 1 and 2 

(6 instances for each) 
93.9 % 93.9 % 

Table 3 CCR in manual DB (using NN and KNN). 

 

First 30 Models 

Non-face meshes 

removed 

(22 persons) 
Database 

NN KNN NN KNN 

Automatic DB, session 1 

(3 instances for each) 
71.1 % 73.3 % 83.3 % 83.3 % 

Automatic DB, session 2 

(3 instances for each) 
80.0 % 80.0 % 89.4 % 89.4 % 

Automatic DB, session 2 

(3 instances for each) 
80.6 % 82.2 % 92.4 % 92.4 % 

Table 4 CCR in the first 30 persons of the automatic DB (with and without non-face meshes, using NN and 

KNN). 
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All Models (120 

persons) 

Non-face meshes 

removed 

(91 persons) 
Database 

NN KNN NN KNN 

Automatic DB, session 1 

(3 instances for each) 
59.2 % 60.3 % 71.1 % 71.8 % 

Automatic DB, session 2 

(3 instances for each) 
59.2 % 61.1 % 67.4 % 68.5 % 

Automatic DB, session 2 

(3 instances for each) 
69.4 % 71.1 % 79.3 % 80.2 % 

Table 5 CCR in the automatic DB (with and without non-face meshes, using NN and KNN). 

2.1.4 Face Recognition Based on Fitting a 3D Morphable Model  [3] 
This face recognition system combines deformable 3D models with a computer graphics simulation of projection and 

illumination. Given a single image of a person the algorithm automatically estimates 3D shape, texture and all relevant 

3D scene parameters. The morphable face model is based on a vector space representation of faces. This space is 

constructed, such that any convex combination of the examples Si and Ti belonging to the space, describes a human 

face: 

∑∑
==

==
m

i
ii

m

i
ii TaTandSaS

11
 

In order to assure that continues changes on ai and bi represent a transition from one face to another, avoiding artifacts a 

dense point-to-point correspondence constraint has to be guaranteed. This is done by means of a generalization of the 

optical flow technique on gray-level images to the three-dimensional surfaces. Vectors S and T are directly extracted 

from the 3D model, where S is the concatenation of the Cartesian coordinates (x, y, z) of the 3D points and T is the 

concatenation of the corresponding texture information (R, G, B). Furthermore the PCA is applied to the vectors Si and 

Ti of the example faces i=1, 2, …, m, while the Phong’s model is used to describe the diffuse and specular reflection of 

the surface. In this way an average morphable model is derived from scans (obtained with a Cyberware™ 3030PS laser 

scanner) of 100 males and 100 females, from 18 to 45 years old. Then, by means of a cost function, the fitting algorithm 

optimizes a set of shape coefficients and texture coefficients along with 22 rendering parameters concatenated in a 

feature vector ρ, such as pose angles, 3D translations, focal length, … . Two paradigms have been used in order to test 

the method. In the first one all gallery images are analyzed by the fitting algorithm, and the shape and texture 

coefficients are stored. In the same way, for a probe image all the coefficients are computed and compared with all 

gallery data, in order to find the best match, a graphical representation is given in Fig. 2. In the second one, the three-

dimension face reconstruction is used in order to generate synthetic views of the subjects in a 2D face database, which 

are then transferred to a second viewpoint-dependent recognition system.  
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Fig. 2: Derived from a database of 200 laser scans, the 3d morphable model is used to encode gallery and probe 

images. For identification, the model coefficients α and β of the probe image are compared with the stored 

coefficients of all gallery images. 

 

Model fitting and identification have been tested on two publicly available databases of images: CMU-PIE et FERET. 

The individuals in these databases are not contained in the set of 3D scans that form the morphable face model. The 

reconstruction algorithm is run on all 4,488 PIE and 1,940 FERET images. For all images, the starting condition is the 

average face at a front view and with frontal illumination. On each image, between six and eight feature points are 

manually defined, while the following distance function has been used to compare two different faces ci: 

WW

W
w cc

cc
d

21

21 ,
⋅

=  with 2
1

121 ,, cCccc WW
−=  and where WC  is the covariance matrix. 

