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Abstract. Motion-based segmentation is traditionally used for video
object extraction. Objects are detected as groups of significant mov-
ing regions and tracked through the sequence. However, this approach
presents difficulties for video shots that contain both static and dynamic
moments, and detection is prone to fail in absence of motion. In addition,
retrieval of static contents is needed for high-level descriptions.

In this paper, we present a new graph-based approach to extract
spatio-temporal regions. The method performs iteratively on pairs of
frames through a hierarchical merging process. Spatial merging is first
performed to build spatial atomic regions, based on color similarities.
Then, we propose a new matching procedure for the temporal grouping
of both static and moving regions. A feature point tracking stage allows
to create dynamic temporal edges between frames and group strongly
connected regions. Space-time constraints are then applied to merge the
main static regions and a region graph matching stage completes the pro-
cedure to reach high temporal coherence. Finally, we show the potential
of our method for the segmentation of real moving video sequences.

1 Introduction

Multimedia technologies are becoming important in many aspects of our nowa-
day lives. Processing of huge amount of raw data requires efficient methods to
extract video contents. Achieving content-based functionnalities, such as search
and manipulation of objects, semantic description of scenes, detection of un-
usual events, and recognition of objects has driven intensive research over the
past years. To exploit video contents, shots must be decomposed into meaningful
objects which are composed of space time regions. This process is called video
indexing.

Unsurpervised extraction of video objects is generally based intensively on mo-
tion information. Two strategies are generally adopted. The first one searches
for homogeneous colored or textured regions, and then groups the regions that
undergo similar motion [1]. The second strategy performs motion estimation to
yield coherent moving regions, then groups adjacent regions basing on color cues
[2]. Sophisticated methods use robust motion estimation to deal with multiple ob-
jects and motion. However, tracking becomes difficult in case of non-rigid or fast
motion, and the apparition and disappearance of new object models cannot be
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Fig. 1. Scheme of the overall segmentation process

integrated easily. To overcome these problems, two alternative approaches have
been proposed, spatio-temporal segmentation and graph-based region merging.

The first category searches for meaningful volumes inside a block of frames to
improve temporal coherence. A feature clustering approach is described in [3].
Elementary objects are represented as color patches with linear motion, called
video strands. Space-time features describing color, position, and dynamics are
extracted for each pixel. Therefore, video shot can be mapped to a 7D feature
space representative of the strands. A hierarchical mean-shift technique is then
employed to cluster pixels and build object hierarchy jointly. A probabilistic
representation scheme is proposed in [4]. The video sequence is modeled by a
succession of spatial gaussian mixture models (GMM). GMMs are initialized
via EM algorithm in the first frame, then are updated on subsequent frames.
Appearance of new objects is handled by thresholding a likelihood map and
creating new models from unlabeled connected pixels. This allows the method
to track coherent regions with complex motion patterns.

These spatio-temporal approaches are robust at the expense of memory band-
with and computational cost when the shot duration becomes important. In re-
gion merging approaches, the segmentation is first initialized on each frame from
an image segmentation technique. Popular algorithms are derived from water-
sheds [5] or color quantization [6] and yield to segments with small color varia-
tions. Spatial and temporal merging are then achieved by labeling or matching.

Unlike pixel-based approaches, region-based graphs use more reliable region
information and allow to represent various relationships between regions. In [7],
a set of spatial region adjacency graphs (RAG) is built from a shot section, and
then the optimal partition of the whole graph is found according to a global
cut criterion. However, the method suffers from the instability of image segmen-
tation on different frames. To make matching easier, Gomila et al. [8] reduce
the difference between consecutive RAGs by a region splitting process. For each
frame, a hierarchy of segmentations is generated through a multiscale image seg-
mentation method. Closer RAGs are then built by checking if missing regions
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are edited in the decomposition. Then, the graphs are iteratively merged using
a relaxation technique.

