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Abstract

We study non-cooperative constrained stochastic games in which each player controls its own Markov chain based on its own state and
actions. Interactions between players occur through their costs and constraints which depend on the state and actions of all players. We provide
an example from wireless communications.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Non-cooperative games deal with a situation of several de-
cision makers (often called agents, users or players) where the
cost for each one of the players may be a function of not only
its own decision but also of decisions of other players. The
choice of a decision by any player is done so as to minimize
its own individual cost.

Non-cooperative games also allow to model sequential deci-
sion making by non-cooperating players. They allow to model
situations in which the parameters defining the games vary in
time. The game is then said to be a dynamic game and the pa-
rameters that may vary in time are the states of the game. At
any given time (assumed to be discrete) each player takes a de-
cision (also called an action) according to some strategy. The
vector of actions chosen by players at a given time (called a
multi-action) may determine not only the cost for each player at
that time; it can also determine the state evolution. Each player
is interested in minimizing some functions of all the costs at
different time instants. In particular, we shall consider here the
expected time-average costs for the players.
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We consider in this paper the class of stochastic decentral-
ized games which we call “cost-coupled constrained stochastic
games” and are characterized by the following:

1. We associate to each player a controlled Markov chain,
whose transition probabilities depend only on the action of
that player.

2. We assume that at any time, each player has information
only on the current and past states of his own Markov chain
as well as of his previous actions. It does not know the state
and actions of other players.

3. Each player has constraints on its strategies (to be defined
later). We consider the general situation in which the con-
straints for a player depend on the strategies used by other
players.

4. There are cost functions (one per player) that depend on the
states and actions of all players, and each player wishes to
minimize its own cost.

We see that players “interact” only through the last two points
above.

It is well known that identifying equilibrium policies (even
in absence of constraints) is hard. Unlike the situation in
Markov decision processes (MDPs) in which stationary optimal
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strategies are known to exist (under suitable conditions), and
unlike the situation in constrained MDPs (CMDPs) with a
multi-chain structure, in which optimal Markov policies ex-
ist [8,17,20], we know that equilibrium strategies in stochastic
games need in general to depend on the whole history (see e.g.
[21] for the special case of zero-sum games). This difficulty
has motivated researchers to search for various possible struc-
tures of stochastic games in which saddle-point policies exist
among stationary or Markov strategies and are easier to com-
pute [13,15,16,26]. In line with this approach, we shall identify
conditions under which constrained equilibria exist for cost-
coupled constrained stochastic games.

Related work: Several papers have already dealt with con-
strained stochastic games. In [7], the authors have established
the existence of a constrained equilibrium in a context of cen-
tralized stochastic games, in which all players jointly control a
single Markov chain and in which all players have full infor-
mation on its state. Moreover, when taking decision at time t,
each player has information on all actions previously taken by
all players.

The special cost-coupled structure (see Definition 2.1) has
been investigated in [14,2] in zero-sum games where there is
a single cost which one of the players wishes to minimize
and which a second player wishes to maximize. A highly non-
stationary saddle-point was obtained in [24] for a zero-sum
constrained stochastic games with expected average costs.

Although the question of existence of an equilibrium in
cost-coupled stochastic games has not been considered be-
fore, some specific applications of such games have been for-
mulated. Indeed, these games have been used extensively by
Huang, Malhamé and Caines in a series of publications [18,19].
Although they have not established the existence of a Nash
equilibrium, they have been able to obtain an �-Nash equi-
librium for the case of a large population of players. Models
concerning uplink power control, similar to the one studied in
[18], have been investigated in [3], in which the structure of
constrained equilibrium is established. We note, however, that
in the models considered in [3], the local Markovian states
of each user are not controlled; the decisions of each user
have an impact only on the costs and not on the transition
probabilities.

2. The model and main result

We consider a game with N players, labeled 1, . . . , N . Define
for each player i the tuple {Xi , Ai ,Pi , ci , Vi, �i} where:

• Xi is a finite local state space of the ith player. Generic no-
tation for states will be x, y or xi, yi . We let X := ∏N

j=1 Xj

be the global state space, and we define X−i := ∏
j �=i Xj

be the global to be the set of all possible states of players
other than i.