 

Table 6 and Table 7 show some detailed results on the PIE and FERET databases:  

 

Gallery view 
Probe view 

Front Side Profile 

Front 99.8 % 99.5 % 83.0 % 

Side 97.8 % 99.9 % 86.2 % 

Profile 79.5 % 85.7 % 98.3 % 

Total 92.3 % 95.0 % 89.0 % 

Table 6 Mean average identification rate on the CMU-PIE data set, averaged over all lightening conditions for 

front, side and profile view galleries. 
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Probe view Correct identification 

Ba (gallery) 

Bb 94.8% 

Bc 95.4% 

Bd 96.9% 

Be 99.5% 

Bf 97.4% 

Bg 96.4% 

Bh 95.4% 

Bi 90.7% 

Bk 96.9% 

Total 95.9% 

Table 7 Gallery images are frontal views extracted from Ba. Only condition Bk has different illumination 

condition than the others. 

 

2.1.5 3D Face Modeling Using Two Orthogonal Views and a Generic 

Face Model  [2] 
This method uses the 3D coordinates of a set of facial feature points, calculated from two images of a subject, in order 

to deform a generic 3D face model. Images are grabbed by two cameras with perpendicular optical axes. The 3D 

generic model is centered and aligned by means of the procrustes analysis, which models the global deformation, while 

local deformation are described by means of the 3D spline curves. The front and profile view of a subject are shown in 

Fig. 3. They are used in order to locate facial features, such as eyes and mouth, by means of a probabilistic approach. 

An example of the obtained 3D model is given in Fig. 4. Twenty-nine vertices are kept on this model, divided in two 

subsets, 15 principal vertices and 14 additional vertices. 

 

Fig. 3 Front and profile view of a subject. 

 

The algorithm has been applied to 26 subjects, giving a gallery of 26 models, each one characterized by a feature vector 

of 29 vertices coordinates. Then given the two views of a test face, the coordinates of the 29 feature points are 
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computed and compared with all the models in the gallery, in order to find the best match. It results that 25 people of 

the 26 subjects are classified correctly, with a recognition rate of 96.2%. 

 

Fig. 4 Generic 3D model 

2.1.6 Asymmetric 2D/3D Processing for Face Recognition [22] 
The introduced method  addresses the problem of pose and illumination variations. For that purpose, the authors 

propose an asymmetric 2D/3D scheme based on geometric invariants. Here, "asymmetric" means that enrolment is a 

2D+3D-based process (geometric invariants are computed using both 2D and 3D data), while recognition is a 2D only 

process (a single probe image is used). The choice for such a paradigm is based on the observation that, although 3D 

acquisition is becoming cheaper, the problem of 3D sensitivity to environment conditions (such as illumination) in the 

acquisition phase still exists. Furthermore, acquiring a 3D model from someone needs his/her cooperation while this is 

not necessarily the case for acquiring an image. Thus this paradigm appears to be more realistic than a scheme fully 

based on 3D. 

One of the problem underlined in this paper referring to the use of 3D geometric invariants is that previous works on the 

subject addressed the problem of rigid and clearly distinct object recognition. Obviously, faces don't belong to this class 

of 3D objects. Therefore, the 3D invariant has been chosen based on its robustness to noise regarding the position on the 

control points used in its computation. The one proposed by Weinshall [23] best meets this requirement: the invariant 

computation is performed on the 2D projection of the 3D model, but doesn't depend on the projection. The 19 control 

points were chosen as a subset of the feature points defined in MPEG-4.  

When a new user has to be enrolled, the system acquires both the 3D shape and the 2D texture of his/her face. The 

control points are then manually located on the 2D texture and the corresponding 3D points are automatically retrieved 

on the 3D shape. Ratios of distances (2D-based invariants) are computed using the (x,y) coordinates of the control 

points. Subsequently, the 3D-based invariants described in [23] are computed based on the acquired 3D model. The 

results of both steps are concatenated into a single feature vector. 

The recognition process is carried out as follows: let F be a query image submitted to the system. First, the 19 control 

points are manually located on F. The 2D invariants (distance ratios) are computed and used to retrieve the K-best 

subjects from the database. Then, the computation of the 3D invariant  takes place and permits to identify the individual 

on the probe image. 
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Experiments were carried out on a proprietary database of 50 individuals. There were 3 models per individual. In the 

first experiment the goal was to investigate how much the discriminative power of the 2D invariants drops with respect 

to K. In the second experiment, 50 models have been considered to assess the performances of the system with respect 

to the accuracy in locating the control points. Noise was randomly generated and added to the coordinates of the control 

points. 

