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Abstract—In this paper we investigate which is the most
efficient architecture and protocol that can be used for file
distribution. The focus of the analysis is to understand not only
the parameters that influence the distribution process (constraints
on the number of neighbors, bandwidth heterogeneity, etc.), but
also the impact of the peer behavior, such as selfishness or
neighbor selection strategies. The analysis also compares different
tree- and mesh-based distribution architectures. We developed an
ad-hoc Monte-Carlo technique that is able to analyze scenarios
with millions of peers, a network size that traditional discrete-
event simulators are not able to treat. The results give an accurate
view of the fundamental protocol parameters and policies that
impact on the final performance and allow designers to devise
improved protocols.

I. INTRODUCTION

Peer-to-peer (P2P) networking has emerged as a powerful
communication paradigm and it is gaining increasing attention.
In this work we consider systems for collaborative content
distribution, where the content is time-critical. Applications
include, for instance, distribution of virus footprints or soft-
ware updates. We assume a BitTorrent-like [1] distribution
protocol where the content is divided in independent pieces
called chunks. P2P systems are considered self-scaling. But
self-scaling implies more than just adding resources as new
users enter the system: it means finding proper algorithms
and protocols to exploit them. The performance of distribution
protocols and architectures is influenced by many parameters.
A partial list includes: the number of chunks, the constraints on
outdegree and indegree, the input probability density function
(pdf) of the peer bandwidth (that characterizes the hetero-
geneity of the peers), the neighbor selection strategies, or the
percentage of selfish peers. In a given scenario, what is the
most efficient way to distribute a content to the users?

Our approach considers a high level characterization of the
distribution process so that we can analyze it without focusing
on the implementation details. We develop an efficient Monte-
Carlo based solution technique that allows to compute the
metrics of interest (e.g., the download time) for P2P systems
with several million of peers. This approach is alternative
to a detailed event-driven simulation of the corresponding
P2P network. We deal only with building the distribution
system given the general rules and properties of the peers. Our
technique allows for detailed comparisons between different
distribution architectures of very large size that were previ-
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ously not feasible. Although they may look like fundamental
results, to the best of our knowledge such a systematic study
and comparison was never carried out for heterogeneous and
realistic scenarios.

A. Related Work

Performance analysis in terms of the minimum time re-
quired to distribute a file using a P2P system has only in
recent years received some attention. Analytical approaches
proposed so far [2][3][4][5] (for a detailed analysis, please
refer to our technical report [12]), as well as simulation based
analyses [6], are focused on specific systems and not on a
generic framework that allows the comparison of different
distribution architectures. Moreover, only [2] and [5] tackle the
problem of different access bandwidths among peers, which is
instead treated in this paper, but the former does not consider
architecture influence and the latter does not take into account
mesh-based architectures.

A related topic where distribution architectures are explicitly
taken into account is the delivery of streaming services through
overlay multicast. ALMI [7] and SplitStream [8] define a set
of mechanisms to efficiently distribute the streaming appli-
cation to many overlay peers. They build in different ways
distribution trees and manage the dynamics of leaving and
joining peers. Nevertheless most of these studies are focused
on protocol design and do not analyze the impact of the
distribution architecture on performance.

In our previous works we have tackled and discussed
specific aspects of the problem related to deterministic case
[9] and heterogeneous case with chain-based architectures [10]
using entirely different techniques.

II. DESIGN PARAMETERS AND DISTRIBUTION
ARCHITECTURES

A. Basic Model and Performance Metrics

Consider a scenario with N peers, where peers have differ-
ent, symmetric or asymmetric, access link bandwidths. There
is only one content source in the system with bandwidth
at least equal to the highest peer bandwidth. All peers are
independent, so we can consider the bandwidth of a peer ¢ a
random variable b, with known density, which is identically
distributed for all peers.



We focus on the distribution of a single file with a
BitTorrent-like distribution protocol: the file is partitioned into
C chunks. Each peer can start serving the file to another peer
once it has completely received the first chunk. The file size
is F; the time needed to download the complete file with the
lowest bandwidth in the network is referred to as T = #(bp)
and it is also called one round. We define the eligibility time
¢ of peer ¢ the time at which peer ¢ can start to upload to
other peers. ¢ are random variables, since they depend on the
peer bandwidths.

The signaling messages necessary to manage the dynamics
of the overlay structure (join, leave, synchronization with
neighbors, message used to build the distribution architecture)
are negligible with respect to the file size, and no errors,
failures or other bottlenecks other than the peer bandwidth
are present.

Each peer ¢ has a constraint on the maximum and minimum
number of active uploads (the outdegree of the peer): k™ and
k™. We define step distance or step depth of peer i, d®, the
number of hops from the root (content source) to peer .

The main performance metrics are the download time T
of the content, either for a given user ¢ (7}), or for the whole
community (7}), or the mean T of all the individual download
times 7;.