• Ai is a finite set of actions. We denote by Ai (xi) the set of
actions available for player i at state xi . A generic notation
for a vector of actions will be a = (a1, . . . , aN), where ai

stands for the action chosen by player i.

• Define the local set of state-action pairs for player i as set
Ki = {(xi, ai) : xi ∈ Xi , ai ∈ Ai (xi)}. Denote the set
of all global state-action pairs by K = ∏N

i=j Kj , and let

K−i = ∏N
j �= Kj denote the set of state-action pairs of all

players other than player i.
• Pi are the transition probabilities for player i; thus Pi

xiaiyi

is the probability that the state of player i moves from xi

to yi if she chooses action ai .
• c={cj

i }, i=1, . . . , N , j=0, 1, . . . , Bi is a set of immediate

costs, where c
j
i : K → R. Thus player i has a set of Bi +1

immediate costs; c0
i will correspond to the cost function

that is to be minimized by that player, and c
j
i , j > 0 will

correspond to cost functions on which some constraints
are imposed.

• V ={V j
i }, i =1, . . . , N , j =1, . . . , Bi are bounds defining

the constraints (see (2) below).
• �i is a probability distribution for the initial state of the

controlled Markov chain of player i. The initial states of
the players are assumed to be independent.

Histories, information and policies: Let M1(G) denote the
set of probability measures over a set G. Define a history of
player i at time (or of length) t to be a sequence of her pre-
vious states and actions, as well as her current local state:
ht

i = (x1
i , a1

i , . . . , x
t−1
i , at−1

i , xt
i ), where (xs

i , a
s
i ) ∈ Ki for all

s =1, . . . , t . Let Ht
i be the set of all possible histories of length

t for player i. A policy (also called a strategy) ui for player i
is a sequence ui = (u1

i , u
2
i , . . .), where ut

i : Ht
i → M1(Ai ) is

a function that assigns to any history of length t a probability
measure over the set of actions of player i.

At time t, each player i chooses an action ai , independently of
the choice of actions of other players, with probability ut

i(ai |ht
i)

if the history ht
i was observed by player i.

The class of all policies defined as above for player i is
denoted by Ui . The collection U = ∏N

i=1U
i is called the class

of multi-policies (
∏

stands for the product space).
Stationary policies: A stationary policy for player i is a func-

tion ui : Xi → M1(Ai ) so that ui(·|xi) ∈ M1(Ai (xi)). We de-
note the class of stationary policies of player i by US

i . The set

US = ∏N
i=1U

S
i is called the class of stationary multi-policies.

Under any stationary multi-policy u (where the ui are station-
ary for all the players), at time t, the controllers, independently
of each other, choose actions a= (a1, . . . , aN), where action ai

is chosen by player i with probability ui(ai |xt
i ) if state xt

i was
observed by player i at time t.

For u ∈ U we use the standard notation u−i to denote the
vector of policies uk, k �= i; moreover, for vi ∈ Ui , we define
[u−i |vi] to be the multi-policy where, for k �= i, player k uses
uk , while player i uses vi . Define U−i := ⋃

u∈U {u−i}.
A distribution � for the initial state (at time 1) and a multi-

policy u together define a probability measure P u
� which

determines the distribution of the vector stochastic process
{Xt, At } of states and actions, where Xt = {Xt

i }i=1,...,N and
At = {At

i}i=1,...,N . The expectation that corresponds to an
initial distribution � and a policy u is denoted by Eu

� .
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Costs and constraints: For any multi-policy u and �, the
i, j -expected average cost is defined as

Ci,j (�, u) = lim
T →∞

1

T

T∑
t=1

Eu
�c

j
i (Xt , At ). (1)

A multi-policy u is called i-feasible if it satisfies:

Ci,j (�, u)�V
j
i for all j = 1, . . . , Bi . (2)

It is called feasible if it is i-feasible for all the players i =
1, . . . , N . Let UV be the set of feasible policies.

Definition 2.1. (i) A multi-policy u ∈ Uv is called constrained
Nash equilibrium if for each player i = 1, . . . , N and for any
vi such that [u−i |vi] is i-feasible,

Ci,0(�, u)�Ci,0(�, [u−i |vi]). (3)

Thus, any deviation of any player i will either violate the con-
straints of the ith player, or if it does not, it will result in a cost
Ci,0 for that player that is not lower than the one achieved by
the feasible multi-policy u. Note that this definition is different
than the one in [22].