 

Fig. 5 (a) Recognition rate of the system, varying pose and the K parameter. (b) The 

probability that the correct subject is the first answer or is in the first 5 answers, when 

increasing random noise is added and K = 20. 

Results show (cf. ellipses) that manual selection of the control points introduced an uncertainty equivalent to an additive 

noise of 3 pixels. Despite this manual selection step, recognition rates obtained are encouraging and call for experiments 

using an automatic feature points detection method. 

 

2.1.7 Component-based Face Recognition using 3D Morphable Models 

[10] 
This system is an attempt to solve the problem of pose and illumination variations. The authors' solution uses a view-

based approach to the problem, where a set of synthetic images with different pose and illumination conditions are 

artificially created for each enrolled person. 

More precisely, at enrolment, the use of a morphable model allows the computation of a 3D model from face images 

using an analysis by synthesis method [11]. To create the 3D face model, only three images of a person's face are 

needed. Once the 3D face models of all the subjects in the training database are computed, arbitrary synthetic face 
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images under varying pose and illumination conditions are generated to train a component-based recognition system 

(the components of a face are characteristic parts of this face). 

 

 

  

Fig. 6 Generation of the 3D model. 

 

Before training the component-based recognition system, a component-based detector is used, which takes as input a 

2D image of a face. It detects the face in the image and extracts the facial components. This part of the system is first 

used to extract the components of the synthetic face images generated from the 3D models. Histogram equalization is 

performed on the extracted components to later improve recognition accuracy. The grey pixels values of each 

component are then taken from the histogram-equalized image and combined into a single feature vector. Feature 

vectors were constructed for each enrolled person, and corresponding classifiers were trained. 

 

 

 

Fig. 7 Examples of the components extracted from a frontal view and half-profile view of a face 

 

The face recognition system consisting of second-degree polynomial SVM (Support Vector Machine) classifiers is 

trained on these feature vectors in a one vs. all approach (the SVM is trained to separate a subject from all the other 

subjects in the database). 

At runtime, the component-based detector is reused to extract the components of the 2D probe image. The resulting 

components are then used as inputs to the SVM classifiers. To determine the identity of a person, the normalized 
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outputs of the SVM classifiers are compared. The identity associated with the face classifier with the highest 

normalized output is taken as the identity of the face.  

A test set was created by taking images of six people. They were asked to rotate their faces and the lighting conditions 

were changed by moving a light source around the subject. The test set consisted of 200 images of each person with 

varying pose and illumination conditions. The component-based face recognizer was compared to a global face 

recognizer; both systems were trained and tested on the same images. ROC curves are given for each system. 

 
Fig. 8  ROC curves for the component-based and the global face recognition systems 

 

This discrepancy can be explained by the fact than the components of a face are less sensitive to rotation than the whole 

face pattern. Furthermore, the backgrounds in the test images were non-uniform. The global system occasionally 

contained distracting background parts. 

2.1.8 Adaptive Rigid Multi-region Selection (ARMS) [12] 
With this system, the authors address the problem of face recognition under varying expressions between probe and 

gallery images. They compare their approach with the most commonly used approaches in 3D face recognition, namely 

PCA (eigenfaces) algorithm and ICP (Iterative Closest Point) algorithm. Their experimental results show that the 

performance of either approach degrades substantially in the case of expression variation between gallery and probe. 

Indeed, based on a big dataset of 449 persons over 4,000 3D images, they report an average rank-one rate of 91.0% for 

PCA baseline and 77.7% for ICP baseline when matching neutral probe images to the neutral gallery images. When 

matching non-neutral probe images to neutral gallery images, the results report average rank-one rates for ICP baseline 

and PCA baseline of 61.5% and 61.3% respectively. 
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Their approach (ARMS: Adaptive Rigid Multi-region Selection) is based on finding a relatively rigid region in the high 

curvature area on a face (such as the nose). This rigid region is then matched to the same region in the gallery and 

similarity is measured using RMS (Root Mean Square) error reported by ICP. As several of those high curvature areas 

can be used, voting or fusion rules can be considered to determine identity during the decision process. 

The detection of the regions of interest (high curvature) of a face is realized through the following steps: first, a group 

of skin region is located by a skin detection method using the corresponding 2D color image (both 2D images and 3D 

scans are available in the dataset). Pixels are used in the skin detection method only if they have a valid corresponding 

3D point. Valid 3D points found in regions detected by the skin detection are subject to 3D geometrical feature 

computation to classify an observed facial surface. Gaussian curvature and mean curvature are computed and 

geometrical shape can be identified by surface classification (see Fig. 8). 