B. Unbalanced and Uneven Trees

When distributing a content using a tree-based architecture,
the resulting tree is, in general, a structure where the leaf peers
do not all have the same distance (in terms of number of hops)
from the root. The speed of growth of the different branches
is not the same and the deeper branches are those that contain
faster peers, i.e., peers with smaller eligibility times ¢*. We
call such trees “uneven.”

The literature on tree-based distribution architectures nor-
mally considers trees where leaves have the same distance
from the root. We call such trees “unbalanced.” The difference
between unbalanced and uneven trees is substantial: in an
unbalanced tree, a slow peer will influence the reception of all
peers in its subtree, in an uneven tree, a slow peer may not even
have the possibility to have children. Since we are interested
in the download time, it is worth to look at a weighted graph
where the weight associated to a directed edge is given by the
difference between the download times of the peers connected
by the edge. Considering unbalanced trees, this representation
shows the disparity in terms of download time among leaf
peers that are at the same step distance. In Fig. 1 the weight
is represented as a difference in edge length. Conversely, in
uneven trees, leaf peers are at different step distances and the
weighted graph gives a pictorial illustration why the tree grows
in this way: a new edge is added only after a peer becomes
eligible and this forces a uniform growth of the weighted
graph.

C. General Mesh Architecture

Tree based architectures have known shortcomings. Each
peer has only one ancestor and in case of a failure, the entire
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Fig. 1. Difference between unbalanced and uneven trees, considering the
corresponding weighted graphs where edge length represents the download
time.

subtree will stop receiving data. Each peer must divide the
upload bandwidth among its children, so children use only a
fraction of their download bandwidths for receiving chunks;
if we consider the case of asymmetric capacities, where the
upload bandwidth is smaller than the download bandwidth (as
in the case of ADSL), the percentage of unused download
bandwidth increases even further. Finally, there are peers that
have received the entire file without uploading a single chunk,
resulting in unfairness and poor performance.

Mesh based architectures are meant to overcome these
problems. Peers can upload to other peers already reached by
the content. In this case we have to consider the ‘freshness’ of
the information that a peer is downloading from its fathers. We
assume that the server, that is the only node that has the full
content, is able to differentiate what it is distributing, e.g., it
gives the chunks in different orders to its children. We define
diffusion trees the trees generated by these children (we call
them first generation children): diffusion trees can overlap, i.e.,
peers can receive the content from different fathers provided
that these fathers belong to different diffusion trees. In general,
if the server has kg first generation children, each node can
have up to k; fathers and each father can provide up to F/k,
fresh content. For instance, in Fig.2, we have ks = 2 first
generation children and C' = 6 chunks; each nodes can receive
up to C/ks = 3 fresh chunks from different fathers. For
efficient distribution it is required that only leafs of diffusion
trees, which are those peers that do not find any unreached peer
among their neighbors, start behaving as “additional fathers.”
Note that a peer can receive from less than kg fathers, since
each father has the whole file (for instance, the node at the
extreme left). For a detailed characterization of mesh based
architectures, where different cases are analyzed, refer to [12].

III. NUMERICAL SOLVER

We first describe the generic solution for mesh architectures.
In case of tree-based architectures we use a faster implemen-
tation that takes into account the particular structure of the
problem. We then discuss the complexity of both approaches.



Fig. 2. Example of possible chunk orders when distributing the content
(C =6, ks =2).

A. Basic Behavior Description

The basic algorithm first builds the diffusion trees and then
analyzes the mesh approach starting from the leaf peers of each
diffusion tree. It is possible to block the subtree overlapping,
obtaining the performance of tree based architectures. The
following paragraphs give a detailed description of the basic
behavior.

Input parameters. The main input is the pdf of the peer
bandwidths. Other input parameters of interest are the number
of peers N, the number of neighbors for each peer and the
policy for neighbor assignment, the outdegree constraints £
and k™, and the number of chunks. Finally, it is possible to
specify the maximum step distance allowed for the architec-
ture. Imposing a strict bound on the distance, we can obtain
unbalanced trees.

Initialization. The tool assigns the highest bandwidth to the
root and to the first generation children. If the chunks of the
file F are distributed in k, different orders to obtain a mesh,
then the root selects exactly ks children to fairly compare
results with different k;. For each child, the tool computes
the eligibility time and assigns the download rate.

Diffusion. Each peer ¢ at level 1 (level O is the server)
randomly selects peers in its neighborhood to upload to until
its upload bandwidth is saturated, i.e., the sum of the download
bandwidths of its children is greater than its upload bandwidth,
or no peer without chunks are left, provided that the constraints
kr=~ and k™ are met. Once the list of children is created,
the ancestor calculates for each child ¢ the eligibility time ¢{
and the rate r; (the dimension of a chunk divided the time
necessary to download it) according to the max-min fairness
criterion. From the eligibility time (i.e., the time a peer finishes
to download the first chunk) and the rate, we can compute the
total download time of each child 4: £ = ¢4+ Z(C'—1)r;.
If the peer has no children, it is placed in a list for next rounds
analysis.