(ii) For any multi-policy u, ui is called an optimal response
for player i against u−i if u is i-feasible, and if for any vi such
that [u−i |vi] is i-feasible, (3) holds.

(iii) A multi-policy v is called an optimal response against u
if for every i = 1, . . . , N , vi is an optimal response for player
i against u−i .

Assumptions. We introduce the following assumptions:

• (�1) Ergodicity: For each player i and for any stationary
policy ui of that player, the state process of that player is
an irreducible Markov chain with one ergodic class (and
possibly some transient states).

• (�2) Strong Slater condition: There exists some real num-
ber � > 0 such that the following holds. Every player i has
some policy vi such that for any multi-strategy u−i of the
other players,

Ci,j (�, [u−i |vi])�V
j
i − � for all j = 1, . . . , Bi . (4)

• (�3) Information: The players do not observe their costs.
Hence the strategy chosen by any player does not depend
on the realization of the cost.

The last assumption is frequently encountered in game theory
and in applications, see e.g. [10,23,25]. The assumption is in
fact directly implied by the definition of policies. If it were
allowed to have policies depend on the realization of the cost,
then a player could use the costs to estimate the state and actions
of the other players.

We are now ready to introduce the main result.

Theorem 2.1. Assume that �1–�3 hold. Then there ex-
ists a stationary multi-policy u which is constrained-Nash
equilibrium.

Remark 2.1. If assumption �2 does not hold, the upper semi-
continuity which is needed for proving the existence of an
equilibrium (see Proposition 3.1) need not hold. This is true
even for the case of a single player, see [1,4].

As an example, consider N mobile terminals that transmit
simultaneously to a common base station. The signal transmit-
ted by a mobile arrives at the base station with an attenuation
that depends on the state of the radio channel between the mo-
bile and the base station and on the direction of its antenna.
The state of each mobile is modeled as a Markov chain and is
known only to the transmitting mobile. The signal received at
the base station from a mobile is perceived as interference to
the signals received by other mobiles. Each mobile controls its
transmission power so as to maximize the amount of informa-
tion it can send. The latter is a function of the ratio between
its received power at the base station and the sum of interfer-
ences received from other terminals. A mobile can influence
the radio conditions of its channel by changing the direction of
its antenna. Each mobile has further a constraint on its average
transmission power. Structural results on this example in the
case that the directions of the antennas are not controlled can
be found in [3].

3. Proof of main result

We begin by describing the way an optimal stationary re-
sponse for player i is computed for a given stationary multi-
policy u. Fix a stationary policy ui for player i. With some
abuse of notation, we denote for any xi ∈ Xi and any yi ∈ Xi ,

Pi
xiuiyi

=
∑

ai∈Ai (xi )

ui(ai |xi)P
i
xiaiyi

.

Denote the immediate costs induced by players other than
i , when player i uses action ai and the other players use a
stationary multi-policy u−i , by

c
j,u
i (xi, ai) :=

∑
(x,a)−i∈K−i

⎡
⎣∏

l �=i

ul(al |xl)�
u
l (xl)

⎤
⎦ c

j
i (x, a),

a = [a−i |ai], x = [x−i |xi],
where �u

l is the steady-state (invariant) probability of the
Markov chain describing the state process of player l, when
the policy u is used.

Next we present a linear program (LP) for computing the set
of all optimal responses for player i against a stationary policy
u−i .

LP(i, u): Find z∗
i,u := {z∗

i,u(y, a)}y,a , where (y, a) ∈ Ki ,
that minimizes

Ci,0
u (zi) :=

∑
(y,a)∈Ki

c
0,u
i (y, a)zi,u(y, a) subject to: (5)

∑
(y,a)∈Ki

zi,u(y, a)
[
�r (y) − Pi

yar

]
= 0, ∀r ∈ Xi , (6)
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C
i,j
u (zi,u) :=

∑
(y,a)∈Ki

c
j,u
i (y, a)zi,u(y, a)�V

j
i 1�j �Bi ,

(7)

zi,u(y, a)�0, ∀(y, a) ∈ Ki ,
∑

(y,a)∈Ki

zi,u(y, a) = 1. (8)

Define �(i, u) to be the set of optimal solutions of LP(i, u).
Given a set of non-negative real numbers zi={zi(y, a), (y, a)

∈ Ki (y)}, define the point to set mapping �(i, zi) as follows: If∑
azi(y, a) �= 0 then �a

y(i, zi) := {zi(y, a)[∑azi(y, a)]−1} is a
singleton: for each y, we have that �y(zi)={�a

y(zi) : a ∈ Ai (y)}
is a point in M1(Ai (y)). Otherwise, �y(i, z) := M1(Ai (y)),
i.e. the (convex and compact) set of all probability measures
over Ai (y).