 

 
Fig. 9 Images of the same person with different expressions rendered 

based on surface types. The surface type of a region of the face may change 

as deformation is introduced. As cheeks are lifted, shown in happy and 

disgusted, peaks are detected at the upper cheeks, in both sides or in lips. 

 

Once 3D surface classification is complete, the following regions are detected: nose tip (peak region), eyes cavities (pit 

region) and nose bridge (saddle region). The last step involves surface registration to measure the similarity of shape 

between a gallery and a probe surface. As explained before, the similarity score is based on the RMS error reported by 

ICP: given a pair of surfaces to be matched, the initial registration is performed by translating the centroid of the probe 

surface to the centroid of the gallery surface. Iterative alignment based  on point difference between two surfaces is 

performed. At the end of each iteration, the RMS difference between the two surfaces is computed. The iteration ends 

when there is little or no change. 

Experiments of the authors have shown that the use of two different regions around the nose yielded the best results, 

and thus are used in the final results. Regarding the fusion, after experiments, the product rule (which takes the product 

of the RMS error values) have been selected for giving the best performances. 

The same dataset as the one used for ICP baseline and PCA baseline performance evaluation was used in the reported 

results. 

In order to isolate the performances of the automatic feature-finding in the ARMS algorithm (curvature-based nose 

detection),  performances for an ARMS-manual version of the algorithm are shown. In this version, manually identified 
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landmark points are used to extract the regions for matching, and so, recognition errors resulting from errors in the 

segmentation of the 3D are eliminated. 

 
Fig. 10 Probes with neutral expression 

 
Fig. 11 Probes with Non-Neutral Expression 

One surprising element of this work is that such good performances can be achieved using only a small portion of 

whole face by the ARMS method. 

2.1.9 The Partial ICP (Iterative Closest Point) Algorithm [13] 
This is another system attempting to address the problem of facial expressions in face recognition. The partial ICP 

method is designed to implicitly and dynamically extract the rigid parts of facial surfaces. The authors, acknowledging 

the fact that facial surface is a non-rigid object, assume that there are regions of the face that will keep their shape and 

position among different expressions. According to them, if these regions can be identified, the 3D non-rigid face 

recognition can be reduced to the rigid case. Their method is designed with this objective in mind. Its performances are 

compared to the ones of PCA baseline. 

Let's consider the algorithm in more details. Given two surfaces, at each iteration, the closest points from the first 

surface to the second are searched. According to the result of  this step, a transformation of the first surface is computed 
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in order to reduce the distance (more precisely the  Root Mean Square (RMS) error) between the two sets of points. 

This loop is iterated until the RMS error stops changing or the change is below a threshold. While the traditional ICP-

based method uses all point pairs to compute the transformation and the RMS error, the authors select only a part of the 

points pairs. After sorting the RMS errors of pairs of points in increasing order, they reject the worst n% of pairs (the 

pairs with the biggest errors). Discarding n% of pairs means removing those points in non-rigid region of facial surface. 

(1-n%) is called the p-rate. 

Figure 11 shows some deformation images in which the red areas indicate the regions removed by setting different p-

rates. When p-rate equals 0.7, most non-rigid parts are discarded. 

 

 
Fig. 12 Discarded area in facial surface with different p-rate=0.9, 0.7, 0.2 

(5th, 6th, 7th columns respectively). Regions in red indicate the removed parts. 

 

To carry out the experiments, the ZJU-3DFED 3D facial database, collected by the authors, is used. This database 

consists in 360 models with 40 subjects, and 9 scans with four different kinds of expression for each subject. Here, the 

neutral expression face models are used as gallery images, and the other 320 scans are classified into 4 probe sets: 

Smile, Surprise, Sad, and Neutral. 
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Fig 13 Rank-one rate: PCA vs. partial ICP 

The partial ICP method outperforms PCA-based method on rank-one performance among all probe sets: PCA-based 

method get average rank-one rate of 75.41%.  Partial ICP with p-rate=1 (which is equivalent to traditional ICP) gets a 

rank-one recognition rate of 89.69%. Partial ICP with best p-rate obtains an average rank-one of 96.88% on all probe 

sets. 