Cross connections. Leaf peers in the diffusion subtree are
those that find no unreached peers among their neighbors.
Leaves start to help their neighbors, provided that they belong
to different diffusion subtrees. The process of neighbor selec-
tion is done as in the previous case, but here the spare upload
bandwidth of the ancestor and the spare download bandwidths
of the neighbors are considered. For each neighbor, knowing
the eligibility time and the additional rate i, we can calculate
the new, reduced download time: & =t + £ (C —1)(r; +
r¥). We suppose C' sufficiently high so that the difference
among the starts of different contributions is not significant.

Additional cross connections are realized respecting the usual
constraints.

End of the realization. The realization stops when no more
cross connection can be done. In this state all the download
times can be computed.

Stop criterion. The performance indices at the end of each
realization are samples of known i.i.d. random variables, so
that standard techniques can be used to estimate the confidence
intervals of the whole histograms (see for instance [11]). The
tool stops when all bins of the histograms have a £10%
relative confidence interval with a 0.95 confidence level.

B. Optimization for Tree-Based Architectures

For these architectures we can consider, instead of the
complete tree, portions, or sample paths exploring the tree,
and we infer results for the entire structure. A sample path is
a path from the root to a leaf peer that registers the number
of children selected at each step, then chooses randomly a
child and continues the process. The distance from the root
is an input and can be expressed as number of hops (step
distance) or maximum ¢J: the former results in unbalanced
trees, the latter in uneven trees. By inferring the number of
peers from the analyzed path, we have a sample that can be
used to reconstruct the entire tree. We take several of these
sample paths and we consider the same statistics and the
same stop criterion of the full version of the tool. This can
be seen as a semi-analytical technique, since the sample paths
are simulated, while the statistical properties of the whole tree
are derived analytically from the sample.

In a network with N peers, the simulator builds only a path
of loggj\/ levels, where k is the mean outdegree, and for each
level k peers are extracted on average, so the total number of
selected peers for each iteration is Eloggj\/ .

With this fast implementation we can derive results for up
to 10® peers. To the best of our knowledge numerical results
on P2P networks and distribution networks in the literature,
rarely extend above 10-10* peers, with some specific cases
reaching 105.

C. Solution Complexity

The complexity of the basic algorithm is linear, i.e., it is
O(N), since every node must be analyzed at least once for
each iteration. Nevertheless, in order to find the statistics, the
simulator iterated the main routine until the stop criterion is
reached. As the number of peers increases, the number of
iterations decreases. In fact, if we consider the download time,
we notice that it strongly depends on the minimum rate en-
countered in the path from the root to the peer. As the number
of level increases, the minimum bandwidth encountered tends
to the lowest possible bandwidth (the probability increases
geometrically at each level). The variability of the measured
values (for instance, the mean download time) then decreases
and the desired confidence is reached in less CPU time. This
means that the total complexity is O(a(N) - N), where a(N)
is a monotonically decreasing function.



For instance in the numerical examples in SectIV conver-
gence happens in less than 1,000 realizations for 10* peers,
less than 500 for 10° and less than 200 for 108. For 10° peers
and mesh-based architectures this means 4-5 hours of CPU on
a standard PC, 10 — 20 minutes for 10°, while for a smaller
number of peers the time becomes negligible.

In the case of fast implementation, with similar arguments
it is easy to show that the complexity is O(B(N) - log ),
where 3(N) is a monotonically decreasing function.

IV. NUMERICAL RESULTS

As numerical example we consider a density function for
the peer bandwidth summarized in TableI.

TABLE I
BANDWIDTH DISTRIBUTION USED IN THE EXAMPLES
Bandwidth % peers
56 kbit/s 13%
640 kbit/s 23%
1.2 Mbit/s 64%

We use a number of chunks C equal to 100, but a sensitivity
analysis with different values of C' indicates a qualitative
behavior independent of C, as long as C' > 1. In reporting
results, we normalize the data such that %&)) =1 ‘round’,
where |F| is the content size in bits and min(b;) is the

minimum bandwidth of the input pdf in bits/s. '

0.015

0.015

=4
1=}

o
=
T
Probability

0.005

0
0.04 0.08 0.12
Time (rounds)

Probability

0.005 /

0 L L L L
0 0.2 0.4 06 08 1

Time (rounds)

Fig. 3. Histogram of the estimated pdf of the download time (77) with mesh
architecture and 10% peers.

Figure 3 shows the histogram of the estimated pdf of Tj
for a network with 10* peers and the input pdf of Tablel.
The distribution process follows a mesh-based architecture.
All peers end in at most one round.