The proposed approach is closely related to both space-time and graph-based
region-merging. It aims at decomposing video shots into spatio-temporal regions.
Unlike other methods, we give particular attention to the stability of the pro-
jected spatial segmentation for both static and moving regions, in prospect of
object detection and region-based shot representation. This paper is organized
as follows. Section 2 provides an overview of the proposed algorithm and moti-
vations for our approach. Section 3 introduces the efficient graph-based merging
algorithm used at different stages of the process. In section 4, we describe the
temporal merging procedure. Finally, experimental results illustrate the appli-
cation of our algorithm to real video sequences in section 5.

2 Overview of the Proposed Approach

Extraction of space-time regions can be difficult when video objects show strong
variations in color, texture or motion. Unfortunately, these features are common
in real video sequences. In this work, we design an incremental scheme to reduce
the complexity of region grouping and matching tasks.

A block diagram of our system is shown figure 1. The segmentation is ini-
tialized on the first frame of the shot from coherent spatial regions and defines
the spatial level of details of the segmentation. A graph-based segmentation al-
gorithm is used for this purpose. Then, the method iteratively processes frame
pairs. The regions are grouped temporally in three steps. The first stage builds
slightly oversegmented spatial regions in the new frame, so that these new regions
corresponds to a partition of the previous segmentation. Instead of using motion
compensation, we track a population of feature points to create dynamic tem-
poral edges between regions. This allows us to group with high confidence static
and moving regions that are strongly connected. We then complete the temporal
linkage of static regions using local edges, under space-time merging constraints.
At this stage, the segmentation maps become close and region neighborhoods can
be compared. Finally, we test the validity of new regions by comparing locally
RAGs between frame pairs.

With this design, we achieve incremental merging with strong rules, reaching
progressively temporal coherence for various region types.

3 Spatial Merging

In this section, we present the efficient graph segmentation algorithm introduced
in [9]. Then we describe how we apply it to initialize regions and how we adapt
it for partial segmentation of new frames.

3.1 Efficient Graph Based Segmentation

Let G = {V, E} be a weighted undirected graph. Each vertex is a pixel. The al-
gorithm aims to decompose G into a partition S = {C1, C2, . . . , Ck} of G, where
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each component is a minimum spanning tree (MST). The procedure is similar to
Kruskal’s algorithm, with addition to a merging criterion to limit the grouping
of components. At each step, two components are merged if the minimum edge
connecting them is weaker than the maximum edges of the components plus a
tolerance depending on the component size. Therefore, fewer merge are done
when the region size increases. Thanks to the adaptive rule, the algorithm is
sensitive in areas of low variability whereas it remains stable in areas of high
variability preserving both local and global properties.

We apply this algorithm to segment the first image by building the graph on
a pixel grid, so that the algorithm is fast and subgraphs correspond to spatially
connected regions. In the experiments, the weights are built using color distance.

3.2 Edge Constrained Segmentation

Using directly the procedure described in 3.1 to initialize regions in any frame
does not work, since the segmentation may differ substantially from one frame
to another. To avoid resegmentation, we adapt the method so that St is over-
segmented compared with St−1. To this aim, we use an edge detection map Ct

to discard possible region boundaries from the merge. Thus, the propagation is
done in areas of low-variability, resulting in more homogeneous components.

Edge-constrained segmentation and original image segmentation can be com-
pared in figure 2. We can see that the constrained method (c) results in a decom-
position, or oversegmentation of the unconstrained one (b). In addition, since
we use Canny detection, edges with local intensity variations are also pruned so
that the components are more homogeneous.

(a) (b) (c)

Fig. 2. (a) Input Image. (b) Unconstrained image segmentation used as initialisation.
(c) Edge-constrained initialisation of the new regions.

4 Temporal Grouping

In this section, we first describe the temporal grouping of regions based on
dense feature points and space-time constraints. Then, we show how RAGS are
employed to check efficiently the stability of the regions.

4.1 Feature Point Matching

The regions in the previous segmentation St−1 have various shape, size and
possibly non-rigid motion. In addition, regions might be partially occluded in
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the new frame, so that one region can have several matches in the next frame.
In this case, traditional motion compensation cannot be used. Our solution is
to group new oversegmented regions by spreading a population of feature point
trackers Pf . In this way, no hypothesis is made on motion models and we avoid
optical flow computation on full regions.

Feature point trackers have been proposed by Tomasi et al. [10]. Good feature
points are extracted from corners or textured regions. However, these points are
likely to correspond to region borders, thus hampering the matching between
regions. Therefore, we rather consider flat points that we can expect to lie reliably
inside regions, at the expense of motion precision. Feature points are then tracked
using a block matching algorithm. Figure 3 shows typical feature point detection
and tracking. We can see that feature points are concentrated in homogeneous
areas (fig. 3a). Even if some tracked points are inaccurate (fig. 3b), they can
be considered as outliers in the statistical distribution of the points. We explain
how we use these points for region grouping in the next section.

(a)

(b)

Fig. 3. (a) Distribution of feature point matches. (b) Feature points inside the racket.
Arrows represent the estimated displacement.

4.2 Region Grouping with Feature Points

Feature points matches described in the previous section can be viewed as po-
tential inter-frame edges between pair of regions. We construct a 3D graph
GT = {VT , ET } between two consecutive frames. The node set ET contains
two subsets of regions A and B generated from St−1 and St. The edge set con-
tains inter-frame arcs generated from feature point pairs. Due to possible high
variations (section 4.1), grouping based on single linkage will no be relevant. We
consider instead robust grouping analysing statistical properties of connections
between subsets A and B.

The procedure (fig.4) is based on a sequence of tests. We first simplify the
graph and prune weak connections between A and B with the Mstrong test.
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Fig. 4. The temporal region grouping scheme. Feature points are first detected and
matched. Then, the temporal merging of strongly connected regions is performed using
a hierarchy of tests.

Second and third tests (Mmov and Mcoh) verify if region couples undergo signifi-
cant and similar motion. This helps to detect potential splitting regions. Finally,
we further check the homogeneity of region couples (Mdense) for static regions.
Denote by a ∈ A and b ∈ B two candidate regions for grouping.

Mstrong: Two regions a and b are strongly connected if there is a significant
proportion of arcs linking a to b. Formally, we compare the cut between a and b
to the degrees of a and b. The test is accepted if :

cut(a, b) > α min deg(a), deg(b) (1)

α is fixed to α = 0.5 in our experiments. In other words, if edges are given equal
weights, the test is verified when at least half edges of either a or b connects
a to b. Once all regions have been tested, weak edges that do not satisfy the
condition are pruned.

Mmov: From the displacement of feature points, we deduce information on region
motion. For this purpose, we map the points to a velocity space D = [dn, βdθ]
where dn is the displacement norm and dθ is the motion orientation. β controls
the influence of orientation information with respect to motion speed. In case
that there is substantial background or camera motion, the displacements are
compensated with the mean velocity of the complete set of points. The test
separates moving regions from static regions. The moving condition is given by

dn(a) > dmov (2)



242 E. Galmar and B. Huet

where dmov is a minimum substantial displacement. Default value is dmov = 3
in all our experiments.

Mcoh: If a and b are moving regions, they must undergo coherent motion to be
grouped. A simple measure is to compare the variance of the velocity distribu-
tions of a, b and a ∪ b. The test Mcoh(a, b) is given by

tr(Ca∪b) < γ(tr(Ca) + tr(Cb)) (3)

where Ca denotes the covariance matrix of the velocity points of a. The test
favors the creation of new moving regions in St when one region in St−1 is
matched to ones with different motions. In this way, we handle apparition of
new moving regions.

Mdense: When either region has no motion, we further check if they have compa-
rable homogeneity. We characterise this feature by the density of feature points
between regions, since each point corresponds to a local maximum of homogene-
ity. The density ηa of one region a is estimated by

fa =
card(a × VT )

size(a)
(4)

As the density is variable over the regions, we use a statistical proportion test
for that purpose. Let’s consider two parent populations Pa and Pb representing
space-time regions and their final proportion of points pa and pb. a and b are
samples drawn from Pi and Pj . fa and fb are estimations of pa and pb.

We consider the following hypotheses

H0 : pa = pb

H1 : pa �= pb (5)

Assuming normal laws for Pa and Pb , it is possible to check if we can accept
H0 with a significance level α [11].

At the end of the process, temporal grouping has been performed reliably on
homogeneous moving regions. To group more textured areas on the sequence,
the population of seed points will be increased inside regions finally created in
St, i.e. if they have not been matched in St−1. In this way, the tracked points
will focus progressively on the regions of interest.

4.3 Grid-Based Space-Time Merging

We complete the segmentation St by a space-time merging technique applied
on the unmatched regions. The method is an adaptation of the efficient graph
algorithm discussed in section 3.2 for grouping components spatially and tem-
porally. We construct a space-time pixel grid on a 3D volume bounded by two
successive frames. As in [9] each component Ci is characterized by its internal
variation, which represents a p-quantile of the weight distribution of the edges
inside Ci. However, this turns out to be too complex in practice and we use the
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mean weight μi of Ci as a measurement. When comparing two components Ci

and Cj , a new space-time merging rule is applied to examine both local and
global properties of the grouping:

‖μi − μj‖ < τG and max(WL) < τL (6)

where

τG = max(TG, pG min(μi, μj)) (7)
τL = min(TL, μi) (8)

τL and τG are local and global adaptive thresholds. Default parameters are TG =
10, pg = 0.3, TL = 5 in all experiments. For local properties, we define a four
edge neighborhood WL (fig. 5a). The neighborhood is considered as homogeneous
if the maximum weight is weak compared to the variability μi and TL. Small
values of TL limit grouping in inhomogeneous areas. In this way, we do not merge
component from edges with high variability. For global properties, we check if the
components have similar homogeneity. For regions with strong homogeneity, we
consider directly the distance between μi and μj . For more variable components,
a tolerance pg is accepted on the relative error between μi and μj . Small values
of TG and pg limit the temporal variation of the components.

Thus, by combining these two aspects, the merging occurs in space-time areas
of low local variability on globally coherent components.
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Fig. 5. Space-time grid based merging and local neighborhood WL

4.4 Subgraph Matching

The last step in the process is to confirm the creation of new regions by analysing
region neighborhoods at time t−1 and t. Thanks to the previous merging steps,
segmentations St and St−1 are sufficiently close to be compared. We consider, as
in section 4.2, a 3D graph on a volume bounded by two successive frames. The
graph contains region adjacency graphs (RAG) Rt−1 from St−1 and Rt from
St. It also includes inter-frame edges corresponding to the temporal grouping of
regions. For each node v in Rt, we define its neigborhood subgraph GN

t (v) as
the smallest subgraph containing all its adjacent nodes u ∈ Rt. Let vn be a node
from a new region in Rt and u ∈ GN

t (vn) connected to a node u′ ∈ Rt−1. Let
consider a distance measure d(u, v) between two nodes. We denote by u′′ a node
in GN

t (u′). u′′ and vn are matched temporally if

d(u′′, vn) < min
z∈GN

t−1(u′′)
d(u′′, z) (9)
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Fig. 6. Neighborhood subgraphs for matching new nodes vn. For each node u ∈
GN

t (vn), the neigborhood of u in RAGt−1, GN
t−1(u

′) is examined. Lost nodes u′′ are
then retrieved by comparing vn to adjacent nodes of u′′ in GN

t−1(u
′′).