 

2.1.10 3D Face Recognition Using Point Signature [14] 
This 3D face recognition scheme also addresses the problem of face recognition with expression variations, and is based 

on the same assumption as the scheme in 2.1.8: the face is a non-rigid surface but there are some regions which don't 

vary (too much) regarding shape and position under expression changes. The authors propose point signature to carry 

out the recognition process based on the extraction of the rigid parts of the face. 

The definition of Point Signature is summarized here, for details, the reader may refer to [21]. 

For a given point p, we place a sphere of radius r, centered at p. The intersection of the sphere with the object surface is 

a 3D space curve C, whose orientation can be defined by an orthonormal basis formed by a normal vector, n1, a 

"reference" vector n2, and the vector cross-product of n1 and n2. A new plane P' is defined by translating the plane fitted 

through the space curve C (and used to define the  vector n1) in a direction parallel to n1. The perpendicular projection 

of C to P' forms a new planar curve C' forming a signed distance profile. Every point on C may now be characterized 

by: 

1. The signed distance from itself to the corresponding point in C'.  

2. A clockwise rotation angle θ about n1 from the reference direction n2. 

We refer to this profile of distances, d(θ), with 0≤  θ≤  360 degrees, as the signature at point p. In practice, the distance 

profile is represented by a discrete set of values d(θi), 0≤  θi≤  360. 
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Fig 14 Definition of point signature 

 

The similarity matching between a given signature ds(θi) and a candidate signature dm(θi) is as follows: if ds(θi) has a 

clear global maximum, the matching is computed as: 

| ds(θi) - dm(θi) | ≤  εtol(θi) , for all i =1,…, nθ 

where the tolerance band εtol(θi) is used to handle the errors in computing Point Signature and achieve a better 

acceptance and rejection of candidate signatures. 

If ds(θi) has several similar local maxima, as we don't know from which one to start the matching (from which θi), we 

have to phase shift ds(θi) for each position of local maximum before matching computation is carried out at this 

position. 

To find the rigid parts of the face surfaces, an adaptive threshold is computed to distinguish between rigid and non-rigid 

parts, taking into account the mean and variance of the distances (as written above) between the points of the two 

surfaces. Points with distances above the threshold will be discarded and won't be used for identification or verification. 

To select the most likely model and verify, the probe image is pre-processed by computing  the point signature of each 

range point. Every pre-processed point is used for a "vote": given a point and its signature, points with a similar 

signature are searched among the points of the models of the enrolled persons. Each person who have a similar 

signature receives a vote. The models are then ranked according to the number of votes they received. Then, verification 

can be carried out starting with the most likely candidate. 

Experiments were carried out using a database of 6 persons. Four face images with different expressions were captured 

for each person. 
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Table 8 Voting rate of each model using the different point signatures of scene (face 1 to face 6) 

2.2 The most interesting 2D+3D multi-modal systems 
Multi-Modal systems have the aim to improve the recognition rate of the existing 2D approaches, combining results 

obtained from both a 3D and a 2D recognition system. Hereafter are listed some of the most interesting 2D+3D multi-

modal systems. 

2.2.1 Features Extraction using Gabor Filters for 2D and Point 

Signature for 3D [9] 
Wang et al: the method apply on both range data and texture. In the 3D domain, the Point Signature is used in order to 

describe the shape of the face, while the Gabor filters are applied on the texture in order to localize and characterize ten 

control points (corners of the eyes, nose tip, corner of the mouth, … ). The PCA analysis is then applied separately to 

the obtained 3D and 2D feature vectors, and then the resulting vectors are integrated to form an augmented vector 

which is used to represent each facial images. For a given test facial image, the best match in the gallery is identified 

according to similarity function or SVM (Support Vector Machine). The experiments are conducted on a database of 50 

subjects, with different poses. 

 

2.2.2 PCA-based Multi-modal 2D+3D Face Recognition [4] 
Chang et al: this work is a report on PCA-based recognition experiments performed using shape and texture data from 

200 persons. A total of 278 subject have been acquired with a Minolta Vivid 900 range scanner. The probe set consists 

of 166 individuals, while the training set contains 278 subjects, including those whose images are used for testing. The 

scanned images are normalized, in order to fill holes and remove picks. The 3D and 2D data are treated separately. 