Although distributions like the one depicted in Fig. 3 are the
prime output of our solution tool, in the following we show
only aggregate results, that are more compact, and still convey
the fundamental meaning of the results we obtained.

A. Tree Based Distribution Processes

We start by evaluating the influence of the neighbor set size
in the overlay network on the delay in the content distribution
network (see Fig.4).

We consider a uniform random connectivity among peers.
If the neighbor set is small (4 neighbors), the mean download
time grows for an increasing number of nodes much faster
than for the case where the number of neighbors is equal to .
However, if a peer has neighbors uniformly chosen from the
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Fig. 4. T varying the number of neighbors for each peer (outdegree 1-4),
for increasing number of peers.

peer set and if the neighbor set is large enough the performance
is independent of the size of the neighbor set, and T' grows as
log(N) as we expect in a tree topology.

These observations are valid independently from the out-
degree constraints (results are not shown here) and the kind
of process (unbalanced, uneven), i.e., trees of the same type
with the same outdegree bounds obtain the same performance
independent of the size of the neighbor set.

Fig.5 focuses on the comparison between unbalanced and
uneven trees. We study the influence of the different con-
straints, such as k™ and k™. The results are plotted as a
function of V. The poorer results for unbalanced trees are due
to the bounds on the d(?). Slow peers, especially those close to
the root, impose their rate on the whole subtree, independently
of the bandwidth of the peers in the subtree. In the case of
uneven trees, slow peers close to the root have no time to
start to upload, since the time it takes to become eligible is
larger than the time it takes the fast peers to reach, at different
levels, all the other peers. This increase of performance for the
uneven tree comes at a cost of a greater step distance.
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Fig. 5. T for unbalanced, uneven trees and mesh with different outdegrees
as a function of N.

Another parameter that has a major impact on the per-
formance is the minimum outdegree: imposing a minimum
number of children equal to 2 means that a slow peer will
divide its low upload bandwidth by 2, which, in the case of
an unbalanced tree, will effect the entire subtree.



B. Mesh Based Distribution Processes

Fig.5 reports also results for meshes. As already observed
T increases logarithmically with /. A mesh architecture can
fully exploit the spare bandwidth of the peers, especially with
a minimum outdegree of 2, thanks to multiple connections to
other peers. Such an architecture is also more resilient to peer
failures.

In order to understand better the performance of the differ-
ent architectures, we show in Fig. 6 the Cumulative Distribu-
tion Function (CDF) of the download times in a network with
10° peers.

The interesting point is indeed more related to the capability
of uneven trees to efficiently use the different bandwidths in
a non-homogeneous network, leading to results that may look
counter-intuitive when thinking about the more familiar case
of tree and mesh architectures for homogeneous networks.
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Fig. 6. Comparison between unbalanced tree, uneven tree and mesh for a
community of 10% peers (outdegree 2-8).

The benefits of a mesh architecture can be also observed
looking at the wasted upload bandwidth. This is a measure of
how much of the peer upload bandwidth is unused when the
peer is involved in the distribution process. Table I shows the
percentage of wasted bandwidth when using a tree (uneven)
and a mesh for different outdegrees and community size. The
waste reduction in the mesh is clearly due to the fact that the
upload bandwidth of the leaves is used efficiently.

TABLE II
COMPARISON OF TREES AND MESHES.

Upload Wasted Bandwidth
Outdegree #peers Uneven Tree Mesh
1-8 10° 46.9% 13.3%
1-8 106 47.5% 13.1%
2-8 10° 66.2% 26.8%
2-38 106 68.9% 29.3%

V. CONCLUSIONS

Distribution systems are based on tree or mesh topologies;
however very few works addressed fundamental features of
the topologies in presence of non-regular building rules (as in
any real world protocol) and network heterogeneities.

The contribution of this paper lies in the analysis of fun-
damental features, a contribution enabled by an extremely

efficient numerical solver of the system evolution equations.
We can obtain results for meshes with a million peers and for
trees with several tens of millions of peers within a few hours
of a standard PC CPU time.

For tree-based topologies, we show that in case of band-
width heterogeneity it is quite important for the overall per-
formance and efficiency of the tree that the peers with low
bandwidth are not at the root of large subtrees of peers, as
this will lead to poor efficiency and higher download times.
Results show that uneven trees perform much better than
unbalanced trees since uneven trees succeed at placing slow
peers mainly at the leaves. Another parameter that has not been
considered before is the minimum peer outdegree. Allowing
for a minimum peer outdegree of 1 as compared to 2 can cut
the download time into half, because it better exploits the peer
download bandwidth.

The methodology and the tool we have developed can be
extended to explore scenarios where the available bandwidth
of a peer varies over time and where peers can leave and
join dynamically. We plan these extensions as a future work
together with the exploration of the effect of selfish peers.
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