Equation 9 checks if an untracked node in Rt−1 can be matched with a new
node in Rt in the proximate neighborhood (fig. 6). In this way, lost objects can
be recovered in case of fast motion or homogeneity changes. For the distance
measure, the node attributes represent dominant color (c) and size (s) of the
regions. For two nodes u and v, the distance is given by

(a)

(b)

Fig. 7. Subgraph matching. Untracked nodes are shown as green (clear) rounds, tracked
nodes as dark (blue) rounds and new nodes as (red) squares. (a) RAGs before matching.
(b) RAGs after matching.
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d(u, v) = |cu − cv|2 susv

su + sv
(10)

Thus, we favor the grouping of smaller regions with similar attributes.
An example of matching is shown figure 7 on the tennis sequence. Before

matching (fig. 7a), untracked regions are located in the racket and the table left
corner. The new regions are located above the ball and inside the racket border.
After matching (fig. 7b), the nodes at the racket border have been grouped as
they have close similarity, whereas the table left corner is not linked to any new
node and thus cannot be reliably tracked.

5 Experimental Results

In this section, we test the proposed method on various real video sequences.
We analyse the segmentation results on the akiyo, tennis, and walking sequences
(CIF format). The processing time is about 1s per frame on a 2.8GHz PC with
unoptimized code.

Figure 8 shows the final spatio-temporal segmentation, i.e. when all the frames
have been processed. In figure 8a, the video is composed of stationary back-
ground and slow head motion. We see that the main regions are the woman

a)

#0 #25 #50 #75 #100

b)

#17 #23 #26 #31 #51 #60

c)

#0 #15 #30 #45 #60 #70

Fig. 8. Segmentation results. a) akiyo sequence. b) tennis sequence. c) walking se-
quence.
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and the TV screens which have smooth spatial variations whereas tiny varying
components such as face elements are not kept. In the next images, face moving
elements are detected, but they are too tiny to be extracted from the sequence.
In consequence, these elements are incorporated into the face.

In figure 8b, the video is composed of several motions. The ball and the racket
undergo rigid motion whereas the player undergoes non rigid-motion. Besides
theses motions, the camera is zooming out during the entire sequence. We see
that the ball region remains until it hits the racket in frame #26. As the ball was
speeding up in previous frames, the ball and its shadow were splitted into two
adjacent regions. The similarity between these regions is lower than their tem-
poral similarity with the new ball region, so that a new region is created for the
ball. The ball is tracked successfully until frame #31. From this moment on, the
camera quickly zooms out and the ball becomes smaller and less homogeneous.
As a result, the ball sometimes does not appear after the spatial merging stage.
However, the other regions, which are larger and more stable, such as the table,
the racket and the hand are correctly segmented during the whole sequence.
Finally, we can see that a strong scale change happens gradually between frame
#31 and frame #60. While the player is appearing progressively at the left of
the image, the corresponding regions are splitted until fitting the body of the
player. In this way, the segmentation follows the temporal changes of the video.

In the last sequence (8c), the camera is tracking the walking man so that
the walls surrounding him are moving towards the foreground and exiting the
frame progressively. In the first frame #0, the regions are composed of the man,
the tiled floor, the walls, the ceiling and the lamps. The man region remains
consistent along the sequence, just as the different parts of the walls and the
lights until they exit the frame. We can further notice that apparent static
regions such as the floor and the ceiling are coherent in the entire sequence.

These results illustrate the potential of the method to extract coherent vol-
umes from video shots. Given a level of details, both moving and static elements
can be tracked thanks to our hierarchical matching stage. Besides, we handle
dynamic temporal changes by favoring the creation of new regions when some
regions cannot be reliably matched between frame pairs. In this way, we achieve
good compromise between the span and the consistency of the regions. Therefore,
the method can help higher level grouping tasks considerably.

6 Conclusion

We have proposed a new method for extracting meaningful regions from videos.
Graphs appear as an efficient solution to build space-time relationships at dif-
ferent levels. We have used both pixel-based graphs to build low-level regions
and RAGs to enforce consistency of the regions. We have proposed a temporal
grouping method exploiting feature points to handle both static and dynamic
regions. Finally, encouraging results show that the method is promising as a
preliminary step for object-based video indexing and retrieval.
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