Different fusion techniques and different distances (Euclidian and Mahalanobis) are tested. The experiments shown in 

Fig. 15. confirm that the Multi-modal overcomes both the 2D and 3D, when considered independently. 
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Fig. 15 Single- versus multi-modal biometrics. 

2.2.3 3D+2D Fusion at Both Feature and Decision Levels Using Local 

Binary Patterns [15] 
In most papers about 2D+3D, the fusion of the two modalities has been done at the decision level. This paper presents a 

framework for fusing 2D and 3D face recognition at both feature and decision levels. The authors choose to use Local 

Binary Patterns (LBP), which was originally proposed as a descriptor for textures. 

Feature extraction is carried out as follows: first, face images are preprocessed so that they are aligned in a predefined 

way. LBP features are then extracted from the cropped and preprocessed images. The basic form of an LBP operator 

labels the pixels of an image by thresholding the 3x3 neighborhood of each pixel with the center value and considering 

the result as a binary number: 

 
Fig. 16 Calculation of LBP code from 3x3 subwindow 

 

The LBP can be extended to use neighborhood of different sizes. An LBP is called uniform if it contains at most two 

bitwise 0-1 or 1-0 transitions. There are 58 uniform LBP code patterns for 8-bits LBP code, and 256-58=198 non-

uniform LBP patterns. Denoting all the non-uniform LBP patterns with a single bin, then there are a set of L+1 = 59 

possible LBP code types for the 8-bit LBP code. Let's denote this set by L={0,1,…,L} such that LBP(x,y) is in L, and the 
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local LBP histogram over a block S(x,y) centered at (x,y) by H(x,y) = (H(x,y) (0), H(x,y) (1),…, H(x,y) (L)). The histogram can 

be defined as: 

 
where I(.) is in {0,1} and is an indication function of a boolean condition, and S(x,y) is a local region centered at (x,y). 

The histogram H(x,y) contains information  about the distribution of the local micropatterns, such as edges, spots and flat 

areas over the block S(x,y). Individual  LBP labels contain information about the patterns at the pixel-level, whereas the 

frequencies of the labels in the histogram produce information on the regional level. The collection of the histograms at 

all possible pixels {H(x,y), for all (x,y)} provides the global level description. 

Separate learning for 3D and 2D face recognition is carried out as follows: every blocks centered at each pixel position 

are considered. Each block is given a weight. The weights are derived using an AdaBoost learning method (see [16] for 

more details). The learning also produces the final classifier. To dispense the need for a training process for faces of a 

newly added person, a large training set describing intra-personal or extra-personal variations is used and a universal 

two-class classifier is trained. Thus classifiers training is carried out using intra and inter-class histogram differences. 

Classification is carried out on the difference between the probe histogram and the gallery histogram. 

To fuse 2D and 3D at feature level, the same AdaBoost learning procedure is used: it selects the most effective features 

from the complete 2D+3D difference feature set. 

A large 2D+3D database is created using a Minolta 3D digitizer. The images are taken with varying pose, expression 

and lighting changes. The database contains 2305 images. 

 

 
Fig. 17 Cumulative Match Curves for 3D and 2D 

 

To contrast with the proposed AdaBoost learning fusion scheme (feature-level fusion), two non-boosting fusion 

schemes are included: the first is the PCA-based 3D+2D score fusion (called "CBF"). The second uses a sum rule to 

fuse the two AdaBoost classification scores (decision-level fusion). 
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Fig. 18 Cumulative Match Curves for 3D+2D fusion 

 

2.2.4 Hierarchical Matching using ICP for 3D and LDA for 2D [17] 
The authors of this paper have developed a system combining 3D ICP registration and 2D LDA classification for more 

robustness against view, lighting and facial appearance variations. They propose a hierarchical  matching scheme which 

first matches a probe 2.5D scan to 3D models and then uses the M best matched models to perform a LDA 

classification. 

A 2.5D scan is a simplified 3D (x,y,z) surface representation that contains at most one depth value for every point in the 

(x,y) plane. Each scan can only provide a single viewpoint of the object , instead of the full 3D view. 

The enrollment phase for the 3D part of the system consists in taking several 2.5D scans  from different viewpoints, and 

construct the 3D model from these scans. 

Surface matching is performed following a coarse-to-fine strategy. A feature based coarse alignment is employed, 

where three points are needed to compute the rigid transformation between the probe scan and the 3D model. In the 

current implementation these points are manually selected. The fine registration process follows the ICP framework. 