Define gi(zi) to be the set of stationary policies for player i
that choose, at state yi , action a with probability in �a

y(i, zi).
For any stationary multi-policy v define the occupation mea-

sures (see [6,17] for more general definitions)

f (�, v) := {fi(vi; yi, ai) : (yi, ai) ∈ Ki , i = 1, . . . , N}
fi(vi; yi, ai) := �vi

i (y)vi(ai |yi).

Note that a unique steady-state probability exists by Assump-
tion �1 and it does not depend on �. We thus often omit � from
the notation.

Proposition 3.1. Assume �1–�3. Fix any stationary multi-
policy u.

(i) If z∗
i,u is an optimal solution for LP(i, u) then any element

w in gi(z∗
i,u) is an optimal stationary response of player i

against the stationary policy u−i . Moreover, the multi-policy
v = [u−i |w] satisfies fi(v) = z∗

i,u (it does not depend on �).
(ii) Assume that w is an optimal stationary response of player

i against the stationary policy u−i , and let v := [u−i |w]. Then
fi(v) does not depend on � and is optimal for LP(i, u).

(iii) The optimal sets �(i, u), i = 1, . . . , N are convex, com-
pact, and upper semi-continuous in u−i , where u is identified
with points in

∏N
i=1

∏
xi∈Xi

M1(Ai (xi)).
(iv) For each i, gi(z) is upper semi-continuous in z over the

set of points which are feasible for LP(i, u) (i.e. the points that
satisfy constraints (6)–(8)).

Proof. When all players other than i use u−i , then player i is
faced with a CMDP (with a single controller). The proof of
(i) and (ii) then follows from [5, Theorems 2.6]. The first part of
(iii) follows from standard properties of LP, whereas the second
part follows from an application of the theory of sensitivity
analysis of LP by Dantzig et al. [11] in [5, Theorem 3.6] to
LP(i, u). Finally, (iv) follows from the definition of gi(z). �

Define the point to set map

	 :
N∏

i=1

M1(Ki ) → 2

{
N∏

i=1
M1(Ki )

}

by

	(z) =
N∏

i=1

�(i, gi(z)),

where z = (z1, . . . , zN), each zi is interpreted as a point in
M1(Ki ) and g(z) = (g1(z1), . . . , g

N(zN)).

Proof of Theorem 2.1. By Kakutani’s fixed point theorem, a
fixed point z ∈ 	(z) exists. Proposition 3.1 (i) implies that for
any such fixed point, the stationary multi-policy g={gi(zi); i=
1, . . . , N} is a constrained Nash equilibrium. �

Remark 3.1. (i) The LP formulation LP(i, u) is not only a tool
for proving the existence of a constrained Nash equilibrium;
in fact, due to Proposition 3.1 (ii), it can be shown that any
stationary constrained Nash equilibrium w has the form w =
{gi(zi); i = 1, . . . , N} for some z which is a fixed point of 	.

(ii) It follows from [5] Theorems 2.4 and 2.5 that if
z = (z1, . . . , zN) is a fixed point of 	, then any stationary
multi-policy g in

∏N
i=1g

i(zi) satisfies Ci,j (�, g)=Ci,j (z), i =
1, . . . , N, j = 0, . . . , Bi . Conversely, if w is a constrained
Nash equilibrium then

Ci,j (�, w) =
∑
y∈X

∑
a∈Ai (y)

fi(w; y, a)c
j,w
i (y, a)

(and f (w) is a fixed point of 	).
(iii) Another way of proving Theorem 2.1 would be to regard

the formulation (5)–(8) as a one-shot game with continuous
action space and constraints and use the existence theorem of
[12,9]. Both references make assumptions on the continuity of
the feasible regions; these can be shown to follow from our
Slater conditions, see [11].
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