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Abstract— We investigate the problem of establishing the
joint probability distribution of the entries of a Multiple -Input
Multiple-Output (MIMO) spatially correlated flat-fading c hannel,
when little or no information about the channel properties
are available. We show that the entropy of a random positive
semidefinite matrix is maximized by the Wishart distribution.
We subsequently obtain the Maximum Entropy distribution
of the MIMO transfer matrix by establishing its distributio n
conditioned on the covariance, and by later marginalizing over
the covariance matrix. The obtained distribution is isotropic, and
is described analytically as a function of the Frobenius norm of
the channel matrix.

I. I NTRODUCTION

While a large number of models for wireless transmission
channels can be found in the literature (see e.g. [1] for an
overview), most of them rely on some kind of knowledge
about the model parameters. In particular, spatial correlation
is known to be a critical parameters for MIMO channels,
through its influence on the channel capacity [2]. Among
the models incorporating spatial correlation as a parameter,
let us note the full-correlation model, which specifies the
correlation for every pair of scalar variable, the Kronecker
model, where the full correlation matrix is assumed to have a
Kronecker structure, and the Weichselberger [3] model. This
class of models can accurately predict the channel behaviour,
on the condition that the correlation properties (or the spatial
eigenbases in the case of the Weichselberger model) are
known, e.g. through measurements. Essentially, this meansthat
it is easy to study and to replicate the properties of a known
channel.

The models proposed in this article have a different goal
than those cited previously, since we do not seek a model
that matches a particular situation or set of measurements,but
rather generally fits a whole class of situations. For instance,
the environment in which a mobile device will operate is
not known at the time of the design of the channel code,
and therefore the code should be adapted to all possible
environments. In order to achieve this goal, we propose to use
the Maximum Entropy (MaxEnt) principle [4]. The Maximum
Entropy principle relies on the fact that, in the absence of
any prior information about the process being modeled, the
maximally noncommittal distribution (i.e. the one that implies

no arbitrary constraint in addition to the available information
about the process) is the one with the maximum Shannon
entropy.

This paper focuses on the spatial correlation properties
of frequency-flat fading channels. In general, in the absence
of knowledge about correlation, application of the MaxEnt
principle yields a process with independent components (see
[5]). However, measurements have shown that this is rarely the
case in reality, and that some degree of correlation between
the components must be taken into account. Therefore, we
first focus on the spatial covariance matrix, and derive the
MaxEnt distribution of a general covariance matrix, in both
the full-rank and rank-deficient cases. In the full-rank case,
the entropy maximizing distribution of the covariance matrix
is shown to be a Wishart distribution. In a second step, we
construct the analytical model for the MIMO channel itself,
by first deriving the MaxEnt distribution of the channel
for a known covariance, and later marginalizing over the
covariance matrix, using the distribution of the covariance
established previously. The obtained distribution is shown
to be isotropic, and is described analytically as a function
of the Frobenius norm of the channel matrix. In addition to
their analytical description, sample generation for simulation
purposes according to the channel models proposed in this
paper is easily achieved through standard numerical methods.

II. N OTATIONS AND CHANNEL MODEL

We consider a wireless MIMO link withnt transmit and
nr receive antennas, represented by thenr × nt matrix H.
Since we are only concerned with frequency-flat channels, the
(i, j)-th coefficient ofH (the attenuation between transmit
antennaj and receive antennai) is a complex scalar that
we denotehi,j . In this article, we focus on the derivation of
the fading characteristics ofH in the form of the probability
density function (PDF)PH(H). We are not concerned with
the time-related properties of the channel, i.e. we assume that
the process under study is stationary, and refer to the channel
realization H or equivalently to its vectorized notation
h = vec(H) = [h1,1 . . . hnr,1, h1,2 . . . hnr ,nt ]

T . Let us denote
N = nrnt. We will sometimes use the alternative notation
where the antenna indices are mapped into[1 . . .N ], i.e.



denotingh = [h1 . . . hN ]T .