The root mean square  distance minimized by the ICP algorithm is used as the primary matching distance of face scans. 

Then, linear discriminant analysis (LDA) is applied only to a small list of candidates, generated dynamically by the 

surface matching stage for each test scan. In the experiments, the top M=30 candidates are selected. The training 

samples used in LDA are derived from the 3D models (with their texture information). Indeed, from the registered 

(pose-normalized) 3D models are generated several synthetic 2D images with lighting variation and minor pose shifts. 

Two 2D-3D integration methods are actually tested: the hierarchical matching and the weighted sum rule. 

For the weighted sum rule the equation is as follows: 

 

MDcomb = MDICP +  α . MDLDA 

Where MDLDA = ( 1 – MSLDA ) / 2, MSLDA  is the matching score generated by the appearance-based matching 

components. 
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For the hierarchical matching, if  MDICP is below a given threshold, then it is considered a good surface matching and 

no further step is applied. Else, the LDA algorithm is applied using the best registered models. 

The database used for the experiments contains 100 subjects. 5 scans  with neutral expression for each subject were 

captured to construct the 3D model. Another 6 scans are captured for testing with different expression (neutral and 

smiling). 

 
Fig. 19 Cumulative matching performance 

 

 
Fig. 20 Rank-one matching accuracy (α = 1) with and without hierarchical structure 

 

2.2.5 Face Recognition from 2D and 3D Images using 3D Gabor Filters 

[18] 
Based on both 2D and 3D facial information, this paper focuses on extracting invariant features that can be used to 

recognize faces, with different facial expressions or extracted from varying viewpoints, from only one stored prototype 

face (frontal view with neutral expression) per person. The authors, based on the results in [19] which show that Gabor 

responses are robust against variations caused by changes in facial expression, head pose and lighting conditions, 

propose a  modified version of the Gabor filters adapted to the 3D face recognition paradigm: 3D Spherical Gabor 

Filters (3D SGF). Indeed, traditional 3D Gabor filters are only robust against slight view variations. The 3D SGF is 

designed to cope with extensive view variations. To solve the missing point problem, caused by self-occlusion under 

large rotation angles, a 2D Gabor histogram, rather than the widely used integral operation is used in the computation of 

the distance between images. 

Furthermore, the LTS-HD (Least Trimmed Square Haussdorf Distance) [20] is employed to compute the distance 

between the images resulting from the convolution of the original images with Gabor filters. Indeed, this distance is 
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known to perform well even if the object is occluded or degraded by noise or distortions. Given two finite points sets     

A = {a1,…,ap} and B = {b1,…,bq}, the LTS-HD is defined as: 

  

 With DB(ai) =  

  

Let's see in more details what is a 3D SGF. A 3D SGF is defined as: 

 
where F is the center frequency of the 3D SGF and  

 
The 3D SGF is spherically symmetric. This rotation invariant characteristic makes the 3D SGF responses feasible for 

face recognition despite of different viewpoints. Given the image I(x,y,z), the Gabor responses of the 3D SGF at point 

x=(x,y,z) are defined as: 

 
by using different discrete center frequencies Fn.  

 
Fig. 21 A convolution example based on the 3D SGF. (a) Original image; (b) 

Amplitude response; (c) Phase response. 

But the use of the integral is very sensitive to the missing points problem. To tackle it, a 2D histogram (less sensitive to 

that issue) is defined using: 

 
where x' is a point in the neighboring sphere of x. Each of the 2 dimensions of the histogram correspond to a 

discretization of Re(x') and Im(x') respectively between their minimum and maximum values. 

Not all the points of a given image are used to compute the 3D SGF response. In the experiments, feature points are 

sampled evenly and densely from each face. For classification, instead of involving all these points, only the matching 

pairs which have much smaller feature distances are employed: they are more robust to expressions and varying views. 

