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Abstract— We investigate the problem of establishing the no arbitrary constraint in addition to the available infation
joint probability distribution of the entries of a Multiple -Input  apout the process) is the one with the maximum Shannon
Multiple-Output (MIMO) spatially correlated flat-fading ¢ hannel, entropy.

when little or no information about the channel properties ) . . .
are available. We show that the entropy of a random positive This paper focuses on the spatial correlation properties

semidefinite matrix is maximized by the Wishart distribution. Of frequency-flat fading channels. In general, in the absenc
We subsequently obtain the Maximum Entropy distribution of knowledge about correlation, application of the MaxEnt

of the MIMO transfer mgtrix by establishing its .dist.ri.butio n princip|e y|e|ds a process with independent ComponenB (Se
conditioned on the covariance, and by later marginalizing ver g7y 16\wever, measurements have shown that this is ranely t
the covariance matrix. The obtained distribution is isotrgpic, and . . .
is described analytically as a function of the Frobenius nam of case in reality, and that some de_gree of correlation between
the channel matrix. the components must be taken into account. Therefore, we
first focus on the spatial covariance matrix, and derive the
MaxEnt distribution of a general covariance matrix, in both
the full-rank and rank-deficient cases. In the full-rankegas
While a large number of models for wireless transmissiahe entropy maximizing distribution of the covariance rixatr
channels can be found in the literature (see e.g. [1] for @ shown to be a Wishart distribution. In a second step, we
overview), most of them rely on some kind of knowledgeonstruct the analytical model for the MIMO channel itself,
about the model parameters. In particular, spatial cdiogla by first deriving the MaxEnt distribution of the channel
is known to be a critical parameters for MIMO channeldpr a known covariance, and later marginalizing over the
through its influence on the channel capacity [2]. Amongovariance matrix, using the distribution of the covar@nc
the models incorporating spatial correlation as a parametestablished previously. The obtained distribution is smow
let us note the full-correlation model, which specifies the be isotropic, and is described analytically as a function
correlation for every pair of scalar variable, the Kronackef the Frobenius norm of the channel matrix. In addition to
model, where the full correlation matrix is assumed to havetleir analytical description, sample generation for satioh
Kronecker structure, and the Weichselberger [3] models Thpurposes according to the channel models proposed in this
class of models can accurately predict the channel behaviquaper is easily achieved through standard numerical msthod
on the condition that the correlation properties (or thetiaba
eigenbases in the case of the Weichselberger model) are
known, e.g. through measurements. Essentially, this mbans
it is easy to study and to replicate the properties of a knownWe consider a wireless MIMO link with; transmit and
channel. n, receive antennas, represented by thex n, matrix H.
The models proposed in this article have a different go8ince we are only concerned with frequency-flat channets, th
than those cited previously, since we do not seek a modeélj)-th coefficient of H (the attenuation between transmit
that matches a particular situation or set of measurembeuts, antennaj and receive antenng is a complex scalar that
rather generally fits a whole class of situations. For instan we denoteh, ;. In this article, we focus on the derivation of
the environment in which a mobile device will operate ithe fading characteristics & in the form of the probability
not known at the time of the design of the channel coddensity function (PDF)Pg(H). We are not concerned with
and therefore the code should be adapted to all possibie time-related properties of the channel, i.e. we asstate t
environments. In order to achieve this goal, we propose ¢o ube process under study is stationary, and refer to the ehann
the Maximum Entropy (MaxEnt) principle [4]. The Maximumrealization H or equivalently to its vectorized notation
Entropy principle relies on the fact that, in the absence &f= vec(H) = [h11...hy,1,h12.. . by, n,]7. Let us denote
any prior information about the process being modeled, tié = n,.n,. We will sometimes use the alternative notation
maximally noncommittal distribution (i.e. the one that liep where the antenna indices are mapped ifito.. N], i.e.

I. INTRODUCTION

II. NOTATIONS AND CHANNEL MODEL



denotingh = [h; ... hx]%. After elimination of the Lagrange coefficients through peop
normalization, this yields

1
I[1l. M AXENT DISTRIBUTIONS OF CORRELATED CHANNELS Pyio(H,Q) = m exp (—(hHQ‘lh)) . (5)

In [5], Debbah et al. show that the probability distributioRrpgefore, with the extra constraint of a deterministic
that maximizes the entropfy.v —log(P(H))P(H)dH, where ., elation matrix, the maximum entropy principle yields a
dH = [];_, dRe(h;)dIm(h;) is the Lebesgue measure ozomplex Gaussian distribution.

C¥, under the only assumption that the channel has a finite
average energw Fy, is the Gaussian i.i.d. distribution
N B. Knowledge of the existence of a correlation matrix

1 |hi|? . . :
Pa g, (H) = 7w &P |~ Z ]5 . (1) Let us conS|de_r the case w_here covariance is kn_oyvn_ to be
(mEo) 0 a parameter of interest, but is not known deterministically

=1
Note that he Gaussianiy and he dependence prapeieol - ceeaon o, S22 I1 Seeking 2 pratabiy
obtained distribution are the consequence, via the maXim%rginalizing the channel distribution ovey.

entropy principle, of the ignorance by the modeler of any

constraint other than the total average ene¥gy), rather than
assumptions. In the following sections, we shall incorm)rathe PDF Py of Q, with the energy constraintVEy, by
some knowledge about the spatial correlation charadterist maximizing the fun;:tional '

H in the framework of maximum entropy channel modeling.
We first study the case where the correlation matrix is det _ | _
ministic, and subsequently extend the result to an unknO\i%wgPQ) _/s log(Pa(Q)Fa(Q)4Q ©
covariance matrix.

1) Correlation Matrix MaxEnt PDF: Let us first establish

45| [ Pa@aa - 1] 44| [ w@ra@ie - ¥5|
s s
A. Deterministic knowledge of the correlation matrix . o
. . . _ ~ where S denotes the set ofV x N positive semidefinite
In this section, we establish the maximum entropy distrecomplex matrices. Since the trace operator can be expressed
bution of H under the assumption that the covariance matrgimply as a sum of eigenvalues, we perform the variable
Q = [ov hh" Py q(H)dH is known, whereQ is a N x N change to the eigenvalues/eigenvectors space, and denote

complex positive definite Hermitian matrix. Each component — diag(\1 ... \y) the diagonal matrix containing the
of the covariance constraint represents an independezdriineigenvalues 0fQ, and U the unitary matrix containing the
constraint of the form corresponding eigenvectors. Therefo®, = UAUZ. Let
U(N) denote the set ofV x N unitary matrices, endowed
/CN hahy, Prajq(H)dH = qq (2) with the Haar measure. In order for the variable change to
be bijective, A is defined overRiN, the space of real N-
for (a,b) € [1,...,N]?. The entropy maximization undertuples with non-negative non-decreasing components,t@nd

these covariance constraints (the energy constraint being is defined over the space of unitalyyx N matrices with real,
plicitly set by tr(Q)) is achieved through the Lagrange multinon-negative first row, which is denoted b N)/T (see [6,

pliers method, by introducing th&2+1 Lagrange coefficients Lemma 4.4.6)).

a,,, andf, and maximizing the functional Letting F(U, A) = Po(UAU"), and introducing the Ja-

cobianK (A) = (G20 il [Li<;(Ai—Xj)* eq. (6) becomes

LPuq) = [ ~log(Priq(H)) P (F)H =7
CN
. L(F) = / —log(F(U,A))F(U,A)K(A)dUdA
+ Z Qab [/N hahy Pajq(H)dH — Qa,b:| ( U(N)/TXREN (1 ( JE(A)
a€(l,...,N] c N
Pl ] + oy / <Z /\Z—> F(U,A)K(A)dUdA — NE,
+N
+ 8 {1 ‘/ PH|Q(H>dH} - 3) RS it
CN
A necessary conditigg(;‘g;)the entropy maximization id p [/M(N)/TXMN F(U, A)K(A)dUdA - 1] ' )

obtained by letting pem 0. Letting A = , o . .
1Q
(0] @elr....vp: denote theV x N matrix of the Lagrange 'g?gw)maxmum entropy distribution is obtained by letting

multipliers, and taking the derivative of eq. (3) yields 57 = 0, which yields
N
oL(P;
(S(TPHQ) = —log(Pujq(H)) —1 -3 —h"Ah* = 0. (4) l—l —log(F(U,A)) + 8+~ (Z Az-) K(A)=0. (8)
H|Q i=1




Since K(A) # 0 except on a set of measure zero, this is 2) Marginalization over Q: The complete distribution of
equivalent to F(U,A) = exp (B —1 +72£V:1 /\i)_ Note the correlated channel is obtained by marginalizing @t
that the distribution (U, A) K (A) does not explicitly depend using _its_dis.tribution.as est.ablished in the previous sacti
on U. This implies thatU is uniformly distributed, with 'N€ distribution ofH is obtained through

constant density’y = (2m)™ overU(N)/T. Therefore, the B

joint density can be factored d&(U, A)K (A) = PyPa(A), Pu(H) = /SPH|Q(H’ Q)Pa(Q)dQ (12)

where the eigenvalues are distributed ORQ_LrN according to _ / Pujq(H, U, A)PA(A)dUdA. (13)
u

eB—1 N (2m)N(N-1)/2 (N)xR+N
Pr(A) = P P WZ Ai W H()\i —A;)*.  Let us rewrite the conditional probability density of eq) &
i=1 j=1 J* i<y
1 H -1 H
9) Paio(h, U, A) = —————¢ tr(BhTUATUT) 14y
It is worth noting that the form of eq. (9) indicates that the A 7 det(A)

order of the eigenvalues is immaterial, and therefbrean be Using this expression in (13), we obtaif;(H) as
equivalently defined ovék+", with the PDF of thanordered

eigenvalues becoming LN/ / e UATTU™) 417 det(A) 1Py (A)dA.
™ R+N JU(N)
oB—1 N o\ N(N=1)/2 (15)
Py(A) = exp [\ @m0 s L[ = \)2. Following the notations of [11], letlet(f(i,5)) denote
Py NIT] ! ' L
i=1 A= 0 the determinant of a matrix with th@, j)-th element given

(10)
Finally, the Lagrange coefficients and 8 can be eliminated
by solving the normalization equatiofy , ~ P4 (A)dA = 1 by _
way of the Selberg integral (see [7, eq. (17.6.5)]). Thiddge A(X) = det(xg’l) = H(Ii —xj). (16)
N
7= "5 and i>7

by an arbitrary functionf(i,j). Let also A(X) denote the
Vandermonde determinant of the eigenvalue®f matrix X,

NN N 1 Using these notations, let us recall the Harish-Chandra-
rA) = [ 2D L D DAEPY _\.)2. ltzykson-Zuber (HCIZ) integral [12
Pi(A) = (Eo) H n!(n—l)!e o H.(/\l \;)2.  ltzykson-Zu er ( ) integral [12]
1<J N—-1 det —A; By
(11) ktr(AUBUH) _ 1) Nv—1)/29€ (e )
) . e dU = H nl| Kk _—
Note [8], [9] that eq. (11) describes the unordered eigem/al./y/ () ot A(A)A(B)
density of a complexv x N Wishart matrix withV degrees of a7
freedom and covariancﬁ,ﬂIN (denoted asVn (N, %IN)). where A and B are any hermitian matrices with respective
Since the eigenvectors oR are isotropically distributed, eigenvalues,, ..., Ay and By, ..., By. We will now ex-
we can conclude tha is itself a Wy (N, %IN) matrix. plicit the Haar integral in (15) using the Harish-Chandra-
This constitutes a fairly general result, since it showst thdzykson-Zuber result by identifyind = hh andB = A~1.
the entropy-maximizing distribution for & x N positive Note however that we can not directly apply (17) sinkds
semidefinite matrix under an average trace constraint isrank one, and thereforA(A) = 0. This can be resolved by
Wishart distribution with N degrees of freedom. A similataking the limit of all other eigenvalues to zero one by omel a
result, with a slightly different constraint, was obtainea@pplying the I'Hospital rule. Therefore, &t be an Hermitian
by Adhikari in [10], where it is shown that the entropy-matrix which has itsVth eigenvaluedy equal toh*h, and
maximizing distribution of a positive definite matrix withthe others4,, ..., Ay_; are arbitrary, positive values that will
known meanG follows a Wishart distribution withV 4- 1  eventually be set to 0. Letting(H, A,...,An_1) =
degrees of freedom, more precisely they (N + 1,75) 1 -
distribution. RR— / / e~ (AUAT'U™) BT det(A) L Py (A)dA,
™ R+N JU(N)

(18)

The isotropic property of the obtained Wishart distributioPH(H) can be determined as the limit distribution when the
(sinceU is Haar distributed, there is not privileged directio gt v _ | eigenvalues ofA go to zero:

for the eigenvalues of the covariance matr), is a

consequence of the fact that no spatial constraints were Pu(H) =, lm I(H,Ay,..., AN _1). (19)
imposed on the correlation. The energy constraint (imposed P

through the trace) only affects the distribution of thé&PPlying the HCIZ to integrate ovelU yields after some

eigenvalues of). Note also that the generation for simulatiofransformationd (H, A;,..., Ay_1) =

purposes 0fQ according to the Wishart distribution obtained A No_o

above is easy, since it can be obtained@s= Z2BB¥, O/ det(e " )det(A) A(Me—%tru\)d[\_ (20)
whereB is a N x N matrix with i.i.d. complex circularly- R+N A(A)

symmetric Gaussian coefficients of unit variance. NZ -1
where we let the constaidt = 7~V (Eﬁo) {anl n}



Then, let us decompose the determinant product using tfiér). After some calculus (omitted due to space constraints),
expansion formula: for an arbitrafy x N matrixX = (X; ;), we obtain

N N N (=N/Eg)Ntnt
det(X) = > (-1)* [[ Xn.a = % >0 I Xaw s Fole) == ; fa() [(n— DI (N —n) (8)
acPn n=1 a,bePn n=1
(21)
wherea = [a4,...,an], Py denotes the set of all permuta-
tions of [1,..., N], and(—1)? is the sign of the permutation. C. Limited-rank covariance matrix
Using the first form of the expansion twice, we obtain In this section, we address the situation where the modeler

N takes into account the existence of a covariance matrixréf ra
A(A) det (efAi/Aj) — Z (—1)2tP H Aan=le=Avn/Xn L < N (we assume that L is known). As in the full-rank

nei case, we will use the eigendecomposit@n= UAU# of the
(22) covariance matrix, withA = diag(A1,...,Az,0,...,0). Let
Therefore, us denoteA; = diag(A1,...,ArL). The maximum entropy
probability density ofQ with the extra rank constraint is

a,beP?

I(H,Ay,...,Ax_1) = & . unsurprisi_ngly similar to the one deriyed in_Section nB.
(A) with the difference that all the energy is carried by the first
N A i I i.eui iformly distributed ovet/(NV), while
atb Neban—3 —Am ¥y eigenvalues, i.eU is uniformly ,
Z (=1 H /w A T R e Fordy (23) the joint probability of the non-zero eigenvaluesdis, (Ar) =
a,bePyn n=1
2L
det[fi(A4,)] 2 \" 1 VLISV
— i U el 7 _ T o T NEg Zei=1 M )2,

‘ N . (29)
where we letfi(z) = [y, tNti=3e=e/te” Fa'dt, and obtain  However, whenQ is not full rank, the conditional prob-
(24) by identification of the second form of the determinanfyijiry distribution of H|Q is a degenerate Gaussian, and
expansion in eq. (23). The limit of as Ay,... Ayv—1 g0 10 gq (5) does not hold anymore. Only the projectionhofn
zero, is obtained by us'ngdc?(;?f%gt from [11, Appendix llllne subspace associated to the L non-zero eigenvalues (and
about the limit of the ratio—x7x;*= as several eigenvaluesihe | eigenvectors forming th& x L projector matrix which
converge to the samey. In this particular case, this yields e denoteU;)) is Gaussian, and therefore eq. (14) must be
N2 N-1 rewritten as
Pa) = L [ me-n17- @9
=1

-1
NN e PUAL U e
™ .TN

PH\Q(thvAL) = { 0 TL Hilel Ai
det [ £:(0); £1(0):-: £ 72 (0): filaw)] - e (30)
This expression ofPq(h, U, A7) does not lend itself di-
rectly to the marginalization described in Section IlI-Bsthce
the zero eigenvalues @) complicate the analysis. We solve
this by performing the marginalization of the covarianceam
)J_-dimensional subspace: consider/ar L unitary matrixB,,

ifh e Span(U[L]),

Eq. (25) shows that the probability &I depends only on
zx = h¥h, the Frobenius norm dH. The distribution ofh

is isotropic, and is completely determined by the probgpbili
density ofz = h’h. The PDFP,(z) of  can be obtained
by integration of Py(h) over the zero-centered comple

In order to simplify the expression of the determinant, it is
useful to identify the Bessek -function [13, Section 8.432]

in f;:
fiw) = 2(\/_37)%}1-”2(2\/——@. (27)

. . . A (k):/ L LTTE A
Noting that thepth derivative (for0 < p < N — 2) of f; at upyxert wh LI A
0 is simply £{7(0) = (—1)=i=Nyp=i=N+2(; 1 N — 3 —p)!, Exploiting the similarity of egs. (33) and (15), we conclude
we expand the determinant along the column containing tbeing the same arguments as in Section III-B.2, tkais

N_N-1 . B O
hypersphere of radius, and of surfaceSy (z) = ﬂ(wal)‘ and note that thév x N block-matrixB = OL -

Ne N-1 is unitary as well. Since the uniform distribution ov&(N)

Po(z) — (=7) IT (e — 10" is unitarily invariant,UB is uniformly distributed ove#/(N).

* (N -1 14 ’ ' Furthermore, sincg"u(L) dBr =1, we havePg(h) =
(o) £ - £(N=2) Y. £
det {fz(O),fz (0);-.-5 f; (0),fz(x)} - (26) / / Pujq(h, UB,AL)Py, (AL)dUdALdB,, (31)
U(L) JU(N)xR+T

/ Linespan(uy) Pe(Upz Th)dU,  (32)
UEU(N)

where eq. (32) was obtained by lettikg= U[L]Hh and

e—k"BrA "Bk
Pa, (AL)dBrdAL (33)



isotropically distributed in/(L), and that its PDF depends °*°
only on its Frobenius norm, following Cid Gaussian ()
1 01r ’ N MaxEnt P39 (x) i
Pi(k) = g PP (kTk), (34) \ S
SL (ka) | MaxEnt P12 (x)
h 0.08 v X 7
where ®
L MaxEnt Px (x)
L L+i Ko 1o (2L L) T 005 @) 1
Pm(L)(x) _ z Z (—L T ) JF _ N?o . g MaxEnt P (x)
et V NEo [(i — DY (L —1)! 5 | MaxEnt PO(x)
' (35) = 004 ' :
| (1)
Finally, note thath”h = kfk, and that the marginalization ‘ ——— MRxENtRR
over the random rotation that transforksnto h in eq. (32) 0.02-
preserves the isotropic property of the distribution. Effiere,
1 0
Pa(h) P (h"h), (36)

- Sy (hHh) : 0 10 20 30 20 50 60
or in other words, the Frobenius norm #f is distributed Energy

- L) N)
according tOng (note thatng = P,). Fig. 1. Limited-rank covariance distributioﬁéfv) (x) for L =1,2,4,8,12
and 16, andy? with 16 degrees of freedom, fa¥ Eg = 16.

D. Further remarks on the proposed model

In addition to the fully analytical description given abovethe limited-rank { < 16) and full rank . = 16) covariance
the proposed class of channel model can be easily simulatethxEnt channel at a SNR of 15 dB is pictured on Figure 2 for
since each realizatioh can be obtained by generating separarious rankd., together with the CDF of the mutual informa-
rately a normalized vector process uniformly distribute®ro tion achieved over the Gaussian i.i.d. channel. The prapose
the sphere of radius 1, and a scalar process representingrtinglel differs in particular in the tails of the distributiom
norm according to eq. (35) (e.g. by numerical inversion ef thparticular, the outage capacity for low outage probabitity
corresponding cumulative density function). greatly reduced w.r.t. the Gaussian i.i.d. channel model.

Note also that the proposed model fdrwas derived under
the assumption that the structure of the covariance matrix 1
was unconstrained. However, the result of Section IlI-B.1
and applies to various other situations, since it was shown
generally that the Wishart distribution wittv degrees of
freedom maximizes the entropy of a semi-definite positive o.7r
N x N matrix. Therefore, this result can be applied to any
situation where covariance matrices are used as parameter:
For instance, the Kronecker channel model, which is based **|
on the assumption of the separability of the transmit and o4t
receive covariance, constraints the structure of the MIMO
channel matrix according to given (usually, experimemptall
estimated) covariance matrices. However, in the absence o ©°2
experimental data, no specific model for those covariance o.f
matrices was available. Our result dictates that, in therds
of measurements, the Wishart model is the least committal  ©
choice for the covariance model.

0.81

0.61

MaxEnt rank 1
MaxEnt rank 2
MaxEnt rank 3
MaxEnt rank 7
MaxEnt rank 16
iid Gaussian

031

5 ) 10 15 20 25
mutual information (nats) at 15dB SNR, nr=n(=4

Fig. 2. CDF of the instantaneous mutual information cf a 4 flat-fading

channel for the MaxEnt model with various covariance ramitsl5dB SNR.
IV. SIMULATION RESULTS

Examples of the channel Frobenius norm PDFs (eq. (35))
for L = 1,2,4,8,12 and 16 are represented on Fig. 1 for V. CONCLUSION
a 4 x 4 channel (v = 16), together with the PDF of the We proposed analytical models for MIMO spatially
instantaneous power of a Gaussian i.i.d. channel of the sacaerelated flat-fading wireless channels, based on the
size and mean power. As expected, the energy distributioraximum entropy method. We first demonstrated that the
of the proposed MaxEnt model is more spread out than thatropy-maximizing probability distribution of a semi-
energy of a Gaussian i.i.d. channel. definite positive matrix is a particular case of the Wishart
The CDF of the mutual information (computed aslistribution. We then incorporated this result by condtitig
log det(I + n%HHH), where p is the SNR) achieved overthe channel matrix on the full covariance matrix, and by



later marginalizing out the covariance parameter. Both thg] w. Weichselberger, M. Herdin, Hdzcelik, and E. Bonek, “A stochastic

full-rank covariance matrix and the rank-deficient casesewe

treated. The obtained channel distribution was shown to be
isotropic, and was described analytically as a functionhef t [4]
Frobenius norm of the channel matrix.
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