III. M AX ENT DISTRIBUTIONS OF CORRELATED CHANNELS

In [5], Debbah et al. show that the probability distribution
that maximizes the entropy

∫

CN − log(P (H))P (H)dH, where
dH =

∏N
i=1 dRe(hi)dIm(hi) is the Lebesgue measure on

CN , under the only assumption that the channel has a finite
average energyNE0, is the Gaussian i.i.d. distribution

PH|E0
(H) =

1

(πE0)N
exp

(

−
N
∑

i=1

|hi|2
E0

)

. (1)

Note that the Gaussianity and the independence property of the
obtained distribution are the consequence, via the maximum
entropy principle, of the ignorance by the modeler of any
constraint other than the total average energyNE0, rather than
assumptions. In the following sections, we shall incorporate
some knowledge about the spatial correlation characteristics of
H in the framework of maximum entropy channel modeling.
We first study the case where the correlation matrix is deter-
ministic, and subsequently extend the result to an unknown
covariance matrix.

A. Deterministic knowledge of the correlation matrix

In this section, we establish the maximum entropy distri-
bution of H under the assumption that the covariance matrix
Q =

∫

CN hhHPH|Q(H)dH is known, whereQ is a N × N
complex positive definite Hermitian matrix. Each component
of the covariance constraint represents an independent linear
constraint of the form

∫

CN

hah∗
bPH|Q(H)dH = qa,b (2)

for (a, b) ∈ [1, . . . , N ]2. The entropy maximization under
these covariance constraints (the energy constraint beingim-
plicitly set by tr(Q)) is achieved through the Lagrange multi-
pliers method, by introducing theN2+1 Lagrange coefficients
αa,b andβ, and maximizing the functional

L(PH|Q) =

∫

CN

− log(PH|Q(H))PH|Q(H)dH

+
∑

a∈[1,...,N ]
b∈[1,...,N ]

αa,b

[
∫

CN

hah∗
bPH|Q(H)dH − qa,b

]

+ β

[

1 −
∫

CN

PH|Q(H)dH

]

. (3)

A necessary condition for the entropy maximization is
obtained by letting

δL(PH|Q)

δPH|Q
= 0. Letting A =

[αa,b](a,b)∈[1,...,N ]2 denote theN ×N matrix of the Lagrange
multipliers, and taking the derivative of eq. (3) yields

δL(PH|Q)

δPH|Q
= − log(PH|Q(H)) − 1 − β − hTAh∗ = 0. (4)

After elimination of the Lagrange coefficients through proper
normalization, this yields

PH|Q(H,Q) =
1

det(πQ)
exp

(

−(hHQ−1h)
)

. (5)

Therefore, with the extra constraint of a deterministic
correlation matrix, the maximum entropy principle yields a
complex Gaussian distribution.

B. Knowledge of the existence of a correlation matrix

Let us consider the case where covariance is known to be
a parameter of interest, but is not known deterministically.
We will proceed in two steps, first seeking a probability
distribution function for the covariance matrixQ, and then
marginalizing the channel distribution overQ.

1) Correlation Matrix MaxEnt PDF: Let us first establish
the PDF PQ of Q, with the energy constraintNE0, by
maximizing the functional

L(PQ) =

∫

S

− log(PQ(Q))PQ(Q)dQ (6)

+β

[
∫

S

PQ(Q)dQ− 1

]

+ γ

[
∫

S

tr(Q)PQ(Q)dQ − NE0

]

,

where S denotes the set ofN × N positive semidefinite
complex matrices. Since the trace operator can be expressed
simply as a sum of eigenvalues, we perform the variable
change to the eigenvalues/eigenvectors space, and denote
Λ = diag(λ1 . . . λN ) the diagonal matrix containing the
eigenvalues ofQ, and U the unitary matrix containing the
corresponding eigenvectors. Therefore,Q = UΛUH . Let
U(N) denote the set ofN × N unitary matrices, endowed
with the Haar measure. In order for the variable change to
be bijective,Λ is defined overR+

≤

N
, the space of real N-

tuples with non-negative non-decreasing components, andU

is defined over the space of unitaryN ×N matrices with real,
non-negative first row, which is denoted byU(N)/T (see [6,
Lemma 4.4.6]).

Letting F (U,Λ) = PQ(UΛUH), and introducing the Ja-

cobianK(Λ) = (2π)N(N−1)/2

QN−1
j=1 j!

∏

i<j(λi−λj)
2, eq. (6) becomes

L(F ) =

∫

U(N)/T×R
+N
≤

− log(F (U,Λ))F (U,Λ)K(Λ)dUdΛ

+ γ

[

∫

U(N)/T×R
+N
≤

(

N
∑

i=1

λi

)

F (U,Λ)K(Λ)dUdΛ − NE0

]

+ β

[

∫

U(N)/T×R
+N
≤

F (U,Λ)K(Λ)dUdΛ − 1

]

. (7)

The maximum entropy distribution is obtained by letting
δL(F )

δF = 0, which yields
[

−1 − log(F (U,Λ)) + β + γ

(

N
∑

i=1

λi

)]

K(Λ) = 0. (8)



Since K(Λ) 6= 0 except on a set of measure zero, this is

equivalent toF (U,Λ) = exp
(

β − 1 + γ
∑N

i=1 λi

)

. Note

that the distributionF (U,Λ)K(Λ) does not explicitly depend
on U. This implies thatU is uniformly distributed, with
constant densityPU = (2π)N over U(N)/T . Therefore, the
joint density can be factored asF (U,Λ)K(Λ) = PUPΛ(Λ),
where the eigenvalues are distributed overR

+
≤

N
according to

PΛ(Λ) =
eβ−1

PU

exp

(

γ

N
∑

i=1

λi

)

(2π)N(N−1)/2

∏N−1
j=1 j!

∏

i<j

(λi −λj)
2.

(9)
It is worth noting that the form of eq. (9) indicates that the

order of the eigenvalues is immaterial, and thereforeΛ can be
equivalently defined overR+N , with the PDF of theunordered
eigenvalues becoming

P ′
Λ(Λ) =

eβ−1

PU

exp

(

γ

N
∑

i=1

λi

)

(2π)N(N−1)/2

N !
∏N−1

j=1 j!

∏

i<j

(λi −λj)
2.

(10)
Finally, the Lagrange coefficientsγ and β can be eliminated
by solving the normalization equation

∫

R+N P ′
Λ(Λ)dΛ = 1 by

way of the Selberg integral (see [7, eq. (17.6.5)]). This yields
γ = − N

E0
, and

P ′
Λ(Λ) =

(

N

E0

)N2 N
∏

n=1

1

n!(n − 1)!
e−

N
E0

PN
i=1 λi

∏

i<j

(λi−λj)
2.

(11)
Note [8], [9] that eq. (11) describes the unordered eigenvalue
density of a complexN×N Wishart matrix withN degrees of
freedom and covarianceE0

N IN (denoted asW̃N (N, E0

N IN )).
Since the eigenvectors ofQ are isotropically distributed,
we can conclude thatQ is itself a W̃N (N, E0

N IN ) matrix.
This constitutes a fairly general result, since it shows that
the entropy-maximizing distribution for aN × N positive
semidefinite matrix under an average trace constraint is a
Wishart distribution with N degrees of freedom. A similar
result, with a slightly different constraint, was obtained
by Adhikari in [10], where it is shown that the entropy-
maximizing distribution of a positive definite matrix with
known meanG follows a Wishart distribution withN + 1
degrees of freedom, more precisely thẽWN (N + 1, G

N+1 )
distribution.

The isotropic property of the obtained Wishart distribution
(sinceU is Haar distributed, there is not privileged direction
for the eigenvalues of the covariance matrixQ), is a
consequence of the fact that no spatial constraints were
imposed on the correlation. The energy constraint (imposed
through the trace) only affects the distribution of the
eigenvalues ofQ. Note also that the generation for simulation
purposes ofQ according to the Wishart distribution obtained
above is easy, since it can be obtained asQ = E0

N BBH ,
whereB is a N × N matrix with i.i.d. complex circularly-
symmetric Gaussian coefficients of unit variance.

2) Marginalization over Q: The complete distribution of
the correlated channel is obtained by marginalizing outQ,
using its distribution as established in the previous section.
The distribution ofH is obtained through

PH(H) =

∫

S

PH|Q(H,Q)PQ(Q)dQ (12)

=

∫

U(N)×R+N

PH|Q(H,U, Λ)P ′
Λ(Λ)dUdΛ. (13)

Let us rewrite the conditional probability density of eq. (5) as

PH|Q(h,U, Λ) =
1

πN det(Λ)
e−tr(hhHUΛ−1UH). (14)

Using this expression in (13), we obtainPH(H) as

1

πN

∫

R+N

∫

U(N)

e−tr(hhHUΛ−1UH )dU det(Λ)−1P ′
Λ(Λ)dΛ.

(15)
Following the notations of [11], letdet(f(i, j)) denote

the determinant of a matrix with the(i, j)-th element given
by an arbitrary functionf(i, j). Let also ∆(X) denote the
Vandermonde determinant of the eigenvaluesxi of matrix X,

∆(X) = det(xj−1
i ) =

∏

i>j

(xi − xj). (16)

Using these notations, let us recall the Harish-Chandra-
Itzykson-Zuber (HCIZ) integral [12]
∫

U(N)

eκtr(AUBUH)dU =

(

N−1
∏

n=1

n!

)

κN(N−1)/2 det
(

e−AiBj
)

∆(A)∆(B)
,

(17)
whereA and B are any hermitian matrices with respective
eigenvaluesA1, . . . , AN and B1, . . . , BN . We will now ex-
plicit the Haar integral in (15) using the Harish-Chandra-
Itzykson-Zuber result by identifyingA = hhH andB = Λ−1.
Note however that we can not directly apply (17) sinceA is
rank one, and therefore∆(A) = 0. This can be resolved by
taking the limit of all other eigenvalues to zero one by one, and
applying the l’Hospital rule. Therefore, letA be an Hermitian
matrix which has itsN th eigenvalueAN equal tohHh, and
the othersA1, . . . , AN−1 are arbitrary, positive values that will
eventually be set to 0. LettingI(H, A1, . . . , AN−1) =

1

πN

∫

R+N

∫

U(N)

e−tr(AUΛ−1UH)PUdU det(Λ)−1P ′
Λ(Λ)dΛ,

(18)
PH(H) can be determined as the limit distribution when the
first N − 1 eigenvalues ofA go to zero:

PH(H) = lim
A1,...,AN−1→0

I(H, A1, . . . , AN−1). (19)

Applying the HCIZ to integrate overU yields after some
transformationsI(H, A1, . . . , AN−1) =

C

∫

R+N

det(e
−

Ai
λj ) det(Λ)N−2∆(Λ)

∆(A)
e−

N
E0

tr(Λ)dΛ. (20)

where we let the constantC = π−N
(

N
E0

)N2
[

∏N
n=1 n!

]−1

.



Then, let us decompose the determinant product using the
expansion formula: for an arbitraryN×N matrixX = (Xi,j),

det(X) =
∑

a∈PN

(−1)a
N
∏

n=1

Xn,an =
1

N !

∑

a,b∈PN

(−1)a+b

N
∏

n=1

Xan,bn ,

(21)
wherea = [a1, . . . , aN ], PN denotes the set of all permuta-
tions of [1, . . . , N ], and(−1)a is the sign of the permutation.
Using the first form of the expansion twice, we obtain

∆(Λ) det
(

e−Ai/λj

)

=
∑

a,b∈P2
N

(−1)a+b

N
∏

n=1

λan−1
n e−Abn /λn .

(22)
Therefore,

I(H, A1, . . . , AN−1) =
C

∆(A)
·

∑

a,b∈PN

(−1)a+b

N
∏

n=1

∫

R+

λN+an−3
n e−

Abn
λn e−

N
E0

λndλn (23)

= CN !
det[fi(Aj)]

∆(A)
, (24)

where we letfi(x) =
∫

R+ tN+i−3e−x/te−
N
E0

tdt, and obtain
(24) by identification of the second form of the determinant
expansion in eq. (23). The limit ofI as A1, . . . AN−1 go to
zero, is obtained by using a result from [11, Appendix III],
about the limit of the ratiodet(fi(xj))

∆(X) as several eigenvalues
converge to the samex0. In this particular case, this yields

PH(H) =
(−γ)N2

πNxN−1
N

N−1
∏

n=1

[n!(n − 1)!]
−1 · (25)

det
[

fi(0); f ′
i(0); . . . ; f

(N−2)
i (0); fi(xN )

]

.

Eq. (25) shows that the probability ofH depends only on
xN = hHh, the Frobenius norm ofH. The distribution ofh
is isotropic, and is completely determined by the probability
density ofx = hHh. The PDFPx(x) of x can be obtained
by integration of PH(h) over the zero-centered complex
hypersphere of radiusx, and of surfaceSN (x) = πN xN−1

(N−1)! :

Px(x) =
(−γ)N2

(N − 1)!

N−1
∏

n=1

[n!(n − 1)!]
−1 ·

det
[

fi(0); f ′
i(0); . . . ; f

(N−2)
i (0); fi(x)

]

. (26)

In order to simplify the expression of the determinant, it is
useful to identify the BesselK-function [13, Section 8.432]
in fi:

fi(x) = 2

(
√

x

−γ

)i+N−2

Ki+N−2(2
√−γx). (27)

Noting that thepth derivative (for0 ≤ p ≤ N − 2) of fi at
0 is simplyf

(p)
i (0) = (−1)−i−Nγp−i−N+2(i + N − 3 − p)!,

we expand the determinant along the column containing the

fi(x). After some calculus (omitted due to space constraints),
we obtain

Px(x) = −
N
∑

n=1

fn(x)
(−N/E0)

N+n−1

[(n − 1)!]
2
(N − n)!

. (28)

C. Limited-rank covariance matrix

In this section, we address the situation where the modeler
takes into account the existence of a covariance matrix of rank
L < N (we assume that L is known). As in the full-rank
case, we will use the eigendecompositionQ = UΛUH of the
covariance matrix, withΛ = diag(λ1, . . . , λL, 0, . . . , 0). Let
us denoteΛL = diag(λ1, . . . , λL). The maximum entropy
probability density ofQ with the extra rank constraint is
unsurprisingly similar to the one derived in Section III-B.1,
with the difference that all the energy is carried by the firstL
eigenvalues, i.e.U is uniformly distributed overU(N), while
the joint probability of the non-zero eigenvalues isPΛL(ΛL) =

(

L2

NE0

)L2 L
∏

n=1

1

n!(n − 1)!
e−

L2

NE0

PL
i=1 λi

∏

i<j≤L

(λi − λj)
2.

(29)
However, whenQ is not full rank, the conditional prob-

ability distribution of H|Q is a degenerate Gaussian, and
eq. (5) does not hold anymore. Only the projection ofh in
the subspace associated to the L non-zero eigenvalues (and
the L eigenvectors forming theN ×L projector matrix which
we denoteU[L]) is Gaussian, and therefore eq. (14) must be
rewritten as

PH|Q(h,U, ΛL) =

{

e
−hHU[L]Λ

−1
L

U[L]
Hh

πL
QL

i=1 λi
if h ∈ Span(U[L]),

0 elsewhere.
(30)

This expression ofPH|Q(h,U, ΛL) does not lend itself di-
rectly to the marginalization described in Section III-B.2, since
the zero eigenvalues ofQ complicate the analysis. We solve
this by performing the marginalization of the covariance inan
L-dimensional subspace: consider anL×L unitary matrixBL,

and note that theN ×N block-matrixB =

(

BL 0
0 IN−L

)

is unitary as well. Since the uniform distribution overU(N)
is unitarily invariant,UB is uniformly distributed overU(N).
Furthermore, since

∫

U(L)
dBL = 1, we havePH(h) =

∫

U(L)

∫

U(N)×R+L

PH|Q(h,UB, ΛL)PΛL(ΛL)dUdΛLdBL (31)

=

∫

U∈U(N)

1{h∈Span(U[L])}Pk(U[L]
Hh)dU, (32)

where eq. (32) was obtained by lettingk = U[L]
Hh and

Pk(k) =

∫

U(L)×R+L

e−kHBLΛ−1
L BH

L k

πL
∏L

i=1 λi

PΛL(ΛL)dBLdΛL (33)

Exploiting the similarity of eqs. (33) and (15), we conclude,
using the same arguments as in Section III-B.2, thatk is



isotropically distributed inU(L), and that its PDF depends
only on its Frobenius norm, following

Pk(k) =
1

SL(kHk)
P (L)

x (kHk), (34)

where

P (L)
x (x) =

2

x

L
∑

i=1

(

−L

√

x

NE0

)L+i Ki+L−2

(

2L
√

x
NE0

)

[(i − 1)!]
2
(L − i)!

.

(35)
Finally, note thathHh = kHk, and that the marginalization
over the random rotation that transformsk into h in eq. (32)
preserves the isotropic property of the distribution. Therefore,

Ph(h) =
1

SN (hHh)
P (L)

x (hHh), (36)

or in other words, the Frobenius norm ofH is distributed
according toP (L)

x (note thatP (N)
x = Px).

D. Further remarks on the proposed model

In addition to the fully analytical description given above,
the proposed class of channel model can be easily simulated,
since each realizationh can be obtained by generating sepa-
rately a normalized vector process uniformly distributed over
the sphere of radius 1, and a scalar process representing the
norm according to eq. (35) (e.g. by numerical inversion of the
corresponding cumulative density function).

Note also that the proposed model forH was derived under
the assumption that the structure of the covariance matrix
was unconstrained. However, the result of Section III-B.1
and applies to various other situations, since it was shown
generally that the Wishart distribution withN degrees of
freedom maximizes the entropy of a semi-definite positive
N × N matrix. Therefore, this result can be applied to any
situation where covariance matrices are used as parameters.
For instance, the Kronecker channel model, which is based
on the assumption of the separability of the transmit and
receive covariance, constraints the structure of the MIMO
channel matrix according to given (usually, experimentally
estimated) covariance matrices. However, in the absence of
experimental data, no specific model for those covariance
matrices was available. Our result dictates that, in the absence
of measurements, the Wishart model is the least committal
choice for the covariance model.

IV. SIMULATION RESULTS

Examples of the channel Frobenius norm PDFs (eq. (35))
for L = 1, 2, 4, 8, 12 and 16 are represented on Fig. 1 for
a 4 × 4 channel (N = 16), together with the PDF of the
instantaneous power of a Gaussian i.i.d. channel of the same
size and mean power. As expected, the energy distribution
of the proposed MaxEnt model is more spread out than the
energy of a Gaussian i.i.d. channel.

The CDF of the mutual information (computed as
log det(I + ρ

nt
HHH), where ρ is the SNR) achieved over
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0

0.02

0.04

0.06

0.08

0.1

0.12

Energy x

P
D

F
 o

f x
=

||H
|| F2

iid Gaussian (χ2)

MaxEnt P(16)
x

(x)

MaxEnt P(12)
x

(x)

MaxEnt P(8)
x

(x)

MaxEnt P(4)
x

(x)

MaxEnt P(2)
x

(x)

MaxEnt P(1)
x

(x)
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Fig. 1. Limited-rank covariance distributionP (L)
xN

(x) for L = 1, 2, 4, 8, 12
and 16, andχ2 with 16 degrees of freedom, forNE0 = 16.

the limited-rank (L < 16) and full rank (L = 16) covariance
MaxEnt channel at a SNR of 15 dB is pictured on Figure 2 for
various ranksL, together with the CDF of the mutual informa-
tion achieved over the Gaussian i.i.d. channel. The proposed
model differs in particular in the tails of the distribution. In
particular, the outage capacity for low outage probabilityis
greatly reduced w.r.t. the Gaussian i.i.d. channel model.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mutual information (nats) at 15dB SNR, n
r
=n

t
=4 

C
D

F

MaxEnt rank 1

MaxEnt rank 2

MaxEnt rank 3

MaxEnt rank 7

MaxEnt rank 16

iid Gaussian

Fig. 2. CDF of the instantaneous mutual information of a4 × 4 flat-fading
channel for the MaxEnt model with various covariance ranks,at 15dB SNR.

V. CONCLUSION

We proposed analytical models for MIMO spatially
correlated flat-fading wireless channels, based on the
maximum entropy method. We first demonstrated that the
entropy-maximizing probability distribution of a semi-
definite positive matrix is a particular case of the Wishart
distribution. We then incorporated this result by conditioning
the channel matrix on the full covariance matrix, and by



later marginalizing out the covariance parameter. Both the
full-rank covariance matrix and the rank-deficient cases were
treated. The obtained channel distribution was shown to be
isotropic, and was described analytically as a function of the
Frobenius norm of the channel matrix.
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