The experiments are carried out with a face database involving 80 individuals. Each person provides 12 facial images, 6 

frontal images with expression variations, and 6 non-frontal images with different view angles. The frontal view image 

of each individual with neutral expression is utilized to construct the model library. 
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Fig. 22 Recognition rates of frontal test faces. (a) Gabor-based (b) Eigenface 

 

 
Fig. 23 Recognition rates of non-frontal test faces. (a) Gabor-based (b) Eigenface 

 

The parameter H corresponds to the number of best matching pairs used to determine the LTS-HD directed distance 

hLTS(A.B). 
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3 Discussion 
 

Here follows a summation table of the outline algorithms: 

 

Explicitly studied variabilities Face recognition method and year 

of publication of the paper 

3D only Multi-

modal 

2D+3D 

Pose Illumination Expression 

Database 

Face Recognition Using Range Images 

(1997) 

X  X   -Proprietary 
-240 range images 

Face Recognition Based on Depth and 

Curvature Features (1992) 

X  X   -Proprietary 

A New Attempt To Face Recognition 

Using 3D Eigenfaces (2004) 

X  X   -3D_RMA 

Face Recognition Based on Fitting a 3D 

Morphable Model (2003) 

X  X X  -Proprietary (200 3D 
scans) 
+CMU-PIE 
+FERET 

Face Modeling Using Two Orthogonal 

Views and a Generic Face Model (2003) 

X  X   -Proprietary 
-26 individuals 
-1 model/ind. 

Asymmetric 2D/3D Processing for Face 

Recognition (2005) 

X  X X  -Proprietary 
-50 individuals 
-3 models/ind. 

Component-based Face Recognition 

Using 3D Morphable Models (2003) 

X  X X  -Proprietary 
-6 individuals 
-200 images/ind. 
- pose + illumination 
variations 

Adaptive Rigid Multi-region Selection 

(2006) 

X    X -Proprietary 
-449 individuals 
-4000 3D images 
-expression variations 

Partial ICP Algorithm (2006) X    X -ZJU-3DFED 
-40 individuals 
-9 scans/ind. 
-expression variations  

3d Face Recognition Using Point 

Signature (2000) 

X    X -Proprietary 
-6 individuals 
-4 images/ind. 
-expression variations 

Gabor Filters (2D) and Point Signature 

(3D) (2002) 

 X X   -Proprietary 
-50 individuals 
-pose variations 

PCA-based Multi-modal 2D+3D Face 

Recognition (2003) 

 X    -Proprietary 
-278 individuals 

3D+2D Fusion at Both Feature and 

Decision Levels using Local Binary 

Patterns (2005) 

 X X X X -Proprietary 
-2305 images 
-pose + expression + 
illumination variations 

Hierarchical Matching Using ICP for 3D 

and LDA for 2D (2005) 

 X X X X -Proprietary 
-100 individuals 
-11 scans/ind. 
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Face Recognition from 2D and 3D 

Images using 3D Gabor Filters (2005) 

 X X  X -Proprietary 
-80 individuals 
-24 images/ind. 
-pose + expression 
variations 

 

Table 9 Summation of the outlined algorithms, in their order of appearance. 

 

One limitation to some existing approaches to 3D face recognition involves sensitivity to size variation. Approaches 

that use a purely curvature based representation, such as extended Gaussian images, are not able to distinguish between 

two faces of similar shape but different size. On the contrary, approaches based on PCA or ICP (Iterative closest Point), 

avoid this problem but their performances throw down when changes in expression are present between gallery and 

probe images. Many recent papers acknowledge this issue, but only few of them explicitly include in the design of their 

algorithm a solution to the problem. Among these ones exist three main trends: one is the use of Gabor filters, which are 

known to be one of the most robust feature extraction scheme against pose, expression and illumination variations. The 

other important trend is to try to detect (dynamically or not) and discard face areas which vary “too much” with 

expression changes. The last one, the component-based method, prefer weighting the different components of the face 

(which can be for example rectangular regions) according to their capacity to accurately describe a face, including in 

presence of the adverse conditions already cited.  

Many researchers believe that there are more possibilities to progress in the accuracy of face recognition using 

combined 2D + 3D scheme than any of them alone. In this category of work, we can observe that the majority of papers 

to date treats the combination of 2D and 3D as the fusion of the results (the scores) of two distinct and uncorrelated 

problems. Obviously, there is a need for more sophisticated combination. The most recent papers try to link both 2D 

and 3D paradigm at the feature extraction level, which seems a more effective way to improve the results: clearly, it is 

at least potentially more powerful to exploit possible synergies between the two modalities. Another interesting problem 

is the absence of an appropriate standard dataset, with a large number and demographic variety of people, which images 

have been taken at repeated intervals of time, with meaningful changes in expression, pose and lighting as it exists in 

2D